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LANCASTER 1 1
U N I V L S J. \

Abstract

One of the most frequently studied areas in finance is the classical mean-variance 

portfolio selection model pioneered by Harry Markowitz; which is also, undoubtedly 

recognized as the foundation of modern portfolio theory. The model in its basic form 

deals with the selection of portfolio of assets such that a reasonable trade-off is 

achieved between the conflicting objectives of maximum possible return at a 

minimum risk, given that the right choice of constituent assets is made and proper 

weights are allocated. However, despite its enormous contribution to this branch of 

knowledge, the model is not immune from criticisms ranging from those associated 

with its in ability to capture the realism of an investment setting -  such as transaction 

costs, cardinality constraints, floor and ceiling constraints, etc.

In this research we extended the classical model by incorporating into it the cardinality 

as well as the floor & ceiling constraints after which we implemented six different 

metaheuristic algorithms to solve this advanced model. We then designed and 

implemented some neighbourhood transition strategies to enable our designed 

algorithms solve the problem in an efficient and intelligent way.

Furthermore, we proposed a new portfolio selection model with target-semivariance 

(as defined in a previous research) as the objective, and constrained by additional real 

life (cardinality and floor & ceiling) constraints.
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1.0 Introduction

1.1 Overview of the Research

Investments decisions, especially in financial (capital) markets are thoughtfully 

reached, by individuals or fund managers (such as pension trustees, stock brokers, etc) 

who use savers’ or other corporate entities’ monies to purchase a single asset or bunch 

of assets with the sole motif of potentially maximizing their clienteles’ future expected 

returns. However, any investment (and by extension, almost any type of financial 

transaction) has an element of risk and/or uncertainty attached to it. This is so, because 

the actual future outcome of the potential return involved in such a deal cannot be 

guaranteed. Therefore it can be understood that, one basic feature of investment 

opportunities is that their actual return cannot be stated with any precision, thereby 

making them uncertain or simply risky, and this brings to light the inability of any 

individual, fund manager, or any other third party to ascertain (with 100% confidence) 

what the return on his investment will be in the very near or far away future. 

Realistically, no investment with certain/guaranteed returns exist; however, treasury 

bills and bonds are most of the times classified under the category of guaranteed- 

retum  (riskless) investments; but the true situation is that, even if (at the end of the 

investment period) there is a certain rate of return for these types of investments, 

whenever any natural phenomenon strikes -  which may consequently trigger some 

other uncertain phenomena (such as inflation); it will make their rate of return to 

deviate from the normal trend, and hence not certain anymore.

The concept of risk or uncertainty in this context does not apply to only when the 

dispersion (difference between the actual and expected return) is negative (downside 

risk), but also applicable when it is positive (upside risk) which is due to consequences
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of “positive surprises or non-occurrences of some negative events” [1001. Fama [51] 

who started a still ongoing research on information efficiency, believes that when all 

the necessary information and expectations on future prices can be communicated by 

the current prices, then the future payoffs and returns can be regarded and treated as 

random numbers, this leads to the fact in the simplest case that the returns of an asset 

can be said to follow a normal distribution which can be characterized by the expected 

value (average or mean) of the returns and the variance (or standard deviation also 

known as the volatility) and which are believed to explain all the information about the 

expected outcome and the range of deviations from it. It is noteworthy at this juncture 

that, the valuations as well as returns on an asset are therefore, practically highly 

uncertain; this is because, had it been that these parameters were known with certainty, 

the investors’ aim would be to set up a value maximization linear programming 

problem.

Many financial problems (including risk management, derivative pricing, asset 

allocation, model fitting and many more) which can be formulated as optimization 

problems are of immense critical importance; but undoubtedly, the most important 

among these classes of problems is the Portfolio Selection Problem (PSP) pioneered 

by Harry Markowitz [ 101, 1031 whose main goal was to compute a portfolio of assets 

(from a set of available assets) with minimum risk (quantified by portfolio’s variance) 

subject to achieving a given level of return. The model, apart from being one of the 

first mathematical frameworks providing investors with the tool to measure and 

quantify portfolio risk, is of immense importance as it suggests and justifies 

(analytically) portfolio diversification as a rational investment criterion, rather than 

paying much attention to maximizing return as the only parameter of interest. The
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resultant theory is undisputedly regarded as the foundation stone of what is now 

known as Modern Portfolio Theory (MPT).

The breakthrough made by this theory within the global financial investment arena led 

to the recognition of the author’s contribution to global financial practice, and this 

eventually resulted in the author’s conferment with the award of the prestigious Nobel 

Prize (Sveriges Riksbank Prize in Economic Sciences) in 1990 together with M. H. 

Miller and W. F. Sharpe for their pioneering contributions in the theory of financial 

economics. Markowitz, in the early 1950s published his article in the Journal o f 

Finance on portfolio construction strategies. The paper, entitled Portfolio Selection 

[1011 has built the foundations of what is popularly referred to as mean-variance 

portfolio optimization, mean-variance analysis and MPT. It is widely believed that, 

the mean-variance analysis is highly influential in portfolio management practices. In 

its basic form, it provides a mathematical framework for selecting assets to form a 

portfolio based on their expected performance as well as the investors’ risk tolerance.

However, despite the globally-acknowledged breakthrough brought by this 

optimization procedure more than half a century ago, it appears that this optimization 

procedure is mostly utilized at the more quantitative firms; while at many other firms, 

portfolio management remains a purely judgmental process based on qualitative and 

not quantitative assessments [50]. This is so, because, quantitative efforts in most of 

these firms seems to be directed at providing risk measures to investors and portfolio 

managers. These measures mostly help the portfolio managers/investors to assess and 

visualize the degree of risk involved in taking a particular portfolio, where it (risk) is 

defined as underperformance relative to a mandate. It should be noted here as well,
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that the theory is a normative theory; in the sense that it describes a norm of behaviour 

that investors/portfolio managers should follow in constructing a portfolio of assets 

and this is in contrast to a theory that is actually being followed or adopted.

In our research, we intend to use some metaheuristic techniques to solve a constrained 

portfolio optimization problem with (Target) semivariance as an alternative to the 

Markowitz’ conventional risk measure (Variance), while at the same time 

incorporating some real-world investment constraints -  such as the cardinality and 

floor & ceiling constraints. These metaheuristics are, mostly, high-level techniques 

designed to guide some other (sub-ordinate) heuristics on a search space to find a very 

good solution to wide ranging optimization problems without necessarily guaranteeing 

optimality. They were found to be very successful as high-level criteria algorithms for 

solving hard combinatorial optimization problems arising from various Artificial 

Intelligence (AI) and Operational Research (OR) areas, such as the Travelling 

Salesman Problem (TSP) and Constraint Satisfaction Problem (CSP).

1.2 M otivation of the Research

In the field of Operations Research/Management Science (OR/MS), lots of problems 

believed to be of theoretical and practical importance are of a combinatorial nature. 

Combinatorial problems involve determining values for discrete variables such that 

some set of conditions/constraints are satisfied. These problems can be classed as 

either optimization or satisfaction problems. In the former, the main aim is to find an 

optimal configuration, ordering, grouping or selection of discrete objects usually finite 

in number [93]. The most notable example of these types of problems is the well- 

known TSP, in which the cardinal objective is to find the shortest (possible) route that
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the Travelling Salesman — who is to visit all cities in his domain -  follows, which at 

the end of the day will be found to minimize the distance covered by the salesperson 

subject to the condition (constraint) that each city must be visited once and only once 

before returning to his original point (city) of departure. Other examples include 

vehicle routing, assignment, facility location and scheduling problems. For satisfaction 

problems, a solution satisfying some restrictions/constraint has to be found. Graph 

colouring, frequency assignment and resource allocation problems are the most 

notable examples under this category.

It is sometimes easy to state a given combinatorial optimization problem, but finding a 

solution to it might be very difficult. For instance, when we consider a TSP, there 

exists no known algorithm that guarantees obtaining an optimal solution within a 

polynomial time domain. In the same vein, no algorithm can guarantee in a 

polynomial time, whether a given CSP is satisfiable or not. This type of phenomenon 

widely encountered in solving many (real life) combinatorial problems led to the 

emergence of an area of research popularly known as Complexity Theory 166, 5] -  

which aims at categorizing problems based on the degree of difficulty inherent in 

finding their solutions. Among these classes of problems, one (NP-hard) has a special 

property that: for any of its members, no algorithm exists to date that can solve the 

problem in polynomial time; and from the computational complexity perspective, if 

any of the NP-hard problems is to be solved by an algorithm in a polynomial time, 

then it is possible also for all problems in this complexity class to be solved in 

polynomial time. From computational point of view, these problems are inherently 

intractable', thus in the worst case scenario, exponential run time would be needed by 

any algorithm attempting to solve an NP-hard problem. CSP, TSP and likewise a
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constrained PSP [84> 98] all belong to this class of problems and are therefore 

regarded among the most difficult combinatorial optimization problems.

It should be noted that, there are many real life problems that are combinatorial in 

nature upon which there is an urgent need for efficient algorithms. There are however, 

two classifications of algorithmic approaches for tackling combinatorial optimization 

problems, namely: the exact and the approximate.

In our research, we are considering an enhanced Markowitz model with two 

objectives, in which semivariance (as an alternative measure to portfolio risk) is 

minimized and portfolio expected return is maximized subject to achieving a given 

target; we also incorporate some of the practical constraints, namely: the cardinality 

and floor & ceiling constraints. This proposed model would, henceforth be referred to 

as Mean-Semivariance Portfolio Selection Model (ESPSM).

As in the case of the enhanced mean-variance (E-V) model (with constraints); our 

proposed ESPSM  is also an NP-hard combinatorial optimization problem, due to the 

introduction of binary variables that handle the cardinality of a portfolio f84, 981. For 

any NP-hard problem, the only viable option for obtaining a very good solution within 

a reasonable time frame is resorting to approximate algorithms such as Metaheuristics. 

Metaheuristics are certain classes of heuristic techniques which are found to be 

applicable to virtually all types of discrete optimization problems, and can also be 

adapted for use on continuous problems. These methods include Genetic Algorithms 

(GA), Simulated Annealing (SA), Ant Colony Optimization (ACO), Tabu Search 

(TS), Particle Swarm Optimization (PSO) and others [151.
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As for this research, we seek to develop some solution algorithms to our proposed 

model by designing and implementing six different metaheuristic algorithms, among 

which two of them (SA and TS) are Local Search techniques, two (GA and PSO) are 

Evolutionary Algorithms (EA), one (Parallel SA) is a parallel implementation of SA 

and one (SWAN) is a hybrid of SA & PSO. All the aforementioned algorithms were 

designed and coded in C++ programming language (which we learned specifically to 

conduct this research).

1.3 W hy it is important

When we consider the need for efficient algorithms capable of handling difficult 

optimization problems (both in academia and industry); we will come to the 

conclusion that our research will be of immense importance in that regard. For 

instance, our proposed (.ESPSM) model when successfully implemented will serve as 

an alternative tool to investors/practitioners in optimizing their portfolios of assets 

especially as it incorporates the investor more-preferred risk measure (the 

semivariance) rather than the conventional variance measure. Similarly, the 

metaheuristic techniques designed will be found to be very useful in finding good 

solutions not only to most of the constrained formulations of the PSP within a practical 

reasonable time frame, but also to some other difficult global optimization problems, 

such as functions optimization (minimization/maximization).

1.4 W hy it is difficult

The special nature (NP-completeness) of the problem makes it difficult for the 

conventional exact methods to arrive at an optimal solution in a reasonable time frame. 

Consequently, we had to design some metaheuristic algorithms to handle the situation.
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When it comes to implementing the metaheuristic techniques developed, there are lots 

of issues that made this task extremely difficult. These involve reaching decisions that 

are peculiar to the metaheuristic algorithm in view and as well, issues involving 

decisions that are problem-specific.

One issue that makes this research difficult is in the implementation of the algorithms 

themselves to suit the nature of the PSP; as they need rigorous and very well focused 

parameter fine tuning. This is because a very slight change in a single parameter value 

may make the algorithm perform very (unexpectedly) poorly, and thus given the 

number of parameters a particular algorithm possesses, it is extremely difficult to 

achieve a set of parameters that work acceptably well.

Another challenge is in designing and developing our neighbourhood structure, since a 

good neighbourhood structure can immensely improve the efficiency and effectiveness 

of an optimization algorithm. In the preliminary design, we allowed a random move in 

generating a candidate (neighbouring) solution, but unfortunately this decision was 

found to be ineffective, in the sense that most of the solutions returned by the 

algorithms were found to be of inferior quality which may not be unconnected with the 

fact that the problem is continuous, while many of the techniques considered were 

originally designed for, and are usually used for discrete problems. So in order to 

improve our algorithms’ performance we had to be a little bit creative by introducing a 

guided neighbourhood move which allows for increasing or decreasing a randomly 

chosen asset’s weight from the current portfolio’s configuration. Our neighbourhood 

definition also allows for the transfer of some fraction of an asset’s weight to another;
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and it occasionally considers insertion and deletion of new assets into and out of the 

current configuration.

Another unexpected difficulty was encountered in enforcing feasibility of a given 

candidate solution (in a constrained problem), especially after undergoing some 

processes involved in the neighbourhood move. For instance, when an asset weight is 

decreased by some specified (often known as step) value, and as a result it falls below 

the minimum threshold allowed, then the asset index together with its corresponding 

weight have to be deleted from the current portfolio’s composition, as a result of 

which we were constantly being faced with a dilemma of how do we insert a new 

replacement in the portfolio and what would be the weight of the newly introduced 

asset; noting that, if the newly introduced asset’s weight is too large, the resultant 

portfolio will be very different indeed from the current portfolio, and if it is set to take 

a very small value, the resultant solution will be prone to entrapment in a local 

optimum.

Going by the continuous nature of the PSP problem; in our TS implementation, we 

were also faced with another difficult challenge on how to declare a particular move as 

tabu (non-permissible). With the above in mind, we developed a new idea in which a 

newly generated (candidate) neighbouring solution is considered to be within the tabu 

region of the current, if the (Euclidean) distance between them does not exceed a 

specified threshold value.

We must admit at this point that, implementing the constrained PSP in PSO/SWAN 

was the topmost challenge encountered in this whole research. The PSO/SWAN is
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very suitable for the unconstrained PSP problem; while for the constrained case, even 

if the algorithm managed to begin its search for the candidate solutions from a feasible 

region, the moment all the particles (candidate solutions) undergo a velocity update 

after which an eventual repositioning takes place, they would almost immediately lose 

their feasibility status and further repairs need to be done in order to regain feasibility.

1.5 Aims of the Research

The aims of this research include:

• Designing a portfolio selection model that will adopt semivariance as an 

alternative measure of portfolio risk.

• Designing a model that will reflect the actual real-life situation in the portfolio 

selection decision, by adding extra real and practical constraints such as the 

cardinality and buy-in threshold constraints.

• Solving some portfolio selection problems using some of the widely used 

metaheuristic algorithms, test their individual robustness and at the same time 

compare their respective performance in arriving at a very good solution.

• Solving some other difficult global optimization problems especially the 

continuous types, such as the De Jong’s and Schwefel’s functions.

1.6 Objectives of the Research

The main objectives of this research include:

• To provide decision makers (investors, fund managers and other stakeholders 

in financial investment) with the basic knowledge required to make an 

intelligent and sound decision in constructing portfolios from the pool of 

seemingly promising and non-promising assets, with the sole aim of
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optimizing conflicting trade-offs; involving maximization of expected return 

while at the same time keeping risk as little as possible.

• To provide ideas and techniques of incorporating real life constraints 

obtainable in any asset management industry such as Buy-in threshold and 

Cardinality constraints and their resultant effect on the smooth curve of 

efficient portfolios, also known as “efficient frontier”.

• To explore the robustness of the designed metaheuristic techniques in 

producing solutions of high-quality in a PSP problem whether or not such a 

problem is enriched by the so-called real life investment constraints.

• To test the capability of our designed algorithms in handling other difficult 

optimization problems.

1.7 Research Contribution

This research contributes in investigating and improving methods for getting good 

solutions to the enhanced Markowitz model while treating it as a 2-objective problem, 

and thus potentially enabling better solutions to be found.

One of the main contributions this research offers is the design of a newly developed 

(SWAN -  SWarm ANnealing) algorithm, which is a hybrid of the PSO and SA. 

Although, we are fully aware of similar implementations in the research community, 

where PSO and SA are hybridized as in Wang and Li [1471; our implementation is 

significantly different. This is because, in Wang and Li [1471 each of the generated 

particles (candidate solutions) underwent processes involved in the SA technique after 

which the best among them was declared the global best (,gbest) solution, then other 

particles’ positions were updated according to the PSO update mechanism, and the
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process continued in similar fashion until convergence or a given stopping criterion 

was attained. In our implementation, however, all the generated particles undergo all 

the processes involved in the PSO technique until convergence, after which the global 

(gbest) solution is passed to SA as a starting solution which will then keep on being 

improved until a given stopping criterion is attained. By implementing the algorithm 

in this way; we hope to obtain solutions that are at least as good as those returned by 

either the PSO or the SA. This is because, in our implementation, we first aimed to 

exploit the PSO’s exploratory capability by searching the entirety of the solution space 

to obtain a very good starting solution to be passed to SA, which will then be used to 

apply its intensification power (through successive decreasing temperature values) to 

obtain possibly a finer and better solution.

Another important contribution this research has on offer is the introduction of a new 

neighbourhood move structure geared towards guiding our Local Search methods 

(especially the SA, TS and parallel SA) to obtain not only good, but hopefully near 

optimal solutions. The move operations in the neighbourhood structure allows for 

incrementing and decreasing an asset’s weight. It also allows for deleting an asset 

from a portfolio whose weight violates a vital constraint. This neighbourhood structure 

occasionally allows for the insertion of a new asset into the current portfolio with a 

negligible weight; it also, according to some probability value, transfers some portion 

of an asset’s weight to another. We call our neighbourhood move structure IDDIT 

(Increase-Decrease-Delete-Insert-Transfer) as a result of the operations that are 

randomly executed therein.
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We also developed and implemented another neighbourhood structure for solving the 

constrained PSP problem using PSO and SWAN. This special (IDDIT-like) 

neighbourhood structure has some aspect of guidance enabling it to perform well with 

the algorithms it is designed for; as it allows for movement of particles (candidate 

solutions) in the search space without compromising solution quality. Although the 

particles use some information from their personal history and that of the entire 

swarm; they update their positions in the search space devoid of the conventional 

velocity and position update mechanisms, but rather, occasionally jump away from 

their immediate neighbourhood in search of a better solution while at the same time 

escaping entrapment in a local solution.

We also proposed a PSP model with target-semivariance (as defined in Estrada [47, 

48, 49) as the objective (risk measure), while at the same time incorporating additional 

real life constraints including the cardinality and buy-in threshold (floor & ceiling) 

constraints.

1.8 Outline o f the Thesis

This section is meant to briefly relate to the reader what is to be expected in the 

following chapters, sections and subsections in this thesis. The next chapter, after 

providing an overview of the classical Markowitz E-V model, it also defines what 

constitutes an E-V investor. Limitations and shortcomings of the classical E-V model 

as well as possible extensions of the classical model are also discussed. The chapter 

concludes by describing how a semivariance would be computed, after which follows 

a thorough explanation about the implementation of our proposed mean-semivariance 

portfolio selection model.
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Chapter three, among other things, provides some definitions of metaheuristics as 

provided in the literature. A fairly detailed review of some literature on the successful 

application of metaheuristic algorithms in other areas of research, as well as in finance 

(portfolio optimization) is also reported. The chapter concludes with a fairly thorough 

explanation of the six metaheuristic algorithms used in this research.

Chapter four provides all the necessary details required for the solution of the PSP’s 

unconstrained case. The chapter also discusses some performance and evaluation 

metrics which would be used to assess the performance of our algorithms amongst 

themselves as well as against a well known non-linear optimization solver (CPLEX). 

The chapter then concludes with discussion of the results obtained from the solver and 

our implemented algorithms.

The fifth chapter is concerned with the solution of the constrained PSP. The chapter 

contains a thorough explanation of the two neighbourhood move definition strategies 

developed in this research (which form integral parts of this research’s contribution). 

The first one is called IDDIT and is meant to serve our local search algorithms; while 

the other (which is more advanced) is meant to serve our swarm algorithms. The 

chapter concludes by discussing the results and evaluation of the algorithms in relation 

to the constrained case outputs.

Chapter six is meant to assess how well our algorithms (PSO and SWAN) perform in 

solving some other optimization problems other than the PSP they were originally 

designed for. The chapter gives a very brief overview of some popular, but standard 

optimization test functions that are used to evaluate newly developed optimization
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algorithms; these functions/problems include both constrained and unconstrained

cases.

We draw some conclusions in chapter seven; and we also provide a hint on what we 

plan to do in order to take our research to the next level.

Page 29 of 277



2.0 Portfolio Selection Strategies

2.1 Portfolio Selection: Classical Theory and Extensions

One of the most important aspects of asset management is the process of intelligently 

combining a set of attractive assets into a single master asset often called a portfolio of 

assets. Realistically, these portfolios are strongly required to be optimal as far as the 

trade-offs between the conflicting objectives of maximizing returns and minimizing 

risk are concerned. However, before the advent of MPT, portfolio selection decisions 

were purely hinged on qualitative assessments of the available assets, while the idea of 

incorporating real-life constraints into the process of assets’ selection was almost 

nonexistent.

2.2 The M arkowitz M ean-Variance model

The concept of MPT was pioneered for more than half a century by Harry Markowitz,

hence the name Markowitz’ Modem Portfolio Theory. Although, this modem concept

is unarguably regarded as the foundation stone of modem day portfolio theories, it is

simplistic and at the most basic level, in the sense that some of the underlying

assumptions upon which it is based cannot be met practically, while at the same time

turning a blind eye to the practical considerations of cardinality constraints (which

restricts the number of assets that should be incorporated into the portfolio), minimum

transaction lot sizes, transaction cost, liquidity constraints and much more. The most

prominent and important assumption of this theory, is that, investors are basically risk-

averse, a feature that measures the degree of investor’s preference on his/her

investment objectives. Literally, this means, if an investor is pushed to make a choice

between two assets with similar expected returns, but with varying magnitude of (risk)

variance, he/she would prefer the one with smaller variance (risk). Likewise, if he/she
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was to be presented with, and asked to make a choice between another set of (two) 

assets with equal variance and different expected rate of returns, he/she would go for 

the one with higher expected return.

Another reason or evidence supporting the above claim is Markowitz’s observation to 

the fact that investors generally hold diversified portfolios. He argued that if the 

reverse was the case, it would be observed that investors would always aim to hold a 

single asset that has the likelihood of bringing higher expected return irrespective of 

the risk involved in making such a decision. One more fact supporting the 

aforementioned claim by Markowitz is the purchase of different types of insurance 

(such as life, accident, health and automobile). Investors purchase insurance to avoid 

future uncertainties even if the premium (they would pay) is higher than the expected 

payoff of the insurance. Markowitz in the early 1950s, based on the presumption of 

risk-aversion behaviour of many investors proposed a (two objective optimization) 

model, in which: the expected return of an investment is maximized; and the risk 

(Variance of return) of investment is minimized

Markowitz’ E -V  model is normally regarded as the building block of the MPT [52]. It 

gives a multi-objective optimization problem, with two output dimensions. The model 

is based on the assumption that asset rate of returns exhibit the properties of a normal 

distribution, which means the distribution of the rate of returns can be solely explained 

or described by the first two moments (namely, expected value, E  and variance, V) of 

the distribution. So, the mean of the asset rate of returns (E) can be used as the 

expected return in the long run period of time, while the variance of the asset rate of
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returns (V) can be used to denote the degree of riskiness involved in holding such an 

asset in an investment decision; hence the term E -V  model.

Suppose an investor is faced with a universe of n assets out of which he has to make 

some choices in order to make up a portfolio of investments. Furthermore, assume that 

the mean (or expected) rates of return of these n assets can be denoted by 

rx, r2 , ... , rn and the covariances are denoted byov., for all assets i, j  = 1, 2, . . . ,  n.

Then, a portfolio P  consisting of these n assets with fractions of weights often denoted 

by Wj is to be found, in which these fractions add up to unity. The observance of a 

negative weight means short selling is allowed in the portfolio P. One way of defining 

the problem facing a potential investor is that he should find a possible combination of 

assets (portfolio) with least (minimum) variance, with expected value of the portfolio

fixed at some value R*P. Then a feasible portfolio with this minimum variance and 

expected value can be found by formulating and solving a Quadratic Programming 

(QP) problem as follows:

n n

Minimize cr2p = I I  wi Gij wj 22(a)(i)
/=i y=i

Subject to

22(a)(ii)
/=i

2 > ,  = 1 22(a)(iii)
/=i
0 < w, < 1 22(a)(iv)

Where, is the expected rate of return for asset; R*P is the desired return from the 

portfolio P; a /y is the covariance between asset i and asset j; <j2p is the minimum 

value of portfolio risk at a given level of return; and wt is the weight allocated to asset 

i.
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The above formulation is a Convex Quadratic Program due to the fact that the program 

has a quadratic objective function, while the constraints (conditions) are made up of 

both linear equalities and inequalities.

When the problem is solved for a set of R*P values, the entire efficient frontier for the 

unconstrained problem can be estimated. It is now left for the investor to choose any 

efficient portfolio depending on his specific risk/return needs. The efficient frontier is 

composed of Pareto optimal portfolios, in which neither of the two criteria (risk and 

return) can be improved without deteriorating the other.

If the possibility of short selling assumption is dropped, which means the fractional 

weights of the selected assets must be non-negative (vt>. > 0 ) for all assets i — 1,2, ...

n then obtaining the finite maximum and minimum points on the variance-retum 

(standard deviation-retum) plane is easy and straightforward. This can be achieved by 

solving the Lagrangian formulation of the problem as follows:

Minimize (l -  /l) ]T ^  w, a v w; -  2 ,^  w, r( 22{b){i)
/  =  l y ' =  l /  =  i

Subject to

2 > , = i 2 . i ( b m
/=i

0 < w, < 1 2.2(b)(iii)
0 < X < 1 2.2(b)(iv)

X is a Lagrangian term and can take any real value within the interval [0, 1] to 

determine what is known as efficient (non-dominated) portfolios -  those that can 

easily be seen to form a frontier (curve) of non-dominated portfolios on the Risk- 

Retum plane. The Lagrangian term takes a value within the given interval based on the
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investor’s degree of risk aversion or tolerance. When X takes the value 1, the objective 

function reduces to a linear function and thus the problem turns into a linear 

programming problem which seeks to maximize portfolio expected (mean) return 

irrespective of the degree of risk involved upon taking such a decision, and this type of 

decision may be taken by risk-seeking investors who end up sinking all their 

investment capital in only one single asset which seems to have the potential of a very 

high return in the future and at the same time might be the one with the highest risk.

On the other hand, when X = 0, the objective function becomes a non-linear (quadratic) 

function thereby turning the entire problem into a Quadratic Programming (QP) model 

with the sole aim of minimizing the portfolio (variance) risk without taking the 

portfolio expected return into cognizance. Upholding such kinds of portfolio 

construction decision characterizes the investor as strongly risk-averse or risk-hating, 

in the sense that his/her main goal is to minimize investment risk at all cost not 

minding the meagre return he might end up with in the future. Figure 2.1 below shows

a typical efficient frontier of portfolios.

i i
E fficient Frontier

►
P ortfo lio  R isk

Figure 1: Typical unconstrained efficient frontier
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The Markowitz problem provides the foundation for single-period investment theory. 

The problem explicitly addresses the trade-off between expected rate of return and 

variance of the rate of return in a portfolio. Once the Markowitz problem is 

formulated, it can be solved numerically to obtain a specific numerical solution.

Limitations/Drawbacks of M arkowitz’ Model

There are basically some limitations/drawbacks the original E -V  model carries along 

with it, which consequently led to various criticisms thereby triggering further 

research in the area. The most notable among these criticisms are:

1. It is a single period model: This means once investors have made their decision 

concerning the allocation of wealth to different securities at the start of time 

period, they cannot take any further action until the next time period. This, in 

itself, is risky; because in the real life situation, portfolios are constructed such 

that they can be traded at any time. Portfolio Rebalancing strategies were 

proposed in Donohue and Yip [35], Jobst et al [84], and Calvet et al [16] to do 

away with this drawback.

2. The estimation of the underlying parameter inputs (return, variance and 

covariance) is considered to be another downside to this model. The 

calculation of mean, variance and covariance of returns are considered to be 

vital for accuracy reasons, as small errors can have large impact on the optimal 

asset weights. Konno and Yamazaki [91] proposed a computationally-less 

costly model without needing a covariance matrix as input.
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3. Variance, as a measure of risk has been attacked over the last few years. Some 

investors/researchers including Konno and Yamazaki [9J_], Ballestero [7], and 

Harlow [67] view variance as a false indication of true risk. Since investors 

dislike negative deviation and embrace positive deviation from the mean, some 

argue that semi variance may be a better measure of risk (including Markowitz 

h im self- see Markowitz [103] for details).

4. To obtain accurate results a large data set is needed. With this model being 

quadratic, the amount of time needed to solve for a large portfolio may also be 

impractical.

5. The model failed to consider realistic investment constraints obtainable in 

financial investment arena. These include, but are not limited to, floor & 

ceiling constraints, cardinality, turnover constraint, and transaction costs. Lots 

of researches were, and are still currently conducted to incorporate as many 

realistic constraints as possible into the portfolio selection model. See for 

instance Jobst et al [84], Chang et al [20], Crama and Schyns [25], Speranza 

[134], Hamza and Janssen [68], Bienstock [J_0], and Lee and Mitchell [94].

2.3 Extensions of the Classical model: Objectives

In the pre-modem portfolio era; investors, portfolio managers, pension fund 

administrators, and other stakeholders in the financial investment industry are very 

much aware of the existence of investments’ return and risk. This means, they knew 

(positive) return is desirable and is what pushes the momentum of investments; while 

on the other hand, they believe there exists a risk (the undesirable component) attached
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to realizing any perceived or expected return; furthermore, the greater their feeling  of 

risk, the higher their feeling  of uncertainty about realization of the expected return. 

However, despite their skills, long term experiences and knowledge of market 

behaviour and eventualities, the lack of any numerical measure to quantity risk of an 

investment remained the most disturbing challenge of the time.

As already mentioned, a new page in investment science was opened when Harry 

Markowitz developed in his seminal paper [ 1011, a mathematical programming model 

for optimal portfolio selection. In the then newly developed model -  based on 

multivariate normality assumption of the asset returns -  Markowitz showed that the 

(desirable) portfolio return can be characterized and quantified by the first moment 

(Mean), while the portfolio risk would be characterized and quantified by the second 

moment of the distribution, also known as the variance. Since then, portfolio 

management and optimization techniques have developed immensely and variance 

became the most popular mathematical definition of (investment / portfolio) risk [81]. 

The resultant model is what would later be termed as the E-V  paradigm of portfolio 

selection and whose wider acceptability as the bedrock of modem portfolio theory can 

never be overemphasized [7].

The Markowitz’ E-V  model is composed of three main features, namely the objective, 

constraints and variables. But most of the researches conducted in portfolio selection 

result from modifications made to one or more of the above mentioned features. Due 

to the theory’s stand on upholding the multivariate normality assumption of asset 

returns, which eventually leads to making use of variance as a measure for quantifying 

portfolio risk, the newly found theory was welcomed with various criticisms.
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Researchers who are opposed to employing variance as an appropriate measure for 

portfolio risk have suggested alternatives. Ballestero [7], Konno and Yamazaki [91J, 

Roy [1271. Huang [81], Feiring et al [53], Hamza and Janssen [68] were among the 

few researchers who fall in this category. According to them, the normality 

assumption of asset returns is not realistic, as asset returns are known to exhibit a high 

degree of asymmetry, also known as kurtosis in Statistics. Furthermore, they argued 

variance imposes a penalty on both positive and negative fluctuations relative to the 

portfolio expected return. Their argument is based on the fact that the majority of 

investors (especially Risk Averse), would normally be happy with the positive 

fluctuations, while at the same time being unhappy with any return below their 

expected or target return; after all, one of the main aim of investment is to gain a 

positive return; and thus there is no basis or justification whatsoever to penalize it and 

consider its contribution as an addition to the magnitude of asset’s or portfolio’s risk -  

which is what variance does.

In order to prove the preference and efficiency of downside risk over the classical E-V  

optimization framework; Feiring et al [53] sampled ten years data of monthly returns 

for 60 Hong Kong stocks in order to make different portfolios for the purpose of 

comparison. The model proposed, needed neither the normality assumption of the 

asset returns nor the estimation of covariance matrix — which are both, vital in the 

classical E-V  paradigm -  yet it was shown to have the potential of outperforming the 

latter method in various runs of the algorithms. The study also found out “there is a 

tendency that the longer the holding period, the higher the portfolio realized return”, 

and this is not unconnected with the fact that: holding portfolios for a longer term
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results in very few transactions, which would consequently lead to paying low 

transaction costs.

In another development, Ballestero [7] proposed a downside risk model (using Mean- 

Semivariance approach) as a substitute to the conventional Mean-Variance paradigm. 

Although (like the Markowitz model) computationally demanding, the risk measure 

used is believed to be a better representative metric of portfolio risk. The model was 

solely based on the validity of the beta regression equation proposed by William 

Sharpe. The study provided an insightful and illustrative numerical example (using 

fictitious data), on how to handle the multitude of computations involved therein. The 

newly proposed model was found to beat its Mean-Variance counterpart in 5 of the 7 

scenarios generated. At some coincidental (similar) solutions, it is observable that the 

model has an edge over its mean -  variance counterpart; in the sense that, it allows an 

investor to select a portfolio that can satisfy three interesting constraints namely: (i) 

expected return to his (investor’s) target, (ii) minimum variance (risk), and (iii) 

minimum downside risk below the mean value. The research concluded by giving 

some credits to the newly proposed model, especially in the computation of 

semivariance matrix and its evident robustness, looking at how the model can be 

possibly extended to “convert its objective function into a downside risk measure for 

returns below some target or specific threshold other than the mean value”, and/or to 

include some more relevant factors other than the market (single) one in estimating an 

asset return.

Another research that viewed optimizing portfolios from the mean-semivariance (E-S) 

perspective was conducted by Hamza and Janssen [68], and incorporating additional
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realistic constraints namely: transaction costs, minimum transaction units and 

investor’s portfolio holding. Although, neither was supported by any numerical 

example nor was it compared to any other benchmark, the research claims to be able to 

solve real life mixed integer programming problems in a short computational time 

when the model is incorporated in a suitable heuristic method. Another credit to the 

proposed model is the fact that it was not based upon any “probabilistic assumption on 

the distribution of stock data in the market”, and in situations where the rates of return 

exhibit a multivariate normal distribution behaviour, they claim that it can be shown to 

be equivalent to the Markowitz model (though they do not prove this).

Konno and Yamazaki [91] argued that, there exists an immense computational 

challenge involved in estimating the parameters needed to optimize a Mean-Variance 

portfolio; in the sense that it is necessary to compute or estimate all the elements of the 

dense covariance matrix, and optimizing a quadratic programming problem with such 

a huge number of estimated elements embedded in the objective function requires an 

exponential period of time. The above challenges motivated Konno and Yamazaki 

[91] to design and propose a linear programming optimization model which is 

believed to improve the theoretical framework while at the same time reduce the 

computational burden inherent in the Markowitz model. The newly proposed model 

was not only proven to be equivalent to, and computationally advantaged over the 

former, but was also shown to be easier to update while at the same time not 

increasing the number of functional constraints irrespective of the number of stocks 

included in the model.
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Depending upon how financial investments decision makers (investors, pension fund 

and portfolio managers) interpret or view the concept of risk; it is widely believed that 

metrics used in quantifying portfolio risk are categorized into two classes. The first 

classification includes the so-called symmetric (two-sided) measures which seek to 

penalize both positive (profit) and negative (loss) dispersion from a pre-specified 

value. The most common risk measures under this category are the Mean Absolute 

Deviation (MAD) as applied by Konno and Yamazaki [91] and Atkinson [6], as well 

as the popular variance or standard deviation as pioneered by Markowitz [101, 1031.

The other category involves those metrics that aim to quantify risk subject to results 

and probabilities below some specified values, and these are normally called the 

asymmetric measures of risk. Notable ones among this category are the Semivariance 

as proposed again by Markowitz [1021, safety first criterion by Roy [1271, A risk 

curve metric (generalization of Roy’s Safety first) by Huang [811, Value at Risk (VaR) 

by Morgan [1141 as well as its extension -  Conditional VaR (CVaR) by Uryasev and 

Rockafellar [1451 and importantly the Fishbum’s a -t criterion [56] which serves as a 

generalization not only for the asymmetric measures listed above, but also to their 

symmetric counterparts.

2.4 Extensions of the Classical model: Constraints

The classical Markowitz model can be regarded as the most basic formulation of the 

portfolio optimization problem. The enhanced version of the Markowitz model is 

basically the conventional model enriched by some realistic constraints, which makes 

it difficult for the well known exact algorithms to find solutions easily or within a
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reasonable time frame. The most notable constraints, some captured and others not, by 

the original model include:

2.4.1 The basic (Return and Budget) Constraints

Budget and return constraints are the most important set of constraints in PSP. The 

budget constraint states that assets’ weights must sum up to unity; while the return 

constraint ensures that the weighted sum of asset returns must be strictly equal (or >) 

to some target return. These constraints were included in the' Markowitz original 

model playing an important role in determining the feasibility of a given solution. 

They take the form:

2.4.1(a)

V  w fl = R 2.4.1(6)

Constraint 2.4.1(a) ensures that all the investment capital is fully invested; while 

constraint 2.4.1(b) ensures that the portfolio return achieves a given target, R t.

2.4.2 The Floor & Ceiling constraints

In PSP, floor & ceiling (often regarded collectively as buy-in threshold or simply 

threshold) constraints are very important. They are introduced into the mean-variance 

model to reduce much administrative costs resulting from holding an asset with 

negligible contribution towards portfolio’s expected turn-over and performance, and/or 

to avoid over dependence upon one of the constituents (assets) chosen to make up the 

portfolio.
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A floor  (i.e. lower bound) constraint is a constraint that imposes a restriction on the 

minimum proportion allowed to be held by any given asset that forms part of a given 

portfolio. On the other hand, a ceiling (i.e. upper bound) constraint imposes a 

restriction on the maximum proportion any given asset is allowed to have (when it 

forms part of a given portfolio).

Floor & ceiling constraints are un-avoidably needed to optimize real world portfolio 

optimization problems and they can be respectively denoted by say a lower limit /,• and 

upper limit These constraints are formulated using a discrete programming 

modelling structure; which is well known using variable upper and lower bounds or 

semi-continuous variables. Using the finite bounds 4  and w, for the stock weight w,-, it 

can easily be comprehended that the following relationship holds: /,• <wf <ut . The 

introduction of a decision variables) makes the formulation easier and straightforward, 

it should be noted here that our decision variable 8  is at the same time a binary

variable taking a value 1 if asset i is included in the portfolio, otherwise it is forced to 

take a value 0. Now the corresponding buy-in threshold restriction can be represented 

by the constraint pair:

1 ,8 , < w , <  u , S , 2 . 4 . 2 ( a )

5 ,  =  0 . 1 2 A 2 ( b )

V /  =  1 , 2 , . . . ,  n

The above restrictions means that, the binary variable 8  would be forced to take a 

value 1 if any asset i is held, thereby forcing the fraction w, related to asset i to lie 

between lower /,• and upper bounds u/ respectively. Similarly, if asset i is not held, 8

equals 0 and consequently, w,• takes the value 0. The introduction of the binary
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variables transforms the quadratic programming (QP) to a quadratic mixed integer 

program (QMIP) which becomes larger in size and computationally challenging [84, 

i l l ] .

This constraint is strongly related to the cardinality constraint (to be discussed next), 

as it can implicitly define the range of the cardinality constraint. For example, setting a 

lower bound of say /, = 0.2 for each asset implicitly defines a maximum cardinality of 

5 assets in a portfolio; so it is extremely important to ensure consistency between the 

two constraints when formulating a constrained case of PSP.

2.4.3 The Cardinality constraints

In a typical financial market setting, an investor or fund manager will be confronted 

with a very large number of different types of stocks from which to choose. According 

to the Markowitz’ E-V  model, if it would be possible to get hold of all the available 

stocks in the market, then the resulting portfolio would have been highly diversified 

and consequently less risky. But realistically taking up such a decision is very costly, 

thereby rendering such a decision highly inefficient. Thus an investor or fund manager 

may wish to limit the number of assets he/she owns or manages.

It is possible that, there exist some rules enacted by the financial markets’ regulatory 

authority limiting investors from holding too many assets in their portfolio. On the 

other hand, investors may want to monitor the performance of individual assets or 

possibly wish to minimize (high) transaction costs (resulting from holding large 

number of assets). Basically, in order to do so, investors would be forced to reduce the 

number of assets in their portfolios, and this can be achieved by introducing
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cardinality constraints in the model which limits the number of binary variables, 

already introduced in the preceding Floor & Ceiling constraints formulation to force 

the portfolio to have a fixed number of assets, say K , and this can be done by

n

introducing the constraint . = K , in the earlier formulation which ensures that
/=i

only K  of the total n assets make the portfolio’s composition.

Jobst et al [84] argues that the cardinality constraint is intrinsically related to the Floor 

& Ceiling constraint, in the sense that, the higher the threshold limit the more it tends 

to restrict the number of assets in a portfolio. However, imposing cardinality 

constraints only (with no threshold at all) may lead to some very small non-zero asset 

weights [50]. Therefore it is best to include both constraints in the same portfolio 

optimization model.

2.4.4 Transaction roundlots restrictions

In a typical investment setting, assets are traded in discrete number of basic units of 

investment often known as roundlots. Investors are always required to make 

transactions in multiples of these roundlots; this, according to Jobst et al [841, tackles 

“the assumption of the infinite divisibility of assets inherent in the M-V rule”.

Transaction roundlots are often expressed in fractional form, say f ,  of the investment 

capital; after which asset weights w, are defined in relation to f  and an integer number 

of roundlots, Thus, we may now have: Wj = f  x «/, i = 1, 2, ... N. However, it

should be understood at this point that, incorporating the roundlots constraints will 

make satisfying the budget constraint almost impossible. With this in mind, there is
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the need to relax the budget constraint by introducing some (undershoot, £ and

overshoot, £ +) variables which would eventually be penalized with a very high cost, 

say M, in the objective function. With this new transformation, equations 2.4.1(a), 

2.4.1(b) and 2.4.2(a) will respectively look like:

N
T j f . n ,  + £ "  - e *  =  1
1 = 1

2.4.4(a)

Z  f i n>7t = RTi=1
2.4.4(b)

lA  s  f , n, s 2.4.4(c)

nj integer V 7  =  l , . ..,N  .

01 1 C»3 +
IV o

2.4.5 Turnover and trading constraints

Although, Perold [1191 was the first to implement minimum trading size constraints in 

his PSP formulation, it was Crama and Schyns [25] who elaborated more on it, and 

went ahead an extra mile to additionally incorporate turnover constraints.

Turnover constraints are responsible for imposing upper bounds on the variations of 

asset’s holding from one time period to the next; while trading constraints impose

lower bounds on such variations. For instance, if we denote by wj0), P , S, and

the weight of asset i in the initial portfolio configuration, maximum purchase, 

minimum purchase, maximum sale and minimum sale bounds respectively; we can 

represent the turnover and trading constraints by:

max(w -  W0), 0) < P. 1 < i< n 2.4.5(a)

max(M|0) - w ,  0) < S. 1 < i< n 2.4.5®

w. =W0) or w > ^W0) + p j  or w < |m|0) - 1 < i< n 2.4.5(c)
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The first two set of constraints 2.4.5(a) and 2.4.5(b) represent the (turnover) purchase 

and sale constraints respectively, while equation 2.4.5(c) represents the trading 

constraint. According to Crama and Schyns [25], the trading constraint typically 

reflects the investor’s inability or undesirability to modify the portfolio by buying or 

selling tiny quantities o f  assets due the existence of probably high fixed transaction 

costs or some contract clauses.

The apparent disjunctive nature of the trading constraint in 2.4.5(c) means: for any 

asset i, it is either the weight remains unchanged, or a minimum quantity^? must be

purchased, or a minimum quantity Sj_ must be sold.

2.4.6 Compulsory Constraints

Sometimes an investor may want his portfolio to contain specific asset(s) in a fixed 

proportion. Handling this type of constraint is easily done by fixing the value of the 

corresponding binary variable to unity. For instance, if an investor wishes that an asset 

with index, i = 5 must form part of his portfolio, then this can be achieved by setting

8  5 = 1 as part of the constraints in a PSP formulation.

2.4.7 Class Constraints

Imposing class constraints in PSP formulation, although important and practically 

sensible, is rarely implemented in academic research [64]. It is possible an investor 

may want to compartmentalize the universe of assets into mutually exclusive groups 

(classes), each consisting of assets with similar attributes (Oil & Gas assets, IT assets, 

insurance, etc); after which he may limit the proportion of the investment fund to be 

allocated to each class.
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For instance, let H be the set of classes, while Lk and U k are respectively the lower 

and upper proportion limits for class k. Now we can define class constraint by:

Lt ~ H wj -  U>’ k = !>•••>H 2.4.7

This constraint can be used to diversify the portfolio across several economic divides.

2.4.8 Non-negativity bounds

The majority of the researches (with a few exceptions [25, 1261) conducted on PSP 

incorporate this constraint. It is defined by imposing the restriction:

w > 0, V/ 2.4.8/ *

This basically means no short sales are allowed. It should be understood that this 

constraint will be rendered redundant by incorporating the floor & ceiling constraint in 

the PSP formulation.

The incorporation of one or more of the above computational constraints (with the 

exception of those described in sections 2.4.1 and 2.4.8) in the PSP transforms the 

quadratic programming (QP) to a quadratic mixed integer program (QMIP) which 

becomes larger in size and computationally challenging [84, 111], thereby making it 

much more difficult or even (most of the time) impossible to solve by the conventional 

exact methods embedded in most of the state-of-the-art nonlinear/quadratic 

optimization solvers (such as CPLEX, FortMP, MINOS and many more).
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2.5 The Semivariance

The MPT was founded on the premise that all investment decisions are taken in order 

to achieve a retum-risk tradeoff that is optimal in the opportunity set to some extent. 

However, in order to achieve this desired objective, an investor/portfolio manager will 

have to initially, evaluate the necessary information by quantifying ex ante measures 

of both risk and expected return for the appropriate set of assets. After that has been 

done, a set of efficient combinations of assets (providing the minimum risk subject to 

achieving a desired level of expected return) are isolated; upon which an 

investor/portfolio manager would choose a combination that is consistent with his/her 

risk tolerance level.

In this section, we intend to discuss one attractive, altemative-to-variance asymmetric 

measure of risk and more investor-preferred, that focuses on the returns below a 

specified target or benchmark return level (the semivariance), which will in turn be 

used to replace the classical Markowitz’ risk measure (variance); further to that, we 

then enrich the resultant model with realistic investment constraints -  specifically the 

cardinality and floor & ceiling constraints.

Although, there is a very clear way of identifying a portfolio of assets characterized by 

risk and return, the universally-accepted definition of risk is almost nonexistent or at 

least ambiguous [67]. This is because an investment decision perceived to be risky by 

one investor might not be viewed as such by another investor faced with similar 

investment scenarios and decisions during the same time period. For instance, one 

investor might consider risk as the probability of shortfall below some level of return; 

while another will be more concerned about the overall magnitude of loss, if any
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should occur in the investment period. These different perceptions of the notion of risk 

and many other possible definitions remind us that variance (standard deviation) 

which is the conventional measure of risk, is deficient in dealing with rich set of 

portfolio objectives and constraints that investors/portfolio managers often formulate.

It should be made known that, there are several techniques developed over the years 

purposely for implementing the theory of portfolio selection; among which are the 

popular downside risk measures. The semivariance, however, is the most popular and 

commonly used of these set of measures. Moreover, it has been in use in many 

portfolio theory researches as long as the variance itself [115],

Roy’s 1952 article [127], whose primary concept was that an investor should prefer to 

(first) safeguard his principal when dealing with investment risk, was extremely vital 

in the development of downside risk measures; this is because the tool he introduced 

and termed as reward-to-variability ratio allows investors to minimize the chances of 

their portfolios falling below a certain disaster level. Even Markowitz [103] 

acknowledged the strength of such an idea by admitting that investors will be 

interested in a downside risk (like semivariance), especially that the return distribution 

may not be Gaussian. Markowitz also showed that when the return distribution is 

Gaussian both downside risk and variance (his adopted risk measure) would provide a 

correct measure; while on the other hand, if the return distribution is non-Gaussian 

(asymmetric), only the downside risk measures would provide a correct answer.

Apart from the Roy’s [127] and Markowitz’ [103] aforementioned stand on the 

portfolio selection decisions based on downside risk measures in general, and
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semivariance in particular, further research in proving the superiority of semivariance 

over the variance in portfolio selection context continued in the early 1960’s and 

1970’s (see Quirk and Saposnik [1201 and Mao [99] for further details). In the same 

vein, Roy [1271, Markowitz [103] and Mao [991 all argued that: investors are not 

worried or concerned with the above-target returns but rather with the below-target 

returns and that semivariance is more consistent with financial and investment 

managers’ perception of risk.

So, going by the above insightful revelations; the question that first comes to one’s 

mind is: if such was the case then, why is the idea of adopting variance as a measure 

of portfolio risk received much more attention and preference by practitioners and 

academics alike? Partly in answering this question, Markowitz f 103] argued that, 

variance is preferred because it has an edge over semivariance “with respect to cost, 

convenience, and familiarity”; so when he focused his attention on optimizing 

portfolios with variance as a measure of risk, other practitioners and academics 

followed suit and the rest is history.

We too, as Estrada [47] rightly argued, believe that the issue o f familiarity should not 

preclude the use of semivariance, as this concept is wearing away over time, going by 

the fact that, downside risk portfolio analysis has increasingly been gaining attention 

and applied in both industry and academia as there are many downside risk measures 

[84, 47, 48, 49, 68] that are well known and widely applied.

In relation to the variance’s advantages in cost and convenience over the semivariance; 

Markowitz \ 1031 argued that [back then] “ ... roughly two to four times as much
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computing time is required (on a high speed electronic computer) to derive efficient 

sets based on Se [semivariance] than is required to derive efficient sets based on V 

[variancef\ Furthermore, he added ‘7/7 an analysis based on V, only means, 

variances, and covariances must be supplied as inputs; whereas an analysis based on 

S requires the entire joint distribution o f  return". While as far as convenience is 

concerned, Markowitz argued that, “Unlike semi-variance, variance and standard 

deviation are known by many people acquainted with modern statistics”. However, as 

time went by, it can easily be observed that, all the above mentioned concerns have 

become much less an issue. For instance, a Forbes’ article: Clash [22] stated that 

semivariance is already being used by many pension managers and is still gaining 

acceptability in some fund companies. In a similar development, some major funds use 

semivariance in calculating their risk-adjusted returns while at the same time including 

“a relative measure o f  each fu n d ’s semivariance in annual and semiannual reports”. 

Other researches such as Estrada [45] show that, the cross-section inherent in the US 

and emerging market stocks can be explained by using semideviation and other 

downside risk measures. Estrada [47] also argues that portfolio managers and investors 

-  especially pension fund managers due to their well known stand on preservation of 

principal and potential loss minimization strategies -  should find downside risk 

measures (such as semivariance) immensely useful.

Semivariance, as already described above, is a risk concept that is believed to be 

consistent with both investors and portfolio managers’ intuitive feeling of risk 

characterized by the failure to earn some target return. The E-S model allows decision 

makers to quantify risk from an arbitrary point rather than the mean value of the return 

distribution and also demarcate positive from negative deviations. One of the
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advantages of this measure of portfolio risk is that, it allows investors to be more 

conservative towards losses (returns below some target), while at the same time 

becoming aggressive toward gains (returns above some target).

The semivariance, according to Harlow [67] and Markowitz f 1041, is defined as an 

asymmetric measure o f  risk that focuses on squared return deviations below the mean 

o f the distribution. But target semivariance is similar and more general, in the sense 

that it considers return dispersions below any arbitrary target or benchmark return 

level. With this, it is important to note that, semivariance unlike the variance, does not 

increase with higher positive dispersions from the mean/target return, as these are 

rather captured by the mean of the return distribution.

If we assume an asset i has return rjt that are indexed over time t, the mean of asset 

returns can be computed using:

The covariance between any two assets i and j  can be computed using the following 

expression:

2.5(a)

The variance of returns for this asset can be computed by:

2.5(b)

1 N
= E [ ( > ; =  —  ~Mj ) 2.5(c)
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Where //, and ̂  stand for the expected returns for both assets i and j  respectively, while 

N  represents the total number of observations.

Whereas the semivariance of asset i with respect to any given benchmark, B , according 

to Markowitz [1031 is given by:

And the semicovariance of 2 assets i and j  with respect to the same benchmark value, 

B, can be computed by the following expression:

Where the summation is only over the T time periods in which an asset return 

underperforms the benchmark, B.

The above definition as Estrada [47, 48, 49] observed, has an advantage and one 

disadvantage alike. The positive side of this approach is that, “it provides an exact 

estimation of the portfolio semivariance”. On the other hand, the negative side is that, 

the semicovariance matrix is endogenous, which simply means when such 

semicovariance values of any two assets are incorporated into the computation of 

portfolio semivariance (in an E-S Optimization framework) any “change in weights 

affects the periods in which the portfolio underperforms the benchmark, which in turn 

affects the elements of the semicovariance matrix”.

2.5(e)

In another research, Hogan and Warren [77] attempted to estimate semicovariance 

between any 2 assets i and j  by the following expression:
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iHW (r. -  Rf ) x Min (rj -  Rf , 0 j 2 .5 (f)

Where R f  signifies a risk-free return and the superscript H W  denotes that this definition 

was proposed by Hogan and Warren.

Similarly, the above definition too, Estrada [49] argues, has two main disadvantages:

(1) The benchmark return value is fixed to the risk-free rate, R f  thereby making it 

impossible to use any other different benchmark value.

(2) The semicovariance matrix is usually asymmetric (since it can be shown that 

SHw gHw y  , j ^ s feature js particularly more limiting, as intuitively it is

extremely difficult if not impossible to clearly interpret the contributions of 

both assets i and j  to the portfolio’s risk.

Thus, in order to address the above mentioned drawbacks; Estrada [47, 491 proposed 

an approximate expression to evaluate semivariance of asset i with respect to any 

given benchmark, B\ given by:

S l  = E { [M %  -B ,0 )]2} = ^ [ M m { r„
N

2.5(g)

and

SIJB =e|[Mh(>; -B ,0)xM n(rj -5 ,0)
\ 1 N r  i
J = —^y\jdn(rit -5,0)xM «(r., -B ,0 )

N j=i
2.5 (h)

or the computation of semicovariance between any two assets i and j.

The main advantage of these estimates is that, they can be used with any desired 

benchmark return value, B, and at the same time generate a symmetric ( SjjB = siiB)

Page 55 of 277



exogenous semicovariance matrix; as both the symmetry and the exogeneity of this 

matrix are very critical tools for the implementation of the proposed model.

Going by the provisions above, Estrada [49] proposed computation of portfolio 

semivariance with respect to a benchmark, B, by:

& 2p b  =  2.5(7)
i = 1 / = 1

This looks very much similar and behaves the same way as the portfolio variance 

given in equation 2.2(a)(i):

;___________________________________ / = 1 y = 1______________________________________

2.6 The Proposed (enhanced) Model

In this section, we intend to discuss the reasons why we decided to adopt (target) 

semivariance as the objective in our model for optimizing constrained PSP. The model 

was further enriched by incorporating realistic investment constraints -  specifically the 

cardinality and floor & ceiling constraints.

Our decision to choose semivariance among other risk measures (such as Mean 

Absolute Deviation [91], Value at Risk [114] and many more [8J_, J_45, 56]) was 

informed by the fact that, semivariance, being one of the popular downside-risk 

measures, according to Harlow [67] is attractive not only because it is consistent with 

investors’ perception of risk, but also because asset allocation in downside-risk 

framework determines an investment opportunity set for downside-averse investors 

that is at least as efficient as that derived using the conventional E -V method. It should

Page 56 of 277



also be noted that, right from the very beginning even Markowitz considered using an 

alternative measure of portfolio risk other than the variance he finally settled on -  and 

this measure is none other than the semivariance. Markowitz [1031 discussed it in 

detail and dedicated to semivariance an entire chapter (Chapter IX) wherein he stated: 

“Analyses based on S [Semivariance] tend to produce better portfolios than those 

based on V [Variance]”. He went further in Markowitz [1051 to claim that: 

“semivariance is the more plausible measure of risk”. Later, he also claims in 

Markowitz et al [ 106] that, because “an investor worries about underperformance 

rather than overperformance, semideviation [square root of semivariance] is a more 

appropriate measure of investor’s risk than variance”.

The E-S portfolio selection framework replaces variance for semivariance (in the 

classical E-V  formulation) as the measure of portfolio risk, thereby identifying those 

portfolios that seek to minimize/maximize semivariance/expected return for a given 

expected retum/semivariance as efficient. The semivariance, according to Hogan and 

Warren [77] is devoted to loss reduction as opposed to the variance that considers 

“extreme gains as well as extreme losses as undesirable”.

However, there is lots more to optimizing portfolios based on the E-S framework, in 

the sense that, unlike the well-known neat closed-form solutions obtained in the E-V  

PSP; the E-S problems are usually tackled by, what Estrada [47] referred to as, 

“obscure numerical algorithms”. The main reason behind this is the fact that, as 

opposed to the exogenous covariance matrix incorporated as one of the main inputs in 

the E-V  framework, the semicovariance matrix, one of the main inputs in the E-S 

framework is endogenous [See APPENDIX 1 for details].
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With this in mind, our research seeks to estimate semivariance of portfolio returns in a 

similar way to that used in estimating variance of portfolio returns based on the 

expression proposed in Estrada [46, 47, 48, 49]. There are basically two main 

advantages in doing so; the first is that: the estimation of the semivariance of portfolio 

returns is made simple, convenient and as easy as estimating the variance -  having in 

both cases equal number of inputs (means, variances/semi variances and 

covariances/semicovariances). The second is that, all this can be done with an 

expression popularly known by academics and practitioners alike without necessarily 

invoking the help of any sophisticated algorithm, and on top of that, the resultant 

portfolio semivariance is shown in Estrada [47], to be strongly positively correlated 

while at the same time being very close (in magnitude) to the actual value it tends to 

estimate.

Therefore, going by the Estrada’s proposal (as detailed in equations 2.5(g) through 

2.5(i)), our proposed model which is to be known as: The Mean-Semivariance (E S )  

Portfolio Selection model can now be formulated as follows:

M in im ize  P o r t fo l io  R isk ,  ® 2PB

Su b jec t  to
n n

i  =  1 /  =  1

n

i  =  1

e,  S,  < w ,

M, s , *  w i
n

= b in a ry  Vz = 1 . . .  n
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Estrada [49] shows that, the value of the semivariance obtained in his semivariance 

formula (although a little bit different from the actual) can serve as a good 

approximation to the actual one as defined by Markowitz. With this in mind, we are 

now adopting the Estrada’s formula for obtaining a semivariance rather than the 

Markowitz’.
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3.0 Overview and Applications of Heuristics

3.1 Introduction on Heuristics/M etaheuristics

In everyday life, varying sectors in different aspect of human endeavour are faced with 

problems of growing complexity, arising in diverse spheres of life such as Operations 

Research, mechanical, electrical and electronic systems designs, image processing, 

signal processing and lots more. In all these sectors, the problems at hand can be 

formulated as an optimization problem, in which a single or several objective (cost) 

function(s) is/are desired to be optimized (either for minimization of cost or 

maximization of profit) subject to meeting or satisfying some conditions -  which 

might be necessarily met (hard constraints) or met to some extent (soft constraints).

There are basically two known types of optimization problems, namely discrete and 

continuous problems [38, 72, 37, 39]. The most notable example under the discrete 

type is the well known Travelling Salesman Problem (TSP). An example of 

continuous optimization problems involves, according to Dreo et al [39] “the search 

for the values to be assigned to the parameters of a digital model of a process, so that 

this model reproduces the real behaviour observed, as accurately as possible”. Many of 

the discrete and continuous optimization problems can be handled by some exact 

algorithms and solution to optimality is thereby guaranteed. Such algorithms include 

Simplex Algorithm (in Linear Programming Problems), Hungarian Method (for 

solving Assignment Problems), Johnson Method (for solving 2-machine sequencing 

problems), Branch & Bound, and Dynamic Programming.

However, there are some exceptional situations in which some other optimization

problems are extremely difficult to solve by the conventional means; this is because,
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the complexity of these problems grows with increase in the number of parameters, 

and the computing time therefore grows exponentially; these type of problems are 

commonly regarded as NP-hard. Similarly, some optimization problems of the 

continuous type may not have a known algorithm capable of finding the best possible 

solution (global optimum) within a reasonable period of time. For over two decades, 

there have been many unrelenting efforts and breakthroughs in various techniques that 

aim to provide solace to academics, practitioners and organizations in solving 

basically these two types of problems. In the field of discrete optimization, a 

reasonable number of heuristics were proposed, implemented and found to be effective 

in obtaining a solution close to the optimum, but many of them tend to be tailored 

towards a specific problem. Likewise, in the area of continuous optimization, most of 

the techniques developed tend to be ineffective, provided the objective (cost) function 

does not exhibit a particular structural pattern, such as convexity. As time passes by, 

computational power grows strongly coupled with constant dedication of academics 

and other industry specialists in their search for robust techniques capable of handling, 

not only discrete optimization problems but also their continuous counterparts; the 

emergence of metaheuristics (certain class of heuristics) signifies an important 

development in the world of optimization. Before we jump into exploring what 

metaheuristic techniques are all about, let us have a look at some basic definitions as 

follows:

Heuristic -  coined originally from the Greek word Heuriskein which literally means 

to find or discover, is defined as “a technique which seeks good (i.e. near optimal ) 

solutions at a reasonable computational cost without being able to guarantee either
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feasibility or optimality, or even in many cases to state how close to optimality a 

particular feasible solution is’T 123].

The term metaheuristic originated from the combination of two Greek words: a prefix 

-  meta (meaning “beyond”) and heuristic (meaning “to find” or “to discover”), and 

often regarded as a group of high-tech heuristic methods applied in solving problems 

with no known exact solution algorithms. It was however, believed to be developed, 

used and defined by Fred Glover as: “a master strategy that guides and modifies other 

heuristics to produce solutions beyond those that are normally generated in a quest for 

local optimality. The heuristics guided by such a meta-strategy may be high level 

procedures or may embody nothing more than a description of available moves for 

transforming one solution into another, together with an associated evaluation rule 

”[63].

Although, there still exist no common accepted definition of metaheuristics; it is in 

view of this, many researchers proposed several definitions. According to Osman and 

Laporte [JJ_8], metaheuristic can be defined as “an iterative generation process which 

guides a subordinate heuristic by combining intelligently different concepts for 

exploring and exploiting the search space, learning strategies are used to structure 

information in order to find efficiently near -  optimal solutions.”

The definition can also be viewed from another perspective as: A rule o f  thumb, based 

on domain knowledge from a particular application that gives guidance in the solution 

of a problem. Unlike algorithms, heuristics cannot have proven performance bounds 

owing to their open-ended dependence on specific application knowledge; an example
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is “if the sky is cloudy, then carry an umbrella.” Heuristics may thus be very valuable 

most of the time but their results or performance cannot be guaranteed (761. In other 

words, metaheuristics refers to some classes of heuristic techniques, which are found 

to be applicable to virtually all types of discrete optimization problems, and can as 

well be adapted to the complex nature of continuous types. The term, may or may not 

be written as a hyphenated word, and basically refers to the collection of high-tech 

heuristic methods capable of offering practical solution to complex real life problems. 

These methods include Genetic Algorithms (GA), Simulated Annealing (SA) and Ant 

Colony Optimization (ACO), Tabu Search (TS), Particle Swarm Optimization (PSO), 

Iterated Local Search (ILS), Parallel Simulated Annealing (Par-SA), Threshold 

Accepting (TA) and others r 151.

As mentioned above, there are basically several heuristic and metaheuristic techniques 

purposely developed to handle optimization problems especially, where the exact 

conventional methods are known to fail. Some of these techniques were tested and 

proven to be very good in finding optimal or near optimal solutions to real life 

problems. Metaheuristic algorithms, although proved to be strongly efficient in finding 

good and quite often near-optimal solutions, are unable to guarantee the optimality of 

the returned solution. Many among them, such as TS, ACO and some EAs are found 

to be very successful in solving real-world optimization problems partly due to their 

ability to conduct a guided local search using some intelligent criteria, while at the 

same time employing some mechanisms to escape being trapped in a local optimum. 

These successful criteria of escaping entrapment in local optima are mostly aimed at 

striking a balance between intensification and diversification.
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The intensification mechanism also known as exploitation is aimed at exploiting the 

search experience by visiting and revisiting regions that appear to be promising in 

yielding high quality solutions and avoiding those that are already explored and found 

to be less attractive; whereas diversification, often referred to as exploration, has to do 

with exploring new search space regions that were not visited before with the hope of 

finding better solutions than the ones previously found in other regions of the search 

space.

Metaheuristic algorithms may be classified according to different features in their 

mode of search operations. Some metaheuristics might be guided/unguided, single

agent based/multi-agent based, deterministic/stochastic, nature-inspired/nonnature- 

inspired, iterative/greedy, trajectory/non-trajectory.

Guided search methods are intelligence-tailored and memory-conscious algorithms 

that incorporate some additional strategies and hints about where the search should 

focus in the search space. For example, TS is a guided local search algorithm in the 

sense that, it stores a database of recently visited solutions in a Tabu List, thereby 

avoiding cycling and easy entrapment in a local optimum. Similarly, the same can be 

said about ACO in which traces of pheromone represent an adaptive memory of 

previously visited solutions. Contrarily, the unguided search algorithms, such as SA 

are, in fact, memoryless in the sense that no information extracted dynamically is used 

during the search, thereby only relying on the search processes’ behaviour without any 

additional help or hint.
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Nature-inspired methods are algorithms that were inspired as a result of analogies with 

some aspects of natural processes. For instance, GA, EA and artificial immune 

systems (AIS) come from Biology, while ACO and PSO are from Ethology. 

Nonnature-inspired are those that result from some processes in human endeavour. A 

typical example of a nonnature-inspired strategy is SA that was derived from an 

analogy with physical processes in Physics.

Some algorithms are deterministic (e.g TS) while others are stochastic (e.g SA). The 

former set of algorithms solves an optimization problem through taking some 

deterministic decisions, and this enables them to arrive at the same final solution when 

using the same initial solution in different runs. The later set apply some random rules 

during the search which enables them to explore the solution space in a stochastic or 

non-deterministic manner with the primary aim of finding a better (global) solution 

than the current (local) one. Thus, in stochastic metaheuristics, varying final solutions 

may be obtained in different experimental runs, even if the search started (in all cases) 

from the same initial solution.

In iterative algorithms, the search begins with a complete solution or set of solutions 

which are perturbed and transformed at each iteration using some set of search 

operators with the hope of obtaining better solution(s). Constructive algorithms, on the 

other hand, begin their search from an empty solution upon which at each step a 

decision variable is assigned until a complete solution is arrived at. It is noteworthy 

that the majority of metaheuristics are iterative algorithms. Constructive algorithms 

tend to be myopic in their way of solution construction, as their look-ahead ability is 

short-sighted and the consequences of their decisions can only be felt in the future.
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The single-agent methods (such as SA, TA and TS) mostly perturb and manipulate a 

single solution at any point in time during the search trajectory, while the multi-agent 

methods (such as GA, PSO and ACO) allow for the participation, evolution and 

collective effort of several solutions in the search processes thereby contributing to the 

success of the entire search independently and in parallel. These two sets of algorithms 

are believed to have complementary features, in the sense that, the single-agent based 

metaheuristics are exploitation oriented; this is because they are capable of 

intensifying search for a better solution in the local region. On the other hand, multi

agent (population) based methods are exploration oriented as they allow for thorough 

diversification in the entire search space.

The trajectory methods find the next solution by partial or exhaustive search of the 

immediate neighbourhood of the current solution. The next (candidate) solution can be 

obtained by slightly perturbing the configuration of the current solution. Typical 

examples of trajectory methods are SA, TS and TA. However, for non-trajectory 

methods, it is possible for the next solution to be far from the current solution as there 

are possible jumps in how they are generated, for instance due to the influence of say, 

genetic operators in GA.

To obtain some more details on metaheuristics, an interested reader should consult 

Blum and Roli [JJ_], Osman and Laporte [1181 and Dreo et al [39].

3.2 Applications of Heuristics/Metaheuristics

Metaheuristic techniques are found to be very applicable and of immense importance 

in solving combinatorial (both discrete and continuous) optimization problems and as
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such their importance and centrality across much research in the optimization 

community (both in academia and industry) can never be overemphasized. In many 

researches, they were found to be very promising in finding good and most of the time 

near-optimal solutions within a reasonable period of time [151. Heuristics and 

metaheuristics have been used for a very wide variety of real problems; small samples 

of these are discussed briefly below.

Henderson et al [731 used SA and proposed a model that would be used to solve the 

shortest route cut and fill problem (SRCFP). The model was used to find an optimal 

shortest route to be followed by an earthmoving vehicle on a construction site 

characterized by several abnormal terrains. The algorithm developed is aimed at 

minimizing the total distance covered by the vehicle in levelling the site to get what is 

known as final grade site suitable for construction; and this, will consequently lead “to 

saving costs of fuel consumption, equipment maintenance and time.”

Another important and one of the recent studies showing the capability and robustness 

of heuristic techniques in handling and solving complex combinatorial optimization 

problems can be found in the research conducted by Xiang et al [1501. They 

considered an algorithm to solve a large scale static “dial-a-ride” problem using the 

intensification and diversification strategies well known in TS metaheuristic 

technique. Xiang et al [ 1511 is an extension or rather a dynamic approach to the 

algorithm in Xiang et al [1501, and this approach is believed to be capable of 

generating high quality schedules amid challenges in handling various stochastic 

events.
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Erera et al [44] solved a Driver Scheduling and Load Dispatching Problem (DSLDP), 

using a heuristic technique combining greedy search with enumeration to obtain a cost 

effective solution of scheduling problem for less-than-truckload (LTL) carriers having 

up to 15,000 -  20,000 dispatchable loads by few thousand drivers in a reasonable 

computing time. The DSLDP was found “to be applicable not only to LTL carriers, 

but to small package express carriers”. Briant et al [141 used another variant of SA to 

solve a challenge organized by French Society of Operations Research and Decision 

Analysis (ROADEF) tagged as ROADEF’05 challenge. The problem topic for the said 

challenge was Car Sequencing problem. The new variant used is known as multi

criteria dynamic simulated annealing partly because it computes the various 

probabilities of acceptance dynamically. In the classical car sequencing problem, the 

violations of the total number of spacing requirements between some vehicles 

characterized with some options has to be minimized. However in this challenge, the 

problem had two level of spacing requirements which was optimized by the SA 

variant one by one in their order of importance.

Another research attesting to the wider applicability, flexibility and robustness of 

metaheuristic techniques in solving diverse optimization problems was conducted by 

Hu [80]. The research focused its searchlight on TS’s reliability and efficiency in 

solving to optimality some engineering design problems. The technique was compared 

to, and was found to outperform two other metaheuristic techniques, namely random 

search and genetic algorithm, for the selected continuous variables test problems.

Another research was conducted by Siarry and Berthiau [1321 to primarily investigate 

the capability of TS metaheuristic in optimizing a set of classical continuous multi
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minima functions with known global optima. The technique used was aimed at 

proposing an “adaptation” of basic TS algorithm to the optimization of continuous 

functions and at the same time investigate the influence of the algorithm’s parameters 

upon convergence to the desired optimum. The procedural structure of the research 

employs the notion of balls in defining the neighbourhood of a solution and the v 

neighbours of the current solution are randomly selected inside a ball [B(c, r) | c is the 

centre of the ball and r the radius]. The entire solution space is partitioned into a set of 

concentric balls with radii ro, rj, . . .  , rv. The v neighbours are generated by randomly 

picking a single solution from each of the v concentric balls before being checked for 

tabu membership; and if any of the solutions generated was found to be in the tabu 

region it is discarded and another solution is then selected from the same considered 

ball. To make sure that the concept of diversification is implemented and the 

algorithm can escape being entrapped in a local minimum, the immediate 

neighbourhood [B(s, ro)] of the current solution is excluded in generating the candidate 

neighbours. As in the conventional TS procedure, the best of the v non-tabu 

neighbours of the current solution becomes the new current solution even if the 

objective function is worsened.

A research conducted by Cvijovic and Klinowski [27] extended the conventional TS as 

proposed by Glover to tackle some continuous-valued functions. They studied the 

potential of their modified TS algorithm in solving multivariate continuous functions 

characterized by many local minima. In their quest to come up with a robust, efficient 

and effective algorithm; they introduced and implemented a neighbourhood structure 

tagged as conditional neighbourhood. The entire search space is compartmentalized 

into a number of disjoint cells by dividing the coordinate intervals along the x ’s axes
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into p  parts. Throughout the study, two kinds of tabu moves were implemented as 

follows:

(i) A particular move in the neighbourhood of the current solution is regarded as 

being tabu (not allowed), if the newly generated solution lies within the tabu 

region of the search space consisting of cells visited during the last L iterations; 

this type of move is managed by tabu list.

(ii) A move is tabu also, if it results in worsening the objective function /  more 

than some specified (threshold) value. This move is managed by “keeping the 

track of the worst value of the objective function/ throughout the computation 

and maintaining the ‘elite list' of addresses of the most promising cells”.

The concept of aspiration criterion was also introduced by tracking the best ever found 

value of the objective function, in which the tabu status of a newly generated candidate 

solution is overridden if the aspiration condition is satisfied [that is, Anew solution) <= 

Aspiration Function]. It was reported that, the algorithm designed was a successful 

one, since after the average of 100 independent runs were taken, the reliability was 

found to be excellent, due to the fact that, in at least 90% of the runs conducted, the 

final results obtained lie within 2 to 3% of the global optimum. It is also easily 

observable in the results presented that, among all the heuristic methods with which 

the tabu search is compared, it had the least number of function evaluations before 

arriving at a global minimum solution over the six multivariate continuous functions 

tested.

The procedure implemented in this research is regarded to be “generally applicable, 

easy to implement, derivative-free, and conceptually simple”.

Page 70 of 277



3.3 Heuristics in M ulti-Objective Optimization problems

There is, undoubtedly, an increase in interest for scientific research involving multi

objective optimization; and this is not unconnected with the fact that, in many real-life 

problems (such as engineering, construction design, finance, etc), there are quite often 

numerous objectives that need to be achieved. In such multiple objective problems 

there exists no singular best solution, but rather a collection of solutions that are better 

than others when all the objectives are taken into consideration. Thus, no universal 

optimal solution in such a context exists, in the sense that whenever an attempt is 

made to improve one of these objectives, there will be a consequent degradation of one 

or more other objective(s). The explanation for the multiplicity of these solutions lies 

in the conflicting nature of those objectives.

Apart from the fact that, modelling a solution for a single-objective optimization 

problem can prove to be a difficult task; there is also the possibility that, the goal of 

modelling such a single-objective problem can be spoiled by a bias during the 

modelling stage. On the other hand, multi-objective optimization techniques offer 

some degree of freedom which cannot be found in modelling single-objective 

optimization problems. However, this flexibility comes with a cost, especially on the 

method used to solve the problem when it is finally modelled. The search often does 

not give a unique solution, but rather a set of solutions. The main idea behind multi

objective optimization lies solely in searching for a set of agreements among the 

various problems’ objectives; and the final decision about which solution or set of 

solutions is to be chosen lies entirely with the final user of the results generated.
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To illustrate the concept briefly, suppose one wants to buy a property (House), H\ 

some of the things one might consider giving priorities to, include: price, P; 

state/goodness of the property, S  and location, L. Therefore, a property H  having price 

P, in a good condition S  and located at L is better than another property H 1 with price 

P1 > P , whose condition S l < S, but located in the same area L. On the other hand, the 

same property H  cannot be compared with another property H2 whose price P2 > P  in 

an extremely good condition S2 > S, located in the same neighbourhood, L as H.

So more formally, a brief mathematical description of multi-objective optimization 

can be defined as follows:

Let = (x,, x2, ..., xn )] be some decision variables of a given problem; while 

[ F { X )  = ( f , { X ) , f 2( X ) , . . . , f m{X) ) ]  be some set of objective functions to be 

optimized. A multi-objective optimization can be defined as:

/ .(A -) ] (1)
subject to

c, (A ) < b, (2)
c2 (X )  < b2 (3)

cr { X ) < b r ('•)

A given solution [ X  = (*,, x2, *„)] is said to be nondominated, provided no other

solution can be found to improve [ X  = , x2, x n)] for a given objective f t {X)

without necessarily worsening at least one of the other objectives.
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Now given a multi-objective optimization problem; a given solution, X 'is  said to 

dominate another feasible solution X "  s for that

i f  f ( X \ ) < f [ Xf j  Vz; and at least there exist j  e 1,2,..., n | f[ x ! j) < / ( A j) . The set of

nondominated solutions constitutes what is normally regarded as pareto-optimal, 

pareto-border or pareto-front solutions. Having traced out the pareto-border, the 

decision maker would then be faced with some difficulties of selecting a solution from 

such set of solutions; the solution being the one that reflects the decision maker’s 

tradeoffs or preferences in relation of the various objective functions.

Another definition given by Alaya et al [3], defined the formal representation of a 

multi-objective optimization problem by a quadruplet (X, D, C, F) in which X signifies

a vector of n decision variables [W = (x,, x2, ..., *„)]; D signifies a vector of the

decision variables’ domains [Z) = (dx, d2, ..., <Zn)] ; while C is the set of constraints on

X  and F  is the vector of m > 2 objective functions,

F ( X )  = ( f ( X ) ,  f 2( X ) , ..., f m (2 f ))] ; without loss of generality, these objective

functions are assumed to be minimized (for those to be maximized may be multiplied 

by -1).

The space of candidate solutions, noted E(X, D, C) is the set of vectors v e D 

satisfying all the constraints of C. We define a partial order relation on this set as

follows: a solution v e E(X, D, C) dominates a solution v ’ e E(X, D, C), noted v -< v ’,

if and only if v is at least as good as v ' for each of the m criteria to optimize, and 

strictly better than v ’ for at least one of these criteria; that is, if and only if Vz e {1, ...,
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m}, f  (v) < f  (v’) and 3/ e {1, ..., f ( v) -  f  (v*). The goal of multi-objective 

optimization problems is to find the Pareto optimal set of all non-dominated solutions,

i.e., (v e E(X, A C j | V v ’ e E(X, D, C), -n(v < v ’)}.

The search for an efficient algorithm to tackle multi-objective optimization problems 

still continues in the scientific research community, partly because we are yet to have a 

better grasp of the existing relationship between algorithms’ design and their 

performance on some specific problems. Recently, the usage and successful 

implementation of metaheuristics and evolutionary techniques in solving multi

objective problems have become very popular, due to: (i) their ability to provide good 

multiple solutions in a single run, (ii) their convergence speed and degree of accuracy 

in estimating the pareto-optimal solutions, (iii) ability to easily handle both continuous 

and discrete optimization problems, (iv) their ability of being less susceptible to the 

(dis)continuity of the pareto-border. Lin and Kwok [97] applied TS and SA techniques 

to solve a location-routing problem (LRP) in which multi-objective decisions on 

location of depot, vehicle routing and assigning routes to vehicles were considered 

concurrently. Alaya et al [3] proposed an ACO algorithm entitled m-ACO designed 

for solving multi-objective optimization problems. The 4 variants of the algorithm 

were tested on multi-objective knapsack problem (MOKP) against several EAs 

proposed in the literature for solving the MOKP. The results presented showed that 

one of the variants outperformed all the EAs it was compared with. Mohamed et al 

IT 121 proposes a Bi-criteria Genetic Algorithm for solving Bicriteria Shortest Path 

Problem (BSP) in which two conflicting objectives: minimizing the transportation cost 

and the total travel time were considered.
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Abido [2] proposed a multi-objective PSO (MOPSO) technique for solving 

environmental/economic dispatch (EED) problem with competing objectives on 

minimizing cost and emission. The algorithm was so successful that it was capable of 

“generating a set of well-distributed Pareto-optimal solutions in one single run”. 

Armananzas and Lozano [4] on the other hand, tackled PSP from a multi-objective 

point of view using three well known metaheuristic techniques, namely the greedy 

search, SA and ACO. They made use of the capital market indices data made publicly 

available at the OR Library [1171. Their results indicated that ACO and SA performed 

better than the greedy search method in all the five instances considered. Ghoseiri and 

Nadjari [58] presented an algorithm based on multiobjective ACO to tackle a bi

objective shortest path problem.

Baykasoglu [8] proposed a multi-objective TS (MOTS) that can be applied to several 

goal programming problems. The proposed algorithm (MOTS) was found to be 

efficient and effective in solving four test studies out of which two are difficult 

engineering design problems collected from the literature. Feng et al [54] proposed a 

multi-objective particle swarm optimization based on crowding distance sorting 

(CDMOPSO). In order to verify how well the newly proposed method performed in 

relation to existing methods in the literature; it was tested with six unconstrained and 

three constrained two-objective test problems and the results compared against those 

obtained by two well known methods, namely Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) [33] and Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

[158]. In the unconstrained cases, the CDMOPSO was found to have better 

convergence ability as well as diversity maintenance capability in relation to the other 

two methods it was compared with. Moreover, it was reported that, the method gained
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a very good effect when it was applied to another multi-objective optimization 

problem of a large scale injection machine.

Suman et al [136] proposed a SA based multi-objective optimization algorithm 

entitled Orthogonal Simulated Annealing (OSA). The new proposed algorithm was 

tested on some multiobjective problems with different degree of complexity; against a 

popular multiobjective evolutionary algorithm (SPEA2 [1581) and another one called 

classical simulated annealing based multiobjective algorithm (CMOSA [1371). The 

authors reported that, the new method was such a success that, it was able to 

outperform the other two methods in some of the tested problems in relation to 

performance and CPU time. Moreover, apart from its apparent ability of obtaining 

well diversified set of solutions and capturing the Pareto front better than the CMOSA; 

it was, particularly, found to outperform CMOSA in around 70% of the times.

3.4 M etaheuristics in Portfolio Selection

The unconstrained Markowitz Mean -  Variance model can be regarded as a simple 

quadratic optimization problem for which there exist computational algorithms that 

effectively handle the problem and computing an optimal solution for any large data 

set is not difficult. As already mentioned previously, Variance as a measure of 

portfolio risk has been criticized by several researchers and this led to introducing 

some alternatives. However, introducing alternative risk measures alone is not 

sufficient to fix the flaws inherent in the original Markowitz model, as there are other 

issues to do with investment constraints; in which case any attempt to incorporate 

these realistic practical constraints into the original model has some accompanying 

consequences, such as the transformation of the problem from a mere convex
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nonlinear optimization problem into a computationally-costly non-convex NP-hard 

combinatorial optimization problem which cannot be solved by any known algorithm 

in a polynomial time. With these consequences, the problem can only be handled in a 

practical time domain by approximate (heuristics/metaheuristics) algorithms.

Some researches proposed an alternative to variance while at the same time 

incorporating realistic constraints into their portfolio selection model. For instance, 

Speranza [134] linearized the objective by introducing Mean Deviation below Average 

and using techniques involving Branch & Bound to solve a constrained formulation of 

the problem after incorporating additional constraints dealing with transaction cost, 

transaction units, cardinality constraints and integer variables. Hamza and Janssen [68] 

used separable programming techniques to solve the constrained version of the 

problem while adopting semivariance as the objective and maintaining all the 

constraints introduced in Speranza [134] except for the cardinality restriction. 

Bienstock [10] approached a cardinality constrained PSP by introducing some valid 

inequalities (cuts) and tested a self-developed branch-and-cut algorithm based on 

disjunctive cuts. The algorithm’s computational results involving up to 3897 assets 

were presented. Lee and Mitchell [94] also solved a cardinality constrained PSP 

formulation. Their method, based on an interior point nonlinear solver, was used to 

solve problems involving up to 150 assets.

Dueck and Winker [40] solved an instance of PSP with semivariance as a risk measure 

using a local search method called threshold accepting (TA) which, in principle, is 

similar to SA. Gilli et al [59] used TA algorithm to minimize value-at-risk and 

expected shortfall. Chang et al [20] applied 3 prominent metaheuristic techniques
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(GA, TS and SA) to solve the constrained version of the original model by introducing 

2 additional realistic constraints -  the cardinality and floor & ceiling constraints. They 

tested their algorithms with 5 datasets, each with varying number of assets reaching up 

to a maximum of 225 assets. They reported that, best results are obtained by pooling 

the optimal solutions from all the three algorithms. Crama and Schyns [25] used SA 

algorithm to solve the model tackled by Chang et al [20] but with additional turnover 

(purchase & sales) and trading constraints.

Jobst et al [84] solved a PSP by combining a branch-and-bound algorithm with some 

heuristic methods (integer-restart and re-optimization heuristic) to specifically make a 

comparison with the results presented in Chang et al [20]. The first heuristic (integer- 

restart) plotted the constrained efficient frontier, beginning from the highest return 

through to the lowest return. The procedure implemented is such that, the current stage 

uses as initial solution, the result obtained in the preceding stage. This heuristic is 

named as warm restart heuristic. The other heuristic inspired by the idea similar to the 

one implemented in Speranza [ 134] initially solves a continuous relaxation excluding 

any constraint and then uses as inputs, the K  assets with highest weights for a problem 

where constraints are imposed. The two heuristics were embedded in a branch-and- 

bound algorithm and were reported to have performed better than the metaheuristics 

implemented in Chang et al. However, the re-optimization heuristic normally fails to 

plot the frontier when fewer than k assets are produced by the continuous relaxation.

Another study by Fernandez and Gomez [55] compared the performance of a neural 

network approach to the three metaheuristic techniques used in Chang et al [20]. They 

use a neural network having a single layer of fully connected neurons (Hopfield

Page 78 of 277



network) to plot an approximate constrained efficient frontier (ACEF) after the 

imposition of cardinality and bound constraints. The results obtained show no 

significant difference between their neural network approach and the results obtained 

from the metaheuristics presented in Chang et al. In order to obtain an improved 

ACEF, they adopted the idea used by Chang et al to wipe out the dominated portfolios 

after pooling the portfolios obtained from the four approaches. By so doing, the 

quality of solutions obtained significantly improved, hence making their neural 

network approach to solving a PSP a success. Although the neural network donated 

the largest number of portfolios in the new frontier, it is clear that a stand-alone neural 

network is unsuitable for solving the problem over the entire efficient frontier.

Kendall and Su [86], used PSO techniques to solve a PSP involving some risky and 

risk-free assets, in which the main goal was to maximize what they referred to as the 

reward-to-variability ratio on various constrained and unconstrained portfolio 

investment problems. The algorithm was found to outperform the classical Excel 

Solver in most of the experimental runs; however, it exhibited a “high computational 

efficiency in constructing optimal risky portfolios of less than fifteen assets” only. 

Schaerf [129] proposed new algorithms based upon TS to solve the constrained PSP 

tackled in Chang et al [20] by combining and testing several neighbourhood relations. 

Streichert et al [135] investigated the capability of EAs to solve the constrained PSP 

incorporating Cardinality Constraints, Buy-in Thresholds and Roundlots constraints.

Chen et al [21] extended the classical PSP by incorporating transaction costs and floor 

& ceiling constraints; experimental results reported involved only eight different 

stocks data downloaded from a Chinese Financial market. Cura [26] applied PSO to a
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constrained PSP incorporating cardinality and floor & ceiling constraints. The results 

reported by the P-SO-based heuristic method were compared to the earlier study 

conducted by Chang et al [20]. Although, none of the four compared heuristics seem 

to significantly outperform the rest, the research concluded by giving credit to the 

PSO-based heuristic in the sense that, it was able to give better solutions than the other 

methods “when dealing with problem instances that demand portfolios with a low risk 

o f investment’.

3.5 Overview on some chosen M etaheuristics

We have chosen, designed and implemented 6 different metaheuristic algorithms, 

among which 2 of them (SA and TS) are local search techniques, 2 (GA and PSO) are 

EAs, 1 (Parallel SA) a parallel implementation of SA and 1 (SWAN) a hybrid of SA & 

PSO. All the aforementioned algorithms were designed and coded in C++ 

programming language (which we learned specifically to conduct this research) and 

executed on Dell’s Desktop Computer with an x86 Family 6 Model Stepping 2 

Genuinelntel (-2126MHz) processor under Microsoft Windows XP Professional 

Operating System.

3.5.1 Simulated Annealing (SA)

SA is one of the oldest, well known and widely applied local search metaheuristic 

techniques used in solving combinatorial optimization problems [111. Although, it was 

originally developed in statistical mechanics based on a Monte Carlo model by 

Metropolis et al [107] to simulate the processes involved in heating and cooling of a 

solid material; it was however, Kirkpatrick et al [90] and Cemy [\9] independently in 

the early eighties who noted similarities between the physical process of annealing and
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some combinatorial optimization problems. They observed an interesting 

correspondence between the physical state of metallic materials and the solution space 

of an optimization problem. They further observed that the objective function in 

optimization problem corresponds to the free energy of the material. Similarly, an 

optimal solution corresponds with a defect-free crystal, whereas a crystal with defects 

corresponds to a local optimal solution. However, not all the analogies observed are 

based on one-to-one correspondence. For instance, the annealing process involves the 

usage of a physical variable -  a temperature which when monitored under proper 

control plays an important role in obtaining a perfect crystal. But when using SA in 

solving an optimization problem, the temperature just serves as a control parameter 

that has to be properly determined and continuously adjusted, which after a long run 

plays a vital role in obtaining a very good solution. These sets of observations (and 

many more) led to some series of publications that brought SA to the limelight in the 

combinatorial optimization community.

SA derived its name from an analogy in the process of physical process of solids, 

whereby a crystalline solid is heated to a melting point (i.e. to a very high temperature, 

in which the particles in the solid moves freely and haphazardly without any definite 

direction), and later allowed to cool carefully at a very slow rate up to the point it 

(freezes) reaches its most regular crystal lattice configuration (i.e. until the particles 

arrange themselves in the ground state of the solid), which consequently leads to a 

resultant solid free of any crystal defects. In the processes involved in such cooling 

procedure, it is assumed that the thermal (or quasi-) equilibrium conditions are 

maintained, and the processes end when the material reaches its minimum energy 

state, which in principle, corresponds with a perfect crystal. The cooling procedure has
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to be slow and steady in order to obtain a defect-free crystal (i.e. minimum energy 

solids). Transition mechanism between different states and the cooling schedule are 

what constitute the main and most important features of an SA algorithm.

SA, also known as statistical cooling, Monte Carlo annealing, probabilistic hill- 

climbing, stochastic relaxation and probabilistic exchange algorithm [109], is often 

regarded as one of the most flexible methods for tackling difficult combinatorial 

optimization problems ft 13]. A vital feature of SA is its usage of the so-called hill- 

climbing moves (which worsen the objective function value) purposely made in search 

of global optimum (or specifically aimed at escaping entrapment in a local optimum) 

especially in a solution space characterized by several local optima. SA is believed to 

be one of the early algorithms that had a clear and laid down path to escape being 

trapped in a local optimum.

The algorithm has lots of advantages that informed our decision to choose it as one of 

the metaheuristic techniques to be implemented in this research; some of which are:

(i) Its ability to (statistically) guarantee finding optimal solutions.

(ii) Although, time consuming, it is relatively easier to code than some 

other methods.

(iii) As Eglese [43] argues, SA provides good (and not necessarily optimal) 

solutions.

(iv) Its wider applicability to large optimization problems irrespective of the 

differentiability, continuity and convexity conditions that are normally 

required in conventional optimization methods.

Page 82 of 277



(v) It does not assume any particular property (such as linearity or 

convexity) of the problem at hand.

There are basically some theoretical fundamental issues to consider in the 

implementation of SA algorithm, and these include:

3.5.1.1 Metropolis Algorithm

The Metropolis algorithm is the original and most vital idea behind the SA algorithm, 

which (through Monte Carlo simulation) models the microscopic behaviour of some 

set of large number of particles, as in solids [1131. In the field of thermodynamics, any 

material has individual particles with varying energy levels according to a certain 

statistical distribution; the minimum energy level (often regarded as fundamental 

level) occurs normally at temperature OK, and at this level all particles are believed to 

be in a stand still position. However, the particles possess different energy levels as the 

temperature increases above the fundamental level; thereby leading to a decrease in 

the number of particles that roam about at higher energy levels (this implies the 

maximum number of particles occurs at the fundamental level). It should be noted 

that, the statistical distribution of these particles in the various energy levels varies 

with the temperature and the number of particles is a decreasing function of the energy 

level.

The (Metropolis) algorithm, given a solid in state S j with energy £), generates a

sequence of states Sj through a transition mechanism involving minor changes to the

original state achievable by moving one of the solid’s particles according to the Monte 

Carlo method. Suppose the energy of the resultant state also found based on some
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probability be denoted b y iif ; now, if Ej is less than or equal to En  the newly 

generated state Sj is accepted, otherwise it is only accepted with a probability given 

by:

3.5.1.1

The T stands for the temperature of the solid, while kg is known as the Boltzmann 

constant. Another name for this kind of acceptance rule is known as Metropolis 

criterion and the entire algorithm described above is the Metropolis algorithm.

It should be noted at this point that, the thermodynamic equilibrium for the current 

temperature can only be achieved (before moving to the next level) when the rate at 

which the temperature is changed is carefully chosen, and this often requires a sizeable 

number of states transitions of the Metropolis Algorithm.

3.5.1.2 Cooling Schedule

The efficiency and effectiveness of SA algorithm (regarding the quality of the final 

solution and the number of iterations) in solving certain optimization problems largely 

depend on the choice of some control parameters, collectively known as the cooling 

schedule. Cooling schedule, as a control strategy used in guiding the algorithm from 

the beginning until convergence to an optimal or nearly optimal solution, is 

characterized by four different parameters as follows:

(i) Initial value of the temperature, Ta

(ii) Determination of a cooling rate, X.

(iii) A finite length of each homogeneous Markov chain.
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(iv) Final value of the temperature (stopping criterion).

Numerous pieces of research have been conducted, (see for instance Aarts and Korst 

[I]) and some might still be ongoing to come up with an adequate and acceptable 

cooling schedule. It should be noted at this point that, the performance of a cooling 

schedule is entirely and highly dependent upon the problem at hand. There are two 

main classes of cooling schedules, categorized into “static” and “dynamic” [22,1].

3.5.1.2(a) Static cooling schedules:

Implementing an SA algorithm while employing static cooling schedules means that, 

the values taken by the set of parameters (mentioned above) must be wholly specified 

at the initial stage of the algorithm, remain fixed and cannot be changed during the 

execution of the algorithm. This is the pioneering cooling schedule -  often referred to 

as geometric cooling schedule, used by Kirkpatrick et al [90], and still applied in many 

optimization problems.

Although, there are no generally acceptable guidelines or rules for choosing the values 

of the cooling schedule parameters, even if the classical geometric cooling schedules 

are to be used; however, the following tactical decisions have to be made in order to 

keep our algorithm effective and operational throughout the execution of the entire 

search process.

(i) Initial value o f  the temperature: The temperature parameter is a non

increasing function of time. The parameter’s initial value should be chosen in such a 

way that, it is sufficiently large enough to allow for the proper exploration of the
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solution/search space by ensuring acceptance of worse moves with a certain high 

probability at the beginning of the search process [431. There are, however, several 

suggestions in the literature of how the initial temperature value should be selected. 

For further details, we refer the interested reader to Henderson et al [72], Dowsland 

[371. Monticelli et al [ 1131, and Aarts and Korst [JJ.

(ii) Determination o f a cooling rate: It is believed that, number of approaches 

exists in the literature on executing a temperature reduction in SA. Typical example of 

a static cooling function is given by:

T i + i = X T , ,  i =  0 , 1 , . . .

Where X (cooling rate) is a positive fixed value smaller than, but close to, unity and 

whose typical values lie in the interval: 80% < X < 99%  . For further details, see 

Eglese [431, Dowsland [37, 38] and Aarts and Korst [JJ.

(iii) Length o f Markov chain: Often denoted by JV*, this simply means, the number 

of neighbourhood moves to be conducted under each temperature level. This 

parameter is more closely related to the cooling rate, X than any other. Some proposals 

for determining this length, involves fixing the value, making it vary, setting it 

proportional to the problem dimension or proportional to the size of the 

neighbourhood defined [43, JJ.

(iv) The Final value o f the temperature: This basically serves as a stopping 

criterion for most implementations of SA algorithm. It is the temperature value whom 

upon assumption forces the cessation of program execution, and consequently
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termination of the run of the processes. Most of the time this value is set at some small 

fixed value related to smallest possible difference in cost between two neighbouring 

solutions.

3.5.1.2(b) Dynamic cooling schedules:

Dynamic cooling schedule in relation to the static one is more complex in any 

implementation of an SA algorithm. It involves setting the initial and final value of the 

temperature parameter, the cooling rate and the length of the Markov chain within 

each temperature in a more dynamic way. There are, however several extensions to the 

static cooling schedules, that give rise to dynamic (variable) cooling schedules.

For instance, Reeves and Beasley [123] suggested that, the initial temperature value 

should be obtained by:

a
-In /? / (* o)

In which it is assumed that (P/o of the uphill moves, which are a% worse than the 

initial solution f(xo ),  are accepted at the initial temperature level To.

Monticelli et al H 13] however, suggested three alternative ways for implementing 

temperature reduction in SA, among which (under dynamic cooling rate) one can use:

i = 0, 1,
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Where X < 1.0 and cr(T.)is the standard deviation of the costs of the configurations 

generated at the previous temperature level T-,.

Furthermore, Monticelli et al H 131 mentioned that, under dynamic cooling schedule, 

the length of Markov chain can be set according to:

____________________= p N k,____________ A: = 0,1,...________________

Where p is a user-supplied parameter typically taking a value less than or greater than 

one. It should be made categorically clear that, whichever type of cooling schedule one 

decides to adopt in implementing a SA algorithm; according to Eglese [43], it is 

extremely important for the algorithm to spend less time at extreme (higher and lower) 

values of the temperature. This is because, at higher values, most of the worst 

solutions generated are accepted and staying there for long results in wasting precious 

run time. While at lower temperatures most of the neighbourhood moves are rejected, 

and it is worthwhile checking whether a local optimum has been attained.

3.5.1.3 Algorithmic implementation of SA

The procedure for executing SA algorithm can be described as follows:

Let 0  be a set of all possible solutions (solution space) and let f  • ®  —* R  ? be an 

objective function defined on 0 , the goal is to determine a global minimum 

•s * ( s * e  © s u c h  t h a t  f ( s , ) >  / ( f ) ,  Vs .  e 0 )  , For the global

minimum, s* to exist, the objective function,/must be bounded. By defining ^ { s ) as a

neighbourhood function for^, it means for every solution S. G 0  there are
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neighbouring solutions sj reachable in a single iteration of a local search

algorithm.

The SA algorithm always starts with an initial solution, S. E 0  after setting the 

temperature parameter T to an initial value To and an initial number of iteration, No. A

neighbouring solution, /  ^ A ^ ^ i s  then generated (either stochastically or using 

some pre-specified rule). If we denote the difference between the initial and the newly 

generated objective function by 8 [*•& $ = f ( Sj ) ~ f ( . s,) \ ,  the newly generated

solution, sj is accepted as the next/new current solution depending on the value of T

and 8. After computing 8, if the objective value got better S  < 0), then the current

solution Si is substituted with the newly generated solution sj . Otherwise, a random

number, rand  e  U (0,1) is generated, and sj can have another chance of replacing

Si as the new current solution, if and only if rand is less than some threshold value: 

r - 8 'exp . This uphill move ability enables SA to escape entrapment in a local

optimum.

The above described procedure continues in a repetitive fashion until a global 

optimum or a desired solution is obtained. The following pseudocode on figure 2 on 

the next page summarizes the detailed processes involved in an SA algorithm:
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Simulated Annecdingifnputs \ s ^ f ,  X, N\ output: s j

Begin
Initial solution sQ % choose an initial solution, s0 e©
Initial tenperature T0 % choose an initial temperature T = T0
Choose a cooling rate X % choose T reduction function
Choose N % define the length of Markov chain per T
s = s. %set the initial solution as the current
Repeat Procedure

k -0 % Initialize iteration counter to null
For k -1 through N %Loop until iteration counter equals N

Generate^. eiV(i)J % choose a solution s . from the neighbourhood N{s) of s

compute 8 =f ( s .) -f(s) % 8 is the difference in objective btw the current & new solution

If [8 <0) then % given that the objective fimction got better
s = s. % set the new solution s. as the current s

Else %if no any improvement

Generatê r e t/(0, l)] % generate a uniformly distributed random number btw 0 & 1

(-S')If r <exp\ —  \ then %if this condition is satisfied

S=Sj % set the new solution s . as the current s

End{lf)

End(lf-Eke)

k = k +1 % increment iteration counter
Endî For)

T=X{f) % update the temperature T

Until stopping criterion

returns % output the best / global solution found, s
End

Figure 2: Typical pseudocode of an SA Algorithm

From the SA pseudocode it can be inferred that SA is a technique or method used in 

solving an optimization problem by iteratively perturbing the current solution in a 

stochastic manner. The method always accepts a local ascent/descent (depending 

whether it is a maximization/minimization problem). However, in order to escape 

entrapment in a local solution or to explore some other unexplored areas of the search
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space, the method occasionally accepts a deteriorating solution as the next current 

solution with a given probability that decreases as the process continues. If the 

reduction rate — known as a cooling schedule — at which the “temperature” decreases is 

sufficiently low, there is a very strong likelihood that the algorithm would eventually 

arrive at a very good solution; however this achievement is most of the times at the 

expense of a longer run time. This type of local search escapes getting trapped in a 

local optimum by jumping out of it in the early part (i.e. at higher temperatures) of the 

search. As the number of iterations increases, the temperature and as well, the 

probability of accepting a worse solution approaches zero, and consequently the 

algorithm targets the bottom of a local optimum.

For more details on SA algorithms, we refer any interested reader to Aarts and Korst 

[JJ, Reeves and Beasley [123], Dreo et al [39], and/or Dowsland [37, 38],

3.5.2 Parallel Simulated Annealing (Parallel SA)

The parallelization of SA has been studied and found to be promising in several 

researches conducted across diverse research areas including global optimization as in 

Onbasoglu & Ozdamar [1161, chromosome reconstruction as in Bhandarkar & 

Chirravuri [9], Job Shop Scheduling and Travelling Salesman Problem as in Ram et al 

[121] and engineering problems as in Leite & Topping [96] and Gallego et al [57].

Despite all its good and promising features, one has to admit that the computing time 

requirement is undoubtedly a critical factor in the economic evaluation of the utility of 

an SA algorithm in the real world industrial problems application. In order to 

minimize the effect of this drawback, a promising research direction is the
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parallelization of the algorithm, which involves carrying out several calculations 

simultaneously for its realization [96,1, 121, 561. Parallelization of SA though sounds 

easy, however, should not in any way be thought of, as a simple or trivial task.

The cardinal requirement for parallelizing SA is that such process should be carried 

out so as not to affect or alter the typical sequential nature (Markov chain) of the 

algorithm; this is due to the fact that, SA processes a sequence of trials in which the 

probability of an outcome of a given trial depends only on the outcome of the 

incumbent (current) trial, and does not in any way depend on the trials in the sequence 

that came prior to the incumbent trial. There are basically two distinct methods used in 

implementing parallel SA that were suggested soon after the invention of SA. Dreo et 

al [391 argues, the distinction between these two methods still remains very relevant in 

modem day optimization problems. These two methods include Division Algorithm 

and Clustering Algorithm.

3.5.2.1 The Division Algorithm

The Division algorithm allows for implementing several Markov chain computations 

in parallel using a sizeable number (say Mp) of elementary processors. If we assume a 

constant number of trials, say, N, then each of the Mp processors is responsible for 

performing N/Mp trials in the Mp various sub-chains. In order to preserve the main 

characteristic of the SA algorithm at each temperature level, when all processors finish 

processing their individual tasks, the incumbent optimal solutions are sent to the 

master node {p = 0), which then selects the best and broadcasts the results to all the 

other processors (p = 1, Mp -  1).
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The following figure describes how the Division algorithm operates

________ Temperature Levels
'/t-f Tk 7/(+)

0

0L.
0
CL

Nk+1

Master Node

Transitions Chains
________________Figure 3: Architecture of Division Algorithm________________

From Figure 3 above, the horizontal line signifies the evolution of the temperature and 

the number of trials executed per temperature level; whereas the vertical components 

signify the Mp processors and each one of them performs its task in a sequence of 

N/Mp. After all processors finish their assigned tasks, they communicate their 

“progress” to the master node, which in turn will determine the new best configuration 

(solution), declare it as the new global incumbent and then makes it available to all 

processors for onward restart from that point on. It should be noted that, when the 

master node receives the solutions from the processors it checks whether all the 

solutions from the processors coincide. This condition is normally satisfied before 

reaching the minimum temperature level, thereby signifying a faster convergence to 

the parallel algorithm.
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The solution quality obtained through this method relies on the number of processors 

used in the parallel computation. The main advantage of this method is that, it allows 

for the division of the total computing time by a factor Mp. However, if a large number 

of processors is involved, the number of configurations studied by each becomes too 

small, and this may hinder the system from reaching thermal equilibrium, thereby 

making convergence towards an optimum unrealistic. One of the remedies to reduce 

the impact of this problem is to increase the number of trials N  per temperature and/or 

increase the parameter responsible for the rate of temperature cooling, X. This idea is 

to make sure that each processor has enough number of trials to simulate near thermal 

equilibrium conditions as closely as possible.

3.5.2.2 The Clustering Algorithm

Unlike the Division algorithm described in the previous section, the Clustering 

algorithm strictly observes the sequential feature of the conventional SA algorithm, in 

the sense that all the processors involved perform the N  trials in a most cooperative 

fashion by working with the same current solution. The method starts with each of the 

processors undergoing the processes (i.e. accepted moves, rejected moves, temperature 

change and so on) involved in the sequential SA algorithm. However, whenever any of 

the processors accepts a new move, it communicates the resultant solution to other 

processors which in turn will switch to that solution and all regard it as the new global 

incumbent and continue the search from there. This process continues until a specified 

stopping criterion is attained.
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Processing Time (T)

ransitions
Accepted Move 
Rejected Move

Figure 4: Architecture of Clustering Algorithm

From the description given above, it can easily be inferred that, there is very large 

frequency of communication among the processors at high temperatures due to the 

large number of moves accepted at such extreme. On the other hand, the opposite 

scenario is observed at lower temperatures where very few moves are accepted. Leite 

& Topping [96] and Monticelli et al [113] argue, despite this degree of 

communication, this algorithm presents a better performance since it doesn’t require 

strong synchronization. Apart from the two techniques of parallelizing an SA 

algorithm described above, there are other methods as well; an interested reader is 

hereby referred to Dreo et al [39], Monticelli et al [ 113] and Leite & Topping [96].

As for this research, the choice of this method is informed by our drive to explore the 

capability of parallel SA characterized by improved quality solutions; while at the 

same time clamping down the time taken by the conventional single-solution SA to 

arrive at a good solution. We hope to achieve this, by exploiting the pluses of SA
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(mentioned above) through maintaining a number of candidate solutions (often 

referred to as processors) that swarm the multidimensional search space at any 

particular time, thereby maximizing the chances of finding very good (even if not 

optimum) solution within a shorter time frame.

As already stated before, the parallel implementation of SA is really a non-trivial task; 

as there are lots of things to take into consideration, ranging from search initialization 

approaches to different choices of cooling schedules. The method operates in a very 

similar way to SA, but with several searches going on in parallel, with thus several 

current solutions at any one time.

3.5.3 Tabu Search (TS)

TS is a metaheuristic designed with the motif of guiding other methods to escape 

entrapment in a local optimum. It is one of the successfully implemented mathematical 

optimization metaheuristic techniques. Its main idea was believed to be originally 

introduced and brought to limelight by Fred Glover in the year 1986 (see Glover and 

Laguna [63]. for details), purposely for solving various combinatorial optimization 

problems. Two important articles (Glover [61] and [62]) are believed to contain most 

of the principles upon which the method is based and which are still in use today. 

However, in the scientific community, some of the principles that guide TS were not 

well understood in the early nineties, during which there was no such interest in what 

Dreo et al [39] termed as “metaheuristic culture”; as most of the researches conducted 

in TS, then, used a restricted domain of the said principles, largely limited to tabu list 

and a simple aspiration condition [39].
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The method is believed to derive its name originally from an 18th century Polynesian 

word: “taboo”, and frequently written as “tabu”\ which is defined according to the 

Oxford Dictionaries online version [79] as: a social or religious custom

prohibiting or restricting a particular practice or forbidding association with a 

particular person, place, or thing’'’ or something prohibited or restricted by social 

custom”. These definitions seem to accord well with the idea behind TS as it makes 

some decisions prohibitive in order to avoid executing counter-productive course.

The method gained much prominence and attention in the scientific community with 

the research works conducted by de Werra’s team at the Swiss Federal Institute of 

Technology, Lausanne in the late eighties. Hence, some significant credit should go to 

de Werra’s team for popularization of TS techniques; as their researches: Hertz and de 

Werra [74], de Werra and Hertz [30], and Hertz and de Werra [751 played a vital role 

in disseminating the technique in the research community. Despite the growing 

competition between TS and SA (which was introduced earlier than TS and had to its 

credit an established convergence theorem), TS-based heuristics were growing in 

popularity and acceptability especially with some effective and promising results 

obtained from the works of Tail lard [138], [139], [140], and [1411.

The method was applied and found to be successful in solving diverse optimization 

problems including (but not limited to) graph colouring, electronic circuit design, 

financial analysis, molecular engineering, resource planning, pattern classification, 

mineral exploration, environmental conservation, biomedical analysis, waste 

management, flexible manufacturing, quadratic assignment, logistics, 

telecommunications, energy distribution, space planning, scheduling, character
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recognition, to mention but a few. TS, as an extension of classical local search 

methods provides solutions that are close to optimality; and many regard it as the most 

effective in tackling difficult optimization problems IT 1, 1391.

Unlike other combinatorial optimization techniques, TS has its origin from concepts 

used originally in artificial intelligence and not from any physical or biological 

processes as in the case of SA and/or GA respectively. As such, it possesses some set 

of principles which when applied in an integrated way will solve a difficult 

optimization problem in an intelligent manner -  a feature which form the base upon 

which the method is founded. According to Glover and Laguna [63]:

“Tabu search is based on the premise that problem solving, in order to qualify as 

intelligent, must incorporate adaptive memory and responsive exploration... The 

adaptive memory feature o f TS (whose importance is suggested by the analogy o f the 

mountain climber who must analyze current alternatives in relation to previous 

ascents o f  similar terrain) allows the implementation ofprocedures that are capable o f 

searching the solution space economically and effectively... TS contrasts with 

memoryless designs that heavily rely on semirandom processes that implement a form  

sampling...”

TS is sometimes considered as one of the most widespread single-solution 

metaheuristics in use, using “memory” to store information related to the search 

processes [1131. The method, in comparison to SA and GA, is greedier; as it explores 

the vastness of the search space in a more aggressive and intelligent fashion than either 

of the two. Basically, TS begins with an initial configuration (solution) generated
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either randomly or in a guided fashion; after which such solution assumes the status of 

the current solution. During each and every iteration, a neighbourhood structure of the 

current solution is defined and a move to the best solution within such neighbourhood 

is always accepted (for instance, in a minimization problem, the best configuration 

refers to the solution with the lowest cost). The so-called best solution may either be 

chosen based on the First-Improving solution criterion or based on complete 

enumeration of the entire neighbourhood. The term best here refers to the solution that 

improves most the objective function value; however if such best doesn’t exist within 

the neighbourhood of the current solution, the move leading to a solution that least 

degrades the objective function value is chosen. In order to avoid getting engulfed in 

an intractable problem, only the most promising neighbours in the neighbourhood of 

the current solution are evaluated.

Although TS, unlike the stochastic SA, is a deterministic algorithm; it was designed to 

escape getting entrapped in a local optimum solution. However, TS behaves mostly 

like a steepest local search algorithm in the sense that, it usually makes an uphill move 

only when it is entrapped in a local optimum; whereas SA can make such uphill moves 

at any given time. In executing such an uphill move, TS often permits moving to the 

best candidate solution in the neighbourhood even if it is worse than the current 

solution (as in the case of SA and other top rated metaheuristic techniques). One of the 

most important and remarkable features that distinguishes TS from other algorithms, 

while at the same time playing a vital role in its efficiency across diverse research 

areas is its ability to develop a mechanism that disallows jumping back or visiting 

(again) recently encountered solutions for a number of iterations, through the 

maintainability of what is usually known as a Tabu List -  which is like a database
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containing recently visited solutions or their attributes; thereby preventing certain 

solutions from reoccurring for a certain number of iterations -  called the size, length or 

more commonly tenure of the tabu list. The elements {moves attributes) in the tabu list 

are added based on the rule widely known as First-In-First-Out (FIFO); which makes 

it possible for the list to be continuously updated as the algorithm proceeds, so that the 

move just added to the list can be automatically removed from it after its tabu tenure 

has elapsed.

However, this prohibition of revisiting recently encountered solutions as imposed by 

tabu list’s membership makes TS a little bit restrictive and consequently, may well 

(occasionally) lessen the efficiency of the method. Moreover, after a while it might be 

worthwhile to revisit a recently encountered solution from which further searches to 

some promising direction can begin. Now, in order to improve the method’s efficiency 

and to allow for visiting more promising solutions, an aspiration criterion is 

introduced purposely to override the tabu status of a given solution when it is able to 

satisfy these (<aspiration) conditions. With this, it means a TS algorithm can accept 

non-tabu neighbours as well as those that satisfy the aspiration criteria even if they 

are already declared tabu.

In addition to the design issues related to all single-solution metaheuristics (such as the 

neighbourhood structure and how initial solutions are generated) and other 

implementation essentials peculiar to TS (such as tabu list (short-term memory) and 

aspiration criteria described above), there are also some advanced implementation 

issues that are introduced into TS to handle issues that focus towards the 

intensification and diversification of the search.
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• Intensification (medium-term memory): The main aim of intensification in this 

method is to exploit and utilize the information concerning the elite (best 

found) solutions, primarily to help in guiding the search towards promising 

regions of the search space. This set of information is stored in a medium-term 

memory. The whole idea of intensification involves extracting the common 

attributes of these elite solutions to further intensify search around solutions 

with similar features.

• Diversification {long-term memory)'. Single-solution metaheuristics (such as 

TS) are known to possess an intensification power. TS, on the other hand uses 

long-term memory to encourage diversification. The long-term memory 

achieves this by forcing the search towards unexplored regions of the search 

space.

The main components of a TS algorithm’s operation are outlined in the following 

steps and a comprehensive flowchart for those operations follows in Figure 5 below:
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Figure 5: Typical flowchart of a TS algorithm
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Step 1:

(a) Generate an initial solution, S/ni,iai,

(b) Set iteration counter, say k, to null (k = 0).

(c) Set the initial solution (generated in step 1(a) above) as the current (scurren,) as

Well as the best found SO far (Sbest)- { Scurrent S initial) Sbest sinitial }

Step 2:

(a) Randomly generate some set of candidate solutions 

e  N  ( sc„nv,„)’ i =  h  ■ • •> numNebos}  in the neighbourhood N ( s CUrrent) of the current

Solution, Scurrent’

(b) (Given a minimization problem), sort these neighbouring solutions in 

ascending order based on their objective function. After sorting, {slelghbour } represents 

the best neighbour in N(scurrent) having lowest objective function value.

Step 3:

Set i = \,JF f  ) > /  (*tai) THEN goto step 4 -  ELSE set s ^  = s ^  THEN goto step 4

Step 4:

(a) Check the tabu status of } •

(b) If not a tabu member then add it to the tabu list. se t scurre„, ~ Neighbour goto step 

7. Otherwise, goto step 5.
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Step 5:

(a) Check the aspiration criterion of } .

(b) If aspiration condition is met, then override its tabu status, update aspiration 

level and se t scumnt = s'nejghbour goto step 7. Otherwise, increment i and goto step 6.

Step 6:

If i > numNebos goto Step 7. Otherwise goto Step 4.

Step 7:

(a) Check any of the stopping criteria.

(b) If at least one is satisfied, then TERMINATE the search process. Otherwise, 

increment the iteration counter, k and goto Step 2.

We decide to implement TS for solving our PSP based on the hope that, much better 

solutions might emerge from it; as we are satisfied with its ability (as in other 

researches such as Taillard [1381, [1391, [1401, and [1411) in traversing the search 

space in an intelligent and guided manner through maintaining a tabu list, upon which 

very good results are normally obtained. Moreover, TS (in comparison to SA) has less 

number of parameters to deal with. For more details on TS algorithms, any interested 

reader should consult Glover [60, 63, 62], Glover and Laguna [631, Hertz and de 

Werra [74, 75], de Werra and Hertz [301, and Talbi [1421.
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3.5.4 Genetic Algorithms (GA)

Genetic Algorithm, often abbreviated simply as GA, can be defined as a 

probabilistic search algorithm that iteratively transforms a set (called a population) o f  

mathematical objects (typically fixed-length binary character strings), each with an 

associated fitness value, into a new population o f  offspring objects using the 

Darwinian principle o f natural selection and using operations that are patterned after 

naturally occurring genetic operations, such as crossover (sexual recombination) and 

mutation’'1 [92].

GA was first introduced by Holland [781 based on the natural evolutionary processes 

(natural selection and genetics) seen in biological organisms, and the method was later 

made popular by one of Holland’s students -  David Goldberg who solved an 

interesting and difficult optimization problem in gas-pipeline transmission control 

[65], In evolution processes, some people believe that, populations of individuals 

evolve in line with Charles Darwin’s [29] principles of natural selection and survival 

o f the fittest strategy in nature. Fitter individuals adapt more successfully to their 

natural environment, and consequently stand a better chance of surviving and 

reproducing than their weaker counterparts which will eventually be eliminated from 

the population. This concept of survival o f the fittest implies that the genes from 

highly fit individuals will spread to an increasing number of individuals in successive 

generations; as good traits of highly fit parents will tend to produce fitter offspring.

The processes described above are simulated by GA; as its search begins with an 

initial population of individuals containing constant number of chromosomes 

(generated either randomly or systematically) and then iteratively applying genetic
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operators (such as selection, crossover and mutation) in each reproduction stage. GA is 

a method applied and found capable of solving an extremely wide range of problems. 

According to Michalewicz [108] and Coley [24], there are quite a large number of 

complex optimization problems in which GA was applied successfully; these include 

jobshop scheduling, image processing, adaptive control, wire routing, game playing, 

cognitive modelling, TSP, spacecraft trajectories, optimal control problems, 

aeronautics, robotics, transportation problems, water networks, database query 

optimization, laser technology, analysis of time series, aesthetics, medicine, very large 

scale integration (VLSI), solid-state physics, facial recognition and many more.

Conventional optimization methods normally begin with a single candidate solution 

and the search for an optimal solution continues repetitively by applying some 

heuristics. On the other hand, GA approach is based on using a population of 

candidate solutions concurrently searching different areas of the solution space in an 

adaptive manner. GA, quite often allows for precise modelling of an optimization 

problem without necessarily having an explicit objective function. Moreover, in 

situation where the objective function is available, it doesn’t have to be differentiable.

GA operates on a population of individuals, in which each is a potential solution to the 

given problem. The canonical GA is encoded as a fixed-length binary string; however, 

other encoding methods (including a real-valued encoding) have also been used in 

other researches across diverse areas. These representations serve as an analogy with 

the actual chromosome in a biological organism. In solving an optimization problem, 

an individual member of the population is encoded into chromosome representing a 

candidate solution to the given problem. As the algorithm continues, the population of
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individuals evolves through sequential and repetitive application of three important 

genetic operators, namely: selection, crossover and mutation. Whenever, one or more 

of the individuals has at least one of the above mentioned operators acted upon it, it is 

called a parent', while the resultant individuals are often regarded as offspring. 

Therefore, if two operators are applied in succession, the offspring produced by the 

first operation becomes parent to the offspring generated after the second operation. 

The new generation of individuals (offspring) is normally obtained at the end of each 

iteration upon which each one among them has his fitness evaluated based on the 

objective function value; highly fit solutions (individuals) are made to be more 

opportune to reproduce by exchanging their genetic features with other fit solutions 

through crossover. This process is believed to result in new offspring solutions that 

combine the genetic traits of their crossed parents. The mutation operator is often 

applied after crossover by perturbing some genes in a chromosome. The offspring may 

either replace weaker individuals {steady-state approach) or the whole population 

{generational approach). The evaluation-selection-crossover-mutation cycle is 

repeated until an acceptable solution that best optimize (minimizes/maximizes) a given 

objective is returned as the ideal solution or until a given termination criteria is 

satisfied.

GA, although belonging to a class of probabilistic algorithms, operates differently 

from other stochastic algorithms, since they combine elements of guided search on one 

hand and those of random search on the other. Another advantage with genetic-based 

methods (such as GA) is their ability to perform a multi-directional search by 

constantly maintaining a population of potential solutions throughout the search
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process; unlike other methods who process a single solution for the entire search 

space.

Before a successful implementation of GA to a particular problem is achieved, there 

are several issues that have to be decided, including: the method of representation, way 

of exchanging information between individuals, how to apply the concept of mutation, 

the size of the population and the termination criteria. We are going to discuss them in 

what follows:

(i) Population size: This refers to the total number of individuals that an algorithm 

begins with, carries along and maintained throughout the search history. These 

are synonymous to particles and parallel solutions in PSO and parallel SA 

implementations respectively. There is no optimal population size suitable for 

all problems, but rather, it is problem-dependent.

(ii) Generations'. This is synonymous to the total number of iterations in other 

search methods.

(iii) Genetic Operators'. A typical GA uses three to four basic operators: selection, 

crossover, mutation and elitism to direct the population of individuals towards 

convergence to a global optimum. These operators are discussed below:

(a) Selection: It is aimed at pressurizing the population in a manner similar 

to that of natural selection obtainable in biological systems. It is this operator 

that ensures the extinction of the poorly-performed individuals, while giving
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the better ones a greater chance of promoting their information to the next 

generation. It is also responsible for determining the convergence 

characteristics of the algorithm. There are quite a number of selection schemes 

in use including: Tournament, Truncation, Linear Ranking, Exponential 

Ranking, Elitist and the most popular Proportional selection [28].

(b) Crossover: After selecting the parents, there is the need to recombine 

them to produce offspring for the next generation -  a process called crossover. 

It is one of the only two variation operators in GA implementation. Reeves 

and Rowe [124] explained crossover as a process of “replacing some of the 

alleles in one parent by alleles of the corresponding genes of the other.” This 

operator allows individuals to exchange information in similar manner 

obtainable in sexual reproduction found in natural organisms. The canonical 

GA uses one-point crossover in which two offspring are produced by two 

parents after swapping all their alleles to the right of a chosen single locus 

(point). Typical example of a binary representation’s one-point crossover is 

depicted in the following figure:

Parent

100111

101000

1001 11

1010 00

Offspring

1001001

101011
(a) Choice of cut-off point (b) Cut & swap (c) Result

_____________ Figure 6: Example of one-point crossover__________

The crossover process depicted in the above figure produces two offspring
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from two parents. However, if only one of the offspring is needed in the 

algorithm employed, it can be chosen at random from the pair and the other 

should be thrown away.

There are also some other types of crossover such as uniform and n-point 

crossovers; it should be noted at this point that, although more than two 

crossover points give the algorithm better exploration ability, it often leads to 

very disruptive configurations.

(c) Mutation: This is the other variation operator next only to the crossover 

operation. In a natural setting, many processes can cause mutation, the simplest 

being an error in replication. This operator is meant to “keep the pot boiling” 

by modifying an individual’s configuration randomly to generate a new 

offspring that will replace it. Coley [241 argues that, mutation is responsible for 

maintaining the genetic diversity of the population by preserving the diversity 

embodied in the initial population, as it is used to stochastically change the 

value of an allele within an individual chromosome. By so doing, it is believed 

there is a tendency for a mutated solution to be a little bit better or just to 

introduce some randomness to the population of individuals for extensive 

exploration of the search space. It is particularly important at the final 

generations when most of the individuals in the population exhibit similar 

solution quality. The proportion of the mutated individuals in the offspring 

population is equal to the mutation rate. It should be noted that, a mutation 

operation with a sufficiently high rate plays a vital role in preserving the
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diversity of the population which is, of course, useful for an efficient 

exploration of the search space.

For binary encoding, mutation can be carried out by randomly flipping bits 

with a very small probability. As for real-valued encoding, this can be achieved 

by random replacement with another random value. Another possibility is by 

adding/subtracting (or even multiplying by) a random (such as uniformly or 

normally distributed) amount [28]. An example of binary encoding mutation is:

100100 100100 101100
(a) Individual (b) Flip randomly chosen bit (c) m u t a t e d  Individual

_________ Figure 7: Example of bit-flipping (mutation) operation_________

(d) Elitism-. There is no guarantee whatsoever that the fitness-proportional 

(roulette-wheel) or any type of selection method would include even the fittest 

individual (since the entire selection is probabilistic). However, unless the 

fittest individual is much fitter than any other, it will occasionally not be 

selected to form part of the next generation, and this simply translates to its 

demise. This regular throwing-away of elite member of the population appears 

to be, and is indeed, counterproductive. The process of ensuring the 

propagation of the elite member is termed as elitism, and requires that not only 

is the fittest member selected, but a copy of it is not affected by the disruption 

encountered during crossover and/or mutation operations. There are quite a 

number of elitist strategies including one known as (p + X)-ES which allows 

for systematic copying of the best parents in the current generation to the 

population of the next generation. Or if it happens that, the best individual in
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the current generation is better (due to the effect of variation or selection 

operators) than the best in the next generation, then it will be copied to the next 

generation by simply replacing the worst individual with the lowest fitness.

(iv) Population replacement'. After the first three or all of the above four outlined

genetic operators have been applied to a population; a new population of individuals 

will have been formed. In GA, the new population of offspring can either replace the 

whole population (Generational approach) or as soon as a new child is generated 

{steady-state approach).

(a) Generational replacement: This is the simplest type of replacement 

strategy used in the canonical GA, whereby only the offspring created in the 

current generation will form the population of parents in the next generation.

(b) Steady-state replacement: This replacement strategy allows for a small 

number of offspring to be created in each generation purposely to replace equal 

number of parents in the next generation. This strategy is particularly useful 

when the solution representation is distributed on several individuals, possibly 

the entire population. This strategy, by losing a small number of individuals 

does not disturb the solutions excessively and thus they evolve gradually.

A typical GA begins with a population of stochastically generated individuals which 

are declared the first generation of parents; their individual fitnesses are then 

evaluated. Several individuals are then randomly chosen from this incumbent 

population (based on their fitness values) in order to undergo a modification 

(recombination and mutation) to form a new population. The new population
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undergoes similar processes in the next generation as did the previous one until 

attaining a maximum number of generations or a satisfactory solution is obtained. 

Figure 8 shows a flowchart showing the operations executed in a typical GA 

implementation; and the following pseudocode illustrates the outline of processes 

involved in a basic GA algorithm.

Outline of the Basic GA

1. [Start] -  Randomly generate an initial population of n individuals 

(chromosomes), with each individual serving as a candidate solution to the 

problem.

2. [Evaluate Fitness] -  Evaluate the fitness of each individual in the population.

3. [New Population] -  Create a new population of individuals by executing the 

following steps repetitively until the desired population size is attained. The 

steps are:

(i) [Selection] -  Select two parent chromosomes from the population 

according to some defined selection criteria.

(ii) [Crossover] -  With some (crossover) probability, perform a crossover 

operation for the selected parents to form new offspring (children). If crossover 

operation is not executed, the offspring remain as exact copies of their parents.

(iii) [Mutation] -  With some (mutation) probability, mutate an offspring at 

some chosen point of interest.

4. [Replace] -  Let the newly generated population replace the old one for further 

run of the algorithm.

5. [Test] -  Check if the stopping condition is satisfied, then terminate and return 

the best solution found; otherwise go to step 6.
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6 . [Loop] -  Go to step 2.

GA, according to Haupt & Haupt [70] has lots of advantages over other search 

techniques which includes its ability to:

(i) Optimize difficult optimization problems with both continuous and discrete

variables

(ii) Perform well without the requirement of any derivative information

(iii) Deal with a sizeable number of variables

(iv) Suit well with parallel computers

(v) Provide a list of good solutions, and not just a single solution

(vi) Work with numerically generated data, experimental data, or analytical 

functions.

However, the sizeable number of solutions that gives the GA its power is also one of 

its major disadvantages when it comes to speed on a serial computer -  since the fitness 

of each of them has to be evaluated. GA’s unique feature of maintaining multiple 

number of best solutions during the course of execution distinguishes it from other 

(local search and evolutionary) algorithms; and is what we believe gives it an edge 

over them especially in tackling difficult optimization problems. What informed our 

decision in this research to choose GA (as one of the optimization techniques) follows 

from our belief and hope of getting very good and/or near-optimal solutions to our 

newly formulated PSP. For fuller detail on GA, an interested reader is referred to Dreo 

et al [39], Holland [78], Michalewicz [1081, Reeves and Rowe f 1241, Coley [24], 

Talbi [142], Da Silva and Falcao [28], Koza [92], Goldberg [65], and Haupt & Haupt

GO]-
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START

generation = 0

Create initial population

Is stopping c r i te r io n '\Y e s y  Announce Result 
satisfied ?-►

No

individual = 0

Evaluate individual’s fitness

individual = individual + 1

Is individual the last in 
the population ?

Yes

individual = 0 STOP

Yes Is individual the last in 
the population ?generation = generation + 1 individual = individual + 1

Select Genetic 
Operators

No

Pr(R) * Select One individual based Perform Copy into new
on its fitness -► Reproduction population

Pr(C) Select Two individuals 
based on their fitness Perform Crossover Insert Offspring into 

new population

Pr(M) h Select One individual based Perform Mutation Insert Mutant into new
on its fitness -► population

Figure 8: Typical GA operations’ flowchart

Page 115 of 277



3.5.5 Particle Swarm Optimization (PSO)

There are quite a number of biological organisms (such as Bees, Ants, Birds, Fish and 

lots more) that behave as a swarm especially when searching for food or when 

avoiding an attacking predator. This amazing behaviour has been a focus of many 

artificial life researches purposely to study, examine and reconfigure such swarm’s 

behaviour inside a computer. For instance, Reynolds [125] developed a swarm model 

-  boid, capable of generating animations of complex swarm behaviour using computer 

graphics. Boyd and Richerson [12] studied human beings’ decision process and 

consequently developed the concept of individual learning and cultural transmission. 

Their studies revealed that, humans make decisions based on their personal 

experiences as well as other peoples’ experiences. Moreover, in the early years of the 

1990s, a dawn of new optimization techniques that explore an analogy of swarm 

behaviour of natural creatures began. Dorigo and Di Caro [361 introduced ACO based 

on the life style of one of the so-called social insects -  the Ant. In ACO, each 

individual (ant) implicitly shares some vital information with other individuals by 

depositing its pheromones trails. Eberhart and Kennedy introduced PSO based on the 

behaviour seen in the swarms of birds and schools of fish. The collection of researches 

that involves swarm behaviour is generally regarded as swarm intelligence [891; and of 

course, PSO is one of the constituent techniques in swarm intelligence.

PSO (in relation to SA, TS and GA), is a newly-developed population-based swarm 

intelligence optimization techniques originally proposed by Russell Eberhart and 

James Kennedy in the early nineties [88]- The PSO (like other Evolutionary 

Computation family of Algorithms) is non-deterministic and non-gradient based, 

implying that no information regarding the gradient of the cost function is needed for
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the algorithm to function properly. This advantage makes PSO appropriately 

applicable in optimizing functions where the gradient is computationally challenging 

to obtain or even unavailable. It can be used to tackle a vast range of optimization 

problems, such as financial optimization as in Kendall and Su 186], health problems as 

in Eberhart and Hu [41] and function minimization as in Shi and Eberhart [130, 1311.

3.5.5.1 The Origin of PSO

Jacob and Khemka [82] stated that, the term PSO originated when experimenting with 

algorithms aimed at modelling the birds’ flocking behaviour. In the early years of 

1990s, there were several algorithms (such as ACO) designed to simulate flocking 

behaviour of some organisms; however Kennedy and Eberhart were primarily 

interested in the Frank Heppner’s algorithms also known as Heppner’s Birds. The 

algorithm exhibit similar results as other algorithms of the time, exhibiting the 

following features:

• The birds must fly  towards the same direction as the bird in the forefront.

• The birds should have equal velocities as their neighbours while flying.

• The birds must not, in anyway, collide with their neighbours while flying close 

to each other.

However, there are some other things that attracted Eberhart and Kennedy before 

coming up with their model on particle swarms. These include the fact that: the birds 

seemed to be attracted to a roosting area, as they (birds) hover/fly around in a flock 

and suddenly one of them flew over the roosting area and eventually landed on the 

roost. This phenomenon will cause the other birds to land there as well. Kennedy and 

Eberhert modified this idea and modelled their particles to behave in similar fashion
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as they hover (fly) over a solution space, they would (almost all of them) eventually 

land on the best solution.

Although, working in synonymous fashion to other population-based search methods 

through updating the movements of individuals in their respective populations (and 

eventually leading to obtaining an optimal solution quickly), the PSO was named as 

such, because it is believed to be motivated and inspired by simulating the social 

behaviour of some organisms (Bird flocking and fish schooling) [88, 130, 131, 146). 

The basic PSO algorithm plays around with population of points, called particles in a 

multi-dimensional search space, in which each of these particles serves as a candidate 

solution to the optimization problem at hand. Each of these particles in the entire 

swarm flying through the hyperspace possesses a position and a velocity as well as an 

essential reasoning capability of memorizing their own (local) best position and that of 

their neighbours (global best). The concept of best here is relative depending on the 

kind of optimization problem at hand; if it is a minimization problem, then best simply 

refers to a position in which the evaluated value of the objective or cost function is at 

its minimum, otherwise it refers to a position which returns the most maximum value 

for the cost or objective function.

Unlike, other population-based evolutionary optimization search techniques, each 

particle in PSO flies through the multi-dimensional search space with a velocity that is 

continually perturbed according to its own and its companions’ flying experience 

[1311. Furthermore, these particles are able to communicate and relate to their 

neighbours the history of their trajectories and their best positions found so far, and 

consequently this inter-communication enables them to adjust their own positions and
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velocities. The PSO algorithm begins and continues with the population of particles, 

achieving effective performance through competition and cooperation among the 

members. It should be noted that, unlike in some evolutionary computational search 

algorithms, whereby selection operation may render some individuals to become 

extinct as they die out of the population; the PSO is the only evolutionary algorithm 

that does not implement what is often referred to as the survival o f  the fittest strategy 

[42].

PSO was originally designed for solving continuous optimization problems in which 

its applications to such class of problems was proposed in Kennedy and Eberhart [881. 

Basically, the model consists of a swarm of M  particles hovering over an n- 

dimensional solution space, with each particle, say i (i = 1, 2, ... , M) serving as a 

potential solution to the given problem being represented by a vector x-t in the solution 

space. Each particle also has a position, an associated velocity and as well possesses an 

ability to share its trajectory history with other particles in its immediate 

neighbourhood or the entire swarm; thereby allowing some successful members of the 

swarm to have some degree of influence over their peers. Each member of the swarm 

repositions its position Xj towards the global optimum solution based on the history of 

its most promising and best-ever visited solution -  

lbest(i) denoted as lb, = (lbn,lbi2, ... ,lb!n) ,  and the best solution ever visited by any 

member in the entire swarm’s trajectory history -  

gbest denoted as gb = (gbl,gb2, ,  gbn).
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3.5.5.2 Particles Neighbourhood

Each particle in the swarm must have some defined neighbours with which to 

communicate its progress and vice versa. The neighborhood denotes the social 

influence existing between the particles; and there are quite a number of different 

possibilities to define such a neighborhood. The two most commonly used 

neighborhood models include: (a) the Gbest, and (b) Lbest models.

(a) Gbest Model'. In this type of model, each particle considers the entire swarm as 

neighbors [see Figure 9(a)]. At the expense of robustness, the gbest model converges 

faster; due to its maintainability of a single best solution, often regarded as the global 

best particle across the entire swarm, which acts as an attractor having pulling power 

to attract other particles towards it; and eventually they all converge to its position. 

Thus, if this global solution is not updated on a regular basis, the swarm may converge 

prematurely standing the risk of getting trapped in a local optimum.

(b) Lbest Model: Each particle considers a subset of the swarm as its neighbors [see 

Figure 9(b)]. Local neighborhoods introduce various independent social groups in the 

swarm, and information between these various subgroups is then communicated back 

to the entire swarm in some structured fashion. This type of model inhibits premature 

convergence by maintaining multiple leaders (neighborhood best particles). According 

to van den Bergh f 1461, this method has two main advantages: (i) it is computationally 

less costly, and (ii) it assists in promoting diversity and spread of information within 

the swarm.
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( a )  G best Model: P a r t i c l e s  a r e  n e i g h b o r s  t o  o n e  

a n o t h e r  ( C o m p l e t e  g r a p h )

( b )  Lbest Model: E a c h  p a r t i c l e  h a s  o n ly  4  n e a r e s t  

n e i g h b o r s  ( n o n c o m p l e t e  g r a p h )

Figure 9: Neighborhood topology in PSO

Regardless of the neighborhood topology adopted, an attractor (i.e. lbest or gbest) is a 

particle that spearheads other particles towards promising regions of the search space. 

Suppose we have a swarm of particles whose size is n, each and every member of the 

swarm is viewed as an object with lots of characteristics. These features or 

characteristics can be represented by the following symbols:

Xj\ This vector stores the current position (location) of particle / in the search

space.

v ,: This vector stores the velocity which particle / travels with, and

lbj\ This vector stores the best position ever visited by particle / in its entire search

trajectories.

The PSO operates like cellular automata, due to the fact that the particle update is 

executed in parallel and each new value is dependent upon the previous value and its 

neighborhood. At the instance of each algorithmic iteration, a particle flies from one 

point to another in the solution space, while at the same time undergoing the following 

three update operations:
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(i) Velocity update: The velocity of a particle defines the direction and amount of 

change (distance) to be applied to a given particle.

v*+1
IJ i  K j lbk - x ‘

V U
+  g b t - ^ 3.5.5 (a)

Where k denotes a unit pseudo time increment (iteration number), R/ and R2 are 

randomly generated and unifonnly distributed values in the interval [0, 1] purposely to 

introduce some stochastic effects in the algorithm. The constants C/ and C2 

(collectively known as acceleration coefficients) are the learning factors influencing 

the maximum step size a given particle can take in a single iteration; additionally, they 

also scale the values of Rj and R2 . The velocity update step is handled separately for 

each dimension j ,  so that v,y now denotes the velocity vector associated with particle / 

in the f h dimension. It is easily observable from the above equation that, as C2 (the 

social learning factor) aims at regulating the maximum step size in the direction of the 

global best particle’s position; C/ (the cognitive learning factor), on the other hand, 

regulates the maximum step size towards the personal best position of the particle in 

view. In order to reduce the possibility of any particle leaving the search space, the 

value of Vy is restricted to lie within the interval [~ v mjn, vmoJ .

Shi and Eberhart [1301 suggested a modified velocity update mechanism by 

introducing what they referred to as inertia weight, often denoted by w in the velocity 

update equation given above. The inertia weight, w, restricts the influence of the 

previous velocity on the current one; in which larger values signify higher influence 

and lower values means lower influence.
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This inertia factor, w, has a similar effect in PSO as does the temperature in SA; as it 

serves as a trade-off between diversification and intensification during the search. 

Thus, large inertia weight promotes global exploration of the whole search space, 

while a smaller one encourages intensifying the search around the current region. The 

modified velocity update equation (with inertia weight) is now given by:

v j"  = w v ‘ + C l R;j [ lb‘ - x ‘ \ + C, R ‘ .2 2’J ' g b k -  x ‘ ’
_  2 'J -

3.5.5 (b)

The original PSO implementation used an inertia weight value of w = 1. However, 

other researchers suggested different values. In order to briefly illustrate the effect of 

w; let us now set Ci = C2 = 0. A value of w < 1.0 will make the particle decelerate 

slowly until its velocity reaches zero; on the other hand, a w > 1.0 will make the 

particle accelerate up to a maximum velocity, vmax, given that, the particle started its 

search space trajectory from non-zero velocity. However, based on the results obtained 

by Shi and Eberhart [ 1301, an inertia weight value close to unity is preferred.

(ii) Position update: Each particle will update its coordinates on the solution 

space using the new particle’s velocity updated vector, and this can be achieved by 

setting:

JC* + 1 = JC* + v ‘ +1 -  3 . 5 . 5 ( c )
ij U V_______________________________________________ v y

(iii) Best found solution update: Each particle updates its best local solution when 

a better solution is found as the search progresses. Suppose for a minimization 

problem we denote b y f  the objective function to be minimized; then the personal best 

position of a particle can be updated by the following pair of equations:
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Moreover, the global best solution found by the entire swarm will be updated as 

follows:

Oq
+ II

'gbl i f  f { x ^ ) > f { g b k)
3.5.5(e)

xlr  i f  f { x T ' ) < f { g b k)

The above three steps of velocity and positions update in conjunction with particles’ 

fitnesses calculation and evaluation will be continuously executed in a repetitive 

manner until a desired convergence or stopping criteria is satisfied; which is often the 

maximum change in best fitness should be smaller than a specified threshold value for 

a specified number of iterations.

In brief, a basic PSO algorithm begins with some randomly generated particles 

(candidate solutions), among which one (based on its fitness) is identified and tagged 

as the global best {gbest) solution. All other particles in the swarm will then accelerate 

towards the direction of this (gbestj  particle, while at the same time being drawn 

toward the direction of the best solution they ever discovered in their search 

trajectories’ history. Partaking in this phenomenon will occasionally make the 

particles overshoot their target, consequently allowing them to explore the search 

space beyond the current best particles; while at the same time having the opportunity 

to discover better solutions en route, in which case the other particles will change their 

direction heading towards the newly found best solution. Due to the fact that most
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functions have some continuity, there are chances that a good solution will be 

surrounded by other good or better solutions; and the fact that these particles approach 

the current best from different angles in the search space, there is a strong likelihood 

that these (better) neighbouring solutions will be discovered by some of the particles. 

The following figure depicts the velocity and position updates of a particle in a typical 

PSO implementation:

k+1 (next position)

(global best)
(Personal best position

(Current position)
Influence of 

personal best

Figure 10: Particle’s velocity & position update

The following pseudocode depicted on Figure 11 describes how we implemented our 

unconstrained PSP using PSO
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Particle Swarm Optimization (inputs : p, C,, C2, M, X ..; output: X f )

% Initialize particles' size (p), dimensions (n) and Number o f  iterations (M ) 
Choose p, n, M

% Initialize p  particles' positions and n dimensions 

Initial solution X , = rand e (0 , l); \fi = \ . . . p \ j  = 1 . . .n

Initial velocities V.. = rand e (0 ,l ) ; V/ = 1 . . . p  ; j  = 1 ...n

% Evaluate Initial Particles' fitnesses 

f  ( X . ) = evaluated _ fitness (X.. )

% Initialize the local and global best solutions

Begin
Choose C,, C2 % Decide on the values o f  acceleration coefficients

f ( g be s t )  = {Min( f ( l b . ) \ V i  =

minimumfitnessindex = i 

Xf = X*.. ,v  ■ ,  V/' = 1 ...n/  m in im u m fitn e s s in d e x  / J

% Iterate until convergence or finite number o f iterations 
Repeat Procedure

k = 0 % Initialize iterations counter to null
For k = 1 through M  % Loop until iteration counter equals M

% update particles' velocities and positions

= rand e (0, l) % Generate 2 random numbers

V,j = { +  CA (x{ - X , ) + CA ( X f  - X , )}

X.. =x. .  +v.

% Normalize to ensure feasibility

% update the local and global best solutions 

Updatef  (lb.) & X 1*

Update f ( gbes t )  & X f  

End (For)

Return the global best solution 

End

Figure 11: Pseudocode of a typical PSO implementation
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Our research, by designing and implementing PSO, is aimed to exploit the PSO’s 

capability to obtain near-optimal solutions for our PSP.

3.5.6 SWarm ANnealing (SWAN)

This algorithm was designed as a hybrid of PSO and SA and derives its name by 

combining two selected words from the names of the constituent algorithms. Due to 

the diversity and quality of solutions returned by different particles (candidate 

solutions) in PSO implementation and the ability of SA to obtain a very good solution 

by intensification especially at lower temperatures; by hybridizing the two we hope the 

algorithm will be able to combine these main heuristics’ desirable features 

{Diversification & Intensification) from both PSO and SA.

Eglese [431 argues that the hybridization of SA with another method (such as PSO) 

can be done in two different ways. First, the hybridization should be in such a way that 

either the other method is used to obtain a good initial solution after which an obtained 

solution would then be passed to SA for improvement or the other way round. In our 

implementation, we decided to adopt the first approach, by passing the (global) best 

solution returned by PSO to SA optimizer for further improvement.

Similar implementation (of PSO and SA hybrids) exists in the literature [1471; 

however, we want to clearly state here that, our implementation is significantly 

different from what is contained therein. This is because in Wang and Li M471 each of 

the PSO generated particles (candidate solutions) is subjected to the SA optimizer by 

undergoing all the processes involved in SA after which the particle with the best 

solution is declared global best igbest) and all other particles’ positions are then
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updated according to the PSO update scheme. This process continues in similar 

fashion until convergence or the given desired stopping criterion is attained. But in 

implementing our SWAN algorithm, all the particles undergo all the processes 

(velocity, particles’ positions, local best solutions and global best solution updates) 

involved in a typical PSO technique until convergence; the gbest solution is then 

passed to the SA optimizer as a starting solution for further improvement until a given 

stopping criterion is attained. By implementing the algorithm in such a manner we 

expect it would be able to produce results of superior quality than either of the two 

techniques when implemented separately.

For this method (SWAN) to be considered as a hybrid of both algorithms, it must 

combine their collective parameters. Furthermore, the tuning of search parameters as 

far as this method is concerned will be a little bit more challenging, since the 

parameter settings that were found to work well with our PSO and/or SA algorithm 

might not be found to work well with the hybrid. So it needs further parameter fine 

tuning. The following pseudocode shows how our SWAN algorithm operates:

S w a rm  A n n e a lin g  (in p u ts  : p, C,, C ,, M , X .., T, a , N; o u tp u t : X f )

B eg in

P article Sw arm  O ptim ization (inputs : p, C,, C ,, M , X tJ; outputs : gbest1 so) 

s = gbestpso

S im u la te d  A n n e a lin g  (inputs : s, T, a , N; outputs : X f )

E n d

_______________ Figure 12: Implementation of a SWAN for PSP_______________

Where the parameters: p, Ci, C2, M, T, a, and N  are the number of particles, cognitive 

factor, social factor, number of iterations, maximum temperature value, cooling rate 

and size of the Markov chain respectively.
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Due to the presence of numerous parameters in our SWAN algorithm, there is the need 

for patience in trying several parameter combinations before finally settling on the one 

that seems to produce a reasonably good solution in an acceptable time frame. When 

this is done, we expect our SWAN algorithm to perform better than either the PSO or 

SA when implemented separately due to its ability to explore the features of both 

algorithms in a single experimental trial.
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4.0 Unconstrained PSP Implementation

4.1 Practical Implementation of PSP: The Unconstrained case

In order to test our algorithms’ performances and robustness, we decided to run (for 

each of them) an unconstrained formulation of the PSP involving 2 different datasets 

as described in section 4.2 below. For each of the datasets, each of the 6 algorithms 

(described in section 3.5 above) was run 50 times and a mean value of the 200 

generated solutions (portfolios) on the efficient frontier was then computed. These 

results were then compared with the ones obtained by solving the same problem 

instance using a standard quadratic (nonlinear) programming solver (CPLEX 11.2) 

invoked by a script in AMPL modelling language coded for such purpose.

4.2 Datasets used for the research

Although, there are several datasets available online to test our proposed algorithms; 

we decided, for the purpose of this research, to test our algorithms based on just two. 

The first one is a weekly stock price data from March 1992 to September 1997 for the 

Hang Seng (Hong Kong) capital market index made publicly available at the OR 

Library [117]. The dataset contains the input vectors (covariance matrix and return 

vectors for 31 ID-concealed stocks) needed for solving the PSP.

The second set of test data is a freshly downloaded weekly stock price data from 

FTSE100 (UK) capital market index. Stocks with missing values were disregarded and 

we ended up with 78 stocks; and for each we obtained 262 weekly price data from 

January 2004 to January 2009.
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Although two may seem a very small number of data sets, a very wide range of 

experiments has been undertaken for these data sets, using a variety of methods, with 

varying parameters, and with a wide variety of constraints. This means that the total 

number of results produced is large and comprehensive.

We then decided to compute logarithmic In I P‘,
t - 1

weekly returns; upon which we

then compute their respective expected returns and covariance matrix which 

eventually serve as input vectors to our optimization problem. Pt stands for an asset’s 

price at time t.

4.3 Algorithmic Implementation Details: Parameter choice 

decisions

This section is aimed at describing how our algorithms were implemented in the 

unconstrained formulation. Several issues play a significant role in achieving proper 

and successful implementation of metaheuristic algorithms in solving any difficult 

optimization problem. These issues can be viewed from basically two challenging 

perspectives, namely the generic and problem-specific choices [43, 65]. Take SA for 

instance, the generic choices deal with making specific statements on the acceptance 

probability functions together with making choices on cooling schedules; as for 

problem-specific choices, this deals with making decisions on the solution space, 

neighbourhood structure, the objective function and possibly the constraints to be 

satisfied. We are now going to explain the key decisions reached in implementing our 

solution techniques in relations to the generic and problem-specific decisions.
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4.3.1 Problem-Specific Decisions

Because, all our algorithms are aimed at solving the same instance of the PSP, 

synonymous decisions and choices were made in relation to those that are problem- 

specific. According to Wright [1491. there are issues that any problem-specific 

decisions have to address, and some of these include:

(i) Problem Definition: The PSP was originally modelled on a single-criteria 

basis, but on the alternative it can be viewed as a multi-criteria (bi-objective) 

optimization problem, where the portfolio risk (often measured by the variance) is to 

be minimized while at the same time trying to maximize the portfolio return. Our 

research adopts the alternative formulation as our cost function follows similar but 

different fashion as used in Schaerf [129], where the cost related to the violation of the 

return constraint is combined with the original objective function; and this makes the 

overall objective function a weighted sum of the return and risk components as 

follows:

Minimize ( i - x )
\

r n

+ A T " '  7  K .

J \ i = 1
4.3.1

Where Rr is the supplied target aimed to be achieved, X is the penalty for violating the 

return constraint.

In our implementation we decided to use variance other than the semi-variance we 

initially settled on due to the lack of necessary data to do this. For instance, the Hang 

Seng dataset used in this research (available at the OR library H 17]) does not provide 

the values of the (symmetric) semi-covariance matrix needed for computing the semi

variance of any given portfolio.
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(ii) Search Space Definition'. A solution in PSP can be represented by a sequence 

of n variables, wj, W2, . . .  , wn; where each w,- stands for the fraction of portfolio fund 

invested in asset i (or the actual amount allocated to asset i if an integer variable 

formulation is modelled).

In this unconstrained formulation, all our algorithms avoid coming across an infeasible 

solution, hence we adopt an All- feasible approach (of constraint handling) where any 

of the candidate solutions must satisfy all constraints involved at any stage of the 

search process. This is also the type of approach implemented by Chang et al [201.

(iii) Neighbourhood Definition: Wright [1491 argues that, this stage plays a crucial 

role in determining the success of any neighbourhood search method. It is the stage 

that defines how a neighbouring solution can be reached from the current solution, and 

this can be achieved by initially defining a set of allowable moves (perturbations). 

Neighbourhood relations, according to di Tollo and Roli [341 can generally be viewed 

from 2 perspectives:

• Neighbours being generated by modifying weights of some of the assets in the 

current solution; and

• Neighbours generated by perturbing all the weights of the assets in the current 

portfolio.

For the unconstrained formulation, our algorithms adopt the second approach, after 

which all the assets’ weight are normalized accordingly.
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(iv) Generation o f an initial solution: The relevance of a rightly chosen initial 

solution in producing high quality solutions in most neighbourhood search techniques 

can never be underestimated; and thus should be considered as non-trivial task [4]. 

Catanas [J_8] proved that metaheuristics designed (especially) for solving PSP tend to 

be robust with respect to the right choice of initial solution. Similarly, Wright [1491 

emphasized the importance of choosing a good initial solution in ensuring a high- 

quality final solution.

In our research, all our algorithms begin with a randomly generated solution for the 

first supplied target return; while for the subsequent targets, the near-optimal solution 

found for the previous portfolio serves as the starting solution and the process 

continues in this fashion.

(v) Acceptance Criterion: Two main variants of acceptance criterion are the First- 

accept Local Improvement and Best-accept Local Improvement. In the former the 

newly generated neighbouring solution can only be accepted if its cost (objective 

value) is smaller when compared to the cost of the current solution. While in the latter, 

several neighbouring solutions are generated out of which the one with the smallest 

cost (objective value) is then accepted as the next current solution. In this study, all 

our local search related algorithms (except the TS) adopt the second approach.

For TS, the acceptance criterion is implemented differently in the sense that any 

neighbouring solution generated (based on the second approach outlined above) can 

only be accepted as the next current solution, if and only if:
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(a) The solution is NOT already in the tabu list or tabu region.

(b) The solution satisfies an aspiration condition, which normally 

overrides a tabu status. The aspiration criterion is that, the magnitude of 

the current solution’s objective is lower than or equals to the Best-Ever- 

Found objective value even i f  it is already in the tabu list or lies within 

the tabu region of the current solution.

(vi) Stopping Criterion: Also known as termination criterion; it refers to the 

condition which must be satisfied before the entire search process comes to an end. 

Because some of our algorithms (like SA and TS) are single-agent methods; while the 

rest (GA, PSO, SWAN and parallel SA) are multi-agents techniques; we feel it might 

not be fair to compare their performance while executing the same stopping criterion. 

In view of this, we executed a stopping criterion that will make sure that, our single

agent methods are not disadvantaged in favor of their multi-agents counterparts.

First, after several experimental runs were conducted, we found that on average a 

maximum number of 3000 iterations/generations will be sufficient enough for our 

multi-agents algorithms to produce a very good solution within a reasonable time 

span. However, in order to save time, a given search process can terminate if there are 

500 consecutive non-improving cost function evaluations or when the absolute 

difference between the portfolio and target returns is no more than a negligible 

predetermined threshold value of e = 10'10.
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Mathematically, the stopping criterion for our multi-agents methods is executed as 

follows:

If[  (nonlnprosmentG owti = 500) OR(Abs(portfolioRetum —targetRetum} < 1010 jj Then 
Terminate the Search Process

It should be noted that, after several experimental trials we found that our multi-agent 

methods can produce solution of very good quality with no more than 50 agents 

(particles/chromosomes). So in implementing a stopping criteria for single-agent 

techniques (SA and TS), we took this into consideration. The details will follow in the 

subsequent sections.

4.3.2 Generic Decision Parameters:

This section discusses the decisions reached in dealing with parameters peculiar to a 

particular search method.

4.3.2.1 SA

(i) Acceptance Probability: In this research, we adopt the most frequently 

implemented acceptance probability function also known as the Metropolis acceptance 

criterion and given by:

P {Accept solution, S ) =
fis,)-ns,)

otherwise

The above probability tells us that, whenever a new neighbouring solution is

generated; provided it has a lower or cost equivalent to the current, it will certainly be

accepted as the next solution. But on the other hand, if the new neighbouring solution
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generated returned a deteriorating cost value, such a solution stand a chance of being 

accepted or rejected based on the cost difference and the temperature value. This is 

because; the probabilistic value of the exponential function is compared with a 

uniformly distributed and a randomly generated number lying in the interval [0, 1]. 

The new solution is then accepted whenever the value returned by the exponential 

function is found to be larger than the random number generated.

(i) Cooling Schedule: In our SA implementation, the cooling schedules adopted 

are composed of: the initial value of the temperature, the cooling rate, the length of 

Markov chain and the final value of the temperature. The numerical values of these 

parameters reported in this section were arrived at, after a quite number of 

experimental runs were conducted and some performance measures observed.

(a) The initial temperature: In all the conducted experimental runs, we pegged the 

initial value of the temperature parameter at To = 1.0 . This decision was reached at, 

after several simulation runs were conducted and found that such value is more likely 

to return a very good (and many times optimal) solution.

(b) The Cooling Rate: The cooling rate often denoted by a, is set in such a way that 

the temperature cools reasonably slowly in order to arrive at a very good solution in a 

reasonable time frame. Empirical evidence points to the advantages of setting this {a) 

value to 0.99063. This value ensured that the temperature was reduced from the 

desired initial value to the desired final value within a reasonable and acceptable run 

time.
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(c)  The length  o f  the  M arkov Chain: In order to conform with the suggestion made 

by Eglese [43] that: Time should not be wasted at larger as well as lower values of 

temperature; after several experimental runs we arrived at a decision to set the length 

at fixed value of 9 iterations per temperature value, therefore Nk = 9, k = 0, 1, 2,..

(d) The F ina l tem perature: For all our algorithms, the value for this important 

parameter was pegged at a small value of 0.001 -  a value very close to zero, hence 

simulating a frozen state of an annealing algorithm.

Details of experimental results and discussion can be found under the heading: “SA 

parameter choice decisions” in APPENDIX 2.

(ii) Total N um ber o f  N eighbours considered : This refers to the number of 

candidate solutions around the immediate neighbourhood of the current solution in our 

local search methods. In order to be fair to our single-agent local search methods (TS 

& SA), we decided to generate 50 (equal to the number of individuals in GA, 

processors in parallel SA and particles in PSO & SWAN) neighbours around any 

given incumbent solution, among which the best is picked as the next incumbent.

4.3.2.2 Parallel SA

This search method operates in similar manner to the SA, the only difference lies in 

the number of solutions dispersed over entire search space, hence parallel SA. 

Therefore, all the decisions {generic and problem-specific) reached in relation to the 

SA are as well adopted in this algorithm. However, we decided to fix the number of 

(parallel) processors to 50 in both cases.
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Due to the fear of premature convergence in implementing the division algorithm, we 

decided to implement the clustering algorithm which is proved to perform better than 

the division algorithm [96, 1131. By doing so, we hope to obtain solutions that are at 

least as good as those obtained by SA.

4.3.2.3 TS

(i) Tabu Tenure: This generally refers to the number of iterations for which a 

candidate solution remains in tabu (forbidden) state, hence having such a solution as 

the next current is not allowed. In this research, we set the tabu tenure to a value of T 

= 7.

(ii) Tabu Region: Due to the continuous nature of the variables in PSP and also to 

avoid getting stuck in a local optimum during the search process; we declared what is 

known as a tabu region. This simply means the immediate region within the reach of 

the current solution in a single transition in which a move is disallowed. In order to 

implement this, we compute the Euclidean distance between the current and any other 

candidate neighbouring solution, and if the distance is found to be less than a pre

specified threshold value the move is declared tabu, otherwise it is accepted. After 

several independent runs we arrived at a reasonable threshold value of 10'5.

(iii) Total Number o f  Neighbours considered: As in SA implementation above, the 

number of neighbours considered is 50, which is equivalent to the number of 

chromosomes (GA), particles (PSO & SWAN) and parallel processors (parallel SA).
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4.3.2.4 PSO

(i) The Acceleration Coefficients: These are basically the cognitive and social 

components’ coefficients respectively denoted by Ci and C2 . They influence the 

maximum step size a particle takes in a single iteration. In the original implementation 

of the PSO these values were recommended to be set such that Ci = C2 = 2. As these 

are values that are problem-dependent, the best-performed configuration of these 

values found for the PSP tackled in this research (after several trial runs) are Ci = 0.95 

and C2 = 2.955.

For further details on how we arrive at such decision, check PSO parameter choice 

decisions in APPENDIX 2.

(ii) The Inertia Weight: Also known as Inertia Factor and often denoted by w; is a 

scaling factor (taking real values) associated with the velocity during the previous time 

step which results in a new velocity update equation. In some PSO implementations it 

can be fixed, while in others such as Kendall and Su [861, it was set to be dynamic, 

typically taking values between 0.4 and 0.9.

In order to allow for proper exploration of a very large area of the search space at the 

beginning of the simulation runs and to further refine the search at later stage, we 

decided to adopt the dynamic approach in which the inertia weight initially takes the 

maximum value of 0.9, and as the search progresses it takes different values within the 

real interval [0.4, 0.9] up to the point where it takes the minimum value of 0.4.

In order to compute our inertia factor, w, as the search progresses; we adopted the 

following equation as used in Kendall and Su [86]:
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w  =  w M ax  -
wMax -  wMin

maximum number o f Iterations
i itera tion  count

Where wMax and wMin are the maximum and minimum values that w can take 

respectively. For further details on how we justified using the dynamic approach of 

setting the inertia weight values, we refer an interested reader to a section in 

APPENDIX 2 entitled: PSO parameter choice decisions.

(iii) The velocity update ru le : Deviating a little bit from the original velocity 

updating strategy discussed in Kennedy and Eberhart [88], we adopt the widely used 

velocity update rule incorporating an inertia factor in the update equation as follows:

V * +1 =  w v ‘ + C. R ‘ .
‘J V 1 1 . 7 lb -  x k

'.) U
+  C ,  R .2 2 ,  j gb. -  x k.

C* J u

(iv) S w a rm ’s position  updating strategy: The particles’ position updating rule can 

either be classified as synchronous or asynchronous 117]. In the former, a particle’s 

position is updated before evaluating the objective function, while in the latter the 

objective function is evaluated after the swarm updated its position. As for this 

research, we decided to implement the synchronous method. The particle’s update 

equation is given by:

X k + l =  X k +  v k +
i j  v  lJ

(v) N um ber o f  particles: In our PSO implementation, we tested different number

of particles as detailed in APPENDIX 2 under the heading: PSO parameter choice 

decisions. The results presented therein reveals that, particles’ size as moderate as 50 is 

sufficient enough to produce a very good result and many times near-optimal solutions 

within a reasonable period of time.
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4.3.2.5 SWAN

It shouldn’t be surprising that our SWAN algorithm combines all the parameters used 

of both PSO and SA algorithms; as it comes into being as a result of hybridizing the 

duo. Thus, based on the empirical evidence available in APPENDIX 2 under the 

heading SWAN parameter choice decisions: the best parameter configurations that are 

found to work well with SWAN unconstrained PSP implementation includes:

(i) The Acceleration Coefficients: The acceleration coefficients that were found to 

produce a better output for the unconstrained PSP are: Ci = 0.95 and C2 = 

2.955.

(ii) The Inertia Factor. This, as in PSO, was set to take values within [0.4, 0.9] 

inclusive.

(iii) The velocity updating rule: This is implemented as in the PSO, where the 

velocity update rule incorporates an inertia factor in the update equation

(iv) Sw arm ’s position updating strategy: As in the PSO, we adopt the synchronous 

updating rule.

(v) Number o f  particles: As one of our multi-agents methods, we used the same 

number of particles as used in PSO implementation above.

(vi) Acceptance Probability Function: This is similar to the probability function 

used in section 4.2.2. l(i) above.

(vii) Cooling Schedule: Because the SA part of the SWAN algorithm is meant to 

fine tune the global solution found by the PSO part; we found that a cooling 

rate, a  = 0.99063 and a length o f  the Markov Chain, Nk = 1 was suitable 

enough to produce a very good result.
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(viii) Total Number o f  Neighbours considered: For the SA part of this algorithm, we 

consider only 50 neighbouring solutions around any current solution.

4.3.2.6 GA

(i) Population size: This refers to the total number of individuals (chromosomes) 

that participate and continued to be maintained throughout the search history. These 

are synonymous to particles and parallel solutions in PSO and parallel SA 

implementations respectively. During the initial implementation of this algorithm we 

tried a population size of 100 (more than 3 times the dimension of our smaller dataset), 

but as we kept on improving it, we found that as few as 50 individuals often provide 

very competitive solutions; and coincidentally, this tallies with the number of particles 

and processors in PSO and parallel SA respectively.

(ii) Generations’. This is synonymous to the total number of iterations in other 

search methods. So to keep in tune with other algorithms, we set the total number of 

generations to complete a cycle at 3000; this was also found to be sufficient enough to 

provide a very good solution.

(iii) Genetic Operators: A typical GA uses three to four basic operators: selection, 

crossover, mutation and elitism to direct the population of individuals towards 

convergence to a global optimum. These operators are discussed below:

(a) Selection: Although, there are several ways in which this operation can 

be executed, for this research we found roulette-wheel selection approach 

(which is proportional to the fitness of an individual) more convenient to our
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type of problem.

(b) Crossover. For our formulation, because we are dealing with a real

valued encoding, we decided to implement a one-point crossover in which two 

offspring are produced by two parents swapping all the alleles to the right of a 

chosen single locus (point) and we set the probability of crossover to be 0.95, 

which means there is about 95% chances that any particular solution will 

undergo this process.

(c) Mutation: We allocate a 1% chance for conducting mutation in our GA 

implementation.

(d) Elitism : We decide to always carry fittest individuals amounting to 

10% of the entire population size to the next generation as part of our elitism 

operation.

(iv) Population replacement: As in Chang et al [20], we employ a steady-state 

population replacement approach, in which pair of newly bom  children 

replaces a pair of less-fit members of the old population and the process 

continues until the desired population size is attained.

4.4 Description of the bi-objective problem implementation

All the designed algorithms were implemented in such a way that, when they are run 

successfully to the end, they will be able to generate an approximate efficient frontier 

of solutions of portfolios.
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Conventionally, our algorithms are able to return a single solution, but we have 

modified them to behave in a repetitive fashion; so that at the end of any single 

successful run, they would be able to return a set of number of solutions/points each 

characterized by return and corresponding risk. When the points are plotted on a risk- 

retum plane, a parabola-like curve of efficient points often referred to as an efficient 

frontier is generated. These points are obtained by in(de)creasing the supplied target 

return in an equally-spaced manner depending on the total number of points desired to 

make up the frontier.

First of all, a given target return value is passed as input into an algorithm, which 

seeks to find assets’ weights configuration that would determine a portfolio return that 

is as close as possible to the supplied target. If a portfolio return that matches the 

target is found, the algorithm would then try to (in subsequent iterations) find a lower 

value of portfolio risk without compromising the corresponding portfolio return.

For instance, suppose we want to generate an approximate efficient frontier with 100 

portfolios in which the initial target (return) is 15% and we want a final target return 

value of 2% to be achieved. Now by following the rule of Arithmetic Progression 

(AP), our first term (often denoted by a) is 15% while the (final) 100th term is 2%. 

Thus, in order to find the common difference (often denoted by d); we work it out as 

follows:

lslterm=> a = 0.15   4.4(a)
100th term ==> a + 99 x d  = 0.02   4.4(b)

putting 4.3(a) into 43(b) yields :

(0 .02-0.15)
d =  5-------------- '  = -0.001313

99 ________
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From the above, it can be inferred that, the desired sequence of target returns starting 

from the initial target supplied as input would be: 0.150000, 0.148687, 0.147374, 

0.146061 ... and so forth up to the last (100th) term value of 0.02000.

4.5 Handling the return and budget constraints

This section discusses the handling of the basic (practical) constraints in our 

unconstrained PSP formulation. Fuller detail on how we handled our constrained 

implementation will follow in the relevant sections.

4.5.1 Handling Return Constraint:

Before we delve into explaining how we handled our return constraint, we feel it is 

important to distinguish between the objective and cost functions, as both are often 

inter-switched. The former, mostly represents the function that needs to be 

maximized/minimized in solving the optimization problem; while the latter often 

represents the function tasked with guiding the search process towards promising 

regions of the search space. Although, nothing hinders an objective function from 

serving as a cost function; however, di Tollo and Roli [34] posit that, search processes 

have more chance of being guided towards promising solutions when using a cost 

rather than an objective function.

In view of the above and going by the fact that, in our unconstrained PSP formulation; 

one of the only two constraints that are likely to be violated as the search progresses, is 

the return constraint; we decided to use a cost rather than objective function to solve 

our unconstrained bi-objective optimization problem. We designed our cost function 

in such a way that, it will allow us to penalize any violation of the return constraint,
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this enables the algorithms to make a rigorous search in order to make sure that the 

desired target is achieved, while at the same time minimizing the risk. Our cost 

function incorporates a penalty term, X e [0, 1] -  a cost value associated with 

penalizing return constraint’s violation, helps in achieving a trade-off in minimizing 

portfolio risk and bridging the gap between the portfolio’s return and the desired target 

return.

The cost function is a weighted sum of the two components (portfolio risk and return); 

and takes the form:

Min [ (1 -  T )P o r t f o l i o  Risk + X Por t fo l io  R e t u r n - T a r g e t  Return  ] -  4.5.1

From equation 4.5.1 above, it can easily be inferred that, the penalty value X plays an 

important role in achieving a trade-off in minimizing the violation of return constraint 

and the magnitude of portfolio risk.

To understand the effect of X, let’s now consider the two extreme values it can assume. 

Suppose an X takes a maximum value of 1, this will mean that, there is a very strong 

likelihood that the algorithm will find a portfolio configuration whose portfolio return 

will (almost) exactly match the desired target, irrespective of the magnitude of its risk. 

On the other hand, if X were to assume a value of zero, the resultant portfolio 

configuration would be one in which minimizing the portfolio risk takes utmost 

priority over achieving the given target.

After running our algorithms several times with different values of?,, we found that an

X value within the interval [0.65, 0.7] has been found to work satisfactorily well with

most of our algorithms’ implementations, as it is found that X values within this
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interval ensure that solutions obtained are still able to reach the target but at a 

reasonably moderate risk value.

In order to save time and ensure that all solutions returned by our algorithms are 

reasonably good, we modified our algorithms in such a way that whenever a final 

solution to a given target is found, such solution is then passed as a starting solution 

for the next target.

4.5.2 Handling Budget Constraint:

As it is believed that a repair approach for handling constraints’ violation provides a 

trade-off between diversification and intensification [34]; we decided to implement 

such an approach in satisfying the budget constraint of our unconstrained PSP 

formulation.

In order to ensure that, the budget constraint is satisfied, after each iteration we 

decided to normalize the weights so as to sum up to unity. This approach repairs assets 

weights in the following way:

* W  •

1 1 1 1^ s* o>

£

1

Where w* stands for the repaired (normalized) weight of asset /, while w,- represents

actual (unrepaired/un-normalized) weight of asset i. Notice that ̂  w; ^  1, while
/

= 1 -/
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4.6 Performance Metrics & Evaluation of algorithms

In this section we present some metrics proposed in the literature for evaluating the 

performance of our algorithms in solving multiobjective optimization problems. With 

these performance measures, we will be able to evaluate the success of our algorithms 

in solving a bi-objective PSP; we will also use these metrics in order to compare our 

algorithms against each other. For both datasets, CPLEX solver and our algorithms 

solved the same instance of PSP supplying (as part of the input set) 200 equally- 

spaced target returns, bringing the total number of points/portfolios on the various 

efficient frontiers generated by our algorithms and the solver to 200. In order to 

achieve utmost numerical precision, all results were rounded to 9 decimal places.

In order to evaluate the performance of multiobjective optimization techniques, there 

is the need to invoke the help of some performance measures. In doing so, it is 

important to have more than one metric in evaluating such performances. Zitzler f 1561 

suggested for computing at least N  performance metrics for an N-objective 

optimization problem. Deb [32] suggested for the classification of performance 

metrics into three different classes: those for convergence, diversity and metrics for 

both.

According to Jaszkiewicz [83], evaluation of algorithmic performance in solving 

multiobjective optimization problems should consider two main measurement criteria; 

and these comprise of: (1) computational requirement and, (2) the quality of the 

returned solutions. The quality metrics can be further subdivided into either cardinal 

or geometrical; where the cardinal measures (which quite often use relations such as 

equivalence and/or dominance) enumerate some number of points/solutions satisfying
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some conditions. On the other hand, the geometrical measures consider the 

geometrical position of the nondominated solutions in the objective space.

According to Zitzler et al. [157], there are three main goals in Pareto multiobjective 

search that need to be identified and measured, including:

(a) Convergence: The convergence metrics mostly measure minimum 

distance of the obtained nondominated solution to the actual Pareto front (if it 

is known).

(b) Non-uniformity of Pareto front: Non uniformity metrics evaluate how 

good is the distribution of the obtained solutions, and

(c) Coverage: These metrics aim at maximizing the size of the obtained 

nondominated front (i.e. for each objective, a wide range of values should be 

covered by the nondominated solutions).

In all cases, the set of exact solutions produced by the quadratic optimization software 

(CPLEX 11.2) forming a frontier of optimal portfolios is regarded as the true Pareto 

frontier which serves as a benchmark (reference) solution upon which all other 

approximate Pareto solutions generated by our algorithms are evaluated.

In view of the suggestion made above by Zitzler et al. [ 157], despite the fact that our 

PSP is a bi-objective optimization problem, we are going to evaluate our algorithms 

based on the three metrics discussed below:
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4.6.1 Convergence Metric:

In order to measure the degree of convergence and how accurate our algorithms were 

able to estimate the UEF, we decided to apply one of the solution quality metrics used 

in Cura [26]. This performance measure is referred to as the Mean Euclidean Distance, 

mEd, which is used to measure the area between the optimal UEF generated by the 

CPLEX solver and the one generated by an algorithm. We can now define the mEd as 

follows:

Let the pair (v fPLEX ,p f PLEX)(/ = l,...,^ )b e  the variance and mean return of a

point/portfolio i on the solver’s efficient frontier; and let the pair ( v f  , p ?  )(/ =  1,...,^)

be the variance and mean return of a point/portfolio i on the efficient frontier produced 

by algorithm A. Let also Rj (/ = l,...,i//)be the target return to be achieved at point /,

where in all cases y/ = 200. Thus,

A mEd = 0 means that algorithm A is able to perfectly produce the true Pareto front of 

the optimization problem at hand; i.e. algorithm A is as effective (in generating the 

optimal UEF) as the nonlinear solver (CPLEX 11.2). Thus, higher value of mEd 

reveals the degree of algorithm A ’s ineffectiveness; hence, lower values of mEd are 

always desired.
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4.6.2 Coverage Metric:

The main idea behind measuring this metric introduced by Zitzler et al. 1T571 is to 

compare two different Pareto optimal solutions against each other by considering a 

dominance relation.

Now with respect to our research, which is a bi-objective PSP; we give much 

emphasis on two important terms by minimizing the portfolio risk while at the same 

time bridging the gap between the portfolio return and the desired target. Now in order 

to define what a dominance relation (V) means with respect to our type of problem, 

we incorporated these two terms (return and risk) in determining when a given 

solution r e  R is said to dominate/outperform a corresponding solution s e .S .

Let the pair (y f )(/ = l,...,^ )b e  the variance and mean return of a point/portfolio /

on the approximate (Pareto) efficient frontier generated by algorithm R\ and let the 

pair )(i = l,...,^ )b e  the variance and mean return of a point/portfolio i on the

efficient frontier produced by algorithm S. Let also Rf (/ = l,...,^ )b e  the target return

desired to be achieved by portfolio /. We can now define a strong dominance relation 

by determining:

IF  <^ - ^ = 1 ^ 1 ) 4 ^ ) > THENARyySat point z} -  4.6.2(a)

With the above relation, one can easily determine the total number or the ratio of 

points in which solutions returned by algorithm R {strongly) dominates their 

counterparts produced by algorithm S.
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There is, however, another way of defining a dominance relation with respect to our

type of problem. Suppose we let f, ( ^ )  = (1 — /I) v* 4- 71 — R f | be the optimized

cost function (as in equation 4.5.1) returned by algorithm R in achieving the zth target

return. Correspondingly, if we let f, (<S) = (1 — A) v(s + X |//.s — RJ. | be the optimized

cost function returned by algorithm S  in achieving the same zth target. We can define a 

weak dominance as follows:

IF{fi {R)<fi(S))'MEN{R>-SatvMi) -  4.6.7(b)

When the above relation is satisfied, we can say that algorithm R weakly dominates 

algorithm S  at point /. However, in our analysis we decided to conduct our algorithmic 

analyses with the strong dominance relationship as described in equation 4.6.2(a) 

above.

Now, let C(R, S) be the coverage metric when two Pareto front sets (R and S) are 

compared; mapping the ordered pair (R, S) to the interval [0, 1]. It can be measured by:

{ s  g  S 1 3r  e  R : r >■>- s )

s

Where stands for the total number of solutions in set S and >- signifies a

dominance relation. Thus, r » - s  simply means solution r e R  strongly dominates 

s e  S  (i.e. the objective values of r are better than those of s). In a nutshell, C(R, S) 

shows the proportion of the number of solutions in S  that are dominated by the 

solutions in R. A C(R, S) = 1 means all solutions in S  are dominated by corresponding
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solutions in R; while C(R, S) — 0 implies no solution in S is dominated by a

corresponding solution in R. Furthermore, if relation C(R,S)> C(S,R)  holds, it

simply means that set R has recorded more better solutions than S  did. It should also

be noted that, C(R, S) is not necessarily equal tol — C(S,R}.  It is therefore obvious

that, there are situations when the C-metric cannot decide if a given solution 

dominates the other and vice versa.

4.6.3 Non-uniformity of Pareto front:

In order to measure the degree of uniformity or otherwise inherent in the distribution 

of a given Pareto front; Lee et al. [95] proposed a £>(•) metric. Suppose R is a set of

Pareto front; the quantity D (i? ), which measures the distribution of the Euclidean

distance {dt) between two consecutive solutions along the Pareto front is given by:

D (S ) = J i

^  I”1 -  4.6.3(a )

The numerical value of£>(*), quantifies the standard deviation of the distances ( d i) 

normalized by the average distance, d  . A D(R)  = 0 implies that there is a uniform 

spacing in the R ’s Pareto front. Thus, higher values of D (7?) signifies non-uniformity 

in the spacing of the R ’s Pareto front. Therefore, going by what has been described 

above, a lower value of D(R)  is desired. It should be understood that the £>(•) metric

can only be suitable and meaningful for a bi-objective optimization problem, due to 

the fact that, it is very unclear how “consecutive” can defined in a more than two 

objective problem.
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As per our PSP problem, by defining the pair(v?, ju? = 1 ,...,^), as described in

section 4.6.2 above; we can compute a Euclidean distance ( d t) between two 

consecutive points (/ & /+1) along the Pareto frontier by:

4  - V(v, -  vw )2 + (ft -  -  4.63(b)

4.7 Results & Discussions

In this section we present the results obtained by running a simulation of our designed 

algorithms and separately a nonlinear optimization solver (CPLEX 11.2); purposely 

for comparing their performance against each other by using some standard 

performance evaluation metrics used by other researchers in the optimization 

community. For both sets of data (sourced from Hang Seng and FTSE100 indices); the 

CPLEX solver and our algorithms solved the same instance of PSP supplying (as part 

of the input set) 200 equally-spaced target returns, thus giving us 200 points/portfolios 

on the various efficient frontiers generated by our algorithms and the solver in which 

all numerical values were rounded to 9 decimal places. The results were obtained after 

taking the average of the outputs of 35 experimental trials for each algorithm (with its 

best parameter configuration as outlined in section 4.3) to solve our unconstrained PSP 

formulation.

Now in order to obtain a great numerical precision from our solver-generated exact 

(optimal) solution, we decided to change the solver directives settings that are 

responsible for producing very high numerical precision results from the default 

settings. These perturbed directive settings are:

Page 155 of 277



(a) qcpconvergetol (default = 10'7)

Inserting the above directive in our AMPL script allows for setting the convergence 

tolerance on complimentarity in quadratically constrained problems (such as the 

constrained case of our PSP formulation). The barrier algorithm (the solver uses) 

terminates with an optimal solution if the relative complimentarity is smaller than this 

value. The default value of this tolerance limit (as can be seen above) is just 10'7. 

However, in our implementation we decided to use an extremely smaller value of 

10"1C 1 as doing so results in greater numerical precision.

(b) comptol (default = 10'8)

The other directive we used in our AMPL script is the comptol directive which can be 

used to obtain higher numerical precisions for both linear (LPs) and quadratic 

programming (QPs) problems when all the accompanying constraints are linear. As in 

(a) above, the barrier algorithm returns an optimal solution if the relative 

complimentarity is smaller than this value. The default value of this tolerance limit (as 

can be seen above) is just 10'8. However, in our implementation we decided to raise 

the bar higher by using even an extremely smaller value of 10'10; as doing so results in 

greater numerical precision, which will definitely help in testing the ability of our 

metaheuristic techniques.

In order to critically analyze and evaluate the performance of our designed algorithms, 

we plan to present and discuss the results obtained by explaining the outputs in respect 

of the three performance and evaluation metrics (convergence, coverage and 

uniformity) as discussed in section 4.6 above coupled with other pictorial/graphical 

representations aimed at showing the effort put on by the algorithms.
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4.7.1 Algorithmic analysis based on convergence ability:

As already stated before, this research considers to be a bi-objective PSP, we give 

much emphasis on minimizing the portfolio risk while at the same time bridging the 

gap between the portfolio’s and the supplied target returns; which is why our 

convergence evaluation measure (the mEd) incorporates these two terms. An important 

graphical tool to showcase algorithmic performances in solving an unconstrained PSP 

in this research can be depicted by plotting the various portfolio risks against their 

corresponding portfolio returns on a risk-retum plane. The result is a parabola-like plot 

of points (portfolios) seemingly forming a frontier of nondominated points collectively 

known as efficient frontier (EF) in financial literature. Each of them represents a 

combination of several proportions of investment’s funds allotted to some carefully 

chosen stocks offering a trade-off between maximization of portfolio return and 

minimization of portfolio’s risk of investment. Typical example of EFs generated by a 

nonlinear optimization solver (CPLEX 11.2) and our algorithms for the two different 

datasets used in this research can be seen in figures 13(a) and 13(b) below:

U n constra ined  E ffic ien t F ro n tie rs  (UEFs) fo r  th e  FT SE  

(78 assets) g enera ted  by C P L E X  & M etaheu ris tics
U nconstrained Efficient Frontiers ( ( /E f t )  fo r th e  Hang Seng Index 

(31 assets) generated b y C P L E X &  Metaheuristics

3 0.007

o 0.005

0.002 ;

Portfolio RiskPortfolio Risk
Figure 13(a) Figure 13(b)

Figure 13: showing mEds obtained by all the algorithms.
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From the results obtained, it is extremely difficult to tell the difference existing among 

the various Pareto fronts shown in both figures 13(a) and 13(b); as mere eyeballing the 

figures suggest that, all the 6 designed algorithms were able to produce outputs 

(UEFs) that seem to be intimately comparable to those returned by the solver; and 

even this achievement says much on their performances in respect of solutions’ 

quality. CPLEX solves these problems in about two seconds.

The following table summarizes the numerical results of the convergence performance

metric obtained by our algorithms for the two datasets used in this research.

Index Assets
Metaheuristic
Algorithms

(h)

Convergence Metric 
Mean Euclidean Distance 

m E d(*  1 O'6)

Average 
Execution Time 

per solution  
(secs)

Hang Seng
31

SA 6.4998 1.19
ParSA 4.6334 1.79

TS 9.0278 1.08
PSO 0.1215 2.25

SW AN 0.0056 2.55
GA 4.8751 2.12

FTSE 100 78

SA 12.431 9.19
ParSA 5.8621 6.29

TS 22.157 6.97
PSO 1.6994 6.03

SW AN 1.2818 6.65
GA 9.9486 7.93

Table 1: Showing values of the mEd and average execution time

From Table 1 above, it can easily be observed that the numerical values of the mEds

are (in all cases across the various algorithms) very close to zero indicating that

virtually no significant difference exists between the results generated by the solver

and our algorithms in solving the unconstrained case. Recall that from section 4.6.1

above, an mEd value equal to or very close to zero is much desired as it indicates the

strength of a given algorithm’s ability in estimating the true Pareto front. It can also be

noticed that, although with less average execution time, the TS recorded a worst

performance with respect to an mEd value, (having maximum values of 9.0278 and

22.157 respectively for both Hang Seng and FTSE 100 indices) when compared to any

other of the remaining five algorithms. On the other extreme end, however; our newly
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designed algorithm -  SWAN recorded the best performance in both datasets with 

0.0056 and 1.2818 mEd values respectively. Even though, it recorded the highest 

average execution time, we still believe an average time of at most 2.6 secs is still 

reasonable enough for such a remarkable performance. The PSO seems to be the next 

best algorithm after SWAN, even though it also recorded a high but reasonably 

acceptable average execution time when compared to other algorithms.

In both cases, parallel SA seems to slightly outperform the GA. For the smaller Hang 

Seng dataset, the parallel SA has an mEd value of 4.6334 as against the GA’s 4.8751; 

similarly, parallel SA recorded an mEd value of 5.8621 in the FTSE 100 index as 

against 9.9486 for the GA. SA, unlike TS, provided a much better solution than the 

latter, although (as expected) at the expense of larger execution time; its mEd value in 

both datasets is much smaller than those credited to TS, indicating a stronger ability in 

estimating the true Pareto front. Of particular interest is the GA, which to our dismay 

performed badly as against our expectation of its competitive potential, that we 

thought would match that of our newly designed hybrid method and especially PSO, 

being in the same category as highly revered EAs. In order to further visualize how 

our algorithms performed against each other, we decided to depict the positions of 

their mEd values on a radar plot in figures 4.7.1(c) and 4.7.1(d) below:
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A radar plot showing the mEds between the 
various U E F sfo r th e  Hang Seng Index 

generated by the Meta heuristics

1.0E-05

GA

SWAN

Par SA

PSO

Figure 14(a)

A radar plot showing the mEds between the 
various UEFs for the FTSE100 Index 

generated by the Metaheuristics

2 . 5 E - 0 5

SWAN

Par SA

PSO

Figure 14(b)

Figure 14: showing mEds obtained by all algorithms for the Hang Seng and FTSE 100
indices respectively

In each of the two figures [14(a) and 14(b)] above, it should be understood that, the 

closer a given point is to the origin (centre of the innermost hexagon), the better the 

corresponding algorithm’s ability in estimating the true Pareto front.

Now considering figure 14(a) above, it will be extremely difficult to distinguish the 

performance of PSO from that of the SWAN; both of whom points seems to be ‘spot- 

on’ right at the origin; and mere eyeballing their respective points on the radar plot 

reveals the degree at which both algorithms performed in relation to other algorithms. 

The duo, by estimating the Pareto front with a very high degree of precision, further 

attest to the power of EAs in solving difficult optimization problems. However, GA 

(another member of EAs family) which is left trailing behind seems to be fiercely 

competing for the 3rd position against the parallel SA, both of whose points fall in the 

third inner hexagon. As can be seen from the same figure; although, SA positioned 

itself in the 2nd outer hexagon being far away from the origin, its performance seems to
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be better than that of TS which is found to be worst among all the remaining five 

algorithms studied in this instance.

Figure 14(b), we believe, is misleading in showcasing the performance of the six 

algorithms in relation to the larger dataset; this is because, taking a hasty look at it 

makes the reader wonder as to: why do the algorithms seem to perform better (as 

majority of them appear to be in the innermost hexagon towards the origin) relative to 

the smaller problem (Hang Seng index with 31 assets,); despite an inherent difficulty o f  

the search process due to, especially a remarkable increase in the problem 

size/dimension (recall FTSE100 index has 78 assets). In view of this (as the reader 

might expect), the reverse is the case (i.e. performance of the algorithms in the smaller 

[Hang Seng 31 assets] dataset is indeed better across all the algorithms), as it is easier 

to handle a comparatively smaller search space. The proof to the above statement can 

only be plainly noticed when performance values from both datasets are plotted on the 

same radar plot (having the same axes) as can be seen on figure 15 below:
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SA31
2.5E-I

GA78 SA78
2.0E-(

1.5E-I
GA31 Par_SA31

SWAN78 -Q.OE+Offl Par_SA78

SWAN31 TS31

PS078 TS78

PS031

Figure 15: showing mEds o f  all the algorithms for the Hang Seng and 
FTSE 100 Indices plotted on the same axis._________________________________

To make it clearer for the reader as to which of the points on Figure 15 above is for 

which algorithm and/or for which of the datasets; we add a numerical suffix equivalent 

to the problem size to each of the abbreviations for the six algorithms. For instance, a 

point depicting an mEd value on “GA78” axis shows the magnitude of GA’s 

performance on the larger dataset (FTSE100 index); while a point on “SA31” axis of 

the plot signifies the performance of SA on the smaller dataset (Hang Seng index). 

Furthermore, for easier comparison we place axes of the same algorithm next to each 

other. For instance, it can be seen that “SA78” is next to “SA31”, “Par_SA78” is next 

to “Par_SA31”, and so forth.

Therefore, it can be noticed from the above Figure 15 that, there is a decline in 

performance across all the algorithms; however, in some the decline is more apparent 

and easily more noticeable than in others. For example, the decline is more visible in 

TS, followed by SA, GA and then Par_SA. As for the PSO and SWAN their
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performance has been very consistent and encouraging; in the sense that, the problem 

size seems to have a very negligible effect (if any) on the duo. Both seem to maintain 

their positions in the innermost hexagon and clinging very tight to the origin, which 

simply translates to their ability of producing results that matched that of the solver.

Another indicator of performance ability is the time taken by an algorithm to return a 

solution on the average. Looking at the column displaying the average execution time 

on Table 1 will reveal the degree of computational efforts exerted by the search 

methods in providing a solution. The average execution times (in secs) are found to be 

very reasonable, going by the size of the problems considered. The times recorded 

would be appreciated and considered acceptable, given the fact that even for the 

smaller 31 asset problem, a total of 992 data items (including a square covariance 

matrix with 961 data items and a vector of 31 expected returns) are required as inputs. 

Similarly, in solving the larger 78 assets problem apart from the vector of 78 expected 

returns, there is also a square covariance matrix consisting of 6084 data items that are 

necessarily required as inputs. It is quite interesting to see that, despite having such 

dense matrices as inputs, our algorithms are able to find a solution in as low as 

l.OSsecs for TS in the 31 asset problem, although at the expense of convergence. 

However, other methods especially PSO and SWAN are able to return quality 

solutions in a quite reasonable time frame without any compromise on performance.

Furthermore, our algorithms proved to be robust since the parameters we used in 

running our algorithms were not further fine-tuned in order to solve even the larger 

problem. The above assertion can be easily supported by observing their performances 

when dealing with an even larger dataset from the FTSE 100 Index.

Page 163 of 277



4.7.2 Algorithmic analysis based on coverage ability:

After conducting some preliminary simulation runs, we observed that in extremely 

rare cases the solutions returned by our algorithms do slightly dominate those of the 

solver s; as our algorithms were able to meet the target at lower risk as defined in 

equation 4.6.2(a) above. This is because the settings of the solver are such that they do 

not guarantee an exact optimum solution. However, this dominance is extremely 

negligible to the tune of 10'9on the average. It is in view of this, we decided to include 

the solver’s outputs in Tables 2 and 3 in order to show the ratios in which our 

algorithms were able to outperform the solver and vice versa.

The C-metric is an essential quantitative tool used in evaluating algorithmic 

performance as discussed in section 4.6 above. We are now going to use it to discuss 

the performances of the algorithms against the nonlinear solver as well as against each 

other for the two different datasets used in this study. Primarily, we will discuss a 

dominance relation especially where a given algorithm is found to outperform others. 

The following table gives the result of dominance relation existing between the 

various algorithms obtained by solving the smaller 31 assets (Hang Seng index) PSP.

C^Algorithm], Algorithm2) Algor ithm2
CPLEX SA ParS A TS PSO SWAN GA

Algorithm 1

CPLEX 0.920 0.805 0.900 0.680 0.665 0.975
SA 0.005 - 0.140 0.505 0.015 0.015 0.345

Par SA 0.005 0.430 - 0.710 0.025 0.020 0.495
TS 0.005 0.090 0.030 - 0.020 0.020 0.185

PSO 0.010 0.915 0.780 0.890 0.295 0.950
SWAN 0.015 0.920 0.795 0.895 0.555 0.975

GA 0.000 0.295 0.290 0.185 0.000 0.000 -
Table 2: Show ing the C-metric values for all algorithms against each other for the Hang Seng dataset

From Table 2 above, it can easily be observed that, the solver’s solutions 

overwhelmingly dominate (see the row marked: CPLEX under Algorithmic most of 

the solutions produced by our algorithms. However, there are mostly very rare cases in
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which the solver’s results were dominated also (see the column marked: CPLEX under 

Algorithm2). For instance, it can be seen that, the solutions produced by the duo of 

PSO and SWAN dominate the solver’s by 1.0% (in 2 out of the 200 solutions) and 

1.5% (only 3 out of 200) respectively. The trio of SA, Par_SA and TS managed to 

outperform the solver at only one solution (0.5%) each; while the GA was unable to 

dominate the solver at any point on the EF. A little bit down the table, it is interesting 

to see how the duo of PSO and SWAN perform very similarly with SWAN slightly 

having an upper hand. SWAN dominates SA, Par_SA, TS and GA by 92%, 79.5%, 

89.5% and 97.5% respectively; while PSO follow suit with 91.5%, 78%, 89% and 

95% for SA, Par_SA, TS and GA respectively. Furthermore, it can be inferred from 

the table, SWAN outperformed its closest competitor (PSO) in 71 (35.5%) out of the 

total 200 solutions generated; while on the opposite PSO dominated a total of 59 

(29.5%) out of the 200 solutions generated by the SWAN.

The performance of GA under the dominance relation described in equation 4.6.2(a) 

against either the solver or any of the other 5 algorithms is surprisingly poor. This fact 

can easily be observed when the reader noticed that, GA is the only algorithm that was 

unable to dominate a single solution in the trio of CPLEX, PSO and SWAN; and even 

in situations where it managed to dominate other algorithms (SA, TS and Par_SA); the 

degree of such dominance is not up to 30% (the maximum being 29.5% against the 

SA). Observing GA’s performance from another angle also reveals its outright failure. 

For instance, taking a quick look at the column marked: GA under Algorithm2, the 

reader can easily notice that GA has the most number of solutions dominated by the 

duo of CPLEX and SWAN up to the tune of 97.5% (195 out of the entire 200 

generated).
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Now, if we consider the performance of SA against TS, we realize that CPLEX 

dominated SA by 92% as against the 90% of TS. Similarly, PSO outperformed 91.5% 

of the solutions generated by SA as against the 89% of the TS; while SWAN to SA is 

92% as against 89.5% for the TS. In the same vein, GA dominated SA by 29.5% as 

against only 18.5% for the TS; therefore, with these results one can easily be misled to 

believe that TS is better than SA. However, we argue that comparing the performances 

of SA and TS based on Table 2 only will give a contradictory conclusion as can be 

inferred on Table 1, where it is made apparently clear that SA recorded lower mEd 

values (in both datasets) when compared to TS; and hence adjudged better. It should 

be understood that, the convergence metric (mEd) described in equation 4.6.1 takes 

into account all the 200 solutions generated on the EF; while the coverage metric 

resulting from equation 4.6.2(a) considers only solutions that satisfy the conditions set 

in the strong dominance relation described in equation 4.6.2(c). By this we are still of 

the view that, as far as the smaller dataset problem is concerned, SA performed better 

than TS.

The next Table 3 shows the output obtained by computing the C-metric values for the 

solver and the designed algorithms in solving the larger 78 asset dataset problem.

C^Algorithml, Algorithm2) Algorithm 2
CPLEX SA Par SA TS PSO SWAN GA

Algorithm 1

CPLEX — 0.815 0.775 0.760 0.250 0.200 0.865
SA 0.010 0.025 0.390 0.010 0.010 0.315

Par SA 0.060 0.785 0.860 0.125 0.105 0.595
TS 0.035 0.180 0.105 - 0.010 0.005 0.325

PSO 0.115 0.870 0.690 0.845 - 0.065 0.720
SWAN 0.125 0.895 0.385 0.865 0.130 - 0.810

GA 0.005 0.210 0.170 0.265 0.020 0.015 -

Table 3: Showing the C-metric values for all algorithms against each other for the FTSE 100 dataset
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Table 3 above reveals a decline in the solver’s and other algorithms’ performances in 

comparison with what is obtainable on Table 2, as even the solver seems to be feeling 

the impact of dealing with a larger dataset of 78 assets (which translates to 

approximately 150% increase in size) when compared to the smaller 31 assets dataset 

analysis presented on Table 2.

A quick look at the row marked CPLEX under Algorithm1, would definitely show a 

sudden drop in the solver’s performance when compared to the corresponding row in 

Table 2. On Table 3 above, CPLEX dominated the solutions generated by SA, 

Par_SA, TS, PSO, SWAN and GA by 81.5%, 77.5%, 76%, 25%, 20% and 86.5% 

respectively as opposed to the corresponding values of 92%, 80.5%, 90%, 68%, 66.5% 

and 97.5% on Table 2. Furthermore, a mere glance at the column tagged CPLEX 

under Algorithm2, shows that, SA now dominated 2 solutions (1%) produced by 

CPLEX as opposed to only 1 (0.5%) solution in the smaller dataset problem. Par_SA 

dominates 6% as opposed to 0.5%, TS - 3.5% as opposed to 0.5%, PSO -  11.5% as 

opposed to the previous 1%, SWAN -  12.5% as opposed to the previous 1.5%, and 

GA has now managed to dominate only 1 out of the entire 200 solutions generated by 

the solver as opposed to none in the smaller problem.

Despite the sudden drop in performance, the duo of PSO and SWAN maintained their 

tight competition with SWAN leading the way again. In all other algorithms, except 

for the Par_SA, it is easily noticeable that SWAN dominates more solutions than its 

closest competitor -  the PSO. The GA on the other hand recorded a slight 

improvement in terms of the number of algorithms dominated; as in this case it 

managed to dominate only 1 solution (0.5%) returned by CPLEX, 4 solutions (2%)
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from PSO and 3 (1.5%) from SWAN; unlike in the previous case where it was unable 

to dominate even a single solution returned by the trio of CPLEX, PSO and SWAN.

4.7.3 Algorithmic analysis based on uniformity of solutions:

The (uniformity) metric often denoted as£>(•), as described in section 4.6.2 is aimed

at identifying the uniformity of the distributions of solutions inherent in the results 

generated by our heuristic methods.

D(Algorithm) ( x lO 5)
Index Hang Seng FTSE100
Assets 31 78

Algorithm

SA 5.1965 8.5266
Par-SA 5.0065 8.2996

TS 5.0441 8.4995
PSO 5.0339 8.2998

SWAN 5.0338 8.4939
GA 5.0329 8.4942

Table 4: Showing the values of uniformity metric for all algorithms from the two datasets used

From Table 4 above, it clear that the results generated by our algorithms are uniformly 

distributed, as the/)(*) values obtained from our algorithms are very close to zero (i.e.

all to the tune of 10'5). It is also evident from the table that, the problem dimension has 

very little effect (if any) at how any of the algorithms generates its solutions along the 

EF.

Although in both datasets considered, all the results favored Par_SA as the algorithm 

with highest degree of uniformity (recall that a lower value of D («)is desired) with

5 .0 0 6 5 x l0 '5 and 8.2996* 10' 5 for Hang Seng and FTSE100 indices respectively; 

however, it is evident that the edge it has over other algorithms is very negligible, and 

it seems all the algorithms have the same degree in generating uniform results.
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Section 4.7.3 has nothing to do with an algorithm’s degree of convergence or 

coverage, but it is rather concerned with whether results generated are uniformly 

distributed or not. Thus, now based on the results presented in sections 4.7.1 and 4.7.2 

above, SWAN has the most ability to estimate the true Pareto front, hence, we can 

now conclude it is the best performing algorithm and closely followed by PSO.
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5.0 Constrained PSP

5.1 The Constrained case

The main aim of this chapter is to introduce and describe in detail our newly 

developed neighbourhood structure for solving a constrained version of the PSP 

studied in this research. The constrained formulation is a special case of PSP in which 

the final solution of the optimization problem has to fulfill some set of conditions. 

However, imposing these conditions has some accompanying consequences, among 

which is the risk of the problem becoming intractable as well as susceptible to falling 

within some class of difficult optimization problems regarded as NP-hard; thereby 

making it much harder or even (in most cases) impossible to solve by the conventional 

exact methods embedded in most of the state-of-the-art nonlinear optimization solvers. 

There are, however, quite number of practical constraints that are often incorporated 

into the constrained PSP; a brief description of some of them can be found in section 

2.4; but as far this research, we plan to incorporate only two among the practically 

implementable constraints -  namely the cardinality and floor & ceiling constraints.

Cardinality constraint: To implement this constraint in our formulation, we decided 

to limit the number of assets that the portfolio composes. A value of k < n  (typically 5 

or 1 0 ) is chosen, such that the number of assets selected to constitute a portfolio is no 

more than k.

Floor & Ceiling constraint: For this constraint, the weight of each asset selected to 

form part of a portfolio is limited and lies within an interval, in which the minimum, I.

and maximum, ^.weights for each asset i are given. In our formulation, we impose
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that if an asset / is selected to be part of a given portfolio its weight w/ must satisfy 

/,. < w( < jUj, otherwise it is set to zero.

For easier handling of the above constraints, we adopt the method used in Chang et al 

[2 0 ] by declaring a binary variable 8( for each asset i in the universe of assets, taking a

value of 1 if asset i is included in the portfolio and a value of 0 otherwise. With this, 

we now come up with a constraint pair:

The basic PSP, with the incorporation of the constraint pair above, becomes a mixed- 

integer quadratic programming problem whose solution is much more computationally 

difficult to find using the conventional methods.

Recall that, in this research, we designed and implemented six different metaheuristic 

algorithms to tackle the unconstrained case of the PSP; out of which three (SA, TS and 

Par_SA) are Local Searches, and the remaining three (GA, PSO and SWAN) are 

Evolutionary Algorithms. Furthermore, recall that, GA’s performance in the 

unconstrained case of the PSP (previous chapter) has not been so encouraging. So, 

going by the poor performance recorded by GA in the less difficult (unconstrained) 

case as presented in section 4.7 above; we decided not to implement a constrained 

version of the PSP using GA.

n

=> cardinality constraint

5,h s  w, £ 5,(1, => floor & ceiling constraint

The difficulty inherent in finding a very good solution within a practically reasonable 

time frame in the constrained formulation of the PSP warrants the need to assist and
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guide the algorithms towards promising regions of the search space; and this can be 

achieved by developing a sound and effective neighbourhood structure for this 

purpose. Major contributions that our research has to offer to the academic knowledge 

in general and optimization communities in particular are the development of two new 

neighbourhood structures that are entirely different from (despite being inspired by) 

those presented in the work of Schaerf [ 129]. In this chapter we are going to describe 

how we implemented these two versions of neighbourhood structures as will be 

described in sections 5.3 and 5.4 below. To the best of our knowledge, the way we 

implemented these neighbourhood generating mechanisms is unique, and have never 

been reported in any literature before. The first one, entitled: IDDIT (based on the 

processes involved therein) is aimed at guiding the Local Searches (SA, TS and 

Par_SA) in generating a neighbouring solution from the incumbent, while at the same 

time ensuring that all constraints are satisfied.

The other neighbourhood mechanism is designed in such a way that it will be much 

more suitable for our designed swarm algorithms (PSO and SWAN). It comprises 

processes similar to those found in IDDIT, aimed at generating neighbouring solutions 

from a swarm of particles. While ensuring feasibility of solutions and satisfiability of 

constraints, this neighbouring-solution generating mechanism, maintains some degree 

of interaction between a given particle (candidate solution) with its local best and 

global best solutions as can be obtained in the conventional implementation of the 

basic PSO and SWAN aimed at solving the unconstrained case. With the above brief 

explanation of how our neighbouring-solution generating mechanisms operate; we feel 

it is important to briefly describe the concept used in defining a candidate solution’s 

representation in our constrained formulation of the PSP; and this is provided in the
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following section. We provide a thorough explanation of each of the two 

neighbourhood relations in sections 5 . 3  and 5 . 4  below.

5.2 Solution Representation

Before we embark on thorough explanation about our neighbourhood structures, it is 

highly important to describe how a candidate solution (portfolio) is represented in our 

constrained case algorithmic implementations. It should be noted that, one of the 

crucial aspects of our constrained PSP implementation has to do with the efficient 

representation of a candidate solution. In this regard, we adopt the proposal provided 

by Chang et al. [201 in which a given portfolio is characterized by two main parts. The 

first denoted by L, is an integer set containing the indices of constituent assets in a 

given candidate solution (portfolio); while the other denoted by W, is a set of real 

numbers signifying the actual proportion of portfolio funds invested in corresponding 

assets whose indices make up set L.

For instance, suppose there is a universe, U  of n assets; each asset j e U  has a 

corresponding randomly generated real number(i.e. w j | 0 < w.  < l) V/ e U  which

potentially (after some renormalization process is executed) becomes its actual 

proportion in a given portfolio fund. Now in order to represent a solution, we partition

a candidate portfolio into 2 distinct parts; a set L containing at most k chosen assets

and a set W  of randomly generated real numbers (w. |0 <  w. < l) Y/'eZ,. All assets

j e U  have an associated binary variable, z;- taking a value 1 if asset j  is included in 

portfolio L( i . e . Z j  = 1; V /e l) , otherwise it takes the value zero

(i.e. Zj = 0; V/ e {U -  £}). All asset weights in the portfolio L [i.e. w.  | VyeZ,) must be
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renormalized in order to serve as actual proportions of portfolio funds summing up to 

unity; while all other assetsj'e {U — L) will have their Wj values implicitly set to zero

as far as portfolio L is concerned; because a given portfolio configuration involves 

multiplying asset weights multiplied by their corresponding binary variable 

[i.e. w.  =  w. x z i | V/'eZ,).

Suppose we have a portfolio L containing k assets; so, in order to ensure that all assets 

in L at least satisfy the minimum threshold limit; we first allocate to each of them a 

weight equivalent to the minimum threshold limit gy, and this implies a fraction

) of the total portfolio is already accounted for. Furthermore, in order to make 

sure that the actual weights of all assets in L now sum up to unity, each Wj can now be 

interpreted as relating to the share of the f r e e  portfolio proportion ( l _ X /6/£y) 

associated with assets je L .

To further explain our approach; suppose we have n = 20 as the total number that 

makes up the universe of assets, U, out of which no more than k = 3 assets should be 

included in any portfolio and each of the portfolio’s constituent assets should have no 

less thanf. = 15%; one possible solution might therefore be:

L = {3, 4,8} and W = {w3 = 0.7,  w4 = 0.9,  w8 = 0 . 6 } ; this means our portfolio consists

of assets 3 , 4  and 8 ; and since we know that each of the three chosen assets must have 

a minimum proportion of 15%, then already '^JJeL£j = 45% has been accounted for,

then the remaining f r e e  portfolio proportional -  ^ jeL£j ) = 55%. So the share of

asset 3  in the f r e e  portfolio proportion will now be
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w3 /  {w3 + w4 + ws) ~ 0.1/2.2 -  0.3182 and therefore, the actual portfolio proportion 

w3 devoted to asset 3 can be obtained by adding the minimum proportion to asset 3’s 

appropriate share of the f r e e  portfolio proportion will be w3 = 0.15 + 0.3182 x 5 5 0 /0  = 

0.325. Similarly, w 4 = 0.15 + 0.4091 x 55% = 0.375 and w8 = 0.15 + 0.2727 x 55% = 0.300.

It is important to note that, the main advantage of this approach is to ensure that all the 

Wj values satisfy the minimum proportion limit ejt  while at the same time satisfying

the budget constraint since they all sum up to unity. However, this approach does not 

guarantee satisfying the maximum threshold limit 8 . as this can only be handled by

the repair mechanism to be discussed in section 5.5.

5.3 Neighbourhood Structure for the Local Searches (IDDIT)

Local searches’ trajectories over a given search or solution space are unique; they 

traverse such a space by generating a neighbouring solution from an incumbent 

solution with the aim of either avoiding entrapment in a local optimum or in order to 

obtain a solution that is at least good and sometimes very close to an optimal one. 

However, there might be several ways in which such neighbouring solutions are 

generated. It should be noted that, a newly generated neighbouring solution does not 

necessarily satisfy all constraints; thus, one such idea is the continual stochastic 

generation of such neighbours until all incorporated constraints are satisfied. This idea 

is, without any doubt, inefficient and extremely costly due to the wastage of valuable 

time and other resources.
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In order to avoid such wastages in our constrained PSP implementation, there is the 

need then to come up with an in te lligen t idea for generating neighbouring solution in 

order to achieve the aforementioned purposes. The idea we came up with was inspired 

by the three neighbourhood relations introduced in the work of Schaerf [129]. The 

three neighbourhood relations introduced therein are idR ([z'Jncrease, [decrease, 

[Replace), idID ([/Jncrease, [decrease, [/jnsert, [DJelete) and TID ([7]ransfer, 

[7]nsert, [DJelete). Apart from some anomalies observed in the execution of these 

neighbourhood relations which we are going to exhibit later; we also notice some 

aspects of redundancy in their individual executions, and we argue that the operations 

involved in these neighbourhood relations can be effectively merged together in a 

single neighbourhood relation, while each operation can then be executed by 

introducing some probability weighting mechanism. For clarity of description and to 

easily showcase the identified loopholes, we hereby reproduce the first two 

neighbourhood relations as represented in Schaerf [129]:

idR ([ i ] ncrease, [ d] ecrease, [ R] eplace):
Description: The quantity of a chosen asset is increased or decreased.

All other shares are changed accordingly so as to maintain the feasibility 
of the portfolio. If the share of the asset falls below minimum it is 
replaced by a new one.
Attributes: (a , s, a.) with a  e A,s ,a. eA
Preconditions: a. eL  and a. £ L

/ ./

Effects : Ifs =T then w. = w. • { \  + q), otherwise wt = w. • ( t - q ) .  All 
values w -e are renormalized and not x. to ensure that no asset rather

k k K

than a can fall below the minimum /
Special cases : Ifs = i  and w. (l - q )  < e., then a. is deleted ffomL and 
a is inserted with w. = s.. Ifs = t  and w. (l + q) >8., then w. is set to S.

Reference: Revised version of Chang et al. (2000).

_______ Figure 16: idR neighbourhood definition____________
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idD)([i]nerease, [d]ecnease, [ijnsert, [Djelete):
Description: Similar to idR, except that the deleted asset is not 

replaced and insertions of new assets are also considered 
Attributes: ( a , s) with a  e A,s e {'t , 4,

Preconditions: Ifs = 4  or T then a  e L. ILs =H>thena &Li i
Effects: Ifs =Tthenw. = w. •( 1+g);ILs = -Ithen w. =w. * (l-q )\
If.s' = then a  :s. is inserted into L. The portfolio is repaired as
explained above for idR
Special cases: Ifs = ̂ and w .(\-q) < 6 ;.,thena is deleted from/, and 
it is not replaced Ifs= T andw(l+g) ><5 , thenw is settop

____________Figure 17: idID neighbourhood definition____________

For instance, consider the special cases under idR neighbourhood relation; We argue 

that when a decrease operation is executed, and consequently, the resultant weights are 

renormalized accordingly in order to add up to unity and maintain portfolio’s 

feasibility; it is still possible to notice that, at least one of the constituent asset’s weight 

shoot up beyond the maximum threshold, Sj. In the same vein, we observed that, if an 

increase operation was executed, it is likely to have another asset’s weight going 

below the minimum threshold after renormalization. Let us now present our argument 

by a simple numerical example as follows:

Suppose there are n = 10 assets in a given universe, U of assets

(i.e. U = {Al t A2, A3, A 4, A5, A6, A7, AS, A9, Awj ) out of which no given portfolio is

allowed to contain more than k  = 5  assets. Let the minimum and maximum threshold 

limits for all assets weight be si = 1% and 8, = 70% respectively. Furthermore, let us 

assume that, the step value, q = 0.95 (Refer to Figures 5.3(a) and 5.3(b)), and suppose 

a given portfolio, L composed of 5 assets: [i.e. L = {A{, A5, A3, Ag, A2 whose

corresponding actual proportion of portfolio funds are
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{w j-0 .06 , w5 -0.11, w3 -  0.09, w9 =0.04, w 2 = 0.7} respectively; notice that, all

assets weights sum up to unity. Now according to the provisions in special cases of 

idR neighbourhood relation, if a decrease operator is executed on, say, asset Aj 

| i.e. wl = wr (l -  and this implies wj = 0.06(1 — 0.95) = 0.003 which without any

doubt is less than the minimum threshold of 1%; and consequently asset Aj will be 

deleted. Now suppose the deleted asset Aj is replaced by another asset A j (not already 

in L before) with weight equal to the minimum threshold of 1%; then the new 

composition of portfolio, L will now then be [A7, A5, A3, A9, A1} with corresponding

weights {w7 =0.01, w5 = 0.11, w3 =0.09, w9 =0.04, w2 =0.7} adding up to 0.95.

Now in order to maintain the feasibility of the resultant portfolio and at the same time 

ensure that weights add up to unity; the weights have to be renormalized thereby 

leading to a portfolio with new assets’ weights values of: 

{w7 =0.010, w5 = 0.116, w3 = 0.095, w9 = 0.042, w2 = 0.737}. A problem that

immediately resurfaces in the resultant portfolio’s weight configuration is what we are 

trying to make the reader be aware of; as it can easily be seen that, the weight of A 2 (in 

bold) now has a value greater than the maximum threshold of 70%.

In another example, suppose q = 0.05 and consider another portfolio L consisting of 

the same set of 5 assets {4 , A5, A3, 4 , A ^  as used in the previous example having

corresponding weights: {ry = 0.02, w5 = 0.01, w3 =0.24, wg = 0.04, w2 = 0.69}; now let

us suppose an increase operator is executed on asset A 2 \j.e. w2 -  w2 (l + # )] , its

corresponding weight will now assume a new value of 0.7245 

(i.e. w2 = 0.69 (1 + 0.05) = 0.7245) which is apparently greater than the maximum
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threshold value of 70%, and consequently (based on the provision of idR special 

cases) has to be capped to the same maximum threshold value. With this new value of 

W2 being set to 70%, the weights do not add up to unity anymore and the portfolio 

consequently loses its feasibility, hence the need for renormalization. After the 

renormalization operation is executed, the new set of renormalized portfolio weights 

will now be: jwj =0.0198, r>. = 0.0099, w3 = 0.2376, wg = 0.0396, w2 =0.6931}, thereby 

forcing to take a new value (in bold) under the minimum threshold of 1%.

These problems that resurfaced in our 2 simple examples after executing the 

decrease/increase operations followed by weights’ renormalization proves the validity 

of our argument on the accompanying loopholes with the way those neighbourhood 

structures were implemented, and this further proves to us and the reader that, what the 

idR procedure currently provides in replacing an asset whose weight falls below the 

minimum threshold with another one as well as just capping the asset whose weight go 

beyond the maximum threshold is definitely not enough; the repair (renormalization 

only) mechanism is therefore flawed and thus, there is the need to do more by taking 

into account other marginal cases that might occur as a result of executing the 

aforementioned operations as outlined above. We believe the same argument can be 

drawn from the other two neighbourhood relations contained therein. In view of these, 

we proposed an efficient repair mechanism by adopting the repair strategy introduced 

in Chang et al. [20]. Our iterative repair mechanism (to be presented later in section 

5.5) will always guarantee providing a feasible portfolio satisfying both minimum and 

maximum threshold constraints, while at the same time adding up to unity.
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Apart from the problems that result from the loopholes observed above; we further 

noticed some redundancy in the operations of the three neighbourhood relations (idR, 

idID and TID), where we noticed for example, the main difference between especially 

idR and idID lies with the choice of either replacing or not replacing a given asset. 

Similarly, TID has some elements of insertion and deletion of an asset as in the case 

of idID, thereby rendering some operations redundant. In order to address these 

redundancy concerns, we propose a single neighbourhood structure that incorporates 

all the operations (Increase, Decrease, Delete, Insert and Transfer) obtainable in the 

three neighbourhood relations presented in Schaerf [ 129]; hence, the name IDDIT.

The neighbourhood structure introduced in this section is designed to work with our 

Local Search algorithms (SA, TS, Par_SA) for the implementation of the constrained 

PSP formulation. It involves introducing and executing five different neighbourhood 

operations with uniform probability of being chosen for execution. The five different 

operations include increasing, decreasing, deletion, insertion and transfer. Because in 

our formulation, the PSP variables are continuous; the concept of neighbourhood move 

in the first two operations (increasing and decreasing) involves the notion of moving 

within a given neighbourhood by using step (a real-valued parameter less than 1) 

multiplied by a uniformly distributed number randomly generated and lying in the 

interval (0, 1); the result of which is either added to/subtracted (as the case may be) 

from a given asset’s actual portfolio proportion (weight), after which a renormalization 

of the entire portfolio weights is executed -  a process meant to enforce the 

satisfiability of (an important) budget constraint. After several experimental trials we 

found that, in both cases a step value of 0.975 is found to work well with our problem.
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As in Chang et al. [20], our neighbourhood structure allows each candidate solution 

(portfolio) to be characterized by two sets as described in section 5.1 above. The first 

set, denoted by L, is an integer set of asset indices; while the other denoted by W, is a 

set of real numbers signifying the actual proportion of portfolio funds for the 

corresponding assets in set L. We implemented our neighbourhood function in such a 

way that it processes begin by randomly generating an integer value (we termed as 

decision index) less than 5 (i.e. decision index e Z [0,4]) responsible for deciding which

among the five neighbourhood operations to execute; in which a decision index of 0 , 1 , 

2, 3 or 4 denotes the execution of increase, decrease, delete, insert or transfer 

respectively. Next, we then randomly choose one or two asset’s indexes (two assets in 

case of a transfer operation and one asset otherwise) from L upon which the selected 

operation is to be implemented.

In a given iteration, when the decision index takes a value 0, an increase operator is 

executed, the two sets (L and W) characterizing the solution of any given portfolio are 

passed to the repair structure (to be discussed later) responsible for maintaining 

portfolio’s feasibility and constraints satisfaction. However, when any of the 

remaining four operations are executed, some checks and minor sub-operations are 

conducted before passing the portfolio to the repair procedure. For instance, when the 

decision index takes a value 1 and the decrease operator is executed on a randomly 

chosen asset in L; now, before passing the portfolio to the repair mechanism; the 

function first checks if the affected asset’s actual weight falls below the minimum 

threshold, £ /,[/.e .//w ,( l-?x ra« rf(0 , l ) )< £ (.] ,  and if so, the function randomly

generates a binary variable [ 0  or 1 ] which decides either to just delete or replace the 

affected asset. If the decision reached is to only delete; the function further checks if
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there are at least two assets in the portfolio (i.e. If |l | > 2) before the affected asset is

deleted, otherwise, it is spared. On the other hand, if the decision reached is to delete 

and replace, the newly introduced asset assumes a weight whose magnitude is 

equivalent to the minimum threshold value, ef.

The delete operator which is normally executed when the decision index takes a value 

2 randomly deletes an asset from a given portfolio L provided there are at least two 

assets in it, irrespective of whether its weight undershoots or overshoots the minimum 

or maximum threshold limits respectively; the corresponding asset’s weight is then set 

to the minimum threshold value, e,-. On the other hand, an insert operator is chosen for 

execution when the decision index takes a value 3. This operator, provided the 

cardinality of L is less than the maximum cardinality value of k (i.e. \l\ < k ) , allows for

the insertion of an asset randomly chosen from set { U -  L)  into the portfolio L with a 

portfolio proportion equal to the minimum threshold limit (i.e.w. =<? )■ Finally, a

transfer operator whose decision index takes value 4 can be executed if and only if 

there are at least two assets in portfolio L, in which one serves as a ‘donor’ and the 

other a ‘recipient’. A ‘donor’ asset deducts a portion of its weight with the aim of 

transferring the same to the lucky ‘recipient’; if there are more than two assets in 

portfolio L, both (donor and recipient) assets are chosen randomly, and when this 

happens the portfolio’s feasibility remains unaffected, especially after passing the 

results to the repair mechanism. The following pseudocode depicts how we 

implemented our neighbourhood structure:
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Function IDDIT(k,  e, 8, L,w)
Begin {

% N is the Universe o f  assets
% L is the set containing at most K assets inthe current solution 
% Wjisthe actual proportion associated with asset j  e L 
randomly generate decisionlndex (integer e [0,4]) 
randomly generate an index j  e L 
If (decisionlndex = 0)then

wj = wj x (l + step x rand [0 ,l])
Elseif  (decisionlndex = l)then{

wj ~ wj x 0  ~~ steP x rand [O’l])
If (wj < s j ) then {

If (|l | > l )then{
L = L - [ j ]
Wj  = 0.0 }

}
}
Elseif  (decisionlndex = 2)then{

If (|L| > l)then {
L = L - [ j ]
W j  =  0.0 }

}
Elseif  (decisionlndex = 3)then{  

generate a new index j  e N -  L 
If (|z| < &)then {

L = L u [ j ]
W j  =  S j  }

}
Else {

If ( 4 |  > l)then {
generate a donor index i e L 
generate a recipient index j  e L (j  ^ i)
wi = wi ~ (w/ x 1 0 %)
w j  -  w . + ( w(. x 10% ) }

}
Call repairAssetWeights(K, £, 8, L ,w )

End

Figure 18: IDDIT (The neighbourhood structure for the local searches)

5.4 Neighbourhood structure for Swarm Algorithms

The neighbourhood structure described in the previous section is most suitable for our 

Local Search algorithms, and can in no way be applied (without making some 

modifications) to our swarm algorithms (PSO and SWAN) due to the rule behind their 

basic implementation procedure. For instance, a basic PSO algorithm involves dealing 

with several particles (solutions) that inter-communicate their search history and 

progress with one another, while at the same time keeping track of their personal best
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ever found solution and that of the entire swarm. Furthermore, all particles update 

their current positions on the search/solution space according to some rule that 

imposes utilization of some information from the history of their trajectory and the 

global best particle.

One aspect that makes implementation of constrained PSP in especially PSO (and by 

extension, the SWAN) difficult is the concept of updating particles’ positions. This is 

because, even if the search begins from a set of fully feasible solutions in which none 

is found to violate either or both sets of (cardinality and floor & ceiling) constraints; 

by the time particles undergo a velocity and particles’ position updating mechanism, 

the new solution may well be infeasible; this scenario can easily be verified by 

analyzing how the pair of equations 3.5.5(b) and 3.5.5(c) operate; we hereby 

reproduce these equations below:

k  +1 k  . D kv.. = wv.. + C, R
1 . 7

lb: -  x kI.J u + C2 R k . g b k - x2 2 , / C ) ,  ,

x k+i = x k + v k+]
u V IJ

The above challenge, we opined, is what led to the very minimal implementation of 

constrained PSP using PSO algorithm in comparison to other evolutionary algorithms 

(like GA) where the individuals (candidate solutions) do what they want on the search 

space without any need to track or utilize some information to do with their personal 

history or that of the best individual.

In the constrained implementation of PSO/SWAN, it is extremely difficult to update 

particles based on the conventional PSO update mechanism, due to the reasons stated 

above. In view of this challenge we propose an implementation devoid of any velocity
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and position update mechanisms; however, we introduced a real-valued scoring term 

(which we referred to as score velocity) that will be used to allow particles to make an 

informed decision in moving to a neighbouring solution within their immediate 

neighbourhood, by tracking the success of their search history (such as personal best 

solution), as well as that of the entire swarm (global best). It should be understood 

that, although, the concept of moving towards either the personal or global best is 

extremely restricted (due to difference in cardinalities, and therefore operating in 

different search subspaces), the proposal we present allows each particle to make a 

decision of moving within its neighbourhood based on the information made available 

to it about the composition of those reference (personal and global best) solutions.

In this constraint formulation of PSO/SWAN; each particle should be viewed as being 

confined within its search subspace allowing it to search for better solutions within its 

immediate neighbourhood. While doing that, each particle also has the ability to inter

communicate with other particles and relate their search history as well as that of the 

entire swarm. We decide at this stage to introduce a neighbourhood structure (similar 

to IDDIT described in the previous section) that will allow particles to search their 

subspaces with a bit of guidance, unlike what is obtainable in the IDDIT structure, 

where all operations and sub-operations are entirely based on a random chance. The 

neighbourhood structure, occasionally allows a particle to ‘jump’ away from its 

subspace to another after some quite number of iterations; this phenomenon will 

eventually allow particles to converge at a global solution.

The neighbourhood relation developed, although similar to IDDIT has some 

remarkable enhancements. The similarity between the two lies in using the same
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solution representation mechanism of defining a solution (portfolio) into two different 

sets of asset indices (denoted by L) and asset’s weights (denoted by W also) as 

introduced in section 5.2. It also uses the same five neighbourhood operations 

(Increase, Decrease, Delete, Insert and Transfer) in executing a move from one current 

solution to its neighbouring solution. As part of the enhancements we introduced, this 

neighbourhood relation possesses a bit of intelligence by utilizing some fitness values 

that allow it to wisely decide which asset should be eliminated from a given portfolio, 

given that a delete operator is executed. It also smartly decides which asset to be 

chosen (from the remaining ones in the universe) and inserted into portfolio L, if an 

insert operator is executed. Let us now demonstrate how the neighbourhood structure 

works and how particles can move around their immediate neighbourhood and how 

the concept of particles’ ‘jump’ can be justified. Let the reader refer to the following 

figure in the discussion that follows:
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Lots of Possibilities

Decrease
L1 - { 3 }  = {2}

Particle —
L1 — {2} = {3} = L2 — {1}L1 = {2, 3}

L1 = {2, 3}

L1 = {2, 3}

Particle 2

L2 = {1, 3}

L2 = {1, 3}Decrease
L2 = {1, 3}

Lots of Possibilities

Figure 19: showing the concept of particles’ move and jump

Suppose there are n = 5 assets in a given universe, U of assets (/.<?. U = {l, 2 , 3, 4 , 5})

out of which any given portfolio is allowed to at most k = 3 assets. Assuming particles 

1 and 2 each has two assets in their current portfolio (where LI = (2, 3} and L2 = (1, 

3}); we now analyze how the two particles {particle 1 and particle2) operate under the 

neighbourhood relation. It can be easily observed that, for both particles (and by 

extension all other particles) when the increase or transfer operator is executed, the 

portfolios’ asset composition remains unchanged; and thus, the particle’s search is 

then confined within its immediate neighbourhood. On the other hand, the execution
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of any of the other three operators (decrease, delete and insert) can quite often result 

in a portfolio with different asset composition; thereby enabling a particle to escape its 

immediate neighbourhood and ‘jump’ over to another. The continuous jumping from 

one subspace to another (by particles) will eventually lead them towards convergence 

to the best solution.

To illustrate what we mean by ‘jumping’ to another search subspace region; suppose a 

delete operator is executed on particle 1 (LI = (2, 3}) and that asset 2 was marked for 

elimination (i.e. LI -  {2}), the resultant portfolio will now consist of only asset 3 (i.e. 

LI -  {2} = {3}). This particle will find itself searching for better solutions in the same 

neighbourhood as particle 2 (L2 = {1, 3}) when a delete operator acted upon it, and 

asset 1 is eliminated (i.e. L2 -  {1} = {3}), as can be seen in the upper gray-colored 

rectangle on Figure 16. Similarly, if an insert operator introduced asset 1 in particle 

l ’s portfolio composition (i.e. LI u  {1}); the resultant portfolio will now consist of 

three assets (i.e. LI u  {1} = (1, 2, 3}); which is equivalent to the same search space 

region in which particle 2  will find itself on, if another insert operator introduces asset 

2 into its current configuration (i.e. L2 u  {2} = (1, 2, 3}) as can be seen in centermost 

gray-colored rectangle.

The neighbourhood structure uses an evolvable real-valued number we referred to as 

score velocity which a given portfolio uses to communicate to the global and personal 

best solutions. The same score velocity is used to compute a fitness value that will be 

used in either deleting/inserting an asset from/into a given portfolio L . The delete 

operator is executed, so that the asset with the lowest score velocity stands a higher 

chance of being eliminated from the portfolio; while as for the insert operator, assets
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with higher score velocity (from the remaining ones in the universe) stands a higher 

chance of being included into the portfolio, L. In the beginning of the search, the score 

velocity for each particle is assigned a uniform value of 1 . 0  to all assets in the universe 

of assets(/.e. scoreVelj = 1.01 Vz e £/); but if an asset is one of the constituents of the

personal best solution, its score velocity increases by some fraction of the total

cumulative score velocity of the constituent assets in L\ similarly, if it is part of the

assets that makes up the global best solution, its score velocity further increases by

some fraction of the current total cumulative score velocity of the current portfolio L.

The following two conditions illustrate how a score velocity of a given asset in a

portfolio, L evolves as the search continues:

\/p  e  swarm o f  particles 
Vz e l f {

If  (z cz local best solution) then
SVP = SVP +3%x{total cummulative score velocity for Lp members)

If  (z c  global best solution) then
SVP -  SVP + 5% x (total cummulative score velocity for Lp members)

}
I

______________ Figure 20: Updating particles' score velocity______________

This simply means, an asset which forms part of both the personal and global best 

solutions receives ‘double reward’; thereby maximizing its chances of being included 

in a portfolio when an insert operator is executed, provided it is not already part of the 

current portfolio L\ similarly, such an asset has a minimum chance of being eliminated 

from a current portfolio, L when the delete operator is executed.

The reader might be tempted to ask, then: “How can that be done?” To answer this 

question, it is important if we make the reader understand that, any given asset in the 

universe ( i.e. asset i | Vz £ £/)can only be a member of one of the two subsets in the
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universe (i.e. {L}or[U -  L}) at any given point in time. For all assets in portfolio L,

we decided to compute the inverse of their various score velocities after which we then 

compute the cumulative inverse score velocity", while for all assets in the other subset 

{U — L}\ we decided to compute their cumulative score velocity which helps in 

choosing which asset to include in a given portfolio.

The following pseudocode shows how we are able to part the universe of assets into

two distinct sets and \U  - L ) , after which we compute the parameters that will help

us accomplish a move to a neighbouring solution.

Function computeSVParameters fscore Vel, L, Q, CumnSVQ, InvCiannSVL.)
Begin {

% f/isthe Universe of assets
% I f  : set containingat most bassets inthQparticle p 's  current solution 
% Q f: set of all assets in the univese, U, not in portfolio Lp (i.e. f f  := j U - Lp J)

o r -  0  % initialize Q to a null set
For all p^sw arm

For all / g U, If / £ then Q* := Q1 u[z] % partition the Universe into Lp Sc 
totCwnmSVQp := 0; % initialize the fitness for Q 7 members
For all i e O ’ do{ 

totCumrnSVQp := + score Velj 
CummSVQ'totCurmiSVQ ' } 

totlnvCtmmSVU \= 0; % initialize the fitness for Lp members
For all j  eL p do{ 

totlnvCurrunSVLf :=+ \j(scoreVel^
InvCummSVIfj :=totInvCurnmSVLp}

}End

_______________ Figure 21: Computing score velocity parameters_______________

The function in Figure 21 above accepts portfolio L and the score velocity vector as 

input; while at the same time generating Q, CummSV and InvCummSV as output 

variables. These variables evolve as the program progresses and different portfolios 

are generated. CummSV is especially used when an insert operator is executed; it gives
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a higher chance of selection to an asset with high score velocity which is to be inserted 

into a candidate portfolio. InvCummSV on the other hand, favours the asset with lower 

score velocity for elimination when a delete operator is to be executed.

We now present the pseudocode of the program function used in implementing a move 

around the immediate neighbourhood of a given particle.

Fun ct io n  s w a r m  I D D I T {k,  s ,  S , s c o r e V e l ,  L p , w p )
Begin {

% U is the U n iv e r s e  o f  as set s
% L p : s e t  o f  a t  m o s t  k  a s se t s  i nd i ce s  f o r  p a r t i c l e  p ' s  p o r t f o l i o  L
% Q p : s e t  e q u i v a l e n t  to j t /  -  Lp j
% w p is the  a c t u a l  p r o p o r t i o n  a s s o c i a t e d  wi th  a s s e t  j  e  L p
% t o t l n v C u m m S V V ’ is the t o ta l  i nv e r se  c u m m u l a t i v e  s c or e  ve loc i t y  f o r  L p
% t o t C u m m S V Q 1’ i s t h e  to ta l  c u m m u l a t i v e  s c o r e  ve loc i t y  f o r  Q p 
ca l l  c o m p u t e S V P a r a m e t e r s  ( s c o r e V e l ,  L p , Q p , C u m m S V Q p , I n v C u m m S V L p ) 
F o r  all p  e  n u m p a r t i c l e s  { 

r a n d o m l y  g e n e r a t e  d e c i s i o n l n d e x  { i n t eger  e  [0,4])  
r a n d o m l y  g e n e r a t e  an  i n t eger  i ndex  j  e  L p 
I f  ( d e c i s i o n l n d e x  = 0) th en  j w p = w p x (l + s t ep  x r a n d \  0 , l ] ) j  
Else if  ( d e c i s i o n l n d e x  = l ) th en{  

w p = w p x (l -  s t ep  x r a n d  [0 , l ] )
If  ( w p < £• j then {  I f ( | / / | >  l ) t h e n { / /  = L p -  [y] & w p = 0 . 0 } } }

E l s e i f  [ d e c i s i o n l n d e x  = 2) the n{  
va l  = rand\ f ) , \~\y.  t o t l n v C u m m S V L ’’

If  ( v a l  < I n v C u m m S V  I f  ) then { If  L p j > 1 j then ( L p = L p -  [/ ,[']} }
Else{

( j  > o | vy  e  L p )

I f  ( v a l  > I n v C u m m S V L f ^ )  & ( v a l  < I n v C u m m S V L p ) t h e n {

If  ( [ / /  | > l ) th en  ( L p = L p - [ L p } ] } } }

E l s e i f  ( d e c i s i o n l n d e x  = 3) then{  
val  -  r a n d  [0,1 ] x t o t C u m m S V Q 1’

I f  (|L;'| < fc){
I f  ( v a l  < C u m m S V Q p  ^then { | L p = L p u  [Q£  ] |  & jw 0/; = e  | }

Else{  ( /  > 0 | V /  e  Q p )

\ i ( v a l  > C u m m S V Q ^ ) )&. ( v a l  < C u m m S V Q j '  ) t h e n {

{ L p = L p u [ Q p ] } & { w p = f } }  } } }
Else {

I f  ( | / / |  > l ) th en  {
r a n d o m l y  g e n e r a t e  a d o n o r  (i  s  L p ) &  re c ip i e n t  ( j  e  L 1 | j  ^ i )  i nd i ce s  

w r  =  w p  _  ( w p  x  1 0 %  )  &  w p =  w p +  ( w p  x  1 0 %  )  } }

C a l l  r e p a i r A s s e t W e i g h t s { k , s ,  5 ,  L p , w p)
} E n d

_________ Figure 22: Swarm techniques neighbourhood definition_________
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From Figure 22 above, before the program moves into the For-loop of the different 

particles, it has to first invoke/call the score velocity parameter function, in order to 

make available some parameters (InvCummSVL, CummSVQ, totlnvCummSVL, 

totCummSVQ) that will be found important for the successful implementation of the 

operations. The superscript in most of the identifiers signifies a particle; while the 

subscript identifies a given dimension. It can be seen also that, our swarm 

neighbourhood structure is in many aspects similar to the IDDIT neighbourhood 

structure for the local searches defined in Figure 18. The major difference between the 

two, has to do with how the delete and insert operators are executed. For instance, 

when the decision index takes the value 2  (delete operation), the function -  

swarmlDDIT, randomly generates a real value, val, smaller than or equal to the total 

inverse cumulative score velocity (itotlnvCummSVL) of all assets in a given portfolio L\ 

if this value falls between 2 consecutive InvCummSVL values, the asset with higher 

InvCummSVL value is eliminated from the portfolio, provided there is more than one 

asset in that portfolio, otherwise the asset is spared.

On the other hand, when the insert operator is to be executed, there is the need to 

randomly generate a real value, val, whose magnitude is at most equal to the total 

cumulative score velocity (<totCummSVQ) of all assets in the universe who are not 

members of L (Q = {U-Lj). As in the case of a delete operation, this value is 

positioned between two consecutive CummSVQ values, in which an asset with the 

highest cumulative score velocity (CummSVQ) is eliminated from Q and inserted into 

portfolio L with corresponding weight equivalent to the minimum threshold; provided 

there is room for insertion of an additional asset (i.e |L| < k).
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5.5 The Repair Mechanism

It is obvious that, executing any of the five operations described in our neighbourhood 

structures defined in sections 5.3 and 5.4 above will definitely distort the feasibility of 

a given solution. For example, this distortion occurs when the proportion of one of the 

constituent assets in any portfolio (as described in section 5.1) is either increased or 

decreased by a small (step) value in the interval (0, 1). Similarly, when an asset and 

its corresponding portfolio proportion are deleted or a new one is inserted into the 

portfolio, there is the need to repair the assets’ weights in order to satisfy the budget 

as well as the floor & ceiling constraints. It should be understood that, the constraint 

relating to the minimum proportion limit e7 can be easily satisfied (by all assets in 

portfolio L) in a single iteration as described in section 5.2 above. However, an 

iterative mechanism would definitely be required to ensure that constraints relating to 

the upper proportion limit 5/ are satisfied also. Our repair approach is adapted from the 

approach used in Chang et al [20] which ensures an effective handling of constraint 

violation. In view of this, we hereby present our repair mechanism in the following 

pseudocode:
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FUNCTION repairAssetWeights(K, e, 8, L, z, w)
Begin {

% U is the universal set containing all assets
% L is the set containing at most k  assets in a given portfolio
%  vv. is the actual proportion associated with asset j  e L
% z. is a  binary variable taking value 1 fo r  all assets j  e L  and  0 otherwise

A = ' ^ JjeLsj % A is the accounted portfolio proportion

F  is the free  portfolio proportion 

Sumw = vv. %  Sumw is the sum o f  the unnormalized weights
w.

w. = e. h —  x F
1 1 Sumw

M  -  0  % M  is a set o f  assets j  whose weights are pegged at S.
set Infeasible = True 
While Infeasible Do { 

set Infeasible=False
While i 5 j e L - M  with vv > 8j Do { % I f  any wj(VJeL_M) exceeds Sj 

L = L — [j] % Remove asset j  from  L
M  = M  u  [/'] % Insert asset j  into M

}
Sumw = i m Wj % Theupdated sum o f  the weights

I ,  M Sj j % The updated free  portfolio proportion

w. = Sj V/ e  M  % All weights o f  assets in M  are set to Sj
w.

vv = e. h —  x F  \ / je  L - M  % Updated weights might violate constraints
Sumw

I f  3 y e  L - M  with vv; > 8. Then % I f  some weights violate some constraints
Infeasible = True % Goto outer While -  Do loop

}
End

)
\ / ieL,Zj=  1 &V/ z. =0;
V/ G  U, W/ = x zi

Figure 23: An effective repair approach for constrained PSP formulation

By taking a critical look at our iterative repair method in Figure 23 above, the reader 

can easily notice that, the repair mechanism ensures that all assets weights satisfy both 

set of constraints (the budget and the floor & ceiling constraints).

5.6 Results and Evaluation

For the constrained case, we decided to test and evaluate our algorithms by solving 

different constrained cases, in which portfolios are restricted to have no more than a 

specific number (also known as cardinality) of assets composition as well as making 

sure that any constituent asset has at least the minimum allowable proportion of the
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portfolio funds invested in it. Recall that, in our unconstrained implementation 

(Chapter 4); our high expectations of GA’s performance were unfounded, when 

surprisingly its performance was found to be poor in comparison to other EAs (such as 

PSO and SWAN); and because of this, we decided not to implement a constrained 

version of GA unless we are able to sort out what went wrong in its implementation. 

In view of this, we run the constrained implementation of the remaining 5 algorithms 

under different combinations of cardinality and floor & ceiling constraints. We first 

run our algorithms in which any candidate portfolio is restricted to have a maximum 

cardinality of only 10 assets under 3 different set of minimum threshold limits of 1%, 

10% and 20%. Although, there were no explicit ceiling constraints, some were implied 

by the other (cardinality and floor) constraints. In the second set of experimental runs 

we scaled down the maximum cardinality value to 5 with similar combinations of 

minimum proportion limits (0.01, 0.1 and 0.2) as above (i.e. K  < 10, 5 and sj = 1%, 

10% and 20%). We conducted a total of 60 simulation runs (5 algorithms x 2 datasets 

x 2 cardinality values * 3 minimum threshold limits) generating a total of (60 x 200) 

1 2 0 0 0  different points on the various heuristics constrained efficient frontiers.

5.6.1 Results:

This part is aimed at showing the various graphical representations of the results 

generated by our algorithms. It is important to make it known at this point that, 

although we intend to present the constrained results generated by the solver; we were 

unable to do so, due to the ‘fear’ of unfair comparison against the solver. This is 

because, the solver (being an exact solution provider) was not able to find solutions at 

some higher values of target return for both datasets, as it returns an empty output; 

hence, unable to determine any solution (be it optimal or otherwise) unlike our
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algorithms which do produce solutions; even if these solutions are non-optimal, they 

are far better than no solution at all. Because of this, it will be hard to objectively 

compare our algorithms and the solver in the constrained cases. We thus, then decided 

to compare the algorithms among themselves.

The following figures shows the various EFs generated by our algorithms in solving 

the constrained case using two different data sets of varying sizes.

C ardinality C onstrained EfficientFrontiers (K =  10, r = 0 .0 1 )fo r  the 
H ang Seng Index (31 assets) generated by the Metaheuristics
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Figure 24: CCEF for Hang Seng dataset (K=10, e=l%) Figure 25: CCEF for Hang Seng dataset (K=10, 8=10%)

Cardinality Constrained Efficient Frontiers(K  = 5, s=  0.01) for the 
H angSeng Index (31 assets) generated by the Metaheuristics
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Figure 26: CCEF for Hang Seng dataset (K=5, £=1%)

Cardinality Constrained Efficient Frontiers (K = 5, e  = 0.1) fo r the 
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Figure 27: CCEF for Hang Seng dataset (K=5, £=10%)
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Cardinality Constrained Efficient Frontiers (K = 5, c = 0 .2 )forthe 
Hang Seng Index (31 assets) generated by the .Metaheuristics
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Figure 28: CCEF for Hang Seng dataset (K=5, 8=20%)

Note: CCEF stands for Cardinality Constrained Efficient Frontier.

CPLEX/UC denotes the CPLEX solutions for the unconstrained case. These of course 

may not be feasible solutions for the constrained case, but they give useful bounds.

Figures 24 through 28 above show the various EFs generated by our 5 algorithms for 

the smaller dataset consisting of 31 assets. It can easily be noticed that, Figure 24 

looks smoother than others in this category, because its combination of cardinality and 

floor & ceiling constraints (i.e. K < 10 and sy- = 1%) are comparatively less tight. 

However, in the other plots, the more the constraints get tighter, the more crooked the 

EFs seem to be. Also, it can easily be observed that, in the constrained EF plots 

(unlike in the unconstrained ones), there are some discontinuities. In view of this, we 

can say these are justifiable, as they are the direct effects/consequences of the 

cardinality constraints and/or floor & ceiling constraints [20]. Although, it is 

extremely difficult to distinguish the various EFs based on their algorithmic origin; it 

is however, easy to notice that, the frontiers generated by PSO and SWAN are less 

crooked and have discontinuities; hence, more stable. This, we believe, is the ‘ fruit’ of
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a bit of intelligence incorporated in the neighbourhood structure for the swarm 

algorithms discussed in section 5.4 of this chapter.

The next sets of plots {Figures 29 through 33} are the various efficient frontiers 

generated by our algorithms for the larger dataset of 78 assets originally from 

FTSE100 index.

C a rd in ality  C onstra ined  E f fic ie n tF ro n tie rs (K  =  1 0 ,e =  0.1) fo rth i 
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Cardinality Constrained Efficient Frontiers (K = 10, c=0.01) for the 
FTSE 100 Index (78 assets) generated by the Metaheuristics
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Figure 30: CCEF for FTSE 100 dataset (K=10, £=10%)Figure 29: CCEF for FTSE100 dataset (K=10, e=l%)
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Figure 31: CCEF for FTSE 100 dataset (K=5, 8=1%) Figure 32: CCEF for FTSE 100 dataset (K-5, 8-10% )
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C ard in  alii}' C onstra ined  Efficient Fron tiers (K  = 5 , r =  0.2) fo r  the 

FTSE 100 Index (78 assets) generated  by the M ctaheuristics
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Figure 33: CCEF for Flang Seng dataset (K=5, 8=20%)

Just like what is obtainable in the first set of five EF  plots {Figures 24 through 28} for 

the smaller dataset; the second set of constrained EF  plots for the larger dataset are 

almost indistinguishable. However, due to the effect of larger dataset coupled with the 

imposition of both set of constraints; the EF plots are, apparently, more ‘chaotic’ and 

discontinuous. Critical observation of the various frontiers reveals one striking feature 

common to all plots; and this has to do with the way algorithms find it hard to ‘get it 

right’ at the bottommost part of the frontiers. It should be noted that, this should be 

expected, because at the bottommost side of the frontiers more and more assets are 

needed than at the upper part where the number of assets involved are fewer. 

Furthermore, as in the smaller dataset plots, the SWAN and PSO seem to perform 

better than the local searches (SA, TS and Par_SA) whose neighbourhood structure 

(IDDIT) based its decisions entirely on random chance.

5.6.2 Evaluation:

In this part, we will evaluate the results obtained by running our algorithms in solving 

the constrained implementation of the PSP. Unlike in the unconstrained formulation,
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where we analyze results based on three evaluation measures (convergence, coverage 

and uniformity), here, we are going to analyze the performance of the algorithms 

based on only their convergence ability. This decision is informed by the nature of the 

results generated in the constrained case which is quite often discontinuous and non- 

uniform due to the effect of the constraints. So, it might not make much sense, to 

evaluate the algorithms based on how many of their solutions are found to dominate 

other algorithms and vice versa. However, it would be fine to evaluate them based on 

the proximity of their (entire) generated results to a certain reference point/solution. In 

view of this, we evaluate how well an algorithm does in terms of returning a very good 

solution by measuring (as in the unconstrained case) the area between the approximate 

constrained frontier generated by our methods and the exact (optimal) efficient frontier 

returned by the CPLEX solver for the unconstrained case. This enables us to access 

how good a particular heuristic constrained frontier is; as the closer it is to the optimal 

one the better. In order to accomplish this, we decided to measure the mEds of the 

various solutions generated by different algorithms in relation to the exact 

unconstrained solution generated by the nonlinear quadratic optimization solver 

(CPLEX 11.2) as done in chapter 4 dealing with the unconstrained case.

The following table gives a summary of the mEds and the average time taken (in 

seconds) by the algorithms to arrive at a solution in this constrained case.
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Index
(Assets)

k £ Methods mEd
(xlO-4)

Average
Time
(secs)

SA 0.3962 4.98
ParSA 0.2709 7.76

0.01 TS 0.3401 4.82
PSO 0.1812 5.47

10
SWAN 0.1649 5.91

SA 1.5103 3.89
ParSA 1.2016 4.07

0.10 TS 1.4001 2.71
PSO 1.0904 3.07

SWAN 0.9243 3.21

Hang
Seng
(SI)

SA 2.1108 2.11
ParSA 1.8113 3.59

0.01 TS 2.0013 2.12
PSO 1.2411 2.01

SWAN 1.1812 2.09
SA 2.9223 2.67

ParSA 2.1581 4.44
5 0.10 TS 2.4276 3.28

PSO 2.0003 3.87
SWAN 1.9053 3.91

SA 6.4209 4.59
ParSA 5.7657 5.64

0.20 TS 6.1312 4.03
PSO 4.8413 6.01

SWAN 4.5641 6.24
Table 5: Showing the mEds and the average time (in secs) for the Hang Seng dataset

From Table 5 above, it can easily be observed that, the mEds values are (in all cases 

across the various algorithms) close to zero indicating that the distance between the 

reference (unconstrained) EF and those generated by our algorithms is very small. It 

should be recalled (from section 4.6.1) that, smaller values of mEd are much desired. It 

can also be noticed that, the more the constraints get tighter, the more the performance 

deteriorates. For instance, when the cardinality is set to 10 and the minimum allowable 

proportion is set to 1%, almost all the algorithms performed quite well, producing 

mEds values to the tune of 10'5. One other thing worthy of noting and mentioning is 

the time (in secs) that algorithms take on average to return a solution. It can be
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observed that, in comparison to the results obtained in chapter 4, the algorithms take 

much time; this we believe, is not unconnected with the effect of the imposed 

constraints.

Index K £ Methods mEd
Average

Time
(Assets) (xlO'4) (secs)

SA 1.4421 7.13
ParSA 0.7745 10.87

0.01 TS 0.9487 6.91
PSO 0.6945 8.18

10 SWAN 0.6420 8.54
SA 2.9671 6.99

ParSA 2.0173 9.74
0.10 TS 2.5114 6.21

FTSE 100 
(78)

PSO 1.3915 7.49
SWAN 1.3055 7.97

SA 2.9915 5.71
ParSA 1.9349 6.04

0.01 TS 2.6228 5.73
PSO 1.4211 6.94

SWAN 1.3852 7.18
SA 4.7653 4.27

5 ParSA 3.8365 9.10
0.10 TS 4.4113 4.01

PSO 1.9957 7.91
SWAN 1.7616 8.28

SA 5. 8353 7.19
ParSA 4.5703 12.45

0.20 TS 5.0009 6.01
PSO 3.8914 8.81

SWAN 3.7340 9.15
Table 6: Showing the mEds and the average time (in secs) for the FTSE100 dataset

Table 6 above further reveals the difficulty inherent in solving the constrained cases, 

especially when dealing with larger datasets. There is an apparent proof of 

performance deterioration and the average time taken seems to be growing at an 

exponential rate. The Tables 5 and 6 above further supports the superiority of the 

(guided) neighbourhood structure (for the swarm algorithms) described in section 5.5
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over the (unguided) IDDIT neighbourhood structure described in section 5.4. This is 

so, because our swarm algorithms (PSO and SWAN) seem to produce a more stable 

EF plots than their local search counterparts (SA, Par_SA and TS) whose EFs seem 

more discontinuous and chaotic. In the same vein, despite the growth in dataset size 

coupled with constraints imposition, the mEd values for both PSO and SWAN remain 

consistently lower when compared to those produced by the trio of SA, Par_SA and 

TS.

5.7 Comparison with previous results

The Portfolio optimization problem as one of the most widely studied research areas in 

finance has been studied in several researches in which a wide range of models have 

been introduced or improved upon. In many of those researches different formulations 

involving lots of different objective functions, varying constraints sets, and different 

variable definitions have been proposed. In many of these studies, for instance; it is 

not uncommon to find several authors in different articles giving much credit to their 

findings as well as claiming superiority and advantages of their models and methods 

over others. But in many of such situations, it is almost impossible to fully justify such 

assertions, due to several factors that need to be taken into consideration: algorithmic 

implementations differ, datasets may be different, loopholes in actual implementation 

rarely reported, performance measures might be different, implementation platforms 

(such as systems’ capacities) varies, and furthermore, a given model might do well 

over a given dataset it was tested upon without any assurance of robustness to other 

different datasets. Other researches, we must admit, are aimed at pursuing different 

goals, such as testing the efficiency and/or effectiveness of algorithms [25, 26, _129, 

152, 155]; others aim to discard the conventional problem formulation in order to
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develop a model alleged to be more suitable and appropriate than the standard one [91, 

i0> 49]; and others might be interested in developing a commercially viable model 

with good performance in order to help in professional decision making activities. All 

these factors can lead to wrong or biased comparisons and conclusions, hence, fair 

comparison among different works by different authors might be difficult.

5 . 7 . 1  C o m p a r i s o n  w i t h  C h a n g  et al

One of the only two datasets used in this research was originally used by Chang et al 

[201 and made publicly available by one of the authors at the OR Library [117]; so, it 

would really be desirable if we are able to compare our results with Chang et aVs. 

However, due to some of the issues raised above, we may not be able to do so. For 

instance, when one considers the work of Chang et al, it can be realized that, after 

including the expected return constraint into the objective function; they also 

introduced a weighting parameter 2 (0  < 2 < l) which when continuously varied

(increased/decreased) will be used to trace the efficient frontier. Chang et aVs model is 

of the form:

n n n
Minimize 2 Y L Wl a :iWi

_' = 1 j = \
- 0 - -* ) _/=i

Subject to
n

£ > ,  = 1
/ = 1
n

t z> = K
(=1

£izj < w(. < SjZf, i =

z , e  [0,1], i =

Although, this (weighting) approach will allow for gaining more information (as they 

claimed) on some portions of the constrained frontier; its major implication involves
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its inability to trace out the entire EF, and consequently rendering some portions 

invisible.

Another thing to consider is that the weighting approach does not produce an equally- 

spaced (i.e. homogeneously distributed) points/portfolios on the EF, thereby making it 

difficult for point-to-point comparison with our results, in which the problem is solved 

by considering different instances (of equally-spaced) values of target return. In 

addition, the results for the constraint case solved with the weighting approach were 

not provided; hence, the results cannot be reproduced and/or compared. Furthermore, 

their cardinality constraint was formulated with equality rather than with an inequality 

as in our case.

5.7.2 Comparison with Schaerf

If there is any work that we would be delighted to compare our results with, it should 

be no other than Schaerf s [1291. Recall that, our newly developed neighbourhood 

structure (IDDIT) and even some part of our swarm neighbourhood definitions were 

inspired by the neighbourhood relations contained therein. However, due to some 

reasons, some of which were raised above, we could not achieve that either. The major 

obstacle hindering us from comparing our results with Schaerf s is that, their results 

were not made publicly available as in the case of Chang et aVs unconstrained case. 

Instead of providing the results of their cardinality constrained solutions provided by 

their neighbourhood structures; their main concern was to compare the performance of 

the different neighbourhood definitions among themselves under different parameter 

settings At a point, they had to admit: “Given that the constraint problem has never
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been solved exactly, we cannot provide [emphasis mine] an absolute evaluation o f our 

results. .. '’’1

In their conclusion remark, they further state “We solved public benchmark problems, 

but unfortunately no comparison with other results is possible at this stage.’’’’
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6.0 Testing Algorithms on other problems

6.1 Some Applications

In this chapter we aim to explore the potential of our designed algorithms in some 

optimization applications other than the PSP. We intend to subject our algorithms to 

some tests of robustness in other academic researches such as function optimization in 

order to observe how well they adapt to other problems. However, it should be clearly 

understood that, this chapter is not primarily aimed at comparing our results to those 

of other previous researches with the hope of outperforming them; but rather to have a 

glimpse of how far our algorithms can go in optimizing standard test functions (both 

constrained and unconstrained) with known global optimum (i.e. how close to the 

global solutions our algorithms will be able to reach). In view of this, we selected the 

two best performing algorithms (PSO and SWAN) for testing their capability in 

solving the standard test functions as reported in the literature. In other parts of this 

chapter also, we intend to analyze the results obtained by our algorithms using some 

standard statistical techniques such as test of statistical hypothesis.

6.2 Global Optimization

Searching for an optimal state or configuration is one of the fundamental principles in 

many aspects of our life. This search begins in the microcosm when very tiny particles 

(such as atoms) join with one another (to form molecules) in order to minimize the 

energy in their electrons. Molecules also bond with one another to form solid bodies 

through the processes of freezing, and by so doing; they assume an optimal crystalline 

structure having the minimum energy.
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In the same vein, several aspects of our life revolve around finding an optimum setting 

with the least effort possible. For instance, when we plan to travel, for holidays we 

want to have an utmost enjoyment at the lowest possible cost. The same goes for flight 

tickets, in which we prefer to have ‘first class’ treatment at lower costs. Many business 

organizations thrive by making or rather maximizing their profit, while at the same 

time being alert to cut unnecessary costs; even investors (conventionally) would prefer 

to invest in a collection of assets that will result in maximizing their profit/return at the 

lowest possible risk. When we consider the field of Engineering; designers always 

prefer to maximize the performance of their designed products, while at the same time 

trying every way possible to minimize costs. With the above few examples, it is 

obvious that, studies in optimization are of immense importance, in which both our 

scientific interests and practical implications stand to benefit more from such studies. 

Before we continue with our analysis on how well our designed algorithms perform in 

respect of optimization on some standard test functions; there is the need to provide 

some definitions of some basic concepts.

6.2.1 Mathematical Optimization

It should be understood that, it is quite often possible to formulate any real world 

problem with a certain objective into a corresponding optimization problem; and all 

optimization problems can be represented in an explicit generic form provided they 

have an explicit objective. Therefore, according to Boyd and Vandenberghe [13], a 

mathematical optimization problem or simply, optimization problem takes the form:

Minimize /(•* ).VG'Ji"
Subject to

</)r ( x ) < br, {r = 1,2,..., w),
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Where the components x,- of the vector: x  = (xl,x2,...,x;;)/ e 91”are referred to as 

optimization, design or decision variables which can take discrete or continuous values 

or even a mixture of both. The function f : 91" —> 9T is called the objective or the cost 

function; the functions^. :9?" —>91, [r = l,2 ,...,m ), are the (inequality) constraints, 

and the constants 6;., (r = 1, 2 , .. . ,  m) , are the bounds or limits of the constraints.

An optimization problem can generally be classed as either linear or non-linear 

depending on some characteristics taken by the objective and constraint functions. For 

instance, when the constraints^, (x), (r = 1,2,...,m),  take on linear form, the problem

is regarded as a linearly constrained optimization problem. It is considered as a linear 

programming problem, if the constraints and the objective are all linear. Furthermore, 

if the decision variables take on integer values, the linear programming problem is 

known as integer programming or integer linear programming. If on the other hand, 

the objective is at most quadratic accompanied by linear constraints, the resultant 

optimization problem is regarded as quadratic programming.

Since we are able to define what an optimization problem is all about and briefly 

describe the different forms it can take; it is worthwhile to, also, briefly discuss what 

makes a given solution of an optimization problem to be regarded as optimal; knowing 

that the main goal behind the formulation of an optimization problem is to (if possible) 

find an optimal solution.

A given solution x* is said to be optimal, provided that among all vectors that satisfy 

the constraints set, it has (respectively for minimization/maximization problem) the
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smallest/largest objective value: for any s with^, (5 ) < bx (s) < bm we have

/ ( ■ * ) - /  (x  ) • An optimum solution for different type of optimization problems with

varying degree of complexity can be obtained whenever the objective is composed of 

either a univariate function or a multivariate function. When optimizing a single 

objective optimization problem, an optimum can either be its maximum or minimum 

depending upon what the problem is aimed at addressing. The following definitions 

are due to Weise [148].

6.2.1.1 Local Optimum

A local optimum of an optimization problem can either be a local minimum or a local 

maximum. Thus, a local optimum is said to be a local minimum [maximum], if for any 

s e  X  of single (objective) function / :  X  i-> 91 it serves as an input element satisfying 

f [ s ) < f  (x )[ f ( s ) >  f  (x)] for all x in the neighbourhood of s.

Now, if X  c  91, we therefore can write:

Vs 3e > 0 : f ( s ) <  f  (x)[ f ( s ) >  f  (x)] Vx e X , |x -  s\ < s .

6.2.1.2 Global Optimum

A global optimum of an optimization problem can either be a global minimum or a 

global maximum. Thus, a global optimum x* e X  is said to be a global minimum 

[maximum], if for any s £ A  of single (objective) function^: X  h-> 9̂  it serves as an

input element sa tisfy ing /(i)<  / ( x) [ / ( j )>  / ( * ) ]  V x e X . The Figure below from 

Weise [1481 shows some instances of both local and global optimum 

(minimum/maximum):
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glob id m bxl mumU k 'B .1 maximi:

Figure 34: Global & local optima o f  a two-dim ensional function

6.2.2 Standard Test Functions

There are numerous test functions in the literature that are used to test and evaluate the 

performance of optimization algorithms [ 1551. These tests can either be classed as 

either unconstrained or constrained problem optimization. An unconstrained 

optimization problem, as the name implies, is an optimization problem without any 

constraint attached to it; while the constrained one has some accompanying constraints 

that any candidate solution must satisfy for it to be feasible.

6.2.2.1 Unconstrained Optimization Problems

Whether an optimization problem is a constrained or unconstrained one, the main goal 

is to find an optimal solution that minimizes/maximizes the objective better than in 

any other feasible candidate solution in the solution space. In an unconstrained 

optimization, an optimal solution occurs at the critical points that makes the stationary 

co n d ition /'(jc) = 0 only if f  is differentiable; However, this stationary condition is just
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a necessary (but non-sufficient). It should be noted that, if / '(* * ) = 0 and/" (* * ) > 0, 

the solutionx*, is a local minimum; however, if / '(x * ) = 0 and /"(x*) < 0, it is a local 

maximum. If on the contrary/'(x*) = 0, but

f  (x*) is indefinite (both positive and negative) when x—»x* then x* is a saddle point.

In testing our algorithms we decided to use some standard test functions that are 

widely reported in the literature [153, 154, 155]; these include De Jong’s, Rastrigin’s, 

Goldstein-Price’s, Schewefel’s and Beale functions.

(i) De Jong’s function: De Jong is a unimodal as well as a convex function with 

global optimum /(* * )  = 0 occurring atxr* = (0,0,...,0). The function is also known as 

a sphere function and is given by:

n
/ ( * )  = 2 > f  -5.12 <5.12 KII

7=1

The figure below shows a graphical representation of De Jong’s function for n  = 2:

60

40

20

0 
6

-6 .6
Figure 35: Graphical representation o f  De Jong's function (n =  2)
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(ii) Rastrigin’s function: is a function whose terrain is contaminated by several 

local minima. Its global optimum /(* * )  = 0 occurs at** = (0 ,0,...,0); and the search

domain is mostly restricted within—5.12 < x- < 5.12. The function is given by:

n

/ ( * )  = lOw + X ( xy - 1 0 cos(27TXj )j ,-5.12 < Xj < 5.12 Vy = 1
 M____________________________

The figure below shows a graphical representation of Rastrigin’s function for n = 2:

Figure 36: Graphical representation o f  Rastrigin's function (n - 2)

(iii) Goldstein-Price’s function: is a little bit flat-terrain function with only two 

variables whose search domain is normally restricted within- 2 < x j <2.  The function

has its global (minimum) solution/(* * )  = 3 occurring at** = (0 ,-1 ); and it is given 

by:

f ( x )  =(l+(x, +*,*, +l)2(19-14*,- +3Xj -14*,*, +6 xjXJtl +3j£,))

*(30+(2*; -3 xh ((18-32*, +12*; +48*J+I -36*,*,*, +27*;*,)J = 1

The figure below shows a graphical representation of Goldstein-Price s function:
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12 ̂

Figure 37: Graphical representation o f  Goldstein-Price's function (n =  2)

(iv) Schwefel’s function : is a function whose terrain is also contaminated by 

several local minima. Its global optimum

/(* * )  = 0 is obtainable a tx t =420.9687 [for i = ; and the search domain is

mostly restricted within-500 < x; < 500, for i = 1,2,..., n . The function is given by:

/  (x) = 418.9829/? -  x(. sin
i=i

The figure below shows a graphical representation of SchwefePs function for n = 2:

Figure 38: Graphical representation o f  Schw efel’s function (n =  2)
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(v) Beale function : is another flat-terrain function with only two variables whose

search domain is normally restricted within—4.5 < <4.5. The function has its

global (minimum) solution/  (* .)  = 0  occurring at x* = (3 , 0 .5 ) ; and it is given by: 

f ( x )  = (l.5-x, + x,x,)~ +(2.25-^ +XjX̂ )“ +(2.625-x1 +x,x )̂~

The figure below shows a graphical representation of Beale function:

Figure 39: Graphical representation o f  Beale's function (n =  2)

6.2.2.2 Constrained Optimization Problems

A constrained optimization problem takes the form:

Minimize / ( x )
xe9?n

Subject to

V r  ( * )  =  0 > (r = 1, 2 ,.. , ,m),

I  (*) ^  o. (■s = 1. 2 ,..

A
’

j-TllX e9T

Where f ,  i//r and are real valued functions defined on the search space S cR ".

In order to test the capability of our algorithms we decided to solve an optimization 

problem involving two of the popular constrained optimization problems: G il and 

Pressure Vessel Design (PVD) problems as reported in Hedar [7JJ as well as in Global 

Optimization website [1431. The functions are defined as follows:
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(i) G il problem : is a two-variable optimization problem whose global minimum 

/ ( * * )  = ■} occurs atx* = (± 7 ^ ,7 ). The problem is given by:

Mn f ( x )  = x2 +(x2 -1 ) 2 

subject to

g(x):x2 - x f  = 0 .

- 1 < x(.<1 ,  * =  1,2

(ii) Pressure Vessel Design (PVD) problem : is an optimization problem with four 

design variables whose objective is to minimize total cost comprising costs of 

material, forming and welding of a cylindrical vessel. The problem has previously 

been tackled by Sandgren [ 128] using Branch and Bound algorithms; Kannan and 

Kramer [85] using an augmented Lagrangian Multiplier approach; Deb [31] using 

genetic adaptive search (GeneAS); Coello and Montes [23] using GA and Hedar [71] 

by using FSA. Coello and Montes [23], especially solved the problem using the 

following bounds [l < x,, x2 < 99, & 10.0 < x3, x4 < 200.0]; where x, & x2 are

considered as (real values rounded to the closest integer value) multiples of 0.0625; 

while x3 & x4 were considered as just floating point values.

The following figure shows the cylindrical vessel dissected to reveal the variables used 

in the optimization problem copied directly from Coello and Montes [23].
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Figure 40: A dissected cylindrical vessel showing design variables in PVD problem

The 4 design variables are: xi[Ts - thickness of the shell], x2 [Th -  thickness of the 

head], x2[R - inner radius], and X4 [L - length of the vessel’s cylindrical section 

excluding the head]. The minimization problem can be formulated by:

Mn /(x ) = 0.6224x,x5x4 + 1.7781x2x; +3.1661xfx4 + 19.84x12x3

subject to
c) :-x, +0.0193x5 < 0 ,

s{>;): -x, +0.00954x3 < 0 ,

t(x ): -77X3X4 + j  ttXj3 +1296000 < 0,

w(;c) :x4 -240<0,

6.2.3 Results and Discussions

In this part we aim to present the results obtained from our algorithms (PSO and 

SWAN) obtained by solving some standard optimization test functions (both 

constrained and unconstrained) in relation to those obtained by other studies 

conducted before. In all cases we conducted a total of 30 different trials in which we 

noted the best number of optimum solutions found in each case across the various 

algorithms.
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For all problems, a given candidate solution is considered to be optimal if the absolute 

difference between it and the global optimum is less than a specified tolerance limit, e. 

Mathematically, we can express this relation as follows:

I f  ( | global solution -  candidate solution < s ^ j  T h e n  { 

T e r m i n a t e  t h e  S e a r c h  P r o c e s s  

R e t u r n  c a n d id a te  s o lu t io n
}

Where s = 10'10.

For the unconstrained solutions, we defined a success rate (%) as follows:

number o f trials an optimal solutionis returnedsuccess rate = ----------------- ---------------------- - ------------------------------------------------- x  1 0 0 %
Total number o f  trials

The following is the result obtained after solving the unconstrained optimization 

problems

Problem
Number

o f
Variables

Optimal
Solution

Performance
Best Worst Success rate (%)

PSO SWAN PSO SW AN PSO SW AN
D e Jong2 2 0.00 0.00 0.00 0.00 0.00 100.0 100.0
D e Jong5 5 0.00 0.00 0.00 0.00 0.00 90.00 100.0
D e Jongio 10 o o 0.00 0.00 0.00 0.00 76.67 90.00
Rastrigin2 2 0.00 0.00 0.00 0.00 0.00 96.67 100.0
Rastrigin5 5 0.00 0.00 0.00 0.00 0.00 _73.33 83.33
Rastriginio 10 0.00 0.00 0.00 0.00 0.00 63.33 80.00

Goldstein-Price 2 3.00 3.00 3.00 3.00 3.00 93.33 100.0
Schwefel 2 0.00 0.00 0.00 1.2601 0.6445 30.00 53.33

Beale 2 0.00 0.00 0.00 0.00 0.00 96.67 100.0
Table 7: Comparison o f  the results for the unconstrained optimization problems

From Table 7 above, it can be observed that, our selected algorithms performed

extremely well in returning quite a number of optimal solutions out of the total number

of 30 trials conducted. For the De Jong’s function we tried three different versions

with 2, 5 and 10 variables respectively; similarly, for the Rastrigin’s function, three

versions were also implemented with 2, 5, and 10 variables respectively. The red

coloured values, we believe, will draw the reader’s attention: as to why the values for
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the worst solutions generated by our algorithms do not (in anyway) differ from those 

of their corresponding best (optimal) in the same corresponding instances, despite the 

fact that in such cases it is apparent that the success rates are not up to 100%? The 

answer to this question can be answered when the reader is made to understand that, 

this is due to approximation. For instance, let us consider the Rastrigin function with 5 

variables (Rastrigins) in which the PSO recorded a success rate of 73.33% (i.e. 22 out 

of the 30 trials conducted returned an optimal solution); the (actual) configuration of 

the worst solution generated by PSO in such instance is:

X = (8.70052*10'7, 7.58468* 10'5, -3.21291 x 1 0 -7, 3.04434*10'6, 6.51759* 10-6} in 

which the computed objective function value would be 1.1517*1 O'6 which is virtually 

equivalent to zero. Similarly, when we consider the Beale function with only two 

variables in which PSO recorded a success of 96.67% (i.e. 29 successful runs out of 

30); the only worst solution has an objective value of 3.98985391337173*1 O'6 which 

occurs a t : x =  (2.998079, 0.4999075}.

The Schewefel’s function optimization appears to be extremely difficult for both 

algorithms (PSO and SWAN) going by the success rates they recorded. PSO recorded 

only 30% success (9 successful out of the total 30 runs); while SWAN managed to 

record a little bit more than half of the total number of runs with 53.33% success (16 

successful out of the total of 30). This difficulty, we believe, is as a result of several 

local optimum solutions that characterizes the search space of the Schwefel’s function 

coupled with a relatively vast search domain: —500 < xf < 500, for i = 1 , 2 .

In the constrained problems, we compared our results with those obtained in some 

previous studies, especially those of Filter Simulated Annealing (FSA) reported in
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Hedar [71]. The following table shows the comparison of results obtained for the G11 

constrained case.

Problem Optimal Solution Degree of This research FSA
/(** ) = * Performance PSO SWAN H i]

G il
Best 0.750000

(7.56)
0.750000

0 1 .1 2 )
0.749999

Average 0.753377
(7.01)

0.750132
(9.91)

0.749999

Worst 0.760192
( 1 0 .1 1 )

0.750823
(13.21)

0.749999

Table 8: Comparison o f  the results for the G 11 constrained problem

Although we are unable to reproduce the run times for the FSA in Hedar [71]; Table 8  

displays (in parentheses) among other things the (best, average and worst) run times 

(in secs) for PSO and SWAN.

From Table 8  above, it can be seen that, although our algorithms’ average 

performances are inferior to those obtained by FSA as reported in Hedar [71]; still 

they were able to obtain good solutions in quite a number of runs. The average 

solutions for the PSO and SWAN are respectively: {*/, x2) = (0.707664, 0.497418} 

and (0.707059, 0.499800}. The SWAN also seems to have an upper hand over PSO in 

this instance in which its worst solution (0.750823) occurring at {xj, X2 } — (0.707664,

0.497418} seems slightly better than the worst solution (0.760192) returned by PSO 

with {xi, x2} = (0.707107, 0.489910}.

The Table 9 below compares the results obtained by our designed algorithms to other 

studies conducted previously and reported in the literature concerning the PVD 

problem:
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Design
Variables

and
constraints

Best solution found
This Research

FSA

[Zi]
GA
[23]

GeneAS
[31]

Kannan
[85]

Sandgren
[128]PSO SWAN

x ,\T x] 0.7900814 0.7890814 0.76832571 0.812500 0.937500 1.12500 1.12500
X2Vh\ 0.3900000 0.3890010 0.37978380 0.437500 0.500000 0.62500 0.62500
XjIR] 40.549900 40.545510 39.8096222 42.097398 48.32900 58.29100 47.7000
x4[L] 197.01002 196.90000 207.225559 176.65405 112.6790 43.69000 117.7010
r(x) -0.007468 -0.0065531 -9.9087E-13 -0.000020 -0.00475 0.000016 -0.20439
s(x) -0.003154 -0.0021968 -5.4296E-11 -0.035891 -0.038941 -0.068904 -0.16994
t(x) -986.9696 -107.69857 -10.706469 -27.88607 -3652.8768 -21.22010 54.22601
u(x) -42.98998 -43.100000 -32.774405 -63.34595 -127.32100 -196.3100 -122.299

Best f(x) 5960.2483 5946.9668 5868.76484 6059.9463 6410.3811 7198.0428 8129.104
Average f(x) 6199.4917 6065.1485 6164.58587 6177.2533 N/A N/A N/A

Worst f(x) 6762.0298 6456.6611 6804.32810 6469.3220 N/A N/A N/A
S td  dev 350.19279 207.51562 257.473670 130.92970 N/A N/A N/A

Table 9: Comparison o f  the results for the P VD  problem

From Table 9 above, the reader can easily notice how our algorithms performed well in 

relation to the previous studies conducted on the PVD problem. Although, FSA by 

Hedar [71], to our knowledge, is the best known solution with a global minimum of 

f(x*) -  5868.764836 occurring at x* = {0.768325709391, 0.379783796302, 

39.809622248187, 207.225559518596}; however, we feel there are other positive 

things to consider about our algorithms too. For instance, it can easily be seen that, our 

algorithms performed better than all other previous algorithms except for the Hedar’s 

FSA. SWAN produced the next best solution, and followed closely by PSO; while 

Coello and Montes’ GA occupies the 4th position. It can also be observed that, the 

average solution (6065.1485) produced by SWAN was better than any of the average 

solutions produced by any other technique shown on Table 9 above.

Furthermore, it could be seen that even the worst solution [6456.6611 whose variables

take on values: {xj, X2, X3, X4 } = {0.798001, 0.513715, 39.9022, 206.012487}]

generated by our SWAN algorithm outperformed all the other worst solutions

recorded in the previous researches as presented on the table above. Additionally, even

the PSO’s worst solution [(6762.0298) with variables configuration: {xh x2, x3, x4) =
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(0.851091, 0.493715, 40.81002, 197.12400}] is better than the FSA’s worst solution 

with objective value of 6804.32810. Now, considering the degree of variability of 

solution generation; it can be observed that, there is an indication that, out of the total 

number of trials conducted; SWAN produced more good solutions than FSA as 

evidenced by the value of its standard deviation (207.51562) as against the FSA’s 

257.473670. This simply means, probably SWAN slightly misses the chance of 

producing the best solution.

One other thing to note especially from the table is that, all the algorithms (PSO, 

SWAN, FSA, GA, and GeneAS) which produce very good, but still feasible solutions 

allocate larger values to design variable {x4 -  length of the vessel’s cylindrical section 

excluding the head); implying that varying other design variables while allocating 

larger values to x4 is the most reasonable decision for producing feasible vessel’s 

design at lower cost. Note that Kannan and Kramer’s [85] approach is the only 

algorithm that allocates lower value (43.690000) to variable x4\ and consequently, 

ended up with an infeasible solution by slightly violating the first constraint whose 

value is 0.000016. The Branch and Bound algorithm of Sandgren [128], however, was 

the worst among all those reported in Table 9; in the sense that, apart from producing 

an infeasible solution (due to the violation of the 3rd constraint), it also provided a 

solution with the worst objective value of 8129.1036.

6.3 Test of Statistical Hypothesis

The primary objective of this section is to compare the average performance of SWAN 

and FSA algorithms in relation to the optimization of the PVD problem introduced in 

the previous section, using a well known statistical tool, namely, the test of statistical
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hypothesis (TSH). The TSH would be used for assessing and comparing the

effectiveness of both algorithms in obtaining a high quality solution, when the search 

begins from diverse and randomly generated initial solutions. In this context, we found 

the definition given by Hassan et al [69] as most appropriate; who defined

Effectiveness as: “ ... the ability o f a given algorithm to, repeatedly, find  a global [best 

known] solution or arrives at sufficiently close solution when the algorithm is 

[re]started from many [different] random points [initial solutions] in the design 

space”. In other words, Effectiveness can be defined as the probability of obtaining 

(on average) a high quality solution.

It should be understood that, effectiveness, in our research, relates to how an algorithm 

is (on average) able to produce high quality solutions that are close to the global or 

best known solution. However, before we descend into the detailed analysis of 

algorithmic performances; it is important and worthwhile to have a brief look at the 

elements of TSH.

Definition: A statistical hypothesis is a statement concerning the probability

distribution of a random variable or population parameters that are inherent in a

probability distribution [ 1 2 2 1 .

In any hypothesis testing problem, null (H0) and alternative (Hi or Ha) hypotheses are 

formulated, such that when the Ho is rejected, the Hi has to be accepted and vice versa. 

The Ho is usually a statement made such that when the objective of an experiment is to 

establish a claim, the nullification of the claim should be taken as the Ho. The 

experiment is often performed to determine whether the Ho is false. For instance,
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consider a situation when a prosecution wants to establish (with evidence) that a 

certain person is guilty of a crime. The Ho in this case, should be that the person is 

innocent; while the Hi would be that the person is guilty; thus, the claim now becomes 

the alternative. It should be noted that, decisions are always drawn with respect to the 

Ho\ in the sense that failure to reject it does not necessarily means it (Ho) is true. For 

example, when a person is judged “not guilty” does not necessarily means he/she is 

innocent, but rather the prosecution fails to provide evidence (beyond reasonable 

doubt) against him/her to nullify the presumption of innocence.

In TSH, there is a chance (probability) that Ho will be rejected, when in fact it should 

not have been rejected (i.e. Ho = True); and this probability is known as type I error. 

On the other hand, a type II error is when Ho is accepted when in fact it is false (i.e. Ho 

= False) and should be rejected. The table below shows the possible decision options 

available in any TSH.

Decision Taken
Actual situation of Ho

Ho is True Ho is False
Do not Reject Ho Correct Decision Type II error (3)

Reject Ho Type I error (a) Correct Decision
Table 10: Possible decisions in a test o f  statistical hypothesis (TSH)

There are basically five elements (steps) involved in conducting a TSH [122, 1441; and 

these include the following:

1. The Ho and H f are formulated, defined and stated; where H 0 is usually the 

nullification of a claim, while H ,  is normally the claim itself.

2. Decide on the desired level of significance a, which is an important parameter 

in deciding the critical/rejection region of the test under consideration.
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3. Determine and compute the value of the appropriate test statistic; which is a 

function of the sample measurements upon which the decision of rejection/non 

rejection of H0 will be based.

4. Determine the rejection/critical region of the test — a region (depending on the 

size of the level of significance) specifying the values of the observed test 

statistic for which H0 will be rejected.

5. Draw a conclusion: if the value of the (observed) test statistic (computed from 

step 3 above) falls in the rejection region (defined in step 4), then Ho has to be 

rejected; and one concludes that there is enough evidence [from the sample] to 

decide in favor of the alternative Hi, otherwise the conclusion will be that: Ho 

cannot be rejected based on the premise of non sufficient evidence from the 

sample.

Now coming back to the discussion of our main goal in this section; which is to 

answer a research question in relation to the constrained PVD  problem discussed in 

section 6.2 above; and this is to test (by using techniques of TSH) whether (based on 

the sample information available):

The average performance o f  SWAN algorithm is better than that o f  FSA.

At this point we want the reader to be aware that, the word ‘better’ in this context 

means having smaller objective value (since PVD  is a cost minimization problem); so 

if we have two or more algorithms in which one among them produces feasible 

solutions with lower objective value than the rest; then it should be adjudged as better 

than them.

Page 225 of 277



Now using mathematical notation, we want to represent average performances of 

SWAN and FSA t y SWANPperf and FSAjuperf respectively. In order to test our hypothesis, 

we are going to sequentially follow the steps outlined above as follows:

Page 226 of 277



SIEP[\

SIEP2:
(0 a -  5% and (ii) a - 1%

STEPS:

Test statistic, Z -
S W A N - FSA— 

X p e ,f  X p e ,f

SWAN , '-'FSA
+  - 

H rSfVAN " FSA

where:

swan- ^  [Sf/iesai?p[eavef,age perfornnnceof SWAN and is equal to 6065.1485, 

is the sample average perfornnnceof FSAandisequalto 6164.5859,

Swan (estimateqf cfWAN) isthesamplevariance for SWAN and is equal to (207.5156)2, 

s2̂  {estimateof crj:̂  ) is the sanple variance for FSAandisequalto (257.4737)2, 

n swAN is the sample size[nwnber of trials) for SWAN and is equal to30, 

nm is the sanple size( number of trials) for FSAand is equal to 30.

Hur, ,  6065.1485 -6164.5859 _ ,

I (207.5156)2 (257.4737)2 
V 30 + 30

S7EP4:
Therejectionregjon for
(/) a  = 5% is: reject H0ifZ< -Za; w/zere -  Z0 05 = -1.6450.

Therefore, sinceZ <-ZQ 05 (i.e. - 1.6469 < -1.6450); we then reject H0 
(ii) a = \%is: reject H0 if Z< -Za; where -  Zm = -2.3260.

Thus,sinceZ >-Z00] (i.e.—1.6469 > -2.3260); we then DonotrejectH0

STEPS:
(/) Since the decision reached in step4 is to reject H0, we conclude that: The random sanple 
provides sufficient evidence to believe that, the average performance of SWAN is better 
than that of FSA at 5% level of significance.
(ii) Since the decision reached in step4 is not to reject I f , we conclude that: The random sample 
do not provides sufficient evidence to believe that, the average performance of SWAN is better 
than that of FSA at 1% level of significance.

Table 11: A TSH analysis between SW AN and FSA______________________

From Table 11 above, it can be observed that, we tested for the validity of the claim 

that: 44The average performance o f SWAN is better than that o f FSA under two
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different levels of significance (i.e. a  = 5% and a  = 1%). It can be seen that, for 5% 

level of significance, the sample provided [just] enough evidence to reject the Ho, 

thereby warranting the acceptance of Hp, and this literally means that: we are 95% 

confident that: the average performance o f  SWAN is indeed better than that o f  FSA. 

However, for 1% level of significance, the sample does not provide enough evidence 

to reject Ho, thereby warranting its acceptance; and this literally means that: at 1% 

level of significance, we cannot claim that: the average performance o f  SWAN is 

better than that o f  FSA.
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7.0 Conclusion and Future Research

7.1 Conclusion & Future Work

In this thesis we addressed the classical (unconstrained) as well as the constrained PSP 

using some selected metaheuristic algorithms that are widely reported and 

implemented in the literature. PSP being one of the most widely studied areas in 

finance has drawn much interest from both academia and industry enjoying varying 

implementation strategies using approximate (especially metaheuristic) algorithms. In 

this research too, like in several others before it; we solved the classical problem using 

six different metaheuristic search techniques of which three (SA, TS, and Parallel SA) 

among them are Local searches, two (GA and PSO) are EAs and the last one (SWAN) 

is a hybrid of SA and PSO.

7.1.1 Conclusion

The entire thesis report has been partitioned into seven different chapters, each with its 

subsections aimed at giving thorough details of what has been discussed therein. 

Chapter one, for instance, discussed in great detail the origin of the PSP, what the 

classical Markowitz E-V model is all about, and various critics’ view on some 

shortcomings that came along with the model. In the same chapter we discussed why 

this research is important as well as what makes it difficult and challenging. The major 

contributions that this research has on offer were outlined in chapter one and these, 

once again, include:

• Designing and implementing an algorithm (entitled SWarm ANnealing -  

SWAN) which a hybrid of PSO and SA aimed at exploiting the PSO’s 

exploration (diversification) potential as well as SA’s exploitation
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(intensification) ability to return very promising solutions for both constrained 

and unconstrained cases of PSP.

• Designing and implementation of a neighbourhood structure (entitled IDDIT) 

for Local searches aimed at guiding our algorithms to explore the 

neighbourhood of the incumbent solutions in order to either find a very 

promising solution or escape entrapment in local optima.

• Developing and implementation of (even more challenging and more 

advanced) neighbourhood structure purposely designed for our swarm 

algorithms (PSO and SWAN). This neighbourhood definition strategy has 

some form of guidance enabling the algorithms to intelligently decide which 

asset should be deleted from or inserted into a candidate portfolio.

• Proposing a model (based on the ideas put forward by a previous research) for 

solving PSP with a semi variance as an alternative to the conventional objective 

(variance); while at the same time incorporating some real world (cardinality 

and floor & ceiling) constraints.

Chapter two built on the description of the classical Markowitz E-V model provided in 

the chapter one, and further defined what constitutes an E-V investor. Limitations and 

shortcomings of the classical E-V model were outlined therein and various 

implementations (in the literature) to address the problems that such shortcomings 

pose were studied. Chapter two also discusses the possible strategies of extending the 

classical E-V model which can be achieved by either substituting the original objective 

(the variance) with other alternatives (such as mean absolute deviation, semivariance, 

value at risk, e.t.c.) or incorporating some other real world constraints (such as 

cardinality, floor & ceiling, transaction cost, e.t.c.) and sometimes both. The chapter
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concluded by describing the conventional computation of semivariance as well as a 

thorough explanation about the implementation of our proposed mean-semivariance 

portfolio selection model.

In chapter three, we provided some acceptable definitions of metaheuristics as 

provided in the literature. We also reviewed some literature on the successful 

applications and implementations of metaheuristic algorithms in other diverse research 

areas as reported in the literature. Due to the fact that, classical PSP itself can be 

viewed as a bi-objective, and indeed a variant of multiobjective optimization 

problems; we decided to review other applications and successful implementation of 

heuristics/metaheuristics in other multiobjective optimization areas of research. In the 

same chapter also, we specifically decided to look at some other related researches that 

deals with the metaheuristic applications to portfolio selection. In the final part, the 

chapter provided a thorough explanation of the six metaheuristic algorithms used in 

this research.

The algorithmic details concerning the practical implementation of the classical 

(unconstrained) PSP were described in chapter four. These details range from the 

different decisions related to parameter choice to the thorough description of how the 

bi-objective PSP problem is implemented. The bi-objective problem is such that we 

aim to select a portfolio of assets which minimizes the portfolio risk while at the same 

time maximizing the portfolio return such that its gap to the supplied target return is 

made as small and as negligible as possible. The chapter also provides an explanation 

to some set of popular performance and evaluation metrics which would be used to 

assess the performance of our algorithms amongst themselves as well as against a well
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known non-linear optimization solver (The CPLEX). The chapter concludes with 

discussion of the results obtained for the solutions of the classical PSP from the solver 

and our implemented algorithms.

The fifth chapter was dedicated to discussing the details involved in the 

implementation of the constrained PSP. Because of the challenges involved in dealing 

with a constrained formulation; we decided to give a thorough explanation on how we 

represent a candidate solution -  which involves two different sets; the integer set of 

assets’ indices that constitutes a candidate portfolio and a set of real numbers 

representing the actual portfolio funds invested in the corresponding elements 

(indices) in the integer set. The chapter went ahead to provide a detailed explanation of 

the two neighbourhood move definition strategies developed in this research (which 

form integral parts of this research’s contribution). The first one (entitled IDDIT) is 

meant to serve our Local search algorithms; while the other (which is more advanced 

having IDDIT-like operations and some forms of guidance) is meant to serve our 

swarm algorithms. The chapter also discusses the type of repair mechanism 

implemented which is aimed at enforcing feasibility and constraints satisfaction. The 

chapter concludes by discussing the results and evaluation of the algorithms.

Chapter six is meant to assess how well our algorithms (PSO and SWAN) perform in 

solving some other applications of optimization problems other than the PSP they 

were originally designed for. The chapter gave a very brief overview of some popular, 

but standard optimization test functions that are used to evaluate newly developed 

optimization algorithms. The search space’s terrain of most of these test functions are 

characterized by multiple local solutions which makes it quite challenging for any
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algorithms to easily locate the global solution. We decided to look at solutions of 

minimization problems for both constrained (involving PVD and G il constrained 

problems) and unconstrained instances (involving De Jong’s, Rastrigin, Goldstein- 

Price, Shwefel’s and Beale test functions); after which we compare our results with 

some previous ones found in the literature. Going by the degree of success recorded 

by one of our algorithms (SWAN) in solving the PVD problem; we decided to answer 

a certain hypothetical question we formulated using one of the major statistical tools 

(statistical hypothesis testing) which can be used to establish the validity or otherwise 

of the hypothesis. The hypothetical statement we wanted to assess its validity was: 

“The average performance o f SWAN algorithm is better than that o f FSA,\  The 

hypothetical statement was tested under two different levels of significance (5% and 

1%) after which appropriate conclusions were drawn.

7.1.2 Future works

There are several ways in which any given research can be taken to the next level; in 

our own particular case, our future plan will center on dedicating much of our 

available time to further our research on metaheuristic algorithms designed to solve 

difficult optimization problems. We will be much interested in the technicalities that 

explains why a given algorithm behaves the way it does; this has to do with various 

algorithmic parameter settings and their effect on performance. We plan to, initially, 

begin with GA by thoroughly analyzing its various parameter settings (involving 

crossover and mutation probabilities, choice of suitable number of chromosomes, 

elitism issues and many more). This drive is motivated by the relatively poor 

performance of the GA in solving (even the relatively simpler) unconstrained 

formulation of the PSP; we plan to give the algorithm another chance by thoroughly
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looking at the above mentioned factors in relation to how they were implemented to 

solve the problem at hand in order to see if the algorithm would live to its expectations 

as one of the best performing EAs.

SWAN has, undoubtedly, proved itself as a very promising (hybrid) algorithm, whose 

success can be credited to the diversification power of PSO coupled with the 

intensification potential of SA. The algorithm was found to be very competitive, while 

at the same time excelling in producing very good results, irrespective of whether it is 

PSP or other applications of optimization problems. As part of our future work; in 

order to fully understand the behaviour of the (SWAN) algorithm and to explore more 

of its capabilities, we plan to implement it in such a way that the SA part comes before 

the PSO part, and this essentially means to start with the SA processes until 

convergence, after which the best solution found will be used to (further) generate 

some (particles) candidate solution which would serve as the key players in the 

subsequent PSO processes; by doing so, we hope to come up with even stronger 

algorithm having better search abilities.

We also plan to raise the difficulty level of our proposed PSP model by incorporating 

additional real world constraints (such as class/sector constraints, transaction costs, 

roundlot constraints and even integer variables formulation); so that the model will be 

as representative of investors’ real world decision options as possible; and these would 

consequently leads to the development of even more advanced and intelligent 

neighbourhood structures for both our local searches and swarm algorithms.
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APPENDIX 1

Endogenous

In this section, we want to illustrate (with a very small numerical example) the 

endogenic nature ot a semicovariance matrix (which is one of the vital inputs in the E- 

S portfolio optimization problem) computed using equation 2.5.1(d) as suggested by 

Markowitz f 103].

Consider a set of two fictitious assets {Asset 1 & Asset2) with annual returns expressed 

in % (D6:E15) over a ten-year period from 1997 through 2006. Columns F(F6:F15), 

G(G6:G15) and H(H6:H15) in Table I below respectively represent portfolio return 

values for three different portfolios in which the first invested 80% in Asset 1 and 20% 

in Asset2, the second invested 40% in Assetl and 60% in Asset2\ while the last 

invested 10% in Assetl and the remaining 90% in Asset2.

A B C D  E F G H J  ... .. J K L f.l 1 0 P Q 5 _ T U V

2 Proving th e  E ndogeneity  of Sem icovariance M atrix com pu ted  based  on M arkow itz ' [2] suggestion  as in eq u a tio n  2 .5 .1 (d )
i] Benchmark, B = 0.01
4 Returns for diff Portfolio Configurations 80% - 20% Portfolio 40% - 60% Portfolio 10%-90% Portfolio
5 s /n o  YEARAssetlAsset2 801i -20 SAOH-OO" 10% - 905: CondRet_AssetlCondfiet_As5et2 Product CondRet_Assetl CondRet_Asset2 Product C ondR et.A ssetl CondRet.A sset2 Product

1 1997 0.310 -0.212 0.206 -0.003 •0.160 0.000 0.000 0.000 0.300 -0.222 -0.067 0.300 -0.222 -0.067
7 2 1998 0.267 -0.093 0.195 0.051 -0.057 0.000 0.000 0.000 0.000 0.000 0.000 0.257 -0.103 -0.026

3 1999 0.195 0.368 0.230 0.299 0.351 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OM 0.000
4 2000 -0.101 -0.272 •0.135 •0.204 •0.255 ■0.111 •0.282 0.031 •0.111 -0.282 0,031 -0.111 -0.282 0.031

10 5 2001 -0.130 -0.235 -0.151 •0.193 •0.225 -0.140 •0.245 0.034 •0.140 -0.245 0.034 -0.140 -0.245 0.034

11 6 2002 -0.234 -0.186 -0.224 •0.205 •0.191 -0.244 -0.196 0,048 -0.244 •0.196 0.048 -0.244 -0.196 0.048
12 7 2003 0.264 0.245 0.260 0.253 0.247 0.000 O.OM 0,000 0.000 0.000 0.000 0.000 0.000 0,000

13 8 2004 0.090 0.076 0.087 0.082 0.077 ' 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000
14 9 2005 0.030 0.402 0.104 0.253 0.365 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 10 2006 0.136 0.069 0.123 0.096 0.076 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16
17 Endogenous SemiCov Matrix 0.009 0.011 0.018 0.005 0.025 0.002

18 based on equation 2.5.1(d) 0.018 0.023 0.024

19
20 Portfolio SemiVariance 0.010 0.013 0.020

21 based on equation 2.5.1(h)

Figure 41: Proving the endogeneity of semicovariance matrix

Now suppose the benchmark return (cell L3), B = 1%. Table I shows among other 

things, the conditional returns of Assetl (CondRet_Assetl) [cells K6:K15] computed
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using equation 2.5.1(d) (Chapter Two). When any of the return values of the 80% — 

20% portfolio [cells F6:F15] outperformed the benchmark (B = 0.01), the 

corresponding conditional return value will be 0. But when the portfolio’s return value 

is outperformed by benchmark, the corresponding conditional return value will 

definitely take a negative value [Recall (Ri, -  B) in equation 2.5.1(d)]. To clarify what 

has been said; the conditional return of Assetl takes a value of 0.0 (cell K7) in 1998, 

because the 80% -  20% portfolio yielded a return value of 0.195 (cell F7), thereby 

outperforming the benchmark; similarly, it takes a value of -0.14 (cell K10) in 2001 

[Recall (Rit -  B)\, because the 80% -  20% portfolio yielded a return value of -0.151 

(cell F10), thereby underperforming the benchmark. Similar approach was executed to 

obtain conditional returns for Asset2 (cells L6:L15); and the next column (cells 

M6:M15) was just the product of the two preceding columns (K6:K15 and L6:L15).

We now explain how we compute the elements of the Endogenous Semicovariance 

matrices (K17:T18) from equations 2.5.1(c) and 2.5.1(d). Sticking to the 80% -  20% 

portfolio example; now by squaring the conditional returns of Assetl and taking their

average [refer to equation 2.5.1(c)] we obtain 5Xse/i(o.oi) -  0.009 (cell K17). By

executing similar operations with conditional returns of Asset2 we obtain

S L , 2 ( 0 . 0 I )  =  ° ' 0 1 8  ( Cel1 L 1 8 )> W h ' l e  S^nA,,e,2(0.0,) =  0 -0 1  1 ( C e , ]  L 1 ? )  r e S U l t S  d i r e C t , y  

from equation 2.5.1(d). Thus, it follows from equation 2.5.1(h) that the semivariance 

of the 80% -  20% portfolio (cell K20) is:

[(0.8)2 (0.009) + (0.2)2 (0.018) + 2(0.8)(0.2)(0.011)} = 0.010. The corresponding

values for 40% -  60% portfolio (cell 020) and 10% -  90% portfolio (cell S20) are 

respectively 0.013 and 0.020.
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Now, it is clear just from the two-asset example considered, the semicovariance 

matrices, although resulting from the same expressions [equations 2.5.1(c) and 

2.5.1(d)] and same set of asset returns (cells D6:E15) are remarkably different and this 

is because their elements depend on the asset weights, hence endogenous.

Exogenous

In this section, we want to illustrate why the semicovariance matrices obtained using 

Estrada’s [49] heuristic as in equation 2.5.1(g) are exogenic. Table II below 

reproduces the returns over the 1997 -  2006 of Assetl, Asset2, 80% -  20% portfolio, 

40% -  60% portfolio and 10% -  90% portfolio all taken from Table I above. As 

already shown above, the elements of the semicovariance matrices that result from 

equations 2.5.1(c) and 2.5.1(d) for the 80% -  20% portfolio are different from those of 

the 40% -  60% portfolio as well as those of the 10% -  90% portfolio, thereby 

confirming the endogeneity of the Markowitz’ definition of semicovariance.

Recall that, with Markowitz definition of semicovariance, the knowledge of whether 

portfolio’s return (and not assets’ return) underperformed the benchmark B is 

required (thereby generating the endogeneity problem discussed above). However, 

with Estrada’s definition too, knowledge of whether assets’ {and not portfolio’s) 

return underperformed the benchmark B is needed; and as will be shown the resultant 

semicovariance matrices are invariant of the portfolio configuration considered, and 

are thus symmetric as well as exogenic.
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A 0 C D E F G h i  J K L M « 0 P Q • R 5 T U V

Proving th e  Exogeneity  of S em icovariance  M atrix co m p u ted  b ased  on E strada 's [20] suggestion  as in eq u a tio n  2.5 .1(g)
Benchmark, 8 = 0.01

Returns lor diff Portfolio Configurations EOS • 20% Portfolio 4054 • 6031 Portfolio 10S - 90S Portfolio
s /n o  YEAR A ssetl Asset2 8031 • 205/ AOri • 60: 10* • 90S CondRet_ A ssetl CondRet_Asset2 Product C ondftet_Assetl C ondRet. Asset2 Product C ondRet.A ssetlC ondR et Asset2 Product

1 1997 0 310 -0.212 0.206 -0.003 •0.160 0.000 ■0.222 0.000 0.000 -0.222 0,000 0.000 -0.222 0.000
2 1998 0.267 -0.093 0.195 0.051 •0.057 0.000 •0.103 0.000 0.000 -0.103 0.000 0.000 -0.103 0.000
3 1999 0.195 0.368 0.230 0.299 0.351 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000
4 2000 -0.101 -0.272 •0.135 •0,204 •0.255 •0.111 ■0.282 0.031 -0.111 •0.282 0.031 •0.111 •0.282 0.031
5 2001 -0.130 -0.235 •0.151 -0.193 •0.225 -0.140 •0.245 0.034 -0.140 •0.245 0.034 -0.140 -0.245 0.034
6 2002 -0.234 -0.186 -0.224 •0.205 -0.191 -0.244 -0.196 0.048 -0.244 -0.196 0.048 -0.244 -0.196 0.048
7 2003 0.264 0.245 0.260 0.253 0,247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 2004 0.090 0.076 0.0E7 0.082 0.077 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 2C05 0.030 0.402 0.104 0.253 0.365 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 2006 0.136 0069 0.123 0.096 0.076 0 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Exogenous SemiCov Matrix 0.009 0.011 0.009 0.011 0.009 0.011
based on equation 2.5.1(g) 0,024 0.024 0.024

Portfolio SemiVariance 0.010 0.015 0.021
based on equation 2.5.1(h)

Figure 42: Proving the exogeneity of semicovariance matrix

By considering again a benchmark return, B of 1% (cell L25), we can compute the 

four elements of the 80% -  20% portfolio semicovariance matrix as follows: We now 

redefine the conditional returns [CondRet_Assetl (K28:K37) & CondRet_Asset2 

(L28:L37)] to take a value of 0.0 when the corresponding asset return is larger than 

(thus outperforming) the benchmark B; and to take the value of the difference (R,-, -  B) 

when the corresponding asset return is smaller than (thus underperforming) the 

benchmark B.

To clarify further, the conditional return of Assetl in 1997 takes the value 0.0 (cell 

K28), due to the fact that, Assetl delivered a return value of 0.31 (cell D28) thereby 

outperforming the benchmark; however, in 2002 it took a negative value {Rn — B) o f — 

0.244 (cell K.33), because the same Assetl now yielded a negative return o f -0.234 

(cell D33) thereby underperforming the benchmark B of 1%. It is important to note 

that, because these conditional returns (for both Assetl and Asset2) depend on their 

corresponding original asset (and not portfolio) returns underperforming the 

benchmark, they are very relevant not only to the 80% — 20 /o portfolio, but to other
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portfolios of any kind of configuration (whether it is 10% -  90%, 50% -  50% and/or 

even 1% -  99% ).

The four semicovariance terms for the 80% -  20% portfolio that follow from Estrada’s 

equation 2.5.1(g) can be computed as follows: By squaring the conditional returns of 

Assetl (K28:K37) and taking their average we obtain />j.w.e/l(00i) -  0.009(cell K39) and

^Asseti(o.o\) “  0.024 (cell L40) is obtained in similar fashion from conditional returns of 

Asset2\ while £ /(i,.eM/|,w/2(o.oi) -0 .011  (cell L39) is obtained by taking the average of

the elements in the product column (M28:M37). As described in illustrating 

endogeneity of the semicovariance matrix, we can, in similar way, compute [from 

equation 2.5.1(h)] the semi variance of the 80% -  20% portfolio (cell K42 by:

|(0 .8 )2 (0.009)+ (0.2)2 (0.024) + 2 (0 .8)(0.2)(0.011)} = 0.010. The corresponding

values for 40% -  60% portfolio (cell 042) and 10% -  90% portfolio (cell S42) are 

respectively 0.015 and 0.021.

It is important to note that, the semicovariance matrices for the 80% -  20% portfolio, 

40% -  60% portfolio and the 10% -  90% portfolio have te same number o f  elements 

with all corresponding terms being equal and the only difference is in the different 

weights allotted to the assets in different portfolio configurations. It is also equally 

important to note that, the values for the portfolio semivariance using Estrada’s 

approximation are either equal (K42 = K20) or very close (042 = 020 & S42 = S20) 

to the actual values they tend to estimate.

Page 263 of 277



APPENDIX 2

Justification for algorithms param eter choice

Although, algorithmic parameter settings are problem-dependent; we decided to run 

our algorithms several number of times in order to have an idea about the best 

parameter choice for our implemented algorithms. The figures and tables under each 

algorithm show the results obtained after such experimental runs were conducted. In 

each case, we reported the time taken (in seconds) for the algorithm to generate an 

entire UEF (consisting of 200 portfolios). We further computed the mEd to measure 

the distance between the UEF generated by a particular setting and the optimal UEF 

generated by a non-linear optimization solver -  CPLEX 11.2. In all cases, the smaller 

the numerical values of these measures, the better the algorithmic settings.

SA parameter choice decisions

Going by the fact that SA has several parameters needing proper and careful tuning, 

we decided to run the algorithm several times with different parameter settings in 

order to come up with a set of parameter combinations that seem to be able to estimate 

the (approximate) PSP Pareto front better, and in a computationally reasonable time 

frame.

In order to come up with parameter combinations that will produce good results for

our SA implementation, we decided to run the simulation several times using different

set of parameter combinations. The set of parameters collectively known as cooling

schedule comprises of the Initial temperature (T0), the cooling rate (a), the length of

Markov chain (AO and the final temperature (7». We tested several cooling schedules,

but due to time and space constraints, we are only able to report the performance of
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five of them. In all the five cooling schedules (CS1 -  CS5) reported, the initial and 

final temperatures were pegged at 1.0 and 0.001 respectively; while the cooling rate 

and length of the Markov chain were made to vary such that in all cases, the total 

number of iterations will be approximately 6600 (a little bit more than twice the 

number of iterations in our multi-agents techniques).

The following table gives a summary of the settings in each cooling schedule.

Cooling Schedules Cooling rate, a Markov Chain, N Total iterations
CS1 0.99063 9 6606
CS2 0.9 100 6600
CS3 0.8 213 6603
CS4 0.5 660 6600
CSS 0.25 1320 6600

Table 12: Summary of different settings on cooling schedules

The figure and table below show the results obtained by running SA using the above 

five mentioned cooling schedules.

U n con stra in ed  E ffic ien t frontiers fo r  the 31  assets d a taset generated
0.012 by SA  u sin g  d ifferen t C oo lin g  S ch ed u les

0.011

0.01

0.009

c
3  0.008 • CPLEX
"8 y  ■ csi
AC
O  0.007 /  • CS2

£ /  • CS3
U 0.006 /  * CS4
o /  * CS5

0.005 /
0.004 1
0.003

0.002
0 0.001 0.002 0.003 0.004  0.005

P ortfolio R isk
Figure 43: UEFs generated by different cooling schedules using Hang Seng dataset
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Cooling Schedules Time (s) ruEd

CS1 298.9 4.961-06

CS2 305.8 5.99E-06

CS3 300.5 7.89E-06

CS4 323.0 9.74E-06
CSS 326.3 6.91E-06

Table 13: Summary of objective values and time taken by different cooling schedules

From the figure above, mere eyeballing is not sufficient to reveal any difference 

whatsoever between the different UEFs generated by CPLEX and SA (using the 5 

cooling schedules -  CS1 through CS5); however, the neighbouring table shows some 

interesting results. Although, there is not much significant difference in the 

performance of different cooling schedules; it can easily be noticed that: CS1 

marginally outperformed the other cooling schedules (on the average) in terms of the 

mEd and the total time taken to generate a frontier of efficient portfolios. It is also 

interesting to note that, our results agree with and proved the importance of the 

suggestion made by Eglese [43] that: it is important for the (SA) algorithm to spend 

less time at extreme (higher and lower) values of the control (temperature) parameter; 

and this is exactly what our CS1 does, as the numerical value of its length of Markov 

chain is just 9 unlike the other CS whose length is more than 100 in each case, thereby 

wasting much time at both extremes of the temperature parameter.

Now going by the superiority of the average performance of CS1 over other cooling 

schedules (CS2 through CS5); we decide to implement all SA’s experimental runs 

with this cooling schedule.
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Parallel SA param eter choice decisions

This search method operates in similar manner as the SA, the only difference lies in 

the number of solutions dispersed over entire search space, hence parallel SA. 

Therefore, all the decisions (generic and problem-specific) reached in relation to the 

SA are as well adopted in this algorithm. However, we decided to fix the number of 

(parallel) solutions to the magnitude of the size (dimension) of our problem. So for our 

31 asset dataset, we generated 31 parallel solutions and each considers neighbours 

twice the dimension of the problem. With this method, we hope to obtain solutions 

that are at least as good as those obtained by SA.

TS parameter choice decisions

(i) Tabu Tenure: we tried some different set of values for the tabu tenure based on 

the empirical evidence obtained by running our algorithm quite a number of times. 

The reason behind choosing our tabu tenure value can be seen in the following chart 

and table

S/No Tabu Tenure lime (s) mEd
1 j 1.94.3 4.51E-04
1 5 207.1 5.79E-05
« - v

J tj 235.2 I.29E-06
A-a 11 271.1 1.02E-06
5 17 324,3 1.12E-07
6 21. 375.0 I..OGE-0S

Table 14: Summary of objective values and time taken for different sizes of tabu tenure

(ii) Tabu Region: After several independent runs we arrived at a reasonable 

Euclidean distance threshold value (between two neighbouring solutions) of 10'5.

(iii) Total Number o f Neighbours considered: This is set as in section 4.2.2.1 above.
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PSO param eter choice decisions

(i) The Acceleration Coefficients'. The following figure and table show the results 

obtained after running the PSO algorithm a number of times to reveal the effect of 

changing different values of acceleration coefficients (Ci & C2).

U nconstra ined  E fficien t Frontiers for  the 31 assets d ataset generated  
by P SO  using d ifferent A cceleration coefficients (C l & C 2) settings

0.011

0.01

0.009

EP 0.008
" 3
si
_0 0.007
‘o

• C P L E X

• C 1 = 0 ; C 2=2

• C l  = 2 ; C 2=0

• C l= 2 ;  C 2 —2

• C l  = 1 .5 ; C2=2

• C l= 0 .9 5 ;  C 2=2.955

0.006

0.005

0.004

0.003

0 .0 0 50 .003 0 .0 0 40 0.001 0 .002

Portfolio  R isk

Figure 44: UEFs generated by PSO using different acceleration coefficients settings using Hang Seng dataset

A cceleration coefficients Time (s) mEd
C1=0; C2=2 151.4 1.29E-06
Cl=2; C2=0 190.0 1.77E-03
Cl=2; C2=2 209.8 1.29E-07

Cl=1.5; C2=2 196.3 1.45E-07
Cl=0.95; C2=2.955 189.5 1.17E-07

Table 15: Summary of objective values and time taken for different settings of acceleration coefficients
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From Figure 45 above, it is hard to notice any difference in the UEF generated by 4 

different settings other that of C\=2 and C2=0 (green points) which plainly deviates 

from the optimal and the remaining UEFs. However, from the table, it can be seen 

that, the worst performance of the algorithm in terms of (mEd) occurred when C\ = 2, 

and C2 = 0, and this setting literally means an implementation of cognition only PSO, 

because all particles are attracted to only their personal best solutions without the 

potential of exploring the entire search space; and each particle has no idea what or 

where the global best solution is positioned on the search space and neither does any 

particle’s movements get influenced in anyway by the global best solution; hence, the 

reason for the poor performance. On the other hand, the implementation of the social 

only PSO (where Ci = 0 and C2 = 2), in which all particles cooperate with one another 

by using information from the global best solution to continue with their search 

trajectories (without following any personal experience) was found to be superior (in 

performance) than the cognitive only implementation, and this result is in agreement 

with what was obtained by Kennedy [871.

Kennedy and Eberhart [88] in their original PSO implementation suggested for 

acceleration coefficients’ setting of Ci = C2 = 2. Based on our PSP, this setting yielded 

a better result than either the cognition or social only implementations, with an mEd = 

1.29E-07 taking approximately 210secs to generate the entire UEF of 200 portfolios; 

and this (we believe) is not unconnected with the fact that: although, the social factors 

seemingly, by empirical evidence, play more important role (in PSO’s performance) 

than their cognitive counterparts; the combination of both (cognitive and social) 

components play even more important role in PSO s successful implementation.
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We further explored the potential of our algorithm, by trying different settings to the 

one suggested in literature, in which we notice an improvement in the algorithm’s 

performance when the cognitive (Ci) factor takes a value slightly less than one and the 

social factor (C2) takes a value greater than two. After different settings were tried and 

several experimental runs conducted, we finally settled on: C j = 0 . 9 5  a n d  C 2 = 2 . 9 5 5 .  As 

can be seen from the table above, this setting provided a better result (in terms of mEd) 

in comparison to all the results reported therein and faster (in terms of time taken) in 

comparison to the results provided by the three settings just above it in the table. It 

provided the smallest value of mEd = 1.17E-07 and was found to take on average less 

than one second for each of the generated points on the UEF (i.e 189.5 secs for 200 

points on the UEF).

(ii) The Inertia  W eight:

The Figure and table below shows the effect of changing inertia weight, w, in different 

experimental runs to generate UEF.

Unconstrained Efficient frontiers for the 31 assets dataset generated
by PSO  using different Inertia W eight (w) settings

0 o.OOl 0.002 0.003 0 .004  0 .005

Portfolio Risk
Figure 45: UEFs generated by PSO using different Inertia weights settings using Hang Seng dataset
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Inertia Weight, iv Time(s) mEd
w = 0 49,0 2.79E-03

TV =0,1 155.5 l.M -0 5
tv=0.4 171,7 3.39E-06
w=0,9 197,3 9.951-07

0,4<=n<= 0,9 190,1 3.19E-07
Table 16: Summary of objective values and time taken for different settings of Inertia Weights

From Figure 45 above, the only UEF that deviates from the optimal one (generated by 

CPLEX 11.2) was the one generated by setting w = 0 (see red points). This setting 

literally means, particles’ decisions on their next position in the search space is not in 

any way governed by the previous velocity in the previous time step. In agreement 

with the results of Shi and Eberhart F1301, it is easily noticeable from the above table 

that, as the inertia weight, w value approaches unity; there is an apparent improvement 

of the algorithm’s performance, though with an accompanying time-cost 

consequences. From the table, it can easily be seen that, there is a steady improvement 

in the mEd values (2.79E-03 to 1.28E-05 to 3.39E-06 to 9.94E-07) for the respective 

settings when w takes values: w = 0, w = 0.1, w = 0.4 & w = 0.9.

Going by the suggestion of Kendall and Su [86] and in order to allow our algorithm to 

properly explore a very large area of the search space at the beginning of the 

simulation runs and to further refine the search at later stage, we decided to adopt the 

dynamic approach in which the inertia weight, w, initially takes the maximum value of 

0.9, and as the search progresses it takes different values within the real interval [0.4, 

0.9] up to the point where it takes the minimum value of 0.4. This setting was found,
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among other different settings tried, to be good in estimating the UEF as well as 

reasonable in the amount of time taken to generate such a frontier.

Going by the fact that, the dynamic setting (in which the inertia factor, w, takes values 

within a real interval [0.4, 0.9] inclusive) provided a better result than all other results 

reported in the above table; we decided to adopt such setting in all our PSO 

implementations (both constrained and unconstrained).

(iii) Particles’ size: Particles’ size undoubtedly is a parameter to reckon with in any 

PSO implementation. In our PSO implementation, we tested several particles’ sizes 

involving 20, 31 (equivalent to the problem’s dimension), 50, 62 (twice the problem’s 

dimension), and 93 (thrice the problem’s dimension) for the 31 assets dataset.

U neon stra in ed E f ficien t F ron tiers f o r th e 31 a ssets d a ta set gen era ted 
by PSO using differentParticle sizes

0.011
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0.002
0.0050.0040.0030.0020.001
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Figure 46: UEFs generated by PSO using different particle sizes using Hang Seng dataset
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Particles Size Tirae(s) mEd
p=:o 76.9 3.34E-06
P = 31 117,7 1.64E-06
P = 50 188,1 6.66E-07
P = 62 236.S 8.16E-08
P = 93 351,9 4.711-08

Table 17: Summary of objective values and time taken for different particles' sizes

The UEFs generated in the figure above using the five different particles’ sizes settings 

cannot be easily distinguished, as they all seem to coincide with the one generated by 

the nonlinear optimization solver (CPLEX 11.2). However, the neighbouring table 

reveals the difference in performance (in terms of mEd) and time taken.

From the above table, it can easily be noticed that, performance improves with 

increase in the number of particles; however, this achievement has an accompanying 

costly consequences. This is because, the number of particles seems to be positively 

correlated strongly with the total time taken. Based on the result reported, we settled 

on a size of 50 particles in both constrained and unconstrained PSO implementations. 

This setting was found to be sufficient in obtaining near-optimal solutions, yet at a 

very reasonable time frame.

SW AN param eter choice decisions

As this method comes into being as a result of hybridizing PSO and SA, it is not 

strange to see that it combined parameters of both algorithms. We decided to run the 

algorithm with different number of settings in order to determine which one would be 

more appropriate in generating a UEF within a reasonable time frame. Although, we
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tried different settings, we decided to report only 5 among them out of which we 

consider the best in our implementation. Each setting comprises of five different 

parameter choices, namely: the acceleration coefficients (Ci & C2), inertia weight (w), 

PSO total iterations, SA’s cooling rate, a  and length of Markov chain, Nr.

The following table shows the different parameter choices under the 5 SWAN 

parameter settings

SWAN Parameter settings
Settings Acceleration coefficients Inertia Weight PSO iterations Cooling rate, a Markov Chain, N

setl C H , 95; 0 2 , 9 5 5 0,4<=w<= 0,9 2266 0.99063 1

set2 C1=0; 0 2 w =0 2274 0,9 11

set3 0 2 ;  0 0 IT = 0,1 2287 0,8 23

set4 Cl=2; 0 2 it=0,4 2290 0,5 71

set? 0 = 1 ,5 ;  0 2 w =0,9 2290 0,25 142

Table 18: Summary of different SWAN parameter settings

The SWAN parameter settings depicted in the figure above were meant to make sure 

that in the entire experimental run, a total of 3000 (for both PSO and SA parts) 

iterations are conducted as in other multi-agent techniques such as the PSO, GA and 

parallel SA.
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Unconstrained Efficient frontiers for the 31 assets dataset generated 
by SWAN using different parameter setting
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Figure 47: UEFs generated by SWAN using different parameter settings using Hang Seng dataset

Settings Time (s) mEd
setl 329.7 1.O0E-O7
s el 195.4 2.451-05
se t3 213.5 2.47E-05
set4 313.8 1.8 IE-06
setS 230.5 7.77E-07

Table 19: Summary of objective values and time taken for different SWAN parameter settings

Like other comparative UEF plots in this section; If not for some few number of 

points that deviated from the main frontier, it is difficult to distinguish the UEF plots 

generated by different settings. However, the neighbouring table reveals that the best 

performing setting is setl with mEd of 1.00E-07.
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GA param eter choice decisions

(i) Population size: This refers, to the total number of individuals that are initially 

begin with and continued to be maintained throughout the search history. These are 

synonymous to particles and parallel solutions in PSO and parallel SA 

implementations respectively. During the initial implementation of this algorithm we 

tried a population size of 100 (more than 3 times the dimension of our smaller dataset), 

but as we kept on improving it, we found that as few as 31 individuals often provide 

very competitive solutions.

(ii) Generations’. This is synonymous to the total number of iterations in other 

search methods. So to keep in tune with other algorithms, we set the total number of 

generations to complete a cycle at 2700, but after several simulation runs we found out 

that 1000 generations is enough to provide a very good solution.

(iii) Genetic Operators'. A typical GA uses three to four basic operators: selection, 

crossover, mutation and elitism to direct the population of individuals towards 

convergence to a global optimum. These operators are discussed below:

(a) Selection: Although, there are several ways in which this operation can 

be executed, for this research we found roulette-wheel selection approach 

(which is proportional to the fitness of an individual) more convenient to our 

type of problem.

(b) Crossover: The following figure and table justifies the choice of the 

type of crossover and the corresponding probability that seem to give an
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approximate estimate of the UEF.

(c) Mutation: The following figure and table justifies the choice of the type 

of the probability of mutation that seem to give an approximate estimate of the 

UEF.

(d) Elitism: We decide to always carry fittest individuals amounting to 10% 

of the entire population size to the next generation as part of our elitism 

operation.

(iv) Population replacement: As in Chang et al [201, we employ a steady-state

population replacement approach, in which pair of newly born children replaces a pair 

of less-fit members of the old population and the process continues until the desired 

population size is attained.
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