
Heuristic Approaches to Portfolio Optimization

by

Abubakar Yahaya

BSc (Statistics)

Usmanu Danfodiyo University, Sokoto, Nigeria.

MSc (Decision Modelling & Information Systems),

Brunei University, UK.

This thesis is submitted for the award of degree of

Doctor of Philosophy

in the

Department of Management Science,

Lancaster University Management School

December 2010.

ProQuest Number: 11003476

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11003476

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

LANCASTER 11

' -

Dedication

To

My lovely and caring wife: Amina

My beautiful and lovely daughter: Fatima.

My gorgeous sons: Muhammad, Ahmad and (my little Lancastrian) Al-Ameen.

Page 2 of 277

LANCASTER

Acknowledgement

All praises and thanks are due to Almighty Allah (TWT), the LORD of all the seven

heavens and earths alike. He is the LORD of whatever is contained therein. I praise

Him, thank Him and ask for His forgiveness over all my sins and shortcomings. He is

the provider of all provisions and sustenance to all living things. It is in the Name of

such Allah (TWT), I begin to write this thesis.

May the Peace, Blessings and Mercy of Allah (TWT) be with His most beloved slave,

Prophet and Messenger, our Saviour and our Guide in person of Sayyidina

Muhammad (SAW). May the same blessings be with the rest of Prophets and

Messengers of Allah, pure (Ahl-Albayt) descendants of the Holy Prophet, his

honourable companions and all those who follow the guidance of Islam until the Day

of Resurrection.

I would like to acknowledge the assistance and support I received from my supervisor,

Professor Mike Wright, who upon all his numerous commitments sacrificed most of

his precious time in supervising my research progress over the whole o f my three-year

research journey. I really say a big “thank you” for all your patience and support. I

would also like to thank my viva voce examiners who managed to arrange a suitable

Page 3 of 277

time for my viva, and most especially Professor Richard Eglese who has been part of

my examiners right from my upgrade up to my final viva. Thank you, Richard.

I would like to use this medium also to thank many, who positively touch my life in

one way or the other. The first and foremost is my mum: Hajiya Khadeejatul Kubra

whom I revere, love and admire more than any living mortal. She brought me up

morally, guides me, prays for me, advices and put me on the right track. As for me,

she really did her duty, and I’ll continue to appreciate her efforts, generosity and love

towards me up to the end of my life. Thank you, Mum.

My beloved, respectful, obedient, and caring wife: Amina Hassan Abubakar (Mrs)

deserves all praises and thanks. Her advice, assistance, care, prayers and love helped a

lot in shaping my life and our children’s. I appreciate (and will continue to do so) the

sacrifices she made during my three-year academic journey and the role she plays as a

wife and as a mother to our children. I Love you because you are really great. Remain

blessed, Darling!

I would like to thank a colleague and friend of mine: Dr. Amadou Gning (Department

of Computing, Lancaster University, UK) whose invaluable criticisms and advices

helped in shaping the composition of this thesis. He helped me a lot in my domestic

and academic struggles. Amadou! May Allah (TWT) reward you immensely.

My brothers, sisters, in-laws, friends and well-wishers deserve a word of

commendation for their constant support and prayers in actualization of my academic

dreams; thank you all and May Allah (TWT) continue to help and guide us all.

Page 4 of 277

I would also like to acknowledge the support I received from my friends at Lancaster

University Islamic Society (LUISOC). Similarly, I would like to acknowledge the

support and assistance of Miss Gay Bentinck (PhD Coordinator, Department of

Management Science, Lancaster University, Lancaster); Thank you all.

Finally, I would like to express my heartfelt appreciation to the management of

Petroleum Technology Development Fund (PTDF, Abuja) for funding my PhD

programme.

Page 5 of 277

LANCASTER J 1
U N I V L R S : :

Declaration of Authorship

I, Abubakar Yahaya, declare that this thesis entitled “Heuristic Approaches to

Portfolio Optimization” is my own work and has not been submitted for the award of

any similar or higher degree elsewhere.

Page 6 of 277

LANCASTER

List of Publications

(i) Yahaya, A. and Wright, M. B. (2009). Effect o f Initial Solution on Heuristics’

Performance: A Perspective from Mean-Variance Portfolio Optimization Problem.

Presented at the 1st Student Conference in Operational Research (SCOR2009) held at

Lancaster University, Lancaster, UK [March 27th - 29th, 2009].

(ii) Yahaya, A. and Wright, M. (2009). On Portfolio Selection Using

Metaheuristics. Presented at the 10th Annual Meeting of the EUropean chapter on

MEtaheuristics (EU/MEeting 2009) held at the Instituto Superior de Engenharia do

Porto (ISEP), Porto, Portugal [April 29th - 30th, 2009].

(http://www.dcc.fc.up.pt/eume2009/pdf/proceedings.pdf).

(iii) Yahaya, A. and Wright, M. (2009). Solving a Constrained Portfolio Selection

Problem Using Particle Swarm Optimization. Presented at the 3rd Annual Graduate

Conference on Social Sciences and Management held at Norcroft Centre, University

of Bradford, Bradford, UK [October 8th - 9th, 2009].

(http ://www.bradford. ac. uk/1 ss/gradschool/conference/abstracts .pdf).

(iv) Yahaya, A. (2010). Portfolio Selection Using Genetic Algorithms. Presented at

the 2nd Annual Postgraduate Research ‘Creativity and Change’ Conference held at

Lancaster University, Lancaster, UK on 20th March, 2010.

(http://createandchange.org.uk/)

(v) Yahaya, A. and Wright, M. (2010). S W A N -A hybridized approach for solving

Portfolio Selection Problems (PSP). Presented at the 2nd Student Conference on

Operational Research (SCOR2010) held at Sir Clive Granger Building, University

Park campus, University of Nottingham, Nottingham, UK [April 9th - 11th, 2010].

(http://www.scor2010.co.uk/downloads/scor proceedings.pdf).

Page 7 of 277

http://www.dcc.fc.up.pt/eume2009/pdf/proceedings.pdf
http://www.bradford
http://createandchange.org.uk/
http://www.scor2010.co.uk/downloads/scor

LANCASTER 1 1
U N I V L S J. \

Abstract

One of the most frequently studied areas in finance is the classical mean-variance

portfolio selection model pioneered by Harry Markowitz; which is also, undoubtedly

recognized as the foundation of modern portfolio theory. The model in its basic form

deals with the selection of portfolio of assets such that a reasonable trade-off is

achieved between the conflicting objectives of maximum possible return at a

minimum risk, given that the right choice of constituent assets is made and proper

weights are allocated. However, despite its enormous contribution to this branch of

knowledge, the model is not immune from criticisms ranging from those associated

with its in ability to capture the realism of an investment setting - such as transaction

costs, cardinality constraints, floor and ceiling constraints, etc.

In this research we extended the classical model by incorporating into it the cardinality

as well as the floor & ceiling constraints after which we implemented six different

metaheuristic algorithms to solve this advanced model. We then designed and

implemented some neighbourhood transition strategies to enable our designed

algorithms solve the problem in an efficient and intelligent way.

Furthermore, we proposed a new portfolio selection model with target-semivariance

(as defined in a previous research) as the objective, and constrained by additional real

life (cardinality and floor & ceiling) constraints.

Page 8 of 277

List of Tables

Table 1: Showing values of the mEd and average execution tim e..158

Table 2: Showing the C-metric values for all algorithms against each other for the Hang Seng

dataset.. 164

Table 3: Showing the C-metric values for all algorithms against each other for the FTSE100

166

Table 4: Showing the values of uniformity metric for all algorithms from the two datasets usedl68

Table 5: Showing the mEds and the average time (in secs) for the Hang Seng dataset........ 201

Table 6: Showing the mEds and the average time (in secs) for the FTSE100 dataset.......... 202

Table 7: Comparison of the results for the unconstrained optimization problems................ 218

Table 8: Comparison of the results for the G11 constrained problem..................................... 220

Table 9: Comparison of the results for the PVD problem... 221

Table 10: Possible decisions in a test of statistical hypothesis (TSH).................................... 224

Table 11: A TSH analysis between SWAN and FSA ... 227

Table 12: Summary of different settings on cooling schedules... 265

Table 13: Summary of objective values and time taken by different cooling schedules..... 266

Table 14: Summary of objective values and time taken for different sizes of tabu tenure ... 267

Table 15: Summary of objective values and time taken for different settings of acceleration

coefficients.. ..268

Table 16: Summary of objective values and time taken for different settings of Inertia Weights271

Table 17: Summary of objective values and time taken for different particles' sizes..............273

Table 18: Summary of different SWAN parameter settings... 274

Table 19: Summary of objective values and time taken for different SWAN parameter settings275

Page 9 of 277

List of Figures
Figure 1: Typical unconstrained efficient frontier..34

Figure 2: Typical pseudocode of an SA Algorithm ..90

Figure 3: Architecture of Division Algorithm..93

Figure 4: Architecture of Clustering Algorithm.. 95

Figure 5: Typical flowchart of a TS algorithm.. 102

Figure 6: Example of one-point crossover...109

Figure 7: Example of bit-flipping (mutation) operation... I l l

Figure 8: Typical GA operations’ flowchart..115

Figure 9: Neighborhood topology in PSO..121

Figure 10: Particle’s velocity & position update...125

Figure 11: Pseudocode of a typical PSO implementation..126

Figure 12: Implementation of a SWAN for PSP...128

Figure 13: showing mEds obtained by all the algorithms.. 157

Figure 14: showing mEds obtained by all algorithms for the Hang Seng and FTSE100 indices

respectively..................... 160

Figure 15: showing mEds of all the algorithms for the Hang Seng and FTSE100 Indices

plotted on the same axis..162

Figure 16: idR neighbourhood definition...176

Figure 17: idID neighbourhood definition.. 177

Figure 18: IDDIT (The neighbourhood structure for the local searches).................................. 183

Figure 19: showing the concept of particles’ move and jum p...187

Figure 20: Updating particles' score velocity.. 189

Figure 21: Computing score velocity parameters..190

Figure 22: Swarm techniques neighbourhood definition...191

Figure 23: An effective repair approach for constrained PSP formulation............................... 194

Page 10 of 277

Figure 24: CCEF for Hang Seng dataset (K=10, 8=1%)... 196

Figure 25: CCEF for Hang Seng dataset (K=10, 8=10%).. 196

Figure 26: CCEF for Hang Seng dataset (K=5, 8=1%)...196

Figure 27: CCEF for Hang Seng dataset (K=5, 8=10%).. 196

Figure 28: CCEF for Hang Seng dataset (K=5, 8=20%).. 197

Figure 29: CCEF for FTSE100 dataset (K=10, 8=1%)...198

Figure 30: CCEF for FTSE100 dataset (K=10, 8=10%)...198

Figure 31: CCEF for FTSE100 dataset (K=5, 8=1%)..198

Figure 32: CCEF for FTSE100 dataset (K=5, 8=10%)..198

Figure 33: CCEF for Hang Seng dataset (K=5, 8=20%)...199

Figure 34: Global & local optima of a two-dimensional function... 211

Figure 35: Graphical representation of De Jong's function (n = 2) .. 212

Figure 36: Graphical representation of Rastrigin's function (n = 2)...................................... 213

Figure 37: Graphical representation of Goldstein-Price's function (n = 2) 214

Figure 38: Graphical representation of Schwefel's function (n = 2) .. 214

Figure 39: Graphical representation of Beale's function (n = 2) ...215

Figure 40: A dissected cylindrical vessel showing design variables in PVD problem217

Figure 41: Proving the endogeneity of semicovariance matrix...259

Figure 42: Proving the exogeneity of semicovariance matrix...262

Figure 43: UEFs generated by different cooling schedules using Hang Seng dataset 265

Figure 44: UEFs generated by PSO using different acceleration coefficients settings using

Hang Seng dataset...268

Figure 45: UEFs generated by PSO using different Inertia weights settings using Hang Seng

dataset... 270

Figure 46: UEFs generated by PSO using different particle sizes using Hang Seng dataset..272

Figure 47: UEFs generated by SWAN using different parameter settings using Hang Seng

dataset... 275

Page 11 of 277

Table of Contents

Dedication.. 2

Acknowledgement... 3

Declaration of Authorship.. 6

List of Publications.. 7

Abstract...8

List of Tables..9

List of Figures..10

1.0 Introduction...15

1.1 Overview of the Research..15

1.2 Motivation of the Research..18

1.3 Why it is important..21

1.4 Why it is difficult..21

1.5 Aims of the Research... 24

1.6 Objectives of the Research...24

1.7 Research Contribution.. 25

1.8 Outline of the Thesis.. 27

2.0 Portfolio Selection Strategies... 30

2.1 Portfolio Selection: Classical Theory and Extensions..30

2.2 The Markowitz Mean-Variance m odel..30

2.3 Extensions of the Classical model: Objectives...36

2.4 Extensions of the Classical model: Constraints.. 41

2.4.1 The basic (Return and Budget) Constraints.. 42

2.4.2 The Floor & Ceiling constraints...42

2.4.3 The Cardinality constraints...44

2.4.4 Transaction roundlots restrictions..45

2.4.5 Turnover and trading constraints..46

2.4.6 Compulsory Constraints..47

2.4.7 Class Constraints..47

2.4.8 Non-negativity bounds..48

2.5 The Semivariance... 49

2.6 The Proposed (enhanced) Model.. 56

3.0 Overview and Applications of Heuristics.. 60

Page 12 of 277

3.1 Introduction on Heuristics/Metaheuristics.. 60

3.2 Applications of Heuristics/Metaheuristics.. 66

3.3 Heuristics in Multi-Objective Optimization problems.. 71

3.4 Metaheuristics in Portfolio Selection...76

3.5 Overview on some chosen Metaheuristics.. 80

3.5.1 Simulated Annealing (SA)..80

3.5.2 Parallel Simulated Annealing (Parallel SA)... 91

3.5.3 Tabu Search (T S)...96

3.5.4 Genetic Algorithms (GA)..105

3.5.5 Particle Swarm Optimization (PSO)... 116

3.5.6 SWarm ANnealing (SWAN).. 127

4.0 Unconstrained PSP Implementation..130

4.1 Practical Implementation of PSP: The Unconstrained case..130

4.2 Datasets used for the research...130

4.3 Algorithmic Implementation Details: Parameter choice decisions............................131

4.3.1 Problem-Specific Decisions... 132

4.3.2 Generic Decision Parameters:..136

4.4 Description of the bi-objective problem implementation.. 144

4.5 Handling the return and budget constraints...146

4.5.1 Handling Return Constraint:.. 146

4.5.2 Handling Budget Constraint:.. 148

4.6 Performance Metrics & Evaluation of algorithms.. 149

4.6.1 Convergence Metric:...151

4.6.2 Coverage Metric:... 152

4.6.3 Non-uniformity of Pareto front:.. 154

4.7 Results & Discussions... 155

4.7.1 Algorithmic analysis based on convergence ability:...157

4.7.2 Algorithmic analysis based on coverage ability:... 164

4.7.3 Algorithmic analysis based on uniformity of solutions:..................................... 168

5.0 Constrained PSP.. 170

5.1 The Constrained case .. 170

5.2 Solution Representation.. 173

5.3 Neighbourhood Structure for the Local Searches (IDDIT)...175

5.4 Neighbourhood structure for Swarm Algorithms...183

Page 13 of 277

5.5 The Repair M echanism.. 193

5.6 Results and Evaluation... 194

5.6.1 Results:.. 195

5.6.2 Evaluation:..199

5.7 Comparison with previous results...203

5.7.1 Comparison with Chang et al... 204

5.7.2 Comparison with Schaerf..205

6.0 Testing Algorithms on other problems..207

6.1 Some Applications..207

6.2 Global Optimization... 207

6.2.1 Mathematical Optimization.. 208

6.2.2 Standard Test Functions..211

6.2.3 Results and Discussions..217

6.3 Test of Statistical Hypothesis...222

7.0 Conclusion and Future Research..229

7.1 Conclusion & Future W ork... 229

7.1.1 Conclusion.. 229

7.1.2 Future works... 233

REFERENCES..235

APPENDIX 1 .. 259

APPENDIX 2 .. 264

Page 14 of 277

1.0 Introduction

1.1 Overview of the Research

Investments decisions, especially in financial (capital) markets are thoughtfully

reached, by individuals or fund managers (such as pension trustees, stock brokers, etc)

who use savers’ or other corporate entities’ monies to purchase a single asset or bunch

of assets with the sole motif of potentially maximizing their clienteles’ future expected

returns. However, any investment (and by extension, almost any type of financial

transaction) has an element of risk and/or uncertainty attached to it. This is so, because

the actual future outcome of the potential return involved in such a deal cannot be

guaranteed. Therefore it can be understood that, one basic feature of investment

opportunities is that their actual return cannot be stated with any precision, thereby

making them uncertain or simply risky, and this brings to light the inability of any

individual, fund manager, or any other third party to ascertain (with 100% confidence)

what the return on his investment will be in the very near or far away future.

Realistically, no investment with certain/guaranteed returns exist; however, treasury

bills and bonds are most of the times classified under the category of guaranteed-

retum (riskless) investments; but the true situation is that, even if (at the end of the

investment period) there is a certain rate of return for these types of investments,

whenever any natural phenomenon strikes - which may consequently trigger some

other uncertain phenomena (such as inflation); it will make their rate of return to

deviate from the normal trend, and hence not certain anymore.

The concept of risk or uncertainty in this context does not apply to only when the

dispersion (difference between the actual and expected return) is negative (downside

risk), but also applicable when it is positive (upside risk) which is due to consequences

Page 15 of 277

of “positive surprises or non-occurrences of some negative events” [1001. Fama [51]

who started a still ongoing research on information efficiency, believes that when all

the necessary information and expectations on future prices can be communicated by

the current prices, then the future payoffs and returns can be regarded and treated as

random numbers, this leads to the fact in the simplest case that the returns of an asset

can be said to follow a normal distribution which can be characterized by the expected

value (average or mean) of the returns and the variance (or standard deviation also

known as the volatility) and which are believed to explain all the information about the

expected outcome and the range of deviations from it. It is noteworthy at this juncture

that, the valuations as well as returns on an asset are therefore, practically highly

uncertain; this is because, had it been that these parameters were known with certainty,

the investors’ aim would be to set up a value maximization linear programming

problem.

Many financial problems (including risk management, derivative pricing, asset

allocation, model fitting and many more) which can be formulated as optimization

problems are of immense critical importance; but undoubtedly, the most important

among these classes of problems is the Portfolio Selection Problem (PSP) pioneered

by Harry Markowitz [101, 1031 whose main goal was to compute a portfolio of assets

(from a set of available assets) with minimum risk (quantified by portfolio’s variance)

subject to achieving a given level of return. The model, apart from being one of the

first mathematical frameworks providing investors with the tool to measure and

quantify portfolio risk, is of immense importance as it suggests and justifies

(analytically) portfolio diversification as a rational investment criterion, rather than

paying much attention to maximizing return as the only parameter of interest. The

Page 16 of 277

resultant theory is undisputedly regarded as the foundation stone of what is now

known as Modern Portfolio Theory (MPT).

The breakthrough made by this theory within the global financial investment arena led

to the recognition of the author’s contribution to global financial practice, and this

eventually resulted in the author’s conferment with the award of the prestigious Nobel

Prize (Sveriges Riksbank Prize in Economic Sciences) in 1990 together with M. H.

Miller and W. F. Sharpe for their pioneering contributions in the theory of financial

economics. Markowitz, in the early 1950s published his article in the Journal o f

Finance on portfolio construction strategies. The paper, entitled Portfolio Selection

[1011 has built the foundations of what is popularly referred to as mean-variance

portfolio optimization, mean-variance analysis and MPT. It is widely believed that,

the mean-variance analysis is highly influential in portfolio management practices. In

its basic form, it provides a mathematical framework for selecting assets to form a

portfolio based on their expected performance as well as the investors’ risk tolerance.

However, despite the globally-acknowledged breakthrough brought by this

optimization procedure more than half a century ago, it appears that this optimization

procedure is mostly utilized at the more quantitative firms; while at many other firms,

portfolio management remains a purely judgmental process based on qualitative and

not quantitative assessments [50]. This is so, because, quantitative efforts in most of

these firms seems to be directed at providing risk measures to investors and portfolio

managers. These measures mostly help the portfolio managers/investors to assess and

visualize the degree of risk involved in taking a particular portfolio, where it (risk) is

defined as underperformance relative to a mandate. It should be noted here as well,

Page 17 of 277

that the theory is a normative theory; in the sense that it describes a norm of behaviour

that investors/portfolio managers should follow in constructing a portfolio of assets

and this is in contrast to a theory that is actually being followed or adopted.

In our research, we intend to use some metaheuristic techniques to solve a constrained

portfolio optimization problem with (Target) semivariance as an alternative to the

Markowitz’ conventional risk measure (Variance), while at the same time

incorporating some real-world investment constraints - such as the cardinality and

floor & ceiling constraints. These metaheuristics are, mostly, high-level techniques

designed to guide some other (sub-ordinate) heuristics on a search space to find a very

good solution to wide ranging optimization problems without necessarily guaranteeing

optimality. They were found to be very successful as high-level criteria algorithms for

solving hard combinatorial optimization problems arising from various Artificial

Intelligence (AI) and Operational Research (OR) areas, such as the Travelling

Salesman Problem (TSP) and Constraint Satisfaction Problem (CSP).

1.2 M otivation of the Research

In the field of Operations Research/Management Science (OR/MS), lots of problems

believed to be of theoretical and practical importance are of a combinatorial nature.

Combinatorial problems involve determining values for discrete variables such that

some set of conditions/constraints are satisfied. These problems can be classed as

either optimization or satisfaction problems. In the former, the main aim is to find an

optimal configuration, ordering, grouping or selection of discrete objects usually finite

in number [93]. The most notable example of these types of problems is the well-

known TSP, in which the cardinal objective is to find the shortest (possible) route that

Page 18 of 277

the Travelling Salesman — who is to visit all cities in his domain - follows, which at

the end of the day will be found to minimize the distance covered by the salesperson

subject to the condition (constraint) that each city must be visited once and only once

before returning to his original point (city) of departure. Other examples include

vehicle routing, assignment, facility location and scheduling problems. For satisfaction

problems, a solution satisfying some restrictions/constraint has to be found. Graph

colouring, frequency assignment and resource allocation problems are the most

notable examples under this category.

It is sometimes easy to state a given combinatorial optimization problem, but finding a

solution to it might be very difficult. For instance, when we consider a TSP, there

exists no known algorithm that guarantees obtaining an optimal solution within a

polynomial time domain. In the same vein, no algorithm can guarantee in a

polynomial time, whether a given CSP is satisfiable or not. This type of phenomenon

widely encountered in solving many (real life) combinatorial problems led to the

emergence of an area of research popularly known as Complexity Theory 166, 5] -

which aims at categorizing problems based on the degree of difficulty inherent in

finding their solutions. Among these classes of problems, one (NP-hard) has a special

property that: for any of its members, no algorithm exists to date that can solve the

problem in polynomial time; and from the computational complexity perspective, if

any of the NP-hard problems is to be solved by an algorithm in a polynomial time,

then it is possible also for all problems in this complexity class to be solved in

polynomial time. From computational point of view, these problems are inherently

intractable', thus in the worst case scenario, exponential run time would be needed by

any algorithm attempting to solve an NP-hard problem. CSP, TSP and likewise a

Page 19 of 277

constrained PSP [84> 98] all belong to this class of problems and are therefore

regarded among the most difficult combinatorial optimization problems.

It should be noted that, there are many real life problems that are combinatorial in

nature upon which there is an urgent need for efficient algorithms. There are however,

two classifications of algorithmic approaches for tackling combinatorial optimization

problems, namely: the exact and the approximate.

In our research, we are considering an enhanced Markowitz model with two

objectives, in which semivariance (as an alternative measure to portfolio risk) is

minimized and portfolio expected return is maximized subject to achieving a given

target; we also incorporate some of the practical constraints, namely: the cardinality

and floor & ceiling constraints. This proposed model would, henceforth be referred to

as Mean-Semivariance Portfolio Selection Model (ESPSM).

As in the case of the enhanced mean-variance (E-V) model (with constraints); our

proposed ESPSM is also an NP-hard combinatorial optimization problem, due to the

introduction of binary variables that handle the cardinality of a portfolio f84, 981. For

any NP-hard problem, the only viable option for obtaining a very good solution within

a reasonable time frame is resorting to approximate algorithms such as Metaheuristics.

Metaheuristics are certain classes of heuristic techniques which are found to be

applicable to virtually all types of discrete optimization problems, and can also be

adapted for use on continuous problems. These methods include Genetic Algorithms

(GA), Simulated Annealing (SA), Ant Colony Optimization (ACO), Tabu Search

(TS), Particle Swarm Optimization (PSO) and others [151.

Page 20 of 277

As for this research, we seek to develop some solution algorithms to our proposed

model by designing and implementing six different metaheuristic algorithms, among

which two of them (SA and TS) are Local Search techniques, two (GA and PSO) are

Evolutionary Algorithms (EA), one (Parallel SA) is a parallel implementation of SA

and one (SWAN) is a hybrid of SA & PSO. All the aforementioned algorithms were

designed and coded in C++ programming language (which we learned specifically to

conduct this research).

1.3 W hy it is important

When we consider the need for efficient algorithms capable of handling difficult

optimization problems (both in academia and industry); we will come to the

conclusion that our research will be of immense importance in that regard. For

instance, our proposed (.ESPSM) model when successfully implemented will serve as

an alternative tool to investors/practitioners in optimizing their portfolios of assets

especially as it incorporates the investor more-preferred risk measure (the

semivariance) rather than the conventional variance measure. Similarly, the

metaheuristic techniques designed will be found to be very useful in finding good

solutions not only to most of the constrained formulations of the PSP within a practical

reasonable time frame, but also to some other difficult global optimization problems,

such as functions optimization (minimization/maximization).

1.4 W hy it is difficult

The special nature (NP-completeness) of the problem makes it difficult for the

conventional exact methods to arrive at an optimal solution in a reasonable time frame.

Consequently, we had to design some metaheuristic algorithms to handle the situation.

Page 21 of 277

When it comes to implementing the metaheuristic techniques developed, there are lots

of issues that made this task extremely difficult. These involve reaching decisions that

are peculiar to the metaheuristic algorithm in view and as well, issues involving

decisions that are problem-specific.

One issue that makes this research difficult is in the implementation of the algorithms

themselves to suit the nature of the PSP; as they need rigorous and very well focused

parameter fine tuning. This is because a very slight change in a single parameter value

may make the algorithm perform very (unexpectedly) poorly, and thus given the

number of parameters a particular algorithm possesses, it is extremely difficult to

achieve a set of parameters that work acceptably well.

Another challenge is in designing and developing our neighbourhood structure, since a

good neighbourhood structure can immensely improve the efficiency and effectiveness

of an optimization algorithm. In the preliminary design, we allowed a random move in

generating a candidate (neighbouring) solution, but unfortunately this decision was

found to be ineffective, in the sense that most of the solutions returned by the

algorithms were found to be of inferior quality which may not be unconnected with the

fact that the problem is continuous, while many of the techniques considered were

originally designed for, and are usually used for discrete problems. So in order to

improve our algorithms’ performance we had to be a little bit creative by introducing a

guided neighbourhood move which allows for increasing or decreasing a randomly

chosen asset’s weight from the current portfolio’s configuration. Our neighbourhood

definition also allows for the transfer of some fraction of an asset’s weight to another;

Page 22 of 277

and it occasionally considers insertion and deletion of new assets into and out of the

current configuration.

Another unexpected difficulty was encountered in enforcing feasibility of a given

candidate solution (in a constrained problem), especially after undergoing some

processes involved in the neighbourhood move. For instance, when an asset weight is

decreased by some specified (often known as step) value, and as a result it falls below

the minimum threshold allowed, then the asset index together with its corresponding

weight have to be deleted from the current portfolio’s composition, as a result of

which we were constantly being faced with a dilemma of how do we insert a new

replacement in the portfolio and what would be the weight of the newly introduced

asset; noting that, if the newly introduced asset’s weight is too large, the resultant

portfolio will be very different indeed from the current portfolio, and if it is set to take

a very small value, the resultant solution will be prone to entrapment in a local

optimum.

Going by the continuous nature of the PSP problem; in our TS implementation, we

were also faced with another difficult challenge on how to declare a particular move as

tabu (non-permissible). With the above in mind, we developed a new idea in which a

newly generated (candidate) neighbouring solution is considered to be within the tabu

region of the current, if the (Euclidean) distance between them does not exceed a

specified threshold value.

We must admit at this point that, implementing the constrained PSP in PSO/SWAN

was the topmost challenge encountered in this whole research. The PSO/SWAN is

Page 23 of 277

very suitable for the unconstrained PSP problem; while for the constrained case, even

if the algorithm managed to begin its search for the candidate solutions from a feasible

region, the moment all the particles (candidate solutions) undergo a velocity update

after which an eventual repositioning takes place, they would almost immediately lose

their feasibility status and further repairs need to be done in order to regain feasibility.

1.5 Aims of the Research

The aims of this research include:

• Designing a portfolio selection model that will adopt semivariance as an

alternative measure of portfolio risk.

• Designing a model that will reflect the actual real-life situation in the portfolio

selection decision, by adding extra real and practical constraints such as the

cardinality and buy-in threshold constraints.

• Solving some portfolio selection problems using some of the widely used

metaheuristic algorithms, test their individual robustness and at the same time

compare their respective performance in arriving at a very good solution.

• Solving some other difficult global optimization problems especially the

continuous types, such as the De Jong’s and Schwefel’s functions.

1.6 Objectives of the Research

The main objectives of this research include:

• To provide decision makers (investors, fund managers and other stakeholders

in financial investment) with the basic knowledge required to make an

intelligent and sound decision in constructing portfolios from the pool of

seemingly promising and non-promising assets, with the sole aim of

Page 24 of 277

optimizing conflicting trade-offs; involving maximization of expected return

while at the same time keeping risk as little as possible.

• To provide ideas and techniques of incorporating real life constraints

obtainable in any asset management industry such as Buy-in threshold and

Cardinality constraints and their resultant effect on the smooth curve of

efficient portfolios, also known as “efficient frontier”.

• To explore the robustness of the designed metaheuristic techniques in

producing solutions of high-quality in a PSP problem whether or not such a

problem is enriched by the so-called real life investment constraints.

• To test the capability of our designed algorithms in handling other difficult

optimization problems.

1.7 Research Contribution

This research contributes in investigating and improving methods for getting good

solutions to the enhanced Markowitz model while treating it as a 2-objective problem,

and thus potentially enabling better solutions to be found.

One of the main contributions this research offers is the design of a newly developed

(SWAN - SWarm ANnealing) algorithm, which is a hybrid of the PSO and SA.

Although, we are fully aware of similar implementations in the research community,

where PSO and SA are hybridized as in Wang and Li [1471; our implementation is

significantly different. This is because, in Wang and Li [1471 each of the generated

particles (candidate solutions) underwent processes involved in the SA technique after

which the best among them was declared the global best (,gbest) solution, then other

particles’ positions were updated according to the PSO update mechanism, and the

Page 25 of 277

process continued in similar fashion until convergence or a given stopping criterion

was attained. In our implementation, however, all the generated particles undergo all

the processes involved in the PSO technique until convergence, after which the global

(gbest) solution is passed to SA as a starting solution which will then keep on being

improved until a given stopping criterion is attained. By implementing the algorithm

in this way; we hope to obtain solutions that are at least as good as those returned by

either the PSO or the SA. This is because, in our implementation, we first aimed to

exploit the PSO’s exploratory capability by searching the entirety of the solution space

to obtain a very good starting solution to be passed to SA, which will then be used to

apply its intensification power (through successive decreasing temperature values) to

obtain possibly a finer and better solution.

Another important contribution this research has on offer is the introduction of a new

neighbourhood move structure geared towards guiding our Local Search methods

(especially the SA, TS and parallel SA) to obtain not only good, but hopefully near

optimal solutions. The move operations in the neighbourhood structure allows for

incrementing and decreasing an asset’s weight. It also allows for deleting an asset

from a portfolio whose weight violates a vital constraint. This neighbourhood structure

occasionally allows for the insertion of a new asset into the current portfolio with a

negligible weight; it also, according to some probability value, transfers some portion

of an asset’s weight to another. We call our neighbourhood move structure IDDIT

(Increase-Decrease-Delete-Insert-Transfer) as a result of the operations that are

randomly executed therein.

Page 26 of 277

We also developed and implemented another neighbourhood structure for solving the

constrained PSP problem using PSO and SWAN. This special (IDDIT-like)

neighbourhood structure has some aspect of guidance enabling it to perform well with

the algorithms it is designed for; as it allows for movement of particles (candidate

solutions) in the search space without compromising solution quality. Although the

particles use some information from their personal history and that of the entire

swarm; they update their positions in the search space devoid of the conventional

velocity and position update mechanisms, but rather, occasionally jump away from

their immediate neighbourhood in search of a better solution while at the same time

escaping entrapment in a local solution.

We also proposed a PSP model with target-semivariance (as defined in Estrada [47,

48, 49) as the objective (risk measure), while at the same time incorporating additional

real life constraints including the cardinality and buy-in threshold (floor & ceiling)

constraints.

1.8 Outline o f the Thesis

This section is meant to briefly relate to the reader what is to be expected in the

following chapters, sections and subsections in this thesis. The next chapter, after

providing an overview of the classical Markowitz E-V model, it also defines what

constitutes an E-V investor. Limitations and shortcomings of the classical E-V model

as well as possible extensions of the classical model are also discussed. The chapter

concludes by describing how a semivariance would be computed, after which follows

a thorough explanation about the implementation of our proposed mean-semivariance

portfolio selection model.

Page 27 of 277

Chapter three, among other things, provides some definitions of metaheuristics as

provided in the literature. A fairly detailed review of some literature on the successful

application of metaheuristic algorithms in other areas of research, as well as in finance

(portfolio optimization) is also reported. The chapter concludes with a fairly thorough

explanation of the six metaheuristic algorithms used in this research.

Chapter four provides all the necessary details required for the solution of the PSP’s

unconstrained case. The chapter also discusses some performance and evaluation

metrics which would be used to assess the performance of our algorithms amongst

themselves as well as against a well known non-linear optimization solver (CPLEX).

The chapter then concludes with discussion of the results obtained from the solver and

our implemented algorithms.

The fifth chapter is concerned with the solution of the constrained PSP. The chapter

contains a thorough explanation of the two neighbourhood move definition strategies

developed in this research (which form integral parts of this research’s contribution).

The first one is called IDDIT and is meant to serve our local search algorithms; while

the other (which is more advanced) is meant to serve our swarm algorithms. The

chapter concludes by discussing the results and evaluation of the algorithms in relation

to the constrained case outputs.

Chapter six is meant to assess how well our algorithms (PSO and SWAN) perform in

solving some other optimization problems other than the PSP they were originally

designed for. The chapter gives a very brief overview of some popular, but standard

optimization test functions that are used to evaluate newly developed optimization

Page 28 of 277

algorithms; these functions/problems include both constrained and unconstrained

cases.

We draw some conclusions in chapter seven; and we also provide a hint on what we

plan to do in order to take our research to the next level.

Page 29 of 277

2.0 Portfolio Selection Strategies

2.1 Portfolio Selection: Classical Theory and Extensions

One of the most important aspects of asset management is the process of intelligently

combining a set of attractive assets into a single master asset often called a portfolio of

assets. Realistically, these portfolios are strongly required to be optimal as far as the

trade-offs between the conflicting objectives of maximizing returns and minimizing

risk are concerned. However, before the advent of MPT, portfolio selection decisions

were purely hinged on qualitative assessments of the available assets, while the idea of

incorporating real-life constraints into the process of assets’ selection was almost

nonexistent.

2.2 The M arkowitz M ean-Variance model

The concept of MPT was pioneered for more than half a century by Harry Markowitz,

hence the name Markowitz’ Modem Portfolio Theory. Although, this modem concept

is unarguably regarded as the foundation stone of modem day portfolio theories, it is

simplistic and at the most basic level, in the sense that some of the underlying

assumptions upon which it is based cannot be met practically, while at the same time

turning a blind eye to the practical considerations of cardinality constraints (which

restricts the number of assets that should be incorporated into the portfolio), minimum

transaction lot sizes, transaction cost, liquidity constraints and much more. The most

prominent and important assumption of this theory, is that, investors are basically risk-

averse, a feature that measures the degree of investor’s preference on his/her

investment objectives. Literally, this means, if an investor is pushed to make a choice

between two assets with similar expected returns, but with varying magnitude of (risk)

variance, he/she would prefer the one with smaller variance (risk). Likewise, if he/she

Page 30 of 277

was to be presented with, and asked to make a choice between another set of (two)

assets with equal variance and different expected rate of returns, he/she would go for

the one with higher expected return.

Another reason or evidence supporting the above claim is Markowitz’s observation to

the fact that investors generally hold diversified portfolios. He argued that if the

reverse was the case, it would be observed that investors would always aim to hold a

single asset that has the likelihood of bringing higher expected return irrespective of

the risk involved in making such a decision. One more fact supporting the

aforementioned claim by Markowitz is the purchase of different types of insurance

(such as life, accident, health and automobile). Investors purchase insurance to avoid

future uncertainties even if the premium (they would pay) is higher than the expected

payoff of the insurance. Markowitz in the early 1950s, based on the presumption of

risk-aversion behaviour of many investors proposed a (two objective optimization)

model, in which: the expected return of an investment is maximized; and the risk

(Variance of return) of investment is minimized

Markowitz’ E -V model is normally regarded as the building block of the MPT [52]. It

gives a multi-objective optimization problem, with two output dimensions. The model

is based on the assumption that asset rate of returns exhibit the properties of a normal

distribution, which means the distribution of the rate of returns can be solely explained

or described by the first two moments (namely, expected value, E and variance, V) of

the distribution. So, the mean of the asset rate of returns (E) can be used as the

expected return in the long run period of time, while the variance of the asset rate of

Page 31 of 277

returns (V) can be used to denote the degree of riskiness involved in holding such an

asset in an investment decision; hence the term E -V model.

Suppose an investor is faced with a universe of n assets out of which he has to make

some choices in order to make up a portfolio of investments. Furthermore, assume that

the mean (or expected) rates of return of these n assets can be denoted by

rx, r2 , ... , rn and the covariances are denoted byov., for all assets i, j = 1, 2, . . . , n.

Then, a portfolio P consisting of these n assets with fractions of weights often denoted

by Wj is to be found, in which these fractions add up to unity. The observance of a

negative weight means short selling is allowed in the portfolio P. One way of defining

the problem facing a potential investor is that he should find a possible combination of

assets (portfolio) with least (minimum) variance, with expected value of the portfolio

fixed at some value R*P. Then a feasible portfolio with this minimum variance and

expected value can be found by formulating and solving a Quadratic Programming

(QP) problem as follows:

n n

Minimize cr2p = I I wi Gij wj 22(a)(i)
/=i y=i

Subject to

22(a)(ii)
/=i

2 > , = 1 22(a)(iii)
/=i
0 < w, < 1 22(a)(iv)

Where, is the expected rate of return for asset; R*P is the desired return from the

portfolio P; a /y is the covariance between asset i and asset j; <j2p is the minimum

value of portfolio risk at a given level of return; and wt is the weight allocated to asset

i.

Page 32 of 277

The above formulation is a Convex Quadratic Program due to the fact that the program

has a quadratic objective function, while the constraints (conditions) are made up of

both linear equalities and inequalities.

When the problem is solved for a set of R*P values, the entire efficient frontier for the

unconstrained problem can be estimated. It is now left for the investor to choose any

efficient portfolio depending on his specific risk/return needs. The efficient frontier is

composed of Pareto optimal portfolios, in which neither of the two criteria (risk and

return) can be improved without deteriorating the other.

If the possibility of short selling assumption is dropped, which means the fractional

weights of the selected assets must be non-negative (vt>. > 0) for all assets i — 1,2, ...

n then obtaining the finite maximum and minimum points on the variance-retum

(standard deviation-retum) plane is easy and straightforward. This can be achieved by

solving the Lagrangian formulation of the problem as follows:

Minimize (l - /l)]T ^ w, a v w; - 2 ,^ w, r(22{b){i)
/ = l y ' = l / = i

Subject to

2 > , = i 2 . i (b m
/=i

0 < w, < 1 2.2(b)(iii)
0 < X < 1 2.2(b)(iv)

X is a Lagrangian term and can take any real value within the interval [0, 1] to

determine what is known as efficient (non-dominated) portfolios - those that can

easily be seen to form a frontier (curve) of non-dominated portfolios on the Risk-

Retum plane. The Lagrangian term takes a value within the given interval based on the

Page 33 of 277

investor’s degree of risk aversion or tolerance. When X takes the value 1, the objective

function reduces to a linear function and thus the problem turns into a linear

programming problem which seeks to maximize portfolio expected (mean) return

irrespective of the degree of risk involved upon taking such a decision, and this type of

decision may be taken by risk-seeking investors who end up sinking all their

investment capital in only one single asset which seems to have the potential of a very

high return in the future and at the same time might be the one with the highest risk.

On the other hand, when X = 0, the objective function becomes a non-linear (quadratic)

function thereby turning the entire problem into a Quadratic Programming (QP) model

with the sole aim of minimizing the portfolio (variance) risk without taking the

portfolio expected return into cognizance. Upholding such kinds of portfolio

construction decision characterizes the investor as strongly risk-averse or risk-hating,

in the sense that his/her main goal is to minimize investment risk at all cost not

minding the meagre return he might end up with in the future. Figure 2.1 below shows

a typical efficient frontier of portfolios.

i i
E fficient Frontier

►
P ortfo lio R isk

Figure 1: Typical unconstrained efficient frontier

Page 34 of 277

The Markowitz problem provides the foundation for single-period investment theory.

The problem explicitly addresses the trade-off between expected rate of return and

variance of the rate of return in a portfolio. Once the Markowitz problem is

formulated, it can be solved numerically to obtain a specific numerical solution.

Limitations/Drawbacks of M arkowitz’ Model

There are basically some limitations/drawbacks the original E -V model carries along

with it, which consequently led to various criticisms thereby triggering further

research in the area. The most notable among these criticisms are:

1. It is a single period model: This means once investors have made their decision

concerning the allocation of wealth to different securities at the start of time

period, they cannot take any further action until the next time period. This, in

itself, is risky; because in the real life situation, portfolios are constructed such

that they can be traded at any time. Portfolio Rebalancing strategies were

proposed in Donohue and Yip [35], Jobst et al [84], and Calvet et al [16] to do

away with this drawback.

2. The estimation of the underlying parameter inputs (return, variance and

covariance) is considered to be another downside to this model. The

calculation of mean, variance and covariance of returns are considered to be

vital for accuracy reasons, as small errors can have large impact on the optimal

asset weights. Konno and Yamazaki [91] proposed a computationally-less

costly model without needing a covariance matrix as input.

Page 35 of 277

3. Variance, as a measure of risk has been attacked over the last few years. Some

investors/researchers including Konno and Yamazaki [9J_], Ballestero [7], and

Harlow [67] view variance as a false indication of true risk. Since investors

dislike negative deviation and embrace positive deviation from the mean, some

argue that semi variance may be a better measure of risk (including Markowitz

h im self- see Markowitz [103] for details).

4. To obtain accurate results a large data set is needed. With this model being

quadratic, the amount of time needed to solve for a large portfolio may also be

impractical.

5. The model failed to consider realistic investment constraints obtainable in

financial investment arena. These include, but are not limited to, floor &

ceiling constraints, cardinality, turnover constraint, and transaction costs. Lots

of researches were, and are still currently conducted to incorporate as many

realistic constraints as possible into the portfolio selection model. See for

instance Jobst et al [84], Chang et al [20], Crama and Schyns [25], Speranza

[134], Hamza and Janssen [68], Bienstock [J_0], and Lee and Mitchell [94].

2.3 Extensions of the Classical model: Objectives

In the pre-modem portfolio era; investors, portfolio managers, pension fund

administrators, and other stakeholders in the financial investment industry are very

much aware of the existence of investments’ return and risk. This means, they knew

(positive) return is desirable and is what pushes the momentum of investments; while

on the other hand, they believe there exists a risk (the undesirable component) attached

Page 36 of 277

to realizing any perceived or expected return; furthermore, the greater their feeling of

risk, the higher their feeling of uncertainty about realization of the expected return.

However, despite their skills, long term experiences and knowledge of market

behaviour and eventualities, the lack of any numerical measure to quantity risk of an

investment remained the most disturbing challenge of the time.

As already mentioned, a new page in investment science was opened when Harry

Markowitz developed in his seminal paper [1011, a mathematical programming model

for optimal portfolio selection. In the then newly developed model - based on

multivariate normality assumption of the asset returns - Markowitz showed that the

(desirable) portfolio return can be characterized and quantified by the first moment

(Mean), while the portfolio risk would be characterized and quantified by the second

moment of the distribution, also known as the variance. Since then, portfolio

management and optimization techniques have developed immensely and variance

became the most popular mathematical definition of (investment / portfolio) risk [81].

The resultant model is what would later be termed as the E-V paradigm of portfolio

selection and whose wider acceptability as the bedrock of modem portfolio theory can

never be overemphasized [7].

The Markowitz’ E-V model is composed of three main features, namely the objective,

constraints and variables. But most of the researches conducted in portfolio selection

result from modifications made to one or more of the above mentioned features. Due

to the theory’s stand on upholding the multivariate normality assumption of asset

returns, which eventually leads to making use of variance as a measure for quantifying

portfolio risk, the newly found theory was welcomed with various criticisms.

Page 37 of 277

Researchers who are opposed to employing variance as an appropriate measure for

portfolio risk have suggested alternatives. Ballestero [7], Konno and Yamazaki [91J,

Roy [1271. Huang [81], Feiring et al [53], Hamza and Janssen [68] were among the

few researchers who fall in this category. According to them, the normality

assumption of asset returns is not realistic, as asset returns are known to exhibit a high

degree of asymmetry, also known as kurtosis in Statistics. Furthermore, they argued

variance imposes a penalty on both positive and negative fluctuations relative to the

portfolio expected return. Their argument is based on the fact that the majority of

investors (especially Risk Averse), would normally be happy with the positive

fluctuations, while at the same time being unhappy with any return below their

expected or target return; after all, one of the main aim of investment is to gain a

positive return; and thus there is no basis or justification whatsoever to penalize it and

consider its contribution as an addition to the magnitude of asset’s or portfolio’s risk -

which is what variance does.

In order to prove the preference and efficiency of downside risk over the classical E-V

optimization framework; Feiring et al [53] sampled ten years data of monthly returns

for 60 Hong Kong stocks in order to make different portfolios for the purpose of

comparison. The model proposed, needed neither the normality assumption of the

asset returns nor the estimation of covariance matrix — which are both, vital in the

classical E-V paradigm - yet it was shown to have the potential of outperforming the

latter method in various runs of the algorithms. The study also found out “there is a

tendency that the longer the holding period, the higher the portfolio realized return”,

and this is not unconnected with the fact that: holding portfolios for a longer term

Page 38 of 277

results in very few transactions, which would consequently lead to paying low

transaction costs.

In another development, Ballestero [7] proposed a downside risk model (using Mean-

Semivariance approach) as a substitute to the conventional Mean-Variance paradigm.

Although (like the Markowitz model) computationally demanding, the risk measure

used is believed to be a better representative metric of portfolio risk. The model was

solely based on the validity of the beta regression equation proposed by William

Sharpe. The study provided an insightful and illustrative numerical example (using

fictitious data), on how to handle the multitude of computations involved therein. The

newly proposed model was found to beat its Mean-Variance counterpart in 5 of the 7

scenarios generated. At some coincidental (similar) solutions, it is observable that the

model has an edge over its mean - variance counterpart; in the sense that, it allows an

investor to select a portfolio that can satisfy three interesting constraints namely: (i)

expected return to his (investor’s) target, (ii) minimum variance (risk), and (iii)

minimum downside risk below the mean value. The research concluded by giving

some credits to the newly proposed model, especially in the computation of

semivariance matrix and its evident robustness, looking at how the model can be

possibly extended to “convert its objective function into a downside risk measure for

returns below some target or specific threshold other than the mean value”, and/or to

include some more relevant factors other than the market (single) one in estimating an

asset return.

Another research that viewed optimizing portfolios from the mean-semivariance (E-S)

perspective was conducted by Hamza and Janssen [68], and incorporating additional

Page 39 of 277

realistic constraints namely: transaction costs, minimum transaction units and

investor’s portfolio holding. Although, neither was supported by any numerical

example nor was it compared to any other benchmark, the research claims to be able to

solve real life mixed integer programming problems in a short computational time

when the model is incorporated in a suitable heuristic method. Another credit to the

proposed model is the fact that it was not based upon any “probabilistic assumption on

the distribution of stock data in the market”, and in situations where the rates of return

exhibit a multivariate normal distribution behaviour, they claim that it can be shown to

be equivalent to the Markowitz model (though they do not prove this).

Konno and Yamazaki [91] argued that, there exists an immense computational

challenge involved in estimating the parameters needed to optimize a Mean-Variance

portfolio; in the sense that it is necessary to compute or estimate all the elements of the

dense covariance matrix, and optimizing a quadratic programming problem with such

a huge number of estimated elements embedded in the objective function requires an

exponential period of time. The above challenges motivated Konno and Yamazaki

[91] to design and propose a linear programming optimization model which is

believed to improve the theoretical framework while at the same time reduce the

computational burden inherent in the Markowitz model. The newly proposed model

was not only proven to be equivalent to, and computationally advantaged over the

former, but was also shown to be easier to update while at the same time not

increasing the number of functional constraints irrespective of the number of stocks

included in the model.

Page 40 of 277

Depending upon how financial investments decision makers (investors, pension fund

and portfolio managers) interpret or view the concept of risk; it is widely believed that

metrics used in quantifying portfolio risk are categorized into two classes. The first

classification includes the so-called symmetric (two-sided) measures which seek to

penalize both positive (profit) and negative (loss) dispersion from a pre-specified

value. The most common risk measures under this category are the Mean Absolute

Deviation (MAD) as applied by Konno and Yamazaki [91] and Atkinson [6], as well

as the popular variance or standard deviation as pioneered by Markowitz [101, 1031.

The other category involves those metrics that aim to quantify risk subject to results

and probabilities below some specified values, and these are normally called the

asymmetric measures of risk. Notable ones among this category are the Semivariance

as proposed again by Markowitz [1021, safety first criterion by Roy [1271, A risk

curve metric (generalization of Roy’s Safety first) by Huang [811, Value at Risk (VaR)

by Morgan [1141 as well as its extension - Conditional VaR (CVaR) by Uryasev and

Rockafellar [1451 and importantly the Fishbum’s a -t criterion [56] which serves as a

generalization not only for the asymmetric measures listed above, but also to their

symmetric counterparts.

2.4 Extensions of the Classical model: Constraints

The classical Markowitz model can be regarded as the most basic formulation of the

portfolio optimization problem. The enhanced version of the Markowitz model is

basically the conventional model enriched by some realistic constraints, which makes

it difficult for the well known exact algorithms to find solutions easily or within a

Page 41 of 277

reasonable time frame. The most notable constraints, some captured and others not, by

the original model include:

2.4.1 The basic (Return and Budget) Constraints

Budget and return constraints are the most important set of constraints in PSP. The

budget constraint states that assets’ weights must sum up to unity; while the return

constraint ensures that the weighted sum of asset returns must be strictly equal (or >)

to some target return. These constraints were included in the' Markowitz original

model playing an important role in determining the feasibility of a given solution.

They take the form:

2.4.1(a)

V w fl = R 2.4.1(6)

Constraint 2.4.1(a) ensures that all the investment capital is fully invested; while

constraint 2.4.1(b) ensures that the portfolio return achieves a given target, R t.

2.4.2 The Floor & Ceiling constraints

In PSP, floor & ceiling (often regarded collectively as buy-in threshold or simply

threshold) constraints are very important. They are introduced into the mean-variance

model to reduce much administrative costs resulting from holding an asset with

negligible contribution towards portfolio’s expected turn-over and performance, and/or

to avoid over dependence upon one of the constituents (assets) chosen to make up the

portfolio.

Page 42 of 277

A floor (i.e. lower bound) constraint is a constraint that imposes a restriction on the

minimum proportion allowed to be held by any given asset that forms part of a given

portfolio. On the other hand, a ceiling (i.e. upper bound) constraint imposes a

restriction on the maximum proportion any given asset is allowed to have (when it

forms part of a given portfolio).

Floor & ceiling constraints are un-avoidably needed to optimize real world portfolio

optimization problems and they can be respectively denoted by say a lower limit /,• and

upper limit These constraints are formulated using a discrete programming

modelling structure; which is well known using variable upper and lower bounds or

semi-continuous variables. Using the finite bounds 4 and w, for the stock weight w,-, it

can easily be comprehended that the following relationship holds: /,• <wf <ut . The

introduction of a decision variables) makes the formulation easier and straightforward,

it should be noted here that our decision variable 8 is at the same time a binary

variable taking a value 1 if asset i is included in the portfolio, otherwise it is forced to

take a value 0. Now the corresponding buy-in threshold restriction can be represented

by the constraint pair:

1 ,8 , < w , < u , S , 2 . 4 . 2 (a)

5 , = 0 . 1 2 A 2 (b)

V / = 1 , 2 , . . . , n

The above restrictions means that, the binary variable 8 would be forced to take a

value 1 if any asset i is held, thereby forcing the fraction w, related to asset i to lie

between lower /,• and upper bounds u/ respectively. Similarly, if asset i is not held, 8

equals 0 and consequently, w,• takes the value 0. The introduction of the binary

Page 43 of 277

variables transforms the quadratic programming (QP) to a quadratic mixed integer

program (QMIP) which becomes larger in size and computationally challenging [84,

i l l] .

This constraint is strongly related to the cardinality constraint (to be discussed next),

as it can implicitly define the range of the cardinality constraint. For example, setting a

lower bound of say /, = 0.2 for each asset implicitly defines a maximum cardinality of

5 assets in a portfolio; so it is extremely important to ensure consistency between the

two constraints when formulating a constrained case of PSP.

2.4.3 The Cardinality constraints

In a typical financial market setting, an investor or fund manager will be confronted

with a very large number of different types of stocks from which to choose. According

to the Markowitz’ E-V model, if it would be possible to get hold of all the available

stocks in the market, then the resulting portfolio would have been highly diversified

and consequently less risky. But realistically taking up such a decision is very costly,

thereby rendering such a decision highly inefficient. Thus an investor or fund manager

may wish to limit the number of assets he/she owns or manages.

It is possible that, there exist some rules enacted by the financial markets’ regulatory

authority limiting investors from holding too many assets in their portfolio. On the

other hand, investors may want to monitor the performance of individual assets or

possibly wish to minimize (high) transaction costs (resulting from holding large

number of assets). Basically, in order to do so, investors would be forced to reduce the

number of assets in their portfolios, and this can be achieved by introducing

Page 44 of 277

cardinality constraints in the model which limits the number of binary variables,

already introduced in the preceding Floor & Ceiling constraints formulation to force

the portfolio to have a fixed number of assets, say K , and this can be done by

n

introducing the constraint . = K , in the earlier formulation which ensures that
/=i

only K of the total n assets make the portfolio’s composition.

Jobst et al [84] argues that the cardinality constraint is intrinsically related to the Floor

& Ceiling constraint, in the sense that, the higher the threshold limit the more it tends

to restrict the number of assets in a portfolio. However, imposing cardinality

constraints only (with no threshold at all) may lead to some very small non-zero asset

weights [50]. Therefore it is best to include both constraints in the same portfolio

optimization model.

2.4.4 Transaction roundlots restrictions

In a typical investment setting, assets are traded in discrete number of basic units of

investment often known as roundlots. Investors are always required to make

transactions in multiples of these roundlots; this, according to Jobst et al [841, tackles

“the assumption of the infinite divisibility of assets inherent in the M-V rule”.

Transaction roundlots are often expressed in fractional form, say f , of the investment

capital; after which asset weights w, are defined in relation to f and an integer number

of roundlots, Thus, we may now have: Wj = f x «/, i = 1, 2, ... N. However, it

should be understood at this point that, incorporating the roundlots constraints will

make satisfying the budget constraint almost impossible. With this in mind, there is

Page 45 of 277

the need to relax the budget constraint by introducing some (undershoot, £ and

overshoot, £ +) variables which would eventually be penalized with a very high cost,

say M, in the objective function. With this new transformation, equations 2.4.1(a),

2.4.1(b) and 2.4.2(a) will respectively look like:

N
T j f . n , + £ " - e * = 1
1 = 1

2.4.4(a)

Z f i n>7t = RTi=1
2.4.4(b)

lA s f , n, s 2.4.4(c)

nj integer V 7 = l , . ..,N .

01 1 C»3 +
IV o

2.4.5 Turnover and trading constraints

Although, Perold [1191 was the first to implement minimum trading size constraints in

his PSP formulation, it was Crama and Schyns [25] who elaborated more on it, and

went ahead an extra mile to additionally incorporate turnover constraints.

Turnover constraints are responsible for imposing upper bounds on the variations of

asset’s holding from one time period to the next; while trading constraints impose

lower bounds on such variations. For instance, if we denote by wj0), P , S, and

the weight of asset i in the initial portfolio configuration, maximum purchase,

minimum purchase, maximum sale and minimum sale bounds respectively; we can

represent the turnover and trading constraints by:

max(w - W0), 0) < P. 1 < i< n 2.4.5(a)

max(M|0) - w , 0) < S. 1 < i< n 2.4.5®

w. =W0) or w > ^W0) + p j or w < |m|0) - 1 < i< n 2.4.5(c)

Page 46 of 277

The first two set of constraints 2.4.5(a) and 2.4.5(b) represent the (turnover) purchase

and sale constraints respectively, while equation 2.4.5(c) represents the trading

constraint. According to Crama and Schyns [25], the trading constraint typically

reflects the investor’s inability or undesirability to modify the portfolio by buying or

selling tiny quantities o f assets due the existence of probably high fixed transaction

costs or some contract clauses.

The apparent disjunctive nature of the trading constraint in 2.4.5(c) means: for any

asset i, it is either the weight remains unchanged, or a minimum quantity^? must be

purchased, or a minimum quantity Sj_ must be sold.

2.4.6 Compulsory Constraints

Sometimes an investor may want his portfolio to contain specific asset(s) in a fixed

proportion. Handling this type of constraint is easily done by fixing the value of the

corresponding binary variable to unity. For instance, if an investor wishes that an asset

with index, i = 5 must form part of his portfolio, then this can be achieved by setting

8 5 = 1 as part of the constraints in a PSP formulation.

2.4.7 Class Constraints

Imposing class constraints in PSP formulation, although important and practically

sensible, is rarely implemented in academic research [64]. It is possible an investor

may want to compartmentalize the universe of assets into mutually exclusive groups

(classes), each consisting of assets with similar attributes (Oil & Gas assets, IT assets,

insurance, etc); after which he may limit the proportion of the investment fund to be

allocated to each class.

Page 47 of 277

For instance, let H be the set of classes, while Lk and U k are respectively the lower

and upper proportion limits for class k. Now we can define class constraint by:

Lt ~ H wj - U>’ k = !>•••>H 2.4.7

This constraint can be used to diversify the portfolio across several economic divides.

2.4.8 Non-negativity bounds

The majority of the researches (with a few exceptions [25, 1261) conducted on PSP

incorporate this constraint. It is defined by imposing the restriction:

w > 0, V/ 2.4.8/ *

This basically means no short sales are allowed. It should be understood that this

constraint will be rendered redundant by incorporating the floor & ceiling constraint in

the PSP formulation.

The incorporation of one or more of the above computational constraints (with the

exception of those described in sections 2.4.1 and 2.4.8) in the PSP transforms the

quadratic programming (QP) to a quadratic mixed integer program (QMIP) which

becomes larger in size and computationally challenging [84, 111], thereby making it

much more difficult or even (most of the time) impossible to solve by the conventional

exact methods embedded in most of the state-of-the-art nonlinear/quadratic

optimization solvers (such as CPLEX, FortMP, MINOS and many more).

Page 48 of 277

2.5 The Semivariance

The MPT was founded on the premise that all investment decisions are taken in order

to achieve a retum-risk tradeoff that is optimal in the opportunity set to some extent.

However, in order to achieve this desired objective, an investor/portfolio manager will

have to initially, evaluate the necessary information by quantifying ex ante measures

of both risk and expected return for the appropriate set of assets. After that has been

done, a set of efficient combinations of assets (providing the minimum risk subject to

achieving a desired level of expected return) are isolated; upon which an

investor/portfolio manager would choose a combination that is consistent with his/her

risk tolerance level.

In this section, we intend to discuss one attractive, altemative-to-variance asymmetric

measure of risk and more investor-preferred, that focuses on the returns below a

specified target or benchmark return level (the semivariance), which will in turn be

used to replace the classical Markowitz’ risk measure (variance); further to that, we

then enrich the resultant model with realistic investment constraints - specifically the

cardinality and floor & ceiling constraints.

Although, there is a very clear way of identifying a portfolio of assets characterized by

risk and return, the universally-accepted definition of risk is almost nonexistent or at

least ambiguous [67]. This is because an investment decision perceived to be risky by

one investor might not be viewed as such by another investor faced with similar

investment scenarios and decisions during the same time period. For instance, one

investor might consider risk as the probability of shortfall below some level of return;

while another will be more concerned about the overall magnitude of loss, if any

Page 49 of 277

should occur in the investment period. These different perceptions of the notion of risk

and many other possible definitions remind us that variance (standard deviation)

which is the conventional measure of risk, is deficient in dealing with rich set of

portfolio objectives and constraints that investors/portfolio managers often formulate.

It should be made known that, there are several techniques developed over the years

purposely for implementing the theory of portfolio selection; among which are the

popular downside risk measures. The semivariance, however, is the most popular and

commonly used of these set of measures. Moreover, it has been in use in many

portfolio theory researches as long as the variance itself [115],

Roy’s 1952 article [127], whose primary concept was that an investor should prefer to

(first) safeguard his principal when dealing with investment risk, was extremely vital

in the development of downside risk measures; this is because the tool he introduced

and termed as reward-to-variability ratio allows investors to minimize the chances of

their portfolios falling below a certain disaster level. Even Markowitz [103]

acknowledged the strength of such an idea by admitting that investors will be

interested in a downside risk (like semivariance), especially that the return distribution

may not be Gaussian. Markowitz also showed that when the return distribution is

Gaussian both downside risk and variance (his adopted risk measure) would provide a

correct measure; while on the other hand, if the return distribution is non-Gaussian

(asymmetric), only the downside risk measures would provide a correct answer.

Apart from the Roy’s [127] and Markowitz’ [103] aforementioned stand on the

portfolio selection decisions based on downside risk measures in general, and

Page 50 of 277

semivariance in particular, further research in proving the superiority of semivariance

over the variance in portfolio selection context continued in the early 1960’s and

1970’s (see Quirk and Saposnik [1201 and Mao [99] for further details). In the same

vein, Roy [1271, Markowitz [103] and Mao [991 all argued that: investors are not

worried or concerned with the above-target returns but rather with the below-target

returns and that semivariance is more consistent with financial and investment

managers’ perception of risk.

So, going by the above insightful revelations; the question that first comes to one’s

mind is: if such was the case then, why is the idea of adopting variance as a measure

of portfolio risk received much more attention and preference by practitioners and

academics alike? Partly in answering this question, Markowitz f 103] argued that,

variance is preferred because it has an edge over semivariance “with respect to cost,

convenience, and familiarity”; so when he focused his attention on optimizing

portfolios with variance as a measure of risk, other practitioners and academics

followed suit and the rest is history.

We too, as Estrada [47] rightly argued, believe that the issue o f familiarity should not

preclude the use of semivariance, as this concept is wearing away over time, going by

the fact that, downside risk portfolio analysis has increasingly been gaining attention

and applied in both industry and academia as there are many downside risk measures

[84, 47, 48, 49, 68] that are well known and widely applied.

In relation to the variance’s advantages in cost and convenience over the semivariance;

Markowitz \ 1031 argued that [back then] “ ... roughly two to four times as much

Page 51 of 277

computing time is required (on a high speed electronic computer) to derive efficient

sets based on Se [semivariance] than is required to derive efficient sets based on V

[variancef\ Furthermore, he added ‘7/7 an analysis based on V, only means,

variances, and covariances must be supplied as inputs; whereas an analysis based on

S requires the entire joint distribution o f return". While as far as convenience is

concerned, Markowitz argued that, “Unlike semi-variance, variance and standard

deviation are known by many people acquainted with modern statistics”. However, as

time went by, it can easily be observed that, all the above mentioned concerns have

become much less an issue. For instance, a Forbes’ article: Clash [22] stated that

semivariance is already being used by many pension managers and is still gaining

acceptability in some fund companies. In a similar development, some major funds use

semivariance in calculating their risk-adjusted returns while at the same time including

“a relative measure o f each fu n d ’s semivariance in annual and semiannual reports”.

Other researches such as Estrada [45] show that, the cross-section inherent in the US

and emerging market stocks can be explained by using semideviation and other

downside risk measures. Estrada [47] also argues that portfolio managers and investors

- especially pension fund managers due to their well known stand on preservation of

principal and potential loss minimization strategies - should find downside risk

measures (such as semivariance) immensely useful.

Semivariance, as already described above, is a risk concept that is believed to be

consistent with both investors and portfolio managers’ intuitive feeling of risk

characterized by the failure to earn some target return. The E-S model allows decision

makers to quantify risk from an arbitrary point rather than the mean value of the return

distribution and also demarcate positive from negative deviations. One of the

Page 52 of 277

advantages of this measure of portfolio risk is that, it allows investors to be more

conservative towards losses (returns below some target), while at the same time

becoming aggressive toward gains (returns above some target).

The semivariance, according to Harlow [67] and Markowitz f 1041, is defined as an

asymmetric measure o f risk that focuses on squared return deviations below the mean

o f the distribution. But target semivariance is similar and more general, in the sense

that it considers return dispersions below any arbitrary target or benchmark return

level. With this, it is important to note that, semivariance unlike the variance, does not

increase with higher positive dispersions from the mean/target return, as these are

rather captured by the mean of the return distribution.

If we assume an asset i has return rjt that are indexed over time t, the mean of asset

returns can be computed using:

The covariance between any two assets i and j can be computed using the following

expression:

2.5(a)

The variance of returns for this asset can be computed by:

2.5(b)

1 N
= E [(> ; = — ~Mj) 2.5(c)

Page 53 of 277

Where //, and ̂ stand for the expected returns for both assets i and j respectively, while

N represents the total number of observations.

Whereas the semivariance of asset i with respect to any given benchmark, B , according

to Markowitz [1031 is given by:

And the semicovariance of 2 assets i and j with respect to the same benchmark value,

B, can be computed by the following expression:

Where the summation is only over the T time periods in which an asset return

underperforms the benchmark, B.

The above definition as Estrada [47, 48, 49] observed, has an advantage and one

disadvantage alike. The positive side of this approach is that, “it provides an exact

estimation of the portfolio semivariance”. On the other hand, the negative side is that,

the semicovariance matrix is endogenous, which simply means when such

semicovariance values of any two assets are incorporated into the computation of

portfolio semivariance (in an E-S Optimization framework) any “change in weights

affects the periods in which the portfolio underperforms the benchmark, which in turn

affects the elements of the semicovariance matrix”.

2.5(e)

In another research, Hogan and Warren [77] attempted to estimate semicovariance

between any 2 assets i and j by the following expression:

Page 54 of 277

iHW (r. - Rf) x Min (rj - Rf , 0 j 2 .5 (f)

Where R f signifies a risk-free return and the superscript H W denotes that this definition

was proposed by Hogan and Warren.

Similarly, the above definition too, Estrada [49] argues, has two main disadvantages:

(1) The benchmark return value is fixed to the risk-free rate, R f thereby making it

impossible to use any other different benchmark value.

(2) The semicovariance matrix is usually asymmetric (since it can be shown that

SHw gHw y , j ^ s feature js particularly more limiting, as intuitively it is

extremely difficult if not impossible to clearly interpret the contributions of

both assets i and j to the portfolio’s risk.

Thus, in order to address the above mentioned drawbacks; Estrada [47, 491 proposed

an approximate expression to evaluate semivariance of asset i with respect to any

given benchmark, B\ given by:

S l = E { [M % -B ,0)]2} = ^ [M m { r„
N

2.5(g)

and

SIJB =e|[Mh(>; -B ,0)xM n(rj -5 ,0)
\ 1 N r i
J = —^y\jdn(rit -5,0)xM «(r., -B ,0)

N j=i
2.5 (h)

or the computation of semicovariance between any two assets i and j.

The main advantage of these estimates is that, they can be used with any desired

benchmark return value, B, and at the same time generate a symmetric (SjjB = siiB)

Page 55 of 277

exogenous semicovariance matrix; as both the symmetry and the exogeneity of this

matrix are very critical tools for the implementation of the proposed model.

Going by the provisions above, Estrada [49] proposed computation of portfolio

semivariance with respect to a benchmark, B, by:

& 2p b = 2.5(7)
i = 1 / = 1

This looks very much similar and behaves the same way as the portfolio variance

given in equation 2.2(a)(i):

;___________________________________ / = 1 y = 1______________________________________

2.6 The Proposed (enhanced) Model

In this section, we intend to discuss the reasons why we decided to adopt (target)

semivariance as the objective in our model for optimizing constrained PSP. The model

was further enriched by incorporating realistic investment constraints - specifically the

cardinality and floor & ceiling constraints.

Our decision to choose semivariance among other risk measures (such as Mean

Absolute Deviation [91], Value at Risk [114] and many more [8J_, J_45, 56]) was

informed by the fact that, semivariance, being one of the popular downside-risk

measures, according to Harlow [67] is attractive not only because it is consistent with

investors’ perception of risk, but also because asset allocation in downside-risk

framework determines an investment opportunity set for downside-averse investors

that is at least as efficient as that derived using the conventional E -V method. It should

Page 56 of 277

also be noted that, right from the very beginning even Markowitz considered using an

alternative measure of portfolio risk other than the variance he finally settled on - and

this measure is none other than the semivariance. Markowitz [1031 discussed it in

detail and dedicated to semivariance an entire chapter (Chapter IX) wherein he stated:

“Analyses based on S [Semivariance] tend to produce better portfolios than those

based on V [Variance]”. He went further in Markowitz [1051 to claim that:

“semivariance is the more plausible measure of risk”. Later, he also claims in

Markowitz et al [106] that, because “an investor worries about underperformance

rather than overperformance, semideviation [square root of semivariance] is a more

appropriate measure of investor’s risk than variance”.

The E-S portfolio selection framework replaces variance for semivariance (in the

classical E-V formulation) as the measure of portfolio risk, thereby identifying those

portfolios that seek to minimize/maximize semivariance/expected return for a given

expected retum/semivariance as efficient. The semivariance, according to Hogan and

Warren [77] is devoted to loss reduction as opposed to the variance that considers

“extreme gains as well as extreme losses as undesirable”.

However, there is lots more to optimizing portfolios based on the E-S framework, in

the sense that, unlike the well-known neat closed-form solutions obtained in the E-V

PSP; the E-S problems are usually tackled by, what Estrada [47] referred to as,

“obscure numerical algorithms”. The main reason behind this is the fact that, as

opposed to the exogenous covariance matrix incorporated as one of the main inputs in

the E-V framework, the semicovariance matrix, one of the main inputs in the E-S

framework is endogenous [See APPENDIX 1 for details].

Page 57 of 277

With this in mind, our research seeks to estimate semivariance of portfolio returns in a

similar way to that used in estimating variance of portfolio returns based on the

expression proposed in Estrada [46, 47, 48, 49]. There are basically two main

advantages in doing so; the first is that: the estimation of the semivariance of portfolio

returns is made simple, convenient and as easy as estimating the variance - having in

both cases equal number of inputs (means, variances/semi variances and

covariances/semicovariances). The second is that, all this can be done with an

expression popularly known by academics and practitioners alike without necessarily

invoking the help of any sophisticated algorithm, and on top of that, the resultant

portfolio semivariance is shown in Estrada [47], to be strongly positively correlated

while at the same time being very close (in magnitude) to the actual value it tends to

estimate.

Therefore, going by the Estrada’s proposal (as detailed in equations 2.5(g) through

2.5(i)), our proposed model which is to be known as: The Mean-Semivariance (E S)

Portfolio Selection model can now be formulated as follows:

M in im ize P o r t fo l io R isk , ® 2PB

Su b jec t to
n n

i = 1 / = 1

n

i = 1

e, S, < w ,

M, s , * w i
n

= b in a ry Vz = 1 . . . n

Page 58 of 277

Estrada [49] shows that, the value of the semivariance obtained in his semivariance

formula (although a little bit different from the actual) can serve as a good

approximation to the actual one as defined by Markowitz. With this in mind, we are

now adopting the Estrada’s formula for obtaining a semivariance rather than the

Markowitz’.

Page 59 of 277

3.0 Overview and Applications of Heuristics

3.1 Introduction on Heuristics/M etaheuristics

In everyday life, varying sectors in different aspect of human endeavour are faced with

problems of growing complexity, arising in diverse spheres of life such as Operations

Research, mechanical, electrical and electronic systems designs, image processing,

signal processing and lots more. In all these sectors, the problems at hand can be

formulated as an optimization problem, in which a single or several objective (cost)

function(s) is/are desired to be optimized (either for minimization of cost or

maximization of profit) subject to meeting or satisfying some conditions - which

might be necessarily met (hard constraints) or met to some extent (soft constraints).

There are basically two known types of optimization problems, namely discrete and

continuous problems [38, 72, 37, 39]. The most notable example under the discrete

type is the well known Travelling Salesman Problem (TSP). An example of

continuous optimization problems involves, according to Dreo et al [39] “the search

for the values to be assigned to the parameters of a digital model of a process, so that

this model reproduces the real behaviour observed, as accurately as possible”. Many of

the discrete and continuous optimization problems can be handled by some exact

algorithms and solution to optimality is thereby guaranteed. Such algorithms include

Simplex Algorithm (in Linear Programming Problems), Hungarian Method (for

solving Assignment Problems), Johnson Method (for solving 2-machine sequencing

problems), Branch & Bound, and Dynamic Programming.

However, there are some exceptional situations in which some other optimization

problems are extremely difficult to solve by the conventional means; this is because,

Page 60 of 277

the complexity of these problems grows with increase in the number of parameters,

and the computing time therefore grows exponentially; these type of problems are

commonly regarded as NP-hard. Similarly, some optimization problems of the

continuous type may not have a known algorithm capable of finding the best possible

solution (global optimum) within a reasonable period of time. For over two decades,

there have been many unrelenting efforts and breakthroughs in various techniques that

aim to provide solace to academics, practitioners and organizations in solving

basically these two types of problems. In the field of discrete optimization, a

reasonable number of heuristics were proposed, implemented and found to be effective

in obtaining a solution close to the optimum, but many of them tend to be tailored

towards a specific problem. Likewise, in the area of continuous optimization, most of

the techniques developed tend to be ineffective, provided the objective (cost) function

does not exhibit a particular structural pattern, such as convexity. As time passes by,

computational power grows strongly coupled with constant dedication of academics

and other industry specialists in their search for robust techniques capable of handling,

not only discrete optimization problems but also their continuous counterparts; the

emergence of metaheuristics (certain class of heuristics) signifies an important

development in the world of optimization. Before we jump into exploring what

metaheuristic techniques are all about, let us have a look at some basic definitions as

follows:

Heuristic - coined originally from the Greek word Heuriskein which literally means

to find or discover, is defined as “a technique which seeks good (i.e. near optimal)

solutions at a reasonable computational cost without being able to guarantee either

Page 61 of 277

feasibility or optimality, or even in many cases to state how close to optimality a

particular feasible solution is’T 123].

The term metaheuristic originated from the combination of two Greek words: a prefix

- meta (meaning “beyond”) and heuristic (meaning “to find” or “to discover”), and

often regarded as a group of high-tech heuristic methods applied in solving problems

with no known exact solution algorithms. It was however, believed to be developed,

used and defined by Fred Glover as: “a master strategy that guides and modifies other

heuristics to produce solutions beyond those that are normally generated in a quest for

local optimality. The heuristics guided by such a meta-strategy may be high level

procedures or may embody nothing more than a description of available moves for

transforming one solution into another, together with an associated evaluation rule

”[63].

Although, there still exist no common accepted definition of metaheuristics; it is in

view of this, many researchers proposed several definitions. According to Osman and

Laporte [JJ_8], metaheuristic can be defined as “an iterative generation process which

guides a subordinate heuristic by combining intelligently different concepts for

exploring and exploiting the search space, learning strategies are used to structure

information in order to find efficiently near - optimal solutions.”

The definition can also be viewed from another perspective as: A rule o f thumb, based

on domain knowledge from a particular application that gives guidance in the solution

of a problem. Unlike algorithms, heuristics cannot have proven performance bounds

owing to their open-ended dependence on specific application knowledge; an example

Page 62 of 277

is “if the sky is cloudy, then carry an umbrella.” Heuristics may thus be very valuable

most of the time but their results or performance cannot be guaranteed (761. In other

words, metaheuristics refers to some classes of heuristic techniques, which are found

to be applicable to virtually all types of discrete optimization problems, and can as

well be adapted to the complex nature of continuous types. The term, may or may not

be written as a hyphenated word, and basically refers to the collection of high-tech

heuristic methods capable of offering practical solution to complex real life problems.

These methods include Genetic Algorithms (GA), Simulated Annealing (SA) and Ant

Colony Optimization (ACO), Tabu Search (TS), Particle Swarm Optimization (PSO),

Iterated Local Search (ILS), Parallel Simulated Annealing (Par-SA), Threshold

Accepting (TA) and others r 151.

As mentioned above, there are basically several heuristic and metaheuristic techniques

purposely developed to handle optimization problems especially, where the exact

conventional methods are known to fail. Some of these techniques were tested and

proven to be very good in finding optimal or near optimal solutions to real life

problems. Metaheuristic algorithms, although proved to be strongly efficient in finding

good and quite often near-optimal solutions, are unable to guarantee the optimality of

the returned solution. Many among them, such as TS, ACO and some EAs are found

to be very successful in solving real-world optimization problems partly due to their

ability to conduct a guided local search using some intelligent criteria, while at the

same time employing some mechanisms to escape being trapped in a local optimum.

These successful criteria of escaping entrapment in local optima are mostly aimed at

striking a balance between intensification and diversification.

Page 63 of 277

The intensification mechanism also known as exploitation is aimed at exploiting the

search experience by visiting and revisiting regions that appear to be promising in

yielding high quality solutions and avoiding those that are already explored and found

to be less attractive; whereas diversification, often referred to as exploration, has to do

with exploring new search space regions that were not visited before with the hope of

finding better solutions than the ones previously found in other regions of the search

space.

Metaheuristic algorithms may be classified according to different features in their

mode of search operations. Some metaheuristics might be guided/unguided, single

agent based/multi-agent based, deterministic/stochastic, nature-inspired/nonnature-

inspired, iterative/greedy, trajectory/non-trajectory.

Guided search methods are intelligence-tailored and memory-conscious algorithms

that incorporate some additional strategies and hints about where the search should

focus in the search space. For example, TS is a guided local search algorithm in the

sense that, it stores a database of recently visited solutions in a Tabu List, thereby

avoiding cycling and easy entrapment in a local optimum. Similarly, the same can be

said about ACO in which traces of pheromone represent an adaptive memory of

previously visited solutions. Contrarily, the unguided search algorithms, such as SA

are, in fact, memoryless in the sense that no information extracted dynamically is used

during the search, thereby only relying on the search processes’ behaviour without any

additional help or hint.

Page 64 of 277

Nature-inspired methods are algorithms that were inspired as a result of analogies with

some aspects of natural processes. For instance, GA, EA and artificial immune

systems (AIS) come from Biology, while ACO and PSO are from Ethology.

Nonnature-inspired are those that result from some processes in human endeavour. A

typical example of a nonnature-inspired strategy is SA that was derived from an

analogy with physical processes in Physics.

Some algorithms are deterministic (e.g TS) while others are stochastic (e.g SA). The

former set of algorithms solves an optimization problem through taking some

deterministic decisions, and this enables them to arrive at the same final solution when

using the same initial solution in different runs. The later set apply some random rules

during the search which enables them to explore the solution space in a stochastic or

non-deterministic manner with the primary aim of finding a better (global) solution

than the current (local) one. Thus, in stochastic metaheuristics, varying final solutions

may be obtained in different experimental runs, even if the search started (in all cases)

from the same initial solution.

In iterative algorithms, the search begins with a complete solution or set of solutions

which are perturbed and transformed at each iteration using some set of search

operators with the hope of obtaining better solution(s). Constructive algorithms, on the

other hand, begin their search from an empty solution upon which at each step a

decision variable is assigned until a complete solution is arrived at. It is noteworthy

that the majority of metaheuristics are iterative algorithms. Constructive algorithms

tend to be myopic in their way of solution construction, as their look-ahead ability is

short-sighted and the consequences of their decisions can only be felt in the future.

Page 65 of 277

The single-agent methods (such as SA, TA and TS) mostly perturb and manipulate a

single solution at any point in time during the search trajectory, while the multi-agent

methods (such as GA, PSO and ACO) allow for the participation, evolution and

collective effort of several solutions in the search processes thereby contributing to the

success of the entire search independently and in parallel. These two sets of algorithms

are believed to have complementary features, in the sense that, the single-agent based

metaheuristics are exploitation oriented; this is because they are capable of

intensifying search for a better solution in the local region. On the other hand, multi

agent (population) based methods are exploration oriented as they allow for thorough

diversification in the entire search space.

The trajectory methods find the next solution by partial or exhaustive search of the

immediate neighbourhood of the current solution. The next (candidate) solution can be

obtained by slightly perturbing the configuration of the current solution. Typical

examples of trajectory methods are SA, TS and TA. However, for non-trajectory

methods, it is possible for the next solution to be far from the current solution as there

are possible jumps in how they are generated, for instance due to the influence of say,

genetic operators in GA.

To obtain some more details on metaheuristics, an interested reader should consult

Blum and Roli [JJ_], Osman and Laporte [1181 and Dreo et al [39].

3.2 Applications of Heuristics/Metaheuristics

Metaheuristic techniques are found to be very applicable and of immense importance

in solving combinatorial (both discrete and continuous) optimization problems and as

Page 66 of 277

such their importance and centrality across much research in the optimization

community (both in academia and industry) can never be overemphasized. In many

researches, they were found to be very promising in finding good and most of the time

near-optimal solutions within a reasonable period of time [151. Heuristics and

metaheuristics have been used for a very wide variety of real problems; small samples

of these are discussed briefly below.

Henderson et al [731 used SA and proposed a model that would be used to solve the

shortest route cut and fill problem (SRCFP). The model was used to find an optimal

shortest route to be followed by an earthmoving vehicle on a construction site

characterized by several abnormal terrains. The algorithm developed is aimed at

minimizing the total distance covered by the vehicle in levelling the site to get what is

known as final grade site suitable for construction; and this, will consequently lead “to

saving costs of fuel consumption, equipment maintenance and time.”

Another important and one of the recent studies showing the capability and robustness

of heuristic techniques in handling and solving complex combinatorial optimization

problems can be found in the research conducted by Xiang et al [1501. They

considered an algorithm to solve a large scale static “dial-a-ride” problem using the

intensification and diversification strategies well known in TS metaheuristic

technique. Xiang et al [1511 is an extension or rather a dynamic approach to the

algorithm in Xiang et al [1501, and this approach is believed to be capable of

generating high quality schedules amid challenges in handling various stochastic

events.

Page 67 of 277

Erera et al [44] solved a Driver Scheduling and Load Dispatching Problem (DSLDP),

using a heuristic technique combining greedy search with enumeration to obtain a cost

effective solution of scheduling problem for less-than-truckload (LTL) carriers having

up to 15,000 - 20,000 dispatchable loads by few thousand drivers in a reasonable

computing time. The DSLDP was found “to be applicable not only to LTL carriers,

but to small package express carriers”. Briant et al [141 used another variant of SA to

solve a challenge organized by French Society of Operations Research and Decision

Analysis (ROADEF) tagged as ROADEF’05 challenge. The problem topic for the said

challenge was Car Sequencing problem. The new variant used is known as multi

criteria dynamic simulated annealing partly because it computes the various

probabilities of acceptance dynamically. In the classical car sequencing problem, the

violations of the total number of spacing requirements between some vehicles

characterized with some options has to be minimized. However in this challenge, the

problem had two level of spacing requirements which was optimized by the SA

variant one by one in their order of importance.

Another research attesting to the wider applicability, flexibility and robustness of

metaheuristic techniques in solving diverse optimization problems was conducted by

Hu [80]. The research focused its searchlight on TS’s reliability and efficiency in

solving to optimality some engineering design problems. The technique was compared

to, and was found to outperform two other metaheuristic techniques, namely random

search and genetic algorithm, for the selected continuous variables test problems.

Another research was conducted by Siarry and Berthiau [1321 to primarily investigate

the capability of TS metaheuristic in optimizing a set of classical continuous multi

Page 68 of 277

minima functions with known global optima. The technique used was aimed at

proposing an “adaptation” of basic TS algorithm to the optimization of continuous

functions and at the same time investigate the influence of the algorithm’s parameters

upon convergence to the desired optimum. The procedural structure of the research

employs the notion of balls in defining the neighbourhood of a solution and the v

neighbours of the current solution are randomly selected inside a ball [B(c, r) | c is the

centre of the ball and r the radius]. The entire solution space is partitioned into a set of

concentric balls with radii ro, rj, . . . , rv. The v neighbours are generated by randomly

picking a single solution from each of the v concentric balls before being checked for

tabu membership; and if any of the solutions generated was found to be in the tabu

region it is discarded and another solution is then selected from the same considered

ball. To make sure that the concept of diversification is implemented and the

algorithm can escape being entrapped in a local minimum, the immediate

neighbourhood [B(s, ro)] of the current solution is excluded in generating the candidate

neighbours. As in the conventional TS procedure, the best of the v non-tabu

neighbours of the current solution becomes the new current solution even if the

objective function is worsened.

A research conducted by Cvijovic and Klinowski [27] extended the conventional TS as

proposed by Glover to tackle some continuous-valued functions. They studied the

potential of their modified TS algorithm in solving multivariate continuous functions

characterized by many local minima. In their quest to come up with a robust, efficient

and effective algorithm; they introduced and implemented a neighbourhood structure

tagged as conditional neighbourhood. The entire search space is compartmentalized

into a number of disjoint cells by dividing the coordinate intervals along the x ’s axes

Page 69 of 277

into p parts. Throughout the study, two kinds of tabu moves were implemented as

follows:

(i) A particular move in the neighbourhood of the current solution is regarded as

being tabu (not allowed), if the newly generated solution lies within the tabu

region of the search space consisting of cells visited during the last L iterations;

this type of move is managed by tabu list.

(ii) A move is tabu also, if it results in worsening the objective function / more

than some specified (threshold) value. This move is managed by “keeping the

track of the worst value of the objective function/ throughout the computation

and maintaining the ‘elite list' of addresses of the most promising cells”.

The concept of aspiration criterion was also introduced by tracking the best ever found

value of the objective function, in which the tabu status of a newly generated candidate

solution is overridden if the aspiration condition is satisfied [that is, Anew solution) <=

Aspiration Function]. It was reported that, the algorithm designed was a successful

one, since after the average of 100 independent runs were taken, the reliability was

found to be excellent, due to the fact that, in at least 90% of the runs conducted, the

final results obtained lie within 2 to 3% of the global optimum. It is also easily

observable in the results presented that, among all the heuristic methods with which

the tabu search is compared, it had the least number of function evaluations before

arriving at a global minimum solution over the six multivariate continuous functions

tested.

The procedure implemented in this research is regarded to be “generally applicable,

easy to implement, derivative-free, and conceptually simple”.

Page 70 of 277

3.3 Heuristics in M ulti-Objective Optimization problems

There is, undoubtedly, an increase in interest for scientific research involving multi

objective optimization; and this is not unconnected with the fact that, in many real-life

problems (such as engineering, construction design, finance, etc), there are quite often

numerous objectives that need to be achieved. In such multiple objective problems

there exists no singular best solution, but rather a collection of solutions that are better

than others when all the objectives are taken into consideration. Thus, no universal

optimal solution in such a context exists, in the sense that whenever an attempt is

made to improve one of these objectives, there will be a consequent degradation of one

or more other objective(s). The explanation for the multiplicity of these solutions lies

in the conflicting nature of those objectives.

Apart from the fact that, modelling a solution for a single-objective optimization

problem can prove to be a difficult task; there is also the possibility that, the goal of

modelling such a single-objective problem can be spoiled by a bias during the

modelling stage. On the other hand, multi-objective optimization techniques offer

some degree of freedom which cannot be found in modelling single-objective

optimization problems. However, this flexibility comes with a cost, especially on the

method used to solve the problem when it is finally modelled. The search often does

not give a unique solution, but rather a set of solutions. The main idea behind multi

objective optimization lies solely in searching for a set of agreements among the

various problems’ objectives; and the final decision about which solution or set of

solutions is to be chosen lies entirely with the final user of the results generated.

Page 71 of 277

To illustrate the concept briefly, suppose one wants to buy a property (House), H\

some of the things one might consider giving priorities to, include: price, P;

state/goodness of the property, S and location, L. Therefore, a property H having price

P, in a good condition S and located at L is better than another property H 1 with price

P1 > P , whose condition S l < S, but located in the same area L. On the other hand, the

same property H cannot be compared with another property H2 whose price P2 > P in

an extremely good condition S2 > S, located in the same neighbourhood, L as H.

So more formally, a brief mathematical description of multi-objective optimization

can be defined as follows:

Let = (x,, x2, ..., xn)] be some decision variables of a given problem; while

[F { X) = (f , { X) , f 2(X) , . . . , f m{X))] be some set of objective functions to be

optimized. A multi-objective optimization can be defined as:

/ .(A -)] (1)
subject to

c, (A) < b, (2)
c2 (X) < b2 (3)

cr { X) < b r ('•)

A given solution [X = (*,, x2, *„)] is said to be nondominated, provided no other

solution can be found to improve [X = , x2, x n)] for a given objective f t {X)

without necessarily worsening at least one of the other objectives.

Page 72 of 277

Now given a multi-objective optimization problem; a given solution, X 'is said to

dominate another feasible solution X " s for that

i f f (X \) < f [Xf j Vz; and at least there exist j e 1,2,..., n | f[x ! j) < / (A j) . The set of

nondominated solutions constitutes what is normally regarded as pareto-optimal,

pareto-border or pareto-front solutions. Having traced out the pareto-border, the

decision maker would then be faced with some difficulties of selecting a solution from

such set of solutions; the solution being the one that reflects the decision maker’s

tradeoffs or preferences in relation of the various objective functions.

Another definition given by Alaya et al [3], defined the formal representation of a

multi-objective optimization problem by a quadruplet (X, D, C, F) in which X signifies

a vector of n decision variables [W = (x,, x2, ..., *„)]; D signifies a vector of the

decision variables’ domains [Z) = (dx, d2, ..., <Zn)] ; while C is the set of constraints on

X and F is the vector of m > 2 objective functions,

F (X) = (f (X) , f 2(X) , ..., f m (2 f))] ; without loss of generality, these objective

functions are assumed to be minimized (for those to be maximized may be multiplied

by -1).

The space of candidate solutions, noted E(X, D, C) is the set of vectors v e D

satisfying all the constraints of C. We define a partial order relation on this set as

follows: a solution v e E(X, D, C) dominates a solution v ’ e E(X, D, C), noted v -< v ’,

if and only if v is at least as good as v ' for each of the m criteria to optimize, and

strictly better than v ’ for at least one of these criteria; that is, if and only if Vz e {1, ...,

Page 73 of 277

m}, f (v) < f (v’) and 3/ e {1, ..., f (v) - f (v*). The goal of multi-objective

optimization problems is to find the Pareto optimal set of all non-dominated solutions,

i.e., (v e E(X, A C j | V v ’ e E(X, D, C), -n(v < v ’)}.

The search for an efficient algorithm to tackle multi-objective optimization problems

still continues in the scientific research community, partly because we are yet to have a

better grasp of the existing relationship between algorithms’ design and their

performance on some specific problems. Recently, the usage and successful

implementation of metaheuristics and evolutionary techniques in solving multi

objective problems have become very popular, due to: (i) their ability to provide good

multiple solutions in a single run, (ii) their convergence speed and degree of accuracy

in estimating the pareto-optimal solutions, (iii) ability to easily handle both continuous

and discrete optimization problems, (iv) their ability of being less susceptible to the

(dis)continuity of the pareto-border. Lin and Kwok [97] applied TS and SA techniques

to solve a location-routing problem (LRP) in which multi-objective decisions on

location of depot, vehicle routing and assigning routes to vehicles were considered

concurrently. Alaya et al [3] proposed an ACO algorithm entitled m-ACO designed

for solving multi-objective optimization problems. The 4 variants of the algorithm

were tested on multi-objective knapsack problem (MOKP) against several EAs

proposed in the literature for solving the MOKP. The results presented showed that

one of the variants outperformed all the EAs it was compared with. Mohamed et al

IT 121 proposes a Bi-criteria Genetic Algorithm for solving Bicriteria Shortest Path

Problem (BSP) in which two conflicting objectives: minimizing the transportation cost

and the total travel time were considered.

Page 74 of 277

Abido [2] proposed a multi-objective PSO (MOPSO) technique for solving

environmental/economic dispatch (EED) problem with competing objectives on

minimizing cost and emission. The algorithm was so successful that it was capable of

“generating a set of well-distributed Pareto-optimal solutions in one single run”.

Armananzas and Lozano [4] on the other hand, tackled PSP from a multi-objective

point of view using three well known metaheuristic techniques, namely the greedy

search, SA and ACO. They made use of the capital market indices data made publicly

available at the OR Library [1171. Their results indicated that ACO and SA performed

better than the greedy search method in all the five instances considered. Ghoseiri and

Nadjari [58] presented an algorithm based on multiobjective ACO to tackle a bi

objective shortest path problem.

Baykasoglu [8] proposed a multi-objective TS (MOTS) that can be applied to several

goal programming problems. The proposed algorithm (MOTS) was found to be

efficient and effective in solving four test studies out of which two are difficult

engineering design problems collected from the literature. Feng et al [54] proposed a

multi-objective particle swarm optimization based on crowding distance sorting

(CDMOPSO). In order to verify how well the newly proposed method performed in

relation to existing methods in the literature; it was tested with six unconstrained and

three constrained two-objective test problems and the results compared against those

obtained by two well known methods, namely Non-dominated Sorting Genetic

Algorithm II (NSGA-II) [33] and Strength Pareto Evolutionary Algorithm 2 (SPEA2)

[158]. In the unconstrained cases, the CDMOPSO was found to have better

convergence ability as well as diversity maintenance capability in relation to the other

two methods it was compared with. Moreover, it was reported that, the method gained

Page 75 of 277

a very good effect when it was applied to another multi-objective optimization

problem of a large scale injection machine.

Suman et al [136] proposed a SA based multi-objective optimization algorithm

entitled Orthogonal Simulated Annealing (OSA). The new proposed algorithm was

tested on some multiobjective problems with different degree of complexity; against a

popular multiobjective evolutionary algorithm (SPEA2 [1581) and another one called

classical simulated annealing based multiobjective algorithm (CMOSA [1371). The

authors reported that, the new method was such a success that, it was able to

outperform the other two methods in some of the tested problems in relation to

performance and CPU time. Moreover, apart from its apparent ability of obtaining

well diversified set of solutions and capturing the Pareto front better than the CMOSA;

it was, particularly, found to outperform CMOSA in around 70% of the times.

3.4 M etaheuristics in Portfolio Selection

The unconstrained Markowitz Mean - Variance model can be regarded as a simple

quadratic optimization problem for which there exist computational algorithms that

effectively handle the problem and computing an optimal solution for any large data

set is not difficult. As already mentioned previously, Variance as a measure of

portfolio risk has been criticized by several researchers and this led to introducing

some alternatives. However, introducing alternative risk measures alone is not

sufficient to fix the flaws inherent in the original Markowitz model, as there are other

issues to do with investment constraints; in which case any attempt to incorporate

these realistic practical constraints into the original model has some accompanying

consequences, such as the transformation of the problem from a mere convex

Page 76 of 277

nonlinear optimization problem into a computationally-costly non-convex NP-hard

combinatorial optimization problem which cannot be solved by any known algorithm

in a polynomial time. With these consequences, the problem can only be handled in a

practical time domain by approximate (heuristics/metaheuristics) algorithms.

Some researches proposed an alternative to variance while at the same time

incorporating realistic constraints into their portfolio selection model. For instance,

Speranza [134] linearized the objective by introducing Mean Deviation below Average

and using techniques involving Branch & Bound to solve a constrained formulation of

the problem after incorporating additional constraints dealing with transaction cost,

transaction units, cardinality constraints and integer variables. Hamza and Janssen [68]

used separable programming techniques to solve the constrained version of the

problem while adopting semivariance as the objective and maintaining all the

constraints introduced in Speranza [134] except for the cardinality restriction.

Bienstock [10] approached a cardinality constrained PSP by introducing some valid

inequalities (cuts) and tested a self-developed branch-and-cut algorithm based on

disjunctive cuts. The algorithm’s computational results involving up to 3897 assets

were presented. Lee and Mitchell [94] also solved a cardinality constrained PSP

formulation. Their method, based on an interior point nonlinear solver, was used to

solve problems involving up to 150 assets.

Dueck and Winker [40] solved an instance of PSP with semivariance as a risk measure

using a local search method called threshold accepting (TA) which, in principle, is

similar to SA. Gilli et al [59] used TA algorithm to minimize value-at-risk and

expected shortfall. Chang et al [20] applied 3 prominent metaheuristic techniques

Page 77 of 277

(GA, TS and SA) to solve the constrained version of the original model by introducing

2 additional realistic constraints - the cardinality and floor & ceiling constraints. They

tested their algorithms with 5 datasets, each with varying number of assets reaching up

to a maximum of 225 assets. They reported that, best results are obtained by pooling

the optimal solutions from all the three algorithms. Crama and Schyns [25] used SA

algorithm to solve the model tackled by Chang et al [20] but with additional turnover

(purchase & sales) and trading constraints.

Jobst et al [84] solved a PSP by combining a branch-and-bound algorithm with some

heuristic methods (integer-restart and re-optimization heuristic) to specifically make a

comparison with the results presented in Chang et al [20]. The first heuristic (integer-

restart) plotted the constrained efficient frontier, beginning from the highest return

through to the lowest return. The procedure implemented is such that, the current stage

uses as initial solution, the result obtained in the preceding stage. This heuristic is

named as warm restart heuristic. The other heuristic inspired by the idea similar to the

one implemented in Speranza [134] initially solves a continuous relaxation excluding

any constraint and then uses as inputs, the K assets with highest weights for a problem

where constraints are imposed. The two heuristics were embedded in a branch-and-

bound algorithm and were reported to have performed better than the metaheuristics

implemented in Chang et al. However, the re-optimization heuristic normally fails to

plot the frontier when fewer than k assets are produced by the continuous relaxation.

Another study by Fernandez and Gomez [55] compared the performance of a neural

network approach to the three metaheuristic techniques used in Chang et al [20]. They

use a neural network having a single layer of fully connected neurons (Hopfield

Page 78 of 277

network) to plot an approximate constrained efficient frontier (ACEF) after the

imposition of cardinality and bound constraints. The results obtained show no

significant difference between their neural network approach and the results obtained

from the metaheuristics presented in Chang et al. In order to obtain an improved

ACEF, they adopted the idea used by Chang et al to wipe out the dominated portfolios

after pooling the portfolios obtained from the four approaches. By so doing, the

quality of solutions obtained significantly improved, hence making their neural

network approach to solving a PSP a success. Although the neural network donated

the largest number of portfolios in the new frontier, it is clear that a stand-alone neural

network is unsuitable for solving the problem over the entire efficient frontier.

Kendall and Su [86], used PSO techniques to solve a PSP involving some risky and

risk-free assets, in which the main goal was to maximize what they referred to as the

reward-to-variability ratio on various constrained and unconstrained portfolio

investment problems. The algorithm was found to outperform the classical Excel

Solver in most of the experimental runs; however, it exhibited a “high computational

efficiency in constructing optimal risky portfolios of less than fifteen assets” only.

Schaerf [129] proposed new algorithms based upon TS to solve the constrained PSP

tackled in Chang et al [20] by combining and testing several neighbourhood relations.

Streichert et al [135] investigated the capability of EAs to solve the constrained PSP

incorporating Cardinality Constraints, Buy-in Thresholds and Roundlots constraints.

Chen et al [21] extended the classical PSP by incorporating transaction costs and floor

& ceiling constraints; experimental results reported involved only eight different

stocks data downloaded from a Chinese Financial market. Cura [26] applied PSO to a

Page 79 of 277

constrained PSP incorporating cardinality and floor & ceiling constraints. The results

reported by the P-SO-based heuristic method were compared to the earlier study

conducted by Chang et al [20]. Although, none of the four compared heuristics seem

to significantly outperform the rest, the research concluded by giving credit to the

PSO-based heuristic in the sense that, it was able to give better solutions than the other

methods “when dealing with problem instances that demand portfolios with a low risk

o f investment’.

3.5 Overview on some chosen M etaheuristics

We have chosen, designed and implemented 6 different metaheuristic algorithms,

among which 2 of them (SA and TS) are local search techniques, 2 (GA and PSO) are

EAs, 1 (Parallel SA) a parallel implementation of SA and 1 (SWAN) a hybrid of SA &

PSO. All the aforementioned algorithms were designed and coded in C++

programming language (which we learned specifically to conduct this research) and

executed on Dell’s Desktop Computer with an x86 Family 6 Model Stepping 2

Genuinelntel (-2126MHz) processor under Microsoft Windows XP Professional

Operating System.

3.5.1 Simulated Annealing (SA)

SA is one of the oldest, well known and widely applied local search metaheuristic

techniques used in solving combinatorial optimization problems [111. Although, it was

originally developed in statistical mechanics based on a Monte Carlo model by

Metropolis et al [107] to simulate the processes involved in heating and cooling of a

solid material; it was however, Kirkpatrick et al [90] and Cemy [\9] independently in

the early eighties who noted similarities between the physical process of annealing and

Page 80 of 277

some combinatorial optimization problems. They observed an interesting

correspondence between the physical state of metallic materials and the solution space

of an optimization problem. They further observed that the objective function in

optimization problem corresponds to the free energy of the material. Similarly, an

optimal solution corresponds with a defect-free crystal, whereas a crystal with defects

corresponds to a local optimal solution. However, not all the analogies observed are

based on one-to-one correspondence. For instance, the annealing process involves the

usage of a physical variable - a temperature which when monitored under proper

control plays an important role in obtaining a perfect crystal. But when using SA in

solving an optimization problem, the temperature just serves as a control parameter

that has to be properly determined and continuously adjusted, which after a long run

plays a vital role in obtaining a very good solution. These sets of observations (and

many more) led to some series of publications that brought SA to the limelight in the

combinatorial optimization community.

SA derived its name from an analogy in the process of physical process of solids,

whereby a crystalline solid is heated to a melting point (i.e. to a very high temperature,

in which the particles in the solid moves freely and haphazardly without any definite

direction), and later allowed to cool carefully at a very slow rate up to the point it

(freezes) reaches its most regular crystal lattice configuration (i.e. until the particles

arrange themselves in the ground state of the solid), which consequently leads to a

resultant solid free of any crystal defects. In the processes involved in such cooling

procedure, it is assumed that the thermal (or quasi-) equilibrium conditions are

maintained, and the processes end when the material reaches its minimum energy

state, which in principle, corresponds with a perfect crystal. The cooling procedure has

Page 81 of 277

to be slow and steady in order to obtain a defect-free crystal (i.e. minimum energy

solids). Transition mechanism between different states and the cooling schedule are

what constitute the main and most important features of an SA algorithm.

SA, also known as statistical cooling, Monte Carlo annealing, probabilistic hill-

climbing, stochastic relaxation and probabilistic exchange algorithm [109], is often

regarded as one of the most flexible methods for tackling difficult combinatorial

optimization problems ft 13]. A vital feature of SA is its usage of the so-called hill-

climbing moves (which worsen the objective function value) purposely made in search

of global optimum (or specifically aimed at escaping entrapment in a local optimum)

especially in a solution space characterized by several local optima. SA is believed to

be one of the early algorithms that had a clear and laid down path to escape being

trapped in a local optimum.

The algorithm has lots of advantages that informed our decision to choose it as one of

the metaheuristic techniques to be implemented in this research; some of which are:

(i) Its ability to (statistically) guarantee finding optimal solutions.

(ii) Although, time consuming, it is relatively easier to code than some

other methods.

(iii) As Eglese [43] argues, SA provides good (and not necessarily optimal)

solutions.

(iv) Its wider applicability to large optimization problems irrespective of the

differentiability, continuity and convexity conditions that are normally

required in conventional optimization methods.

Page 82 of 277

(v) It does not assume any particular property (such as linearity or

convexity) of the problem at hand.

There are basically some theoretical fundamental issues to consider in the

implementation of SA algorithm, and these include:

3.5.1.1 Metropolis Algorithm

The Metropolis algorithm is the original and most vital idea behind the SA algorithm,

which (through Monte Carlo simulation) models the microscopic behaviour of some

set of large number of particles, as in solids [1131. In the field of thermodynamics, any

material has individual particles with varying energy levels according to a certain

statistical distribution; the minimum energy level (often regarded as fundamental

level) occurs normally at temperature OK, and at this level all particles are believed to

be in a stand still position. However, the particles possess different energy levels as the

temperature increases above the fundamental level; thereby leading to a decrease in

the number of particles that roam about at higher energy levels (this implies the

maximum number of particles occurs at the fundamental level). It should be noted

that, the statistical distribution of these particles in the various energy levels varies

with the temperature and the number of particles is a decreasing function of the energy

level.

The (Metropolis) algorithm, given a solid in state S j with energy £), generates a

sequence of states Sj through a transition mechanism involving minor changes to the

original state achievable by moving one of the solid’s particles according to the Monte

Carlo method. Suppose the energy of the resultant state also found based on some

Page 83 of 277

probability be denoted b y iif ; now, if Ej is less than or equal to En the newly

generated state Sj is accepted, otherwise it is only accepted with a probability given

by:

3.5.1.1

The T stands for the temperature of the solid, while kg is known as the Boltzmann

constant. Another name for this kind of acceptance rule is known as Metropolis

criterion and the entire algorithm described above is the Metropolis algorithm.

It should be noted at this point that, the thermodynamic equilibrium for the current

temperature can only be achieved (before moving to the next level) when the rate at

which the temperature is changed is carefully chosen, and this often requires a sizeable

number of states transitions of the Metropolis Algorithm.

3.5.1.2 Cooling Schedule

The efficiency and effectiveness of SA algorithm (regarding the quality of the final

solution and the number of iterations) in solving certain optimization problems largely

depend on the choice of some control parameters, collectively known as the cooling

schedule. Cooling schedule, as a control strategy used in guiding the algorithm from

the beginning until convergence to an optimal or nearly optimal solution, is

characterized by four different parameters as follows:

(i) Initial value of the temperature, Ta

(ii) Determination of a cooling rate, X.

(iii) A finite length of each homogeneous Markov chain.

Page 84 of 277

(iv) Final value of the temperature (stopping criterion).

Numerous pieces of research have been conducted, (see for instance Aarts and Korst

[I]) and some might still be ongoing to come up with an adequate and acceptable

cooling schedule. It should be noted at this point that, the performance of a cooling

schedule is entirely and highly dependent upon the problem at hand. There are two

main classes of cooling schedules, categorized into “static” and “dynamic” [22,1].

3.5.1.2(a) Static cooling schedules:

Implementing an SA algorithm while employing static cooling schedules means that,

the values taken by the set of parameters (mentioned above) must be wholly specified

at the initial stage of the algorithm, remain fixed and cannot be changed during the

execution of the algorithm. This is the pioneering cooling schedule - often referred to

as geometric cooling schedule, used by Kirkpatrick et al [90], and still applied in many

optimization problems.

Although, there are no generally acceptable guidelines or rules for choosing the values

of the cooling schedule parameters, even if the classical geometric cooling schedules

are to be used; however, the following tactical decisions have to be made in order to

keep our algorithm effective and operational throughout the execution of the entire

search process.

(i) Initial value o f the temperature: The temperature parameter is a non

increasing function of time. The parameter’s initial value should be chosen in such a

way that, it is sufficiently large enough to allow for the proper exploration of the

Page 85 of 277

solution/search space by ensuring acceptance of worse moves with a certain high

probability at the beginning of the search process [431. There are, however, several

suggestions in the literature of how the initial temperature value should be selected.

For further details, we refer the interested reader to Henderson et al [72], Dowsland

[371. Monticelli et al [1131, and Aarts and Korst [JJ.

(ii) Determination o f a cooling rate: It is believed that, number of approaches

exists in the literature on executing a temperature reduction in SA. Typical example of

a static cooling function is given by:

T i + i = X T , , i = 0 , 1 , . . .

Where X (cooling rate) is a positive fixed value smaller than, but close to, unity and

whose typical values lie in the interval: 80% < X < 99% . For further details, see

Eglese [431, Dowsland [37, 38] and Aarts and Korst [JJ.

(iii) Length o f Markov chain: Often denoted by JV*, this simply means, the number

of neighbourhood moves to be conducted under each temperature level. This

parameter is more closely related to the cooling rate, X than any other. Some proposals

for determining this length, involves fixing the value, making it vary, setting it

proportional to the problem dimension or proportional to the size of the

neighbourhood defined [43, JJ.

(iv) The Final value o f the temperature: This basically serves as a stopping

criterion for most implementations of SA algorithm. It is the temperature value whom

upon assumption forces the cessation of program execution, and consequently

Page 86 of 277

termination of the run of the processes. Most of the time this value is set at some small

fixed value related to smallest possible difference in cost between two neighbouring

solutions.

3.5.1.2(b) Dynamic cooling schedules:

Dynamic cooling schedule in relation to the static one is more complex in any

implementation of an SA algorithm. It involves setting the initial and final value of the

temperature parameter, the cooling rate and the length of the Markov chain within

each temperature in a more dynamic way. There are, however several extensions to the

static cooling schedules, that give rise to dynamic (variable) cooling schedules.

For instance, Reeves and Beasley [123] suggested that, the initial temperature value

should be obtained by:

a
-In /? / (* o)

In which it is assumed that (P/o of the uphill moves, which are a% worse than the

initial solution f(xo), are accepted at the initial temperature level To.

Monticelli et al H 13] however, suggested three alternative ways for implementing

temperature reduction in SA, among which (under dynamic cooling rate) one can use:

i = 0, 1,

Page 87 of 277

Where X < 1.0 and cr(T.)is the standard deviation of the costs of the configurations

generated at the previous temperature level T-,.

Furthermore, Monticelli et al H 131 mentioned that, under dynamic cooling schedule,

the length of Markov chain can be set according to:

____________________= p N k,____________ A: = 0,1,...________________

Where p is a user-supplied parameter typically taking a value less than or greater than

one. It should be made categorically clear that, whichever type of cooling schedule one

decides to adopt in implementing a SA algorithm; according to Eglese [43], it is

extremely important for the algorithm to spend less time at extreme (higher and lower)

values of the temperature. This is because, at higher values, most of the worst

solutions generated are accepted and staying there for long results in wasting precious

run time. While at lower temperatures most of the neighbourhood moves are rejected,

and it is worthwhile checking whether a local optimum has been attained.

3.5.1.3 Algorithmic implementation of SA

The procedure for executing SA algorithm can be described as follows:

Let 0 be a set of all possible solutions (solution space) and let f • ® —* R ? be an

objective function defined on 0 , the goal is to determine a global minimum

•s * (s * e © s u c h t h a t f (s ,) > / (f) , Vs . e 0) , For the global

minimum, s* to exist, the objective function,/must be bounded. By defining ^ { s) as a

neighbourhood function for^, it means for every solution S. G 0 there are

Page 88 of 277

neighbouring solutions sj reachable in a single iteration of a local search

algorithm.

The SA algorithm always starts with an initial solution, S. E 0 after setting the

temperature parameter T to an initial value To and an initial number of iteration, No. A

neighbouring solution, / ^ A ^ ^ i s then generated (either stochastically or using

some pre-specified rule). If we denote the difference between the initial and the newly

generated objective function by 8 [*•& $ = f (Sj) ~ f (. s,) \ , the newly generated

solution, sj is accepted as the next/new current solution depending on the value of T

and 8. After computing 8, if the objective value got better S < 0), then the current

solution Si is substituted with the newly generated solution sj . Otherwise, a random

number, rand e U (0,1) is generated, and sj can have another chance of replacing

Si as the new current solution, if and only if rand is less than some threshold value:

r - 8 'exp . This uphill move ability enables SA to escape entrapment in a local

optimum.

The above described procedure continues in a repetitive fashion until a global

optimum or a desired solution is obtained. The following pseudocode on figure 2 on

the next page summarizes the detailed processes involved in an SA algorithm:

Page 89 of 277

Simulated Annecdingifnputs \ s ^ f , X, N\ output: s j

Begin
Initial solution sQ % choose an initial solution, s0 e©
Initial tenperature T0 % choose an initial temperature T = T0
Choose a cooling rate X % choose T reduction function
Choose N % define the length of Markov chain per T
s = s. %set the initial solution as the current
Repeat Procedure

k -0 % Initialize iteration counter to null
For k -1 through N %Loop until iteration counter equals N

Generate^. eiV(i)J % choose a solution s . from the neighbourhood N{s) of s

compute 8 =f (s .) -f(s) % 8 is the difference in objective btw the current & new solution

If [8 <0) then % given that the objective fimction got better
s = s. % set the new solution s. as the current s

Else %if no any improvement

Generatê r e t/(0, l)] % generate a uniformly distributed random number btw 0 & 1

(-S')If r <exp\ — \ then %if this condition is satisfied

S=Sj % set the new solution s . as the current s

End{lf)

End(lf-Eke)

k = k +1 % increment iteration counter
Endî For)

T=X{f) % update the temperature T

Until stopping criterion

returns % output the best / global solution found, s
End

Figure 2: Typical pseudocode of an SA Algorithm

From the SA pseudocode it can be inferred that SA is a technique or method used in

solving an optimization problem by iteratively perturbing the current solution in a

stochastic manner. The method always accepts a local ascent/descent (depending

whether it is a maximization/minimization problem). However, in order to escape

entrapment in a local solution or to explore some other unexplored areas of the search

Page 90 of 277

space, the method occasionally accepts a deteriorating solution as the next current

solution with a given probability that decreases as the process continues. If the

reduction rate — known as a cooling schedule — at which the “temperature” decreases is

sufficiently low, there is a very strong likelihood that the algorithm would eventually

arrive at a very good solution; however this achievement is most of the times at the

expense of a longer run time. This type of local search escapes getting trapped in a

local optimum by jumping out of it in the early part (i.e. at higher temperatures) of the

search. As the number of iterations increases, the temperature and as well, the

probability of accepting a worse solution approaches zero, and consequently the

algorithm targets the bottom of a local optimum.

For more details on SA algorithms, we refer any interested reader to Aarts and Korst

[JJ, Reeves and Beasley [123], Dreo et al [39], and/or Dowsland [37, 38],

3.5.2 Parallel Simulated Annealing (Parallel SA)

The parallelization of SA has been studied and found to be promising in several

researches conducted across diverse research areas including global optimization as in

Onbasoglu & Ozdamar [1161, chromosome reconstruction as in Bhandarkar &

Chirravuri [9], Job Shop Scheduling and Travelling Salesman Problem as in Ram et al

[121] and engineering problems as in Leite & Topping [96] and Gallego et al [57].

Despite all its good and promising features, one has to admit that the computing time

requirement is undoubtedly a critical factor in the economic evaluation of the utility of

an SA algorithm in the real world industrial problems application. In order to

minimize the effect of this drawback, a promising research direction is the

Page 91 of 277

parallelization of the algorithm, which involves carrying out several calculations

simultaneously for its realization [96,1, 121, 561. Parallelization of SA though sounds

easy, however, should not in any way be thought of, as a simple or trivial task.

The cardinal requirement for parallelizing SA is that such process should be carried

out so as not to affect or alter the typical sequential nature (Markov chain) of the

algorithm; this is due to the fact that, SA processes a sequence of trials in which the

probability of an outcome of a given trial depends only on the outcome of the

incumbent (current) trial, and does not in any way depend on the trials in the sequence

that came prior to the incumbent trial. There are basically two distinct methods used in

implementing parallel SA that were suggested soon after the invention of SA. Dreo et

al [391 argues, the distinction between these two methods still remains very relevant in

modem day optimization problems. These two methods include Division Algorithm

and Clustering Algorithm.

3.5.2.1 The Division Algorithm

The Division algorithm allows for implementing several Markov chain computations

in parallel using a sizeable number (say Mp) of elementary processors. If we assume a

constant number of trials, say, N, then each of the Mp processors is responsible for

performing N/Mp trials in the Mp various sub-chains. In order to preserve the main

characteristic of the SA algorithm at each temperature level, when all processors finish

processing their individual tasks, the incumbent optimal solutions are sent to the

master node {p = 0), which then selects the best and broadcasts the results to all the

other processors (p = 1, Mp - 1).

Page 92 of 277

The following figure describes how the Division algorithm operates

________ Temperature Levels
'/t-f Tk 7/(+)

0

0L.
0
CL

Nk+1

Master Node

Transitions Chains
________________Figure 3: Architecture of Division Algorithm________________

From Figure 3 above, the horizontal line signifies the evolution of the temperature and

the number of trials executed per temperature level; whereas the vertical components

signify the Mp processors and each one of them performs its task in a sequence of

N/Mp. After all processors finish their assigned tasks, they communicate their

“progress” to the master node, which in turn will determine the new best configuration

(solution), declare it as the new global incumbent and then makes it available to all

processors for onward restart from that point on. It should be noted that, when the

master node receives the solutions from the processors it checks whether all the

solutions from the processors coincide. This condition is normally satisfied before

reaching the minimum temperature level, thereby signifying a faster convergence to

the parallel algorithm.

Page 93 of 277

The solution quality obtained through this method relies on the number of processors

used in the parallel computation. The main advantage of this method is that, it allows

for the division of the total computing time by a factor Mp. However, if a large number

of processors is involved, the number of configurations studied by each becomes too

small, and this may hinder the system from reaching thermal equilibrium, thereby

making convergence towards an optimum unrealistic. One of the remedies to reduce

the impact of this problem is to increase the number of trials N per temperature and/or

increase the parameter responsible for the rate of temperature cooling, X. This idea is

to make sure that each processor has enough number of trials to simulate near thermal

equilibrium conditions as closely as possible.

3.5.2.2 The Clustering Algorithm

Unlike the Division algorithm described in the previous section, the Clustering

algorithm strictly observes the sequential feature of the conventional SA algorithm, in

the sense that all the processors involved perform the N trials in a most cooperative

fashion by working with the same current solution. The method starts with each of the

processors undergoing the processes (i.e. accepted moves, rejected moves, temperature

change and so on) involved in the sequential SA algorithm. However, whenever any of

the processors accepts a new move, it communicates the resultant solution to other

processors which in turn will switch to that solution and all regard it as the new global

incumbent and continue the search from there. This process continues until a specified

stopping criterion is attained.

Page 94 of 277

Processing Time (T)

ransitions
Accepted Move
Rejected Move

Figure 4: Architecture of Clustering Algorithm

From the description given above, it can easily be inferred that, there is very large

frequency of communication among the processors at high temperatures due to the

large number of moves accepted at such extreme. On the other hand, the opposite

scenario is observed at lower temperatures where very few moves are accepted. Leite

& Topping [96] and Monticelli et al [113] argue, despite this degree of

communication, this algorithm presents a better performance since it doesn’t require

strong synchronization. Apart from the two techniques of parallelizing an SA

algorithm described above, there are other methods as well; an interested reader is

hereby referred to Dreo et al [39], Monticelli et al [113] and Leite & Topping [96].

As for this research, the choice of this method is informed by our drive to explore the

capability of parallel SA characterized by improved quality solutions; while at the

same time clamping down the time taken by the conventional single-solution SA to

arrive at a good solution. We hope to achieve this, by exploiting the pluses of SA

Page 95 of 277

(mentioned above) through maintaining a number of candidate solutions (often

referred to as processors) that swarm the multidimensional search space at any

particular time, thereby maximizing the chances of finding very good (even if not

optimum) solution within a shorter time frame.

As already stated before, the parallel implementation of SA is really a non-trivial task;

as there are lots of things to take into consideration, ranging from search initialization

approaches to different choices of cooling schedules. The method operates in a very

similar way to SA, but with several searches going on in parallel, with thus several

current solutions at any one time.

3.5.3 Tabu Search (TS)

TS is a metaheuristic designed with the motif of guiding other methods to escape

entrapment in a local optimum. It is one of the successfully implemented mathematical

optimization metaheuristic techniques. Its main idea was believed to be originally

introduced and brought to limelight by Fred Glover in the year 1986 (see Glover and

Laguna [63]. for details), purposely for solving various combinatorial optimization

problems. Two important articles (Glover [61] and [62]) are believed to contain most

of the principles upon which the method is based and which are still in use today.

However, in the scientific community, some of the principles that guide TS were not

well understood in the early nineties, during which there was no such interest in what

Dreo et al [39] termed as “metaheuristic culture”; as most of the researches conducted

in TS, then, used a restricted domain of the said principles, largely limited to tabu list

and a simple aspiration condition [39].

Page 96 of 277

The method is believed to derive its name originally from an 18th century Polynesian

word: “taboo”, and frequently written as “tabu”\ which is defined according to the

Oxford Dictionaries online version [79] as: a social or religious custom

prohibiting or restricting a particular practice or forbidding association with a

particular person, place, or thing’'’ or something prohibited or restricted by social

custom”. These definitions seem to accord well with the idea behind TS as it makes

some decisions prohibitive in order to avoid executing counter-productive course.

The method gained much prominence and attention in the scientific community with

the research works conducted by de Werra’s team at the Swiss Federal Institute of

Technology, Lausanne in the late eighties. Hence, some significant credit should go to

de Werra’s team for popularization of TS techniques; as their researches: Hertz and de

Werra [74], de Werra and Hertz [30], and Hertz and de Werra [751 played a vital role

in disseminating the technique in the research community. Despite the growing

competition between TS and SA (which was introduced earlier than TS and had to its

credit an established convergence theorem), TS-based heuristics were growing in

popularity and acceptability especially with some effective and promising results

obtained from the works of Tail lard [138], [139], [140], and [1411.

The method was applied and found to be successful in solving diverse optimization

problems including (but not limited to) graph colouring, electronic circuit design,

financial analysis, molecular engineering, resource planning, pattern classification,

mineral exploration, environmental conservation, biomedical analysis, waste

management, flexible manufacturing, quadratic assignment, logistics,

telecommunications, energy distribution, space planning, scheduling, character

Page 97 of 277

recognition, to mention but a few. TS, as an extension of classical local search

methods provides solutions that are close to optimality; and many regard it as the most

effective in tackling difficult optimization problems IT 1, 1391.

Unlike other combinatorial optimization techniques, TS has its origin from concepts

used originally in artificial intelligence and not from any physical or biological

processes as in the case of SA and/or GA respectively. As such, it possesses some set

of principles which when applied in an integrated way will solve a difficult

optimization problem in an intelligent manner - a feature which form the base upon

which the method is founded. According to Glover and Laguna [63]:

“Tabu search is based on the premise that problem solving, in order to qualify as

intelligent, must incorporate adaptive memory and responsive exploration... The

adaptive memory feature o f TS (whose importance is suggested by the analogy o f the

mountain climber who must analyze current alternatives in relation to previous

ascents o f similar terrain) allows the implementation ofprocedures that are capable o f

searching the solution space economically and effectively... TS contrasts with

memoryless designs that heavily rely on semirandom processes that implement a form

sampling...”

TS is sometimes considered as one of the most widespread single-solution

metaheuristics in use, using “memory” to store information related to the search

processes [1131. The method, in comparison to SA and GA, is greedier; as it explores

the vastness of the search space in a more aggressive and intelligent fashion than either

of the two. Basically, TS begins with an initial configuration (solution) generated

Page 98 of 277

either randomly or in a guided fashion; after which such solution assumes the status of

the current solution. During each and every iteration, a neighbourhood structure of the

current solution is defined and a move to the best solution within such neighbourhood

is always accepted (for instance, in a minimization problem, the best configuration

refers to the solution with the lowest cost). The so-called best solution may either be

chosen based on the First-Improving solution criterion or based on complete

enumeration of the entire neighbourhood. The term best here refers to the solution that

improves most the objective function value; however if such best doesn’t exist within

the neighbourhood of the current solution, the move leading to a solution that least

degrades the objective function value is chosen. In order to avoid getting engulfed in

an intractable problem, only the most promising neighbours in the neighbourhood of

the current solution are evaluated.

Although TS, unlike the stochastic SA, is a deterministic algorithm; it was designed to

escape getting entrapped in a local optimum solution. However, TS behaves mostly

like a steepest local search algorithm in the sense that, it usually makes an uphill move

only when it is entrapped in a local optimum; whereas SA can make such uphill moves

at any given time. In executing such an uphill move, TS often permits moving to the

best candidate solution in the neighbourhood even if it is worse than the current

solution (as in the case of SA and other top rated metaheuristic techniques). One of the

most important and remarkable features that distinguishes TS from other algorithms,

while at the same time playing a vital role in its efficiency across diverse research

areas is its ability to develop a mechanism that disallows jumping back or visiting

(again) recently encountered solutions for a number of iterations, through the

maintainability of what is usually known as a Tabu List - which is like a database

Page 99 of 277

containing recently visited solutions or their attributes; thereby preventing certain

solutions from reoccurring for a certain number of iterations - called the size, length or

more commonly tenure of the tabu list. The elements {moves attributes) in the tabu list

are added based on the rule widely known as First-In-First-Out (FIFO); which makes

it possible for the list to be continuously updated as the algorithm proceeds, so that the

move just added to the list can be automatically removed from it after its tabu tenure

has elapsed.

However, this prohibition of revisiting recently encountered solutions as imposed by

tabu list’s membership makes TS a little bit restrictive and consequently, may well

(occasionally) lessen the efficiency of the method. Moreover, after a while it might be

worthwhile to revisit a recently encountered solution from which further searches to

some promising direction can begin. Now, in order to improve the method’s efficiency

and to allow for visiting more promising solutions, an aspiration criterion is

introduced purposely to override the tabu status of a given solution when it is able to

satisfy these (<aspiration) conditions. With this, it means a TS algorithm can accept

non-tabu neighbours as well as those that satisfy the aspiration criteria even if they

are already declared tabu.

In addition to the design issues related to all single-solution metaheuristics (such as the

neighbourhood structure and how initial solutions are generated) and other

implementation essentials peculiar to TS (such as tabu list (short-term memory) and

aspiration criteria described above), there are also some advanced implementation

issues that are introduced into TS to handle issues that focus towards the

intensification and diversification of the search.

Page 100 of 277

• Intensification (medium-term memory): The main aim of intensification in this

method is to exploit and utilize the information concerning the elite (best

found) solutions, primarily to help in guiding the search towards promising

regions of the search space. This set of information is stored in a medium-term

memory. The whole idea of intensification involves extracting the common

attributes of these elite solutions to further intensify search around solutions

with similar features.

• Diversification {long-term memory)'. Single-solution metaheuristics (such as

TS) are known to possess an intensification power. TS, on the other hand uses

long-term memory to encourage diversification. The long-term memory

achieves this by forcing the search towards unexplored regions of the search

space.

The main components of a TS algorithm’s operation are outlined in the following

steps and a comprehensive flowchart for those operations follows in Figure 5 below:

Page 101 of 277

(b e g in)

In it ia l iz a t io n s te p

SET iteration counter to null (i.e. k - 0)

Randomly GENERATE initial solution sMial
EVALUATE the initial objective value f (s ^)

S E T \
s — scurrent initi
c — c best initial

GENERATE a set o f neighbouring solutions j s'mis,hbour e N (sa m m) ; i = 1 , . . . , mmNebos^
SORT them in ascending order
S E T i = 1

neighbour

SET: s. =s . „best neighbor

► < C (4 ^ w) e tabu list ?

j ADD s'xigh6oitr to tabu list [i.e. tabulist = fabulist u)
SET i = / + 1 Y e s [SET s , = s ' .^ j curwnt neighbour

aspiration condition
satisfied ?

UPDATE the aspiration level
SET s = scurrent neighbournumNebos

SET k = k + \

stopping criterion
satisfied j

S T O P)

Figure 5: Typical flowchart of a TS algorithm

Page 102 of 277

Step 1:

(a) Generate an initial solution, S/ni,iai,

(b) Set iteration counter, say k, to null (k = 0).

(c) Set the initial solution (generated in step 1(a) above) as the current (scurren,) as

Well as the best found SO far (Sbest)- { Scurrent S initial) Sbest sinitial }

Step 2:

(a) Randomly generate some set of candidate solutions

e N (sc„nv,„)’ i = h ■ • •> numNebos} in the neighbourhood N (s CUrrent) of the current

Solution, Scurrent’

(b) (Given a minimization problem), sort these neighbouring solutions in

ascending order based on their objective function. After sorting, {slelghbour } represents

the best neighbour in N(scurrent) having lowest objective function value.

Step 3:

Set i = \,JF f) > / (*tai) THEN goto step 4 - ELSE set s ^ = s ^ THEN goto step 4

Step 4:

(a) Check the tabu status of } •

(b) If not a tabu member then add it to the tabu list. se t scurre„, ~ Neighbour goto step

7. Otherwise, goto step 5.

Page 103 of 277

Step 5:

(a) Check the aspiration criterion of } .

(b) If aspiration condition is met, then override its tabu status, update aspiration

level and se t scumnt = s'nejghbour goto step 7. Otherwise, increment i and goto step 6.

Step 6:

If i > numNebos goto Step 7. Otherwise goto Step 4.

Step 7:

(a) Check any of the stopping criteria.

(b) If at least one is satisfied, then TERMINATE the search process. Otherwise,

increment the iteration counter, k and goto Step 2.

We decide to implement TS for solving our PSP based on the hope that, much better

solutions might emerge from it; as we are satisfied with its ability (as in other

researches such as Taillard [1381, [1391, [1401, and [1411) in traversing the search

space in an intelligent and guided manner through maintaining a tabu list, upon which

very good results are normally obtained. Moreover, TS (in comparison to SA) has less

number of parameters to deal with. For more details on TS algorithms, any interested

reader should consult Glover [60, 63, 62], Glover and Laguna [631, Hertz and de

Werra [74, 75], de Werra and Hertz [301, and Talbi [1421.

Page 104 of 277

3.5.4 Genetic Algorithms (GA)

Genetic Algorithm, often abbreviated simply as GA, can be defined as a

probabilistic search algorithm that iteratively transforms a set (called a population) o f

mathematical objects (typically fixed-length binary character strings), each with an

associated fitness value, into a new population o f offspring objects using the

Darwinian principle o f natural selection and using operations that are patterned after

naturally occurring genetic operations, such as crossover (sexual recombination) and

mutation’'1 [92].

GA was first introduced by Holland [781 based on the natural evolutionary processes

(natural selection and genetics) seen in biological organisms, and the method was later

made popular by one of Holland’s students - David Goldberg who solved an

interesting and difficult optimization problem in gas-pipeline transmission control

[65], In evolution processes, some people believe that, populations of individuals

evolve in line with Charles Darwin’s [29] principles of natural selection and survival

o f the fittest strategy in nature. Fitter individuals adapt more successfully to their

natural environment, and consequently stand a better chance of surviving and

reproducing than their weaker counterparts which will eventually be eliminated from

the population. This concept of survival o f the fittest implies that the genes from

highly fit individuals will spread to an increasing number of individuals in successive

generations; as good traits of highly fit parents will tend to produce fitter offspring.

The processes described above are simulated by GA; as its search begins with an

initial population of individuals containing constant number of chromosomes

(generated either randomly or systematically) and then iteratively applying genetic

Page 105 of 277

operators (such as selection, crossover and mutation) in each reproduction stage. GA is

a method applied and found capable of solving an extremely wide range of problems.

According to Michalewicz [108] and Coley [24], there are quite a large number of

complex optimization problems in which GA was applied successfully; these include

jobshop scheduling, image processing, adaptive control, wire routing, game playing,

cognitive modelling, TSP, spacecraft trajectories, optimal control problems,

aeronautics, robotics, transportation problems, water networks, database query

optimization, laser technology, analysis of time series, aesthetics, medicine, very large

scale integration (VLSI), solid-state physics, facial recognition and many more.

Conventional optimization methods normally begin with a single candidate solution

and the search for an optimal solution continues repetitively by applying some

heuristics. On the other hand, GA approach is based on using a population of

candidate solutions concurrently searching different areas of the solution space in an

adaptive manner. GA, quite often allows for precise modelling of an optimization

problem without necessarily having an explicit objective function. Moreover, in

situation where the objective function is available, it doesn’t have to be differentiable.

GA operates on a population of individuals, in which each is a potential solution to the

given problem. The canonical GA is encoded as a fixed-length binary string; however,

other encoding methods (including a real-valued encoding) have also been used in

other researches across diverse areas. These representations serve as an analogy with

the actual chromosome in a biological organism. In solving an optimization problem,

an individual member of the population is encoded into chromosome representing a

candidate solution to the given problem. As the algorithm continues, the population of

Page 106 of 277

individuals evolves through sequential and repetitive application of three important

genetic operators, namely: selection, crossover and mutation. Whenever, one or more

of the individuals has at least one of the above mentioned operators acted upon it, it is

called a parent', while the resultant individuals are often regarded as offspring.

Therefore, if two operators are applied in succession, the offspring produced by the

first operation becomes parent to the offspring generated after the second operation.

The new generation of individuals (offspring) is normally obtained at the end of each

iteration upon which each one among them has his fitness evaluated based on the

objective function value; highly fit solutions (individuals) are made to be more

opportune to reproduce by exchanging their genetic features with other fit solutions

through crossover. This process is believed to result in new offspring solutions that

combine the genetic traits of their crossed parents. The mutation operator is often

applied after crossover by perturbing some genes in a chromosome. The offspring may

either replace weaker individuals {steady-state approach) or the whole population

{generational approach). The evaluation-selection-crossover-mutation cycle is

repeated until an acceptable solution that best optimize (minimizes/maximizes) a given

objective is returned as the ideal solution or until a given termination criteria is

satisfied.

GA, although belonging to a class of probabilistic algorithms, operates differently

from other stochastic algorithms, since they combine elements of guided search on one

hand and those of random search on the other. Another advantage with genetic-based

methods (such as GA) is their ability to perform a multi-directional search by

constantly maintaining a population of potential solutions throughout the search

Page 107 of 277

process; unlike other methods who process a single solution for the entire search

space.

Before a successful implementation of GA to a particular problem is achieved, there

are several issues that have to be decided, including: the method of representation, way

of exchanging information between individuals, how to apply the concept of mutation,

the size of the population and the termination criteria. We are going to discuss them in

what follows:

(i) Population size: This refers to the total number of individuals that an algorithm

begins with, carries along and maintained throughout the search history. These

are synonymous to particles and parallel solutions in PSO and parallel SA

implementations respectively. There is no optimal population size suitable for

all problems, but rather, it is problem-dependent.

(ii) Generations'. This is synonymous to the total number of iterations in other

search methods.

(iii) Genetic Operators'. A typical GA uses three to four basic operators: selection,

crossover, mutation and elitism to direct the population of individuals towards

convergence to a global optimum. These operators are discussed below:

(a) Selection: It is aimed at pressurizing the population in a manner similar

to that of natural selection obtainable in biological systems. It is this operator

that ensures the extinction of the poorly-performed individuals, while giving

Page 108 of 277

the better ones a greater chance of promoting their information to the next

generation. It is also responsible for determining the convergence

characteristics of the algorithm. There are quite a number of selection schemes

in use including: Tournament, Truncation, Linear Ranking, Exponential

Ranking, Elitist and the most popular Proportional selection [28].

(b) Crossover: After selecting the parents, there is the need to recombine

them to produce offspring for the next generation - a process called crossover.

It is one of the only two variation operators in GA implementation. Reeves

and Rowe [124] explained crossover as a process of “replacing some of the

alleles in one parent by alleles of the corresponding genes of the other.” This

operator allows individuals to exchange information in similar manner

obtainable in sexual reproduction found in natural organisms. The canonical

GA uses one-point crossover in which two offspring are produced by two

parents after swapping all their alleles to the right of a chosen single locus

(point). Typical example of a binary representation’s one-point crossover is

depicted in the following figure:

Parent

100111

101000

1001 11

1010 00

Offspring

1001001

101011
(a) Choice of cut-off point (b) Cut & swap (c) Result

_____________ Figure 6: Example of one-point crossover__________

The crossover process depicted in the above figure produces two offspring

Page 109 of 277

from two parents. However, if only one of the offspring is needed in the

algorithm employed, it can be chosen at random from the pair and the other

should be thrown away.

There are also some other types of crossover such as uniform and n-point

crossovers; it should be noted at this point that, although more than two

crossover points give the algorithm better exploration ability, it often leads to

very disruptive configurations.

(c) Mutation: This is the other variation operator next only to the crossover

operation. In a natural setting, many processes can cause mutation, the simplest

being an error in replication. This operator is meant to “keep the pot boiling”

by modifying an individual’s configuration randomly to generate a new

offspring that will replace it. Coley [241 argues that, mutation is responsible for

maintaining the genetic diversity of the population by preserving the diversity

embodied in the initial population, as it is used to stochastically change the

value of an allele within an individual chromosome. By so doing, it is believed

there is a tendency for a mutated solution to be a little bit better or just to

introduce some randomness to the population of individuals for extensive

exploration of the search space. It is particularly important at the final

generations when most of the individuals in the population exhibit similar

solution quality. The proportion of the mutated individuals in the offspring

population is equal to the mutation rate. It should be noted that, a mutation

operation with a sufficiently high rate plays a vital role in preserving the

Page 110 of 277

diversity of the population which is, of course, useful for an efficient

exploration of the search space.

For binary encoding, mutation can be carried out by randomly flipping bits

with a very small probability. As for real-valued encoding, this can be achieved

by random replacement with another random value. Another possibility is by

adding/subtracting (or even multiplying by) a random (such as uniformly or

normally distributed) amount [28]. An example of binary encoding mutation is:

100100 100100 101100
(a) Individual (b) Flip randomly chosen bit (c) m u t a t e d Individual

_________ Figure 7: Example of bit-flipping (mutation) operation_________

(d) Elitism-. There is no guarantee whatsoever that the fitness-proportional

(roulette-wheel) or any type of selection method would include even the fittest

individual (since the entire selection is probabilistic). However, unless the

fittest individual is much fitter than any other, it will occasionally not be

selected to form part of the next generation, and this simply translates to its

demise. This regular throwing-away of elite member of the population appears

to be, and is indeed, counterproductive. The process of ensuring the

propagation of the elite member is termed as elitism, and requires that not only

is the fittest member selected, but a copy of it is not affected by the disruption

encountered during crossover and/or mutation operations. There are quite a

number of elitist strategies including one known as (p + X)-ES which allows

for systematic copying of the best parents in the current generation to the

population of the next generation. Or if it happens that, the best individual in

Page 111 of 277

the current generation is better (due to the effect of variation or selection

operators) than the best in the next generation, then it will be copied to the next

generation by simply replacing the worst individual with the lowest fitness.

(iv) Population replacement'. After the first three or all of the above four outlined

genetic operators have been applied to a population; a new population of individuals

will have been formed. In GA, the new population of offspring can either replace the

whole population (Generational approach) or as soon as a new child is generated

{steady-state approach).

(a) Generational replacement: This is the simplest type of replacement

strategy used in the canonical GA, whereby only the offspring created in the

current generation will form the population of parents in the next generation.

(b) Steady-state replacement: This replacement strategy allows for a small

number of offspring to be created in each generation purposely to replace equal

number of parents in the next generation. This strategy is particularly useful

when the solution representation is distributed on several individuals, possibly

the entire population. This strategy, by losing a small number of individuals

does not disturb the solutions excessively and thus they evolve gradually.

A typical GA begins with a population of stochastically generated individuals which

are declared the first generation of parents; their individual fitnesses are then

evaluated. Several individuals are then randomly chosen from this incumbent

population (based on their fitness values) in order to undergo a modification

(recombination and mutation) to form a new population. The new population

Page 112 of 277

undergoes similar processes in the next generation as did the previous one until

attaining a maximum number of generations or a satisfactory solution is obtained.

Figure 8 shows a flowchart showing the operations executed in a typical GA

implementation; and the following pseudocode illustrates the outline of processes

involved in a basic GA algorithm.

Outline of the Basic GA

1. [Start] - Randomly generate an initial population of n individuals

(chromosomes), with each individual serving as a candidate solution to the

problem.

2. [Evaluate Fitness] - Evaluate the fitness of each individual in the population.

3. [New Population] - Create a new population of individuals by executing the

following steps repetitively until the desired population size is attained. The

steps are:

(i) [Selection] - Select two parent chromosomes from the population

according to some defined selection criteria.

(ii) [Crossover] - With some (crossover) probability, perform a crossover

operation for the selected parents to form new offspring (children). If crossover

operation is not executed, the offspring remain as exact copies of their parents.

(iii) [Mutation] - With some (mutation) probability, mutate an offspring at

some chosen point of interest.

4. [Replace] - Let the newly generated population replace the old one for further

run of the algorithm.

5. [Test] - Check if the stopping condition is satisfied, then terminate and return

the best solution found; otherwise go to step 6.

Page 113 of 277

6 . [Loop] - Go to step 2.

GA, according to Haupt & Haupt [70] has lots of advantages over other search

techniques which includes its ability to:

(i) Optimize difficult optimization problems with both continuous and discrete

variables

(ii) Perform well without the requirement of any derivative information

(iii) Deal with a sizeable number of variables

(iv) Suit well with parallel computers

(v) Provide a list of good solutions, and not just a single solution

(vi) Work with numerically generated data, experimental data, or analytical

functions.

However, the sizeable number of solutions that gives the GA its power is also one of

its major disadvantages when it comes to speed on a serial computer - since the fitness

of each of them has to be evaluated. GA’s unique feature of maintaining multiple

number of best solutions during the course of execution distinguishes it from other

(local search and evolutionary) algorithms; and is what we believe gives it an edge

over them especially in tackling difficult optimization problems. What informed our

decision in this research to choose GA (as one of the optimization techniques) follows

from our belief and hope of getting very good and/or near-optimal solutions to our

newly formulated PSP. For fuller detail on GA, an interested reader is referred to Dreo

et al [39], Holland [78], Michalewicz [1081, Reeves and Rowe f 1241, Coley [24],

Talbi [142], Da Silva and Falcao [28], Koza [92], Goldberg [65], and Haupt & Haupt

GO]-

Page 114 of 277

START

generation = 0

Create initial population

Is stopping c r i te r io n '\Y e s y Announce Result
satisfied ?-►

No

individual = 0

Evaluate individual’s fitness

individual = individual + 1

Is individual the last in
the population ?

Yes

individual = 0 STOP

Yes Is individual the last in
the population ?generation = generation + 1 individual = individual + 1

Select Genetic
Operators

No

Pr(R) * Select One individual based Perform Copy into new
on its fitness -► Reproduction population

Pr(C) Select Two individuals
based on their fitness Perform Crossover Insert Offspring into

new population

Pr(M) h Select One individual based Perform Mutation Insert Mutant into new
on its fitness -► population

Figure 8: Typical GA operations’ flowchart

Page 115 of 277

3.5.5 Particle Swarm Optimization (PSO)

There are quite a number of biological organisms (such as Bees, Ants, Birds, Fish and

lots more) that behave as a swarm especially when searching for food or when

avoiding an attacking predator. This amazing behaviour has been a focus of many

artificial life researches purposely to study, examine and reconfigure such swarm’s

behaviour inside a computer. For instance, Reynolds [125] developed a swarm model

- boid, capable of generating animations of complex swarm behaviour using computer

graphics. Boyd and Richerson [12] studied human beings’ decision process and

consequently developed the concept of individual learning and cultural transmission.

Their studies revealed that, humans make decisions based on their personal

experiences as well as other peoples’ experiences. Moreover, in the early years of the

1990s, a dawn of new optimization techniques that explore an analogy of swarm

behaviour of natural creatures began. Dorigo and Di Caro [361 introduced ACO based

on the life style of one of the so-called social insects - the Ant. In ACO, each

individual (ant) implicitly shares some vital information with other individuals by

depositing its pheromones trails. Eberhart and Kennedy introduced PSO based on the

behaviour seen in the swarms of birds and schools of fish. The collection of researches

that involves swarm behaviour is generally regarded as swarm intelligence [891; and of

course, PSO is one of the constituent techniques in swarm intelligence.

PSO (in relation to SA, TS and GA), is a newly-developed population-based swarm

intelligence optimization techniques originally proposed by Russell Eberhart and

James Kennedy in the early nineties [88]- The PSO (like other Evolutionary

Computation family of Algorithms) is non-deterministic and non-gradient based,

implying that no information regarding the gradient of the cost function is needed for

Page 116 of 277

the algorithm to function properly. This advantage makes PSO appropriately

applicable in optimizing functions where the gradient is computationally challenging

to obtain or even unavailable. It can be used to tackle a vast range of optimization

problems, such as financial optimization as in Kendall and Su 186], health problems as

in Eberhart and Hu [41] and function minimization as in Shi and Eberhart [130, 1311.

3.5.5.1 The Origin of PSO

Jacob and Khemka [82] stated that, the term PSO originated when experimenting with

algorithms aimed at modelling the birds’ flocking behaviour. In the early years of

1990s, there were several algorithms (such as ACO) designed to simulate flocking

behaviour of some organisms; however Kennedy and Eberhart were primarily

interested in the Frank Heppner’s algorithms also known as Heppner’s Birds. The

algorithm exhibit similar results as other algorithms of the time, exhibiting the

following features:

• The birds must fly towards the same direction as the bird in the forefront.

• The birds should have equal velocities as their neighbours while flying.

• The birds must not, in anyway, collide with their neighbours while flying close

to each other.

However, there are some other things that attracted Eberhart and Kennedy before

coming up with their model on particle swarms. These include the fact that: the birds

seemed to be attracted to a roosting area, as they (birds) hover/fly around in a flock

and suddenly one of them flew over the roosting area and eventually landed on the

roost. This phenomenon will cause the other birds to land there as well. Kennedy and

Eberhert modified this idea and modelled their particles to behave in similar fashion

Page 117 of 277

as they hover (fly) over a solution space, they would (almost all of them) eventually

land on the best solution.

Although, working in synonymous fashion to other population-based search methods

through updating the movements of individuals in their respective populations (and

eventually leading to obtaining an optimal solution quickly), the PSO was named as

such, because it is believed to be motivated and inspired by simulating the social

behaviour of some organisms (Bird flocking and fish schooling) [88, 130, 131, 146).

The basic PSO algorithm plays around with population of points, called particles in a

multi-dimensional search space, in which each of these particles serves as a candidate

solution to the optimization problem at hand. Each of these particles in the entire

swarm flying through the hyperspace possesses a position and a velocity as well as an

essential reasoning capability of memorizing their own (local) best position and that of

their neighbours (global best). The concept of best here is relative depending on the

kind of optimization problem at hand; if it is a minimization problem, then best simply

refers to a position in which the evaluated value of the objective or cost function is at

its minimum, otherwise it refers to a position which returns the most maximum value

for the cost or objective function.

Unlike, other population-based evolutionary optimization search techniques, each

particle in PSO flies through the multi-dimensional search space with a velocity that is

continually perturbed according to its own and its companions’ flying experience

[1311. Furthermore, these particles are able to communicate and relate to their

neighbours the history of their trajectories and their best positions found so far, and

consequently this inter-communication enables them to adjust their own positions and

Page 118 of 277

velocities. The PSO algorithm begins and continues with the population of particles,

achieving effective performance through competition and cooperation among the

members. It should be noted that, unlike in some evolutionary computational search

algorithms, whereby selection operation may render some individuals to become

extinct as they die out of the population; the PSO is the only evolutionary algorithm

that does not implement what is often referred to as the survival o f the fittest strategy

[42].

PSO was originally designed for solving continuous optimization problems in which

its applications to such class of problems was proposed in Kennedy and Eberhart [881.

Basically, the model consists of a swarm of M particles hovering over an n-

dimensional solution space, with each particle, say i (i = 1, 2, ... , M) serving as a

potential solution to the given problem being represented by a vector x-t in the solution

space. Each particle also has a position, an associated velocity and as well possesses an

ability to share its trajectory history with other particles in its immediate

neighbourhood or the entire swarm; thereby allowing some successful members of the

swarm to have some degree of influence over their peers. Each member of the swarm

repositions its position Xj towards the global optimum solution based on the history of

its most promising and best-ever visited solution -

lbest(i) denoted as lb, = (lbn,lbi2, ... ,lb!n) , and the best solution ever visited by any

member in the entire swarm’s trajectory history -

gbest denoted as gb = (gbl,gb2, , gbn).

Page 119 of 277

3.5.5.2 Particles Neighbourhood

Each particle in the swarm must have some defined neighbours with which to

communicate its progress and vice versa. The neighborhood denotes the social

influence existing between the particles; and there are quite a number of different

possibilities to define such a neighborhood. The two most commonly used

neighborhood models include: (a) the Gbest, and (b) Lbest models.

(a) Gbest Model'. In this type of model, each particle considers the entire swarm as

neighbors [see Figure 9(a)]. At the expense of robustness, the gbest model converges

faster; due to its maintainability of a single best solution, often regarded as the global

best particle across the entire swarm, which acts as an attractor having pulling power

to attract other particles towards it; and eventually they all converge to its position.

Thus, if this global solution is not updated on a regular basis, the swarm may converge

prematurely standing the risk of getting trapped in a local optimum.

(b) Lbest Model: Each particle considers a subset of the swarm as its neighbors [see

Figure 9(b)]. Local neighborhoods introduce various independent social groups in the

swarm, and information between these various subgroups is then communicated back

to the entire swarm in some structured fashion. This type of model inhibits premature

convergence by maintaining multiple leaders (neighborhood best particles). According

to van den Bergh f 1461, this method has two main advantages: (i) it is computationally

less costly, and (ii) it assists in promoting diversity and spread of information within

the swarm.

Page 120 of 277

#

/ i \ ■' . - ' ' t \ / ! \
/ - i ' / \ y ^ " ~ j '

 XjX V-

\ i \ / i \ , . b /

(a) G best Model: P a r t i c l e s a r e n e i g h b o r s t o o n e

a n o t h e r (C o m p l e t e g r a p h)

(b) Lbest Model: E a c h p a r t i c l e h a s o n ly 4 n e a r e s t

n e i g h b o r s (n o n c o m p l e t e g r a p h)

Figure 9: Neighborhood topology in PSO

Regardless of the neighborhood topology adopted, an attractor (i.e. lbest or gbest) is a

particle that spearheads other particles towards promising regions of the search space.

Suppose we have a swarm of particles whose size is n, each and every member of the

swarm is viewed as an object with lots of characteristics. These features or

characteristics can be represented by the following symbols:

Xj\ This vector stores the current position (location) of particle / in the search

space.

v ,: This vector stores the velocity which particle / travels with, and

lbj\ This vector stores the best position ever visited by particle / in its entire search

trajectories.

The PSO operates like cellular automata, due to the fact that the particle update is

executed in parallel and each new value is dependent upon the previous value and its

neighborhood. At the instance of each algorithmic iteration, a particle flies from one

point to another in the solution space, while at the same time undergoing the following

three update operations:

Page 121 of 277

(i) Velocity update: The velocity of a particle defines the direction and amount of

change (distance) to be applied to a given particle.

v*+1
IJ i K j lbk - x ‘

V U
+ g b t - ^ 3.5.5 (a)

Where k denotes a unit pseudo time increment (iteration number), R/ and R2 are

randomly generated and unifonnly distributed values in the interval [0, 1] purposely to

introduce some stochastic effects in the algorithm. The constants C/ and C2

(collectively known as acceleration coefficients) are the learning factors influencing

the maximum step size a given particle can take in a single iteration; additionally, they

also scale the values of Rj and R2 . The velocity update step is handled separately for

each dimension j , so that v,y now denotes the velocity vector associated with particle /

in the f h dimension. It is easily observable from the above equation that, as C2 (the

social learning factor) aims at regulating the maximum step size in the direction of the

global best particle’s position; C/ (the cognitive learning factor), on the other hand,

regulates the maximum step size towards the personal best position of the particle in

view. In order to reduce the possibility of any particle leaving the search space, the

value of Vy is restricted to lie within the interval [~ v mjn, vmoJ .

Shi and Eberhart [1301 suggested a modified velocity update mechanism by

introducing what they referred to as inertia weight, often denoted by w in the velocity

update equation given above. The inertia weight, w, restricts the influence of the

previous velocity on the current one; in which larger values signify higher influence

and lower values means lower influence.

Page 122 of 277

This inertia factor, w, has a similar effect in PSO as does the temperature in SA; as it

serves as a trade-off between diversification and intensification during the search.

Thus, large inertia weight promotes global exploration of the whole search space,

while a smaller one encourages intensifying the search around the current region. The

modified velocity update equation (with inertia weight) is now given by:

v j" = w v ‘ + C l R;j [lb‘ - x ‘ \ + C, R ‘ .2 2’J ' g b k - x ‘ ’
_ 2 'J -

3.5.5 (b)

The original PSO implementation used an inertia weight value of w = 1. However,

other researchers suggested different values. In order to briefly illustrate the effect of

w; let us now set Ci = C2 = 0. A value of w < 1.0 will make the particle decelerate

slowly until its velocity reaches zero; on the other hand, a w > 1.0 will make the

particle accelerate up to a maximum velocity, vmax, given that, the particle started its

search space trajectory from non-zero velocity. However, based on the results obtained

by Shi and Eberhart [1301, an inertia weight value close to unity is preferred.

(ii) Position update: Each particle will update its coordinates on the solution

space using the new particle’s velocity updated vector, and this can be achieved by

setting:

JC* + 1 = JC* + v ‘ +1 - 3 . 5 . 5 (c)
ij U V___ v y

(iii) Best found solution update: Each particle updates its best local solution when

a better solution is found as the search progresses. Suppose for a minimization

problem we denote b y f the objective function to be minimized; then the personal best

position of a particle can be updated by the following pair of equations:

Page 123 of 277

+
—

*

.

lbk+1 =
/

++

J

— 3.5.5 (d)
< / (« 0

Moreover, the global best solution found by the entire swarm will be updated as

follows:

Oq
+ II

'gbl i f f { x ^) > f { g b k)
3.5.5(e)

xlr i f f { x T ') < f { g b k)

The above three steps of velocity and positions update in conjunction with particles’

fitnesses calculation and evaluation will be continuously executed in a repetitive

manner until a desired convergence or stopping criteria is satisfied; which is often the

maximum change in best fitness should be smaller than a specified threshold value for

a specified number of iterations.

In brief, a basic PSO algorithm begins with some randomly generated particles

(candidate solutions), among which one (based on its fitness) is identified and tagged

as the global best {gbest) solution. All other particles in the swarm will then accelerate

towards the direction of this (gbestj particle, while at the same time being drawn

toward the direction of the best solution they ever discovered in their search

trajectories’ history. Partaking in this phenomenon will occasionally make the

particles overshoot their target, consequently allowing them to explore the search

space beyond the current best particles; while at the same time having the opportunity

to discover better solutions en route, in which case the other particles will change their

direction heading towards the newly found best solution. Due to the fact that most

Page 124 of 277

functions have some continuity, there are chances that a good solution will be

surrounded by other good or better solutions; and the fact that these particles approach

the current best from different angles in the search space, there is a strong likelihood

that these (better) neighbouring solutions will be discovered by some of the particles.

The following figure depicts the velocity and position updates of a particle in a typical

PSO implementation:

k+1 (next position)

(global best)
(Personal best position

(Current position)
Influence of

personal best

Figure 10: Particle’s velocity & position update

The following pseudocode depicted on Figure 11 describes how we implemented our

unconstrained PSP using PSO

Page 125 of 277

Particle Swarm Optimization (inputs : p, C,, C2, M, X ..; output: X f)

% Initialize particles' size (p), dimensions (n) and Number o f iterations (M)
Choose p, n, M

% Initialize p particles' positions and n dimensions

Initial solution X , = rand e (0 , l); \fi = \ . . . p \ j = 1 . . .n

Initial velocities V.. = rand e (0 ,l) ; V/ = 1 . . . p ; j = 1 ...n

% Evaluate Initial Particles' fitnesses

f (X .) = evaluated _ fitness (X..)

% Initialize the local and global best solutions

Begin
Choose C,, C2 % Decide on the values o f acceleration coefficients

f (g be s t) = {Min(f (l b .) \ V i =

minimumfitnessindex = i

Xf = X*.. ,v ■ , V/' = 1 ...n/ m in im u m fitn e s s in d e x / J

% Iterate until convergence or finite number o f iterations
Repeat Procedure

k = 0 % Initialize iterations counter to null
For k = 1 through M % Loop until iteration counter equals M

% update particles' velocities and positions

= rand e (0, l) % Generate 2 random numbers

V,j = { + CA (x{ - X ,) + CA (X f - X ,)}

X.. =x. . +v.

% Normalize to ensure feasibility

% update the local and global best solutions

Updatef (lb.) & X 1*

Update f (gbes t) & X f

End (For)

Return the global best solution

End

Figure 11: Pseudocode of a typical PSO implementation

Page 126 of 277

Our research, by designing and implementing PSO, is aimed to exploit the PSO’s

capability to obtain near-optimal solutions for our PSP.

3.5.6 SWarm ANnealing (SWAN)

This algorithm was designed as a hybrid of PSO and SA and derives its name by

combining two selected words from the names of the constituent algorithms. Due to

the diversity and quality of solutions returned by different particles (candidate

solutions) in PSO implementation and the ability of SA to obtain a very good solution

by intensification especially at lower temperatures; by hybridizing the two we hope the

algorithm will be able to combine these main heuristics’ desirable features

{Diversification & Intensification) from both PSO and SA.

Eglese [431 argues that the hybridization of SA with another method (such as PSO)

can be done in two different ways. First, the hybridization should be in such a way that

either the other method is used to obtain a good initial solution after which an obtained

solution would then be passed to SA for improvement or the other way round. In our

implementation, we decided to adopt the first approach, by passing the (global) best

solution returned by PSO to SA optimizer for further improvement.

Similar implementation (of PSO and SA hybrids) exists in the literature [1471;

however, we want to clearly state here that, our implementation is significantly

different from what is contained therein. This is because in Wang and Li M471 each of

the PSO generated particles (candidate solutions) is subjected to the SA optimizer by

undergoing all the processes involved in SA after which the particle with the best

solution is declared global best igbest) and all other particles’ positions are then

Page 127 of 277

updated according to the PSO update scheme. This process continues in similar

fashion until convergence or the given desired stopping criterion is attained. But in

implementing our SWAN algorithm, all the particles undergo all the processes

(velocity, particles’ positions, local best solutions and global best solution updates)

involved in a typical PSO technique until convergence; the gbest solution is then

passed to the SA optimizer as a starting solution for further improvement until a given

stopping criterion is attained. By implementing the algorithm in such a manner we

expect it would be able to produce results of superior quality than either of the two

techniques when implemented separately.

For this method (SWAN) to be considered as a hybrid of both algorithms, it must

combine their collective parameters. Furthermore, the tuning of search parameters as

far as this method is concerned will be a little bit more challenging, since the

parameter settings that were found to work well with our PSO and/or SA algorithm

might not be found to work well with the hybrid. So it needs further parameter fine

tuning. The following pseudocode shows how our SWAN algorithm operates:

S w a rm A n n e a lin g (in p u ts : p, C,, C ,, M , X .., T, a , N; o u tp u t : X f)

B eg in

P article Sw arm O ptim ization (inputs : p, C,, C ,, M , X tJ; outputs : gbest1 so)

s = gbestpso

S im u la te d A n n e a lin g (inputs : s, T, a , N; outputs : X f)

E n d

_______________ Figure 12: Implementation of a SWAN for PSP_______________

Where the parameters: p, Ci, C2, M, T, a, and N are the number of particles, cognitive

factor, social factor, number of iterations, maximum temperature value, cooling rate

and size of the Markov chain respectively.

Page 128 of 277

Due to the presence of numerous parameters in our SWAN algorithm, there is the need

for patience in trying several parameter combinations before finally settling on the one

that seems to produce a reasonably good solution in an acceptable time frame. When

this is done, we expect our SWAN algorithm to perform better than either the PSO or

SA when implemented separately due to its ability to explore the features of both

algorithms in a single experimental trial.

Page 129 of 277

4.0 Unconstrained PSP Implementation

4.1 Practical Implementation of PSP: The Unconstrained case

In order to test our algorithms’ performances and robustness, we decided to run (for

each of them) an unconstrained formulation of the PSP involving 2 different datasets

as described in section 4.2 below. For each of the datasets, each of the 6 algorithms

(described in section 3.5 above) was run 50 times and a mean value of the 200

generated solutions (portfolios) on the efficient frontier was then computed. These

results were then compared with the ones obtained by solving the same problem

instance using a standard quadratic (nonlinear) programming solver (CPLEX 11.2)

invoked by a script in AMPL modelling language coded for such purpose.

4.2 Datasets used for the research

Although, there are several datasets available online to test our proposed algorithms;

we decided, for the purpose of this research, to test our algorithms based on just two.

The first one is a weekly stock price data from March 1992 to September 1997 for the

Hang Seng (Hong Kong) capital market index made publicly available at the OR

Library [117]. The dataset contains the input vectors (covariance matrix and return

vectors for 31 ID-concealed stocks) needed for solving the PSP.

The second set of test data is a freshly downloaded weekly stock price data from

FTSE100 (UK) capital market index. Stocks with missing values were disregarded and

we ended up with 78 stocks; and for each we obtained 262 weekly price data from

January 2004 to January 2009.

Page 130 of 277

Although two may seem a very small number of data sets, a very wide range of

experiments has been undertaken for these data sets, using a variety of methods, with

varying parameters, and with a wide variety of constraints. This means that the total

number of results produced is large and comprehensive.

We then decided to compute logarithmic In I P‘,
t - 1

weekly returns; upon which we

then compute their respective expected returns and covariance matrix which

eventually serve as input vectors to our optimization problem. Pt stands for an asset’s

price at time t.

4.3 Algorithmic Implementation Details: Parameter choice

decisions

This section is aimed at describing how our algorithms were implemented in the

unconstrained formulation. Several issues play a significant role in achieving proper

and successful implementation of metaheuristic algorithms in solving any difficult

optimization problem. These issues can be viewed from basically two challenging

perspectives, namely the generic and problem-specific choices [43, 65]. Take SA for

instance, the generic choices deal with making specific statements on the acceptance

probability functions together with making choices on cooling schedules; as for

problem-specific choices, this deals with making decisions on the solution space,

neighbourhood structure, the objective function and possibly the constraints to be

satisfied. We are now going to explain the key decisions reached in implementing our

solution techniques in relations to the generic and problem-specific decisions.

Page 131 of 277

4.3.1 Problem-Specific Decisions

Because, all our algorithms are aimed at solving the same instance of the PSP,

synonymous decisions and choices were made in relation to those that are problem-

specific. According to Wright [1491. there are issues that any problem-specific

decisions have to address, and some of these include:

(i) Problem Definition: The PSP was originally modelled on a single-criteria

basis, but on the alternative it can be viewed as a multi-criteria (bi-objective)

optimization problem, where the portfolio risk (often measured by the variance) is to

be minimized while at the same time trying to maximize the portfolio return. Our

research adopts the alternative formulation as our cost function follows similar but

different fashion as used in Schaerf [129], where the cost related to the violation of the

return constraint is combined with the original objective function; and this makes the

overall objective function a weighted sum of the return and risk components as

follows:

Minimize (i - x)
\

r n

+ A T " ' 7 K .

J \ i = 1
4.3.1

Where Rr is the supplied target aimed to be achieved, X is the penalty for violating the

return constraint.

In our implementation we decided to use variance other than the semi-variance we

initially settled on due to the lack of necessary data to do this. For instance, the Hang

Seng dataset used in this research (available at the OR library H 17]) does not provide

the values of the (symmetric) semi-covariance matrix needed for computing the semi

variance of any given portfolio.

Page 132 of 277

(ii) Search Space Definition'. A solution in PSP can be represented by a sequence

of n variables, wj, W2, . . . , wn; where each w,- stands for the fraction of portfolio fund

invested in asset i (or the actual amount allocated to asset i if an integer variable

formulation is modelled).

In this unconstrained formulation, all our algorithms avoid coming across an infeasible

solution, hence we adopt an All- feasible approach (of constraint handling) where any

of the candidate solutions must satisfy all constraints involved at any stage of the

search process. This is also the type of approach implemented by Chang et al [201.

(iii) Neighbourhood Definition: Wright [1491 argues that, this stage plays a crucial

role in determining the success of any neighbourhood search method. It is the stage

that defines how a neighbouring solution can be reached from the current solution, and

this can be achieved by initially defining a set of allowable moves (perturbations).

Neighbourhood relations, according to di Tollo and Roli [341 can generally be viewed

from 2 perspectives:

• Neighbours being generated by modifying weights of some of the assets in the

current solution; and

• Neighbours generated by perturbing all the weights of the assets in the current

portfolio.

For the unconstrained formulation, our algorithms adopt the second approach, after

which all the assets’ weight are normalized accordingly.

Page 133 of 277

(iv) Generation o f an initial solution: The relevance of a rightly chosen initial

solution in producing high quality solutions in most neighbourhood search techniques

can never be underestimated; and thus should be considered as non-trivial task [4].

Catanas [J_8] proved that metaheuristics designed (especially) for solving PSP tend to

be robust with respect to the right choice of initial solution. Similarly, Wright [1491

emphasized the importance of choosing a good initial solution in ensuring a high-

quality final solution.

In our research, all our algorithms begin with a randomly generated solution for the

first supplied target return; while for the subsequent targets, the near-optimal solution

found for the previous portfolio serves as the starting solution and the process

continues in this fashion.

(v) Acceptance Criterion: Two main variants of acceptance criterion are the First-

accept Local Improvement and Best-accept Local Improvement. In the former the

newly generated neighbouring solution can only be accepted if its cost (objective

value) is smaller when compared to the cost of the current solution. While in the latter,

several neighbouring solutions are generated out of which the one with the smallest

cost (objective value) is then accepted as the next current solution. In this study, all

our local search related algorithms (except the TS) adopt the second approach.

For TS, the acceptance criterion is implemented differently in the sense that any

neighbouring solution generated (based on the second approach outlined above) can

only be accepted as the next current solution, if and only if:

Page 134 of 277

(a) The solution is NOT already in the tabu list or tabu region.

(b) The solution satisfies an aspiration condition, which normally

overrides a tabu status. The aspiration criterion is that, the magnitude of

the current solution’s objective is lower than or equals to the Best-Ever-

Found objective value even i f it is already in the tabu list or lies within

the tabu region of the current solution.

(vi) Stopping Criterion: Also known as termination criterion; it refers to the

condition which must be satisfied before the entire search process comes to an end.

Because some of our algorithms (like SA and TS) are single-agent methods; while the

rest (GA, PSO, SWAN and parallel SA) are multi-agents techniques; we feel it might

not be fair to compare their performance while executing the same stopping criterion.

In view of this, we executed a stopping criterion that will make sure that, our single

agent methods are not disadvantaged in favor of their multi-agents counterparts.

First, after several experimental runs were conducted, we found that on average a

maximum number of 3000 iterations/generations will be sufficient enough for our

multi-agents algorithms to produce a very good solution within a reasonable time

span. However, in order to save time, a given search process can terminate if there are

500 consecutive non-improving cost function evaluations or when the absolute

difference between the portfolio and target returns is no more than a negligible

predetermined threshold value of e = 10'10.

Page 135 of 277

Mathematically, the stopping criterion for our multi-agents methods is executed as

follows:

If[(nonlnprosmentG owti = 500) OR(Abs(portfolioRetum —targetRetum} < 1010 jj Then
Terminate the Search Process

It should be noted that, after several experimental trials we found that our multi-agent

methods can produce solution of very good quality with no more than 50 agents

(particles/chromosomes). So in implementing a stopping criteria for single-agent

techniques (SA and TS), we took this into consideration. The details will follow in the

subsequent sections.

4.3.2 Generic Decision Parameters:

This section discusses the decisions reached in dealing with parameters peculiar to a

particular search method.

4.3.2.1 SA

(i) Acceptance Probability: In this research, we adopt the most frequently

implemented acceptance probability function also known as the Metropolis acceptance

criterion and given by:

P {Accept solution, S) =
fis,)-ns,)

otherwise

The above probability tells us that, whenever a new neighbouring solution is

generated; provided it has a lower or cost equivalent to the current, it will certainly be

accepted as the next solution. But on the other hand, if the new neighbouring solution

Page 136 of 277

generated returned a deteriorating cost value, such a solution stand a chance of being

accepted or rejected based on the cost difference and the temperature value. This is

because; the probabilistic value of the exponential function is compared with a

uniformly distributed and a randomly generated number lying in the interval [0, 1].

The new solution is then accepted whenever the value returned by the exponential

function is found to be larger than the random number generated.

(i) Cooling Schedule: In our SA implementation, the cooling schedules adopted

are composed of: the initial value of the temperature, the cooling rate, the length of

Markov chain and the final value of the temperature. The numerical values of these

parameters reported in this section were arrived at, after a quite number of

experimental runs were conducted and some performance measures observed.

(a) The initial temperature: In all the conducted experimental runs, we pegged the

initial value of the temperature parameter at To = 1.0 . This decision was reached at,

after several simulation runs were conducted and found that such value is more likely

to return a very good (and many times optimal) solution.

(b) The Cooling Rate: The cooling rate often denoted by a, is set in such a way that

the temperature cools reasonably slowly in order to arrive at a very good solution in a

reasonable time frame. Empirical evidence points to the advantages of setting this {a)

value to 0.99063. This value ensured that the temperature was reduced from the

desired initial value to the desired final value within a reasonable and acceptable run

time.

Page 137 of 277

(c) The length o f the M arkov Chain: In order to conform with the suggestion made

by Eglese [43] that: Time should not be wasted at larger as well as lower values of

temperature; after several experimental runs we arrived at a decision to set the length

at fixed value of 9 iterations per temperature value, therefore Nk = 9, k = 0, 1, 2,..

(d) The F ina l tem perature: For all our algorithms, the value for this important

parameter was pegged at a small value of 0.001 - a value very close to zero, hence

simulating a frozen state of an annealing algorithm.

Details of experimental results and discussion can be found under the heading: “SA

parameter choice decisions” in APPENDIX 2.

(ii) Total N um ber o f N eighbours considered : This refers to the number of

candidate solutions around the immediate neighbourhood of the current solution in our

local search methods. In order to be fair to our single-agent local search methods (TS

& SA), we decided to generate 50 (equal to the number of individuals in GA,

processors in parallel SA and particles in PSO & SWAN) neighbours around any

given incumbent solution, among which the best is picked as the next incumbent.

4.3.2.2 Parallel SA

This search method operates in similar manner to the SA, the only difference lies in

the number of solutions dispersed over entire search space, hence parallel SA.

Therefore, all the decisions {generic and problem-specific) reached in relation to the

SA are as well adopted in this algorithm. However, we decided to fix the number of

(parallel) processors to 50 in both cases.

Page 138 of 277

Due to the fear of premature convergence in implementing the division algorithm, we

decided to implement the clustering algorithm which is proved to perform better than

the division algorithm [96, 1131. By doing so, we hope to obtain solutions that are at

least as good as those obtained by SA.

4.3.2.3 TS

(i) Tabu Tenure: This generally refers to the number of iterations for which a

candidate solution remains in tabu (forbidden) state, hence having such a solution as

the next current is not allowed. In this research, we set the tabu tenure to a value of T

= 7.

(ii) Tabu Region: Due to the continuous nature of the variables in PSP and also to

avoid getting stuck in a local optimum during the search process; we declared what is

known as a tabu region. This simply means the immediate region within the reach of

the current solution in a single transition in which a move is disallowed. In order to

implement this, we compute the Euclidean distance between the current and any other

candidate neighbouring solution, and if the distance is found to be less than a pre

specified threshold value the move is declared tabu, otherwise it is accepted. After

several independent runs we arrived at a reasonable threshold value of 10'5.

(iii) Total Number o f Neighbours considered: As in SA implementation above, the

number of neighbours considered is 50, which is equivalent to the number of

chromosomes (GA), particles (PSO & SWAN) and parallel processors (parallel SA).

Page 139 of 277

4.3.2.4 PSO

(i) The Acceleration Coefficients: These are basically the cognitive and social

components’ coefficients respectively denoted by Ci and C2 . They influence the

maximum step size a particle takes in a single iteration. In the original implementation

of the PSO these values were recommended to be set such that Ci = C2 = 2. As these

are values that are problem-dependent, the best-performed configuration of these

values found for the PSP tackled in this research (after several trial runs) are Ci = 0.95

and C2 = 2.955.

For further details on how we arrive at such decision, check PSO parameter choice

decisions in APPENDIX 2.

(ii) The Inertia Weight: Also known as Inertia Factor and often denoted by w; is a

scaling factor (taking real values) associated with the velocity during the previous time

step which results in a new velocity update equation. In some PSO implementations it

can be fixed, while in others such as Kendall and Su [861, it was set to be dynamic,

typically taking values between 0.4 and 0.9.

In order to allow for proper exploration of a very large area of the search space at the

beginning of the simulation runs and to further refine the search at later stage, we

decided to adopt the dynamic approach in which the inertia weight initially takes the

maximum value of 0.9, and as the search progresses it takes different values within the

real interval [0.4, 0.9] up to the point where it takes the minimum value of 0.4.

In order to compute our inertia factor, w, as the search progresses; we adopted the

following equation as used in Kendall and Su [86]:

Page 140 of 277

w = w M ax -
wMax - wMin

maximum number o f Iterations
i itera tion count

Where wMax and wMin are the maximum and minimum values that w can take

respectively. For further details on how we justified using the dynamic approach of

setting the inertia weight values, we refer an interested reader to a section in

APPENDIX 2 entitled: PSO parameter choice decisions.

(iii) The velocity update ru le : Deviating a little bit from the original velocity

updating strategy discussed in Kennedy and Eberhart [88], we adopt the widely used

velocity update rule incorporating an inertia factor in the update equation as follows:

V * +1 = w v ‘ + C. R ‘ .
‘J V 1 1 . 7 lb - x k

'.) U
+ C , R .2 2 , j gb. - x k.

C* J u

(iv) S w a rm ’s position updating strategy: The particles’ position updating rule can

either be classified as synchronous or asynchronous 117]. In the former, a particle’s

position is updated before evaluating the objective function, while in the latter the

objective function is evaluated after the swarm updated its position. As for this

research, we decided to implement the synchronous method. The particle’s update

equation is given by:

X k + l = X k + v k +
i j v lJ

(v) N um ber o f particles: In our PSO implementation, we tested different number

of particles as detailed in APPENDIX 2 under the heading: PSO parameter choice

decisions. The results presented therein reveals that, particles’ size as moderate as 50 is

sufficient enough to produce a very good result and many times near-optimal solutions

within a reasonable period of time.

Page 141 of 277

4.3.2.5 SWAN

It shouldn’t be surprising that our SWAN algorithm combines all the parameters used

of both PSO and SA algorithms; as it comes into being as a result of hybridizing the

duo. Thus, based on the empirical evidence available in APPENDIX 2 under the

heading SWAN parameter choice decisions: the best parameter configurations that are

found to work well with SWAN unconstrained PSP implementation includes:

(i) The Acceleration Coefficients: The acceleration coefficients that were found to

produce a better output for the unconstrained PSP are: Ci = 0.95 and C2 =

2.955.

(ii) The Inertia Factor. This, as in PSO, was set to take values within [0.4, 0.9]

inclusive.

(iii) The velocity updating rule: This is implemented as in the PSO, where the

velocity update rule incorporates an inertia factor in the update equation

(iv) Sw arm ’s position updating strategy: As in the PSO, we adopt the synchronous

updating rule.

(v) Number o f particles: As one of our multi-agents methods, we used the same

number of particles as used in PSO implementation above.

(vi) Acceptance Probability Function: This is similar to the probability function

used in section 4.2.2. l(i) above.

(vii) Cooling Schedule: Because the SA part of the SWAN algorithm is meant to

fine tune the global solution found by the PSO part; we found that a cooling

rate, a = 0.99063 and a length o f the Markov Chain, Nk = 1 was suitable

enough to produce a very good result.

Page 142 of 277

(viii) Total Number o f Neighbours considered: For the SA part of this algorithm, we

consider only 50 neighbouring solutions around any current solution.

4.3.2.6 GA

(i) Population size: This refers to the total number of individuals (chromosomes)

that participate and continued to be maintained throughout the search history. These

are synonymous to particles and parallel solutions in PSO and parallel SA

implementations respectively. During the initial implementation of this algorithm we

tried a population size of 100 (more than 3 times the dimension of our smaller dataset),

but as we kept on improving it, we found that as few as 50 individuals often provide

very competitive solutions; and coincidentally, this tallies with the number of particles

and processors in PSO and parallel SA respectively.

(ii) Generations’. This is synonymous to the total number of iterations in other

search methods. So to keep in tune with other algorithms, we set the total number of

generations to complete a cycle at 3000; this was also found to be sufficient enough to

provide a very good solution.

(iii) Genetic Operators: A typical GA uses three to four basic operators: selection,

crossover, mutation and elitism to direct the population of individuals towards

convergence to a global optimum. These operators are discussed below:

(a) Selection: Although, there are several ways in which this operation can

be executed, for this research we found roulette-wheel selection approach

(which is proportional to the fitness of an individual) more convenient to our

Page 143 of 277

type of problem.

(b) Crossover. For our formulation, because we are dealing with a real

valued encoding, we decided to implement a one-point crossover in which two

offspring are produced by two parents swapping all the alleles to the right of a

chosen single locus (point) and we set the probability of crossover to be 0.95,

which means there is about 95% chances that any particular solution will

undergo this process.

(c) Mutation: We allocate a 1% chance for conducting mutation in our GA

implementation.

(d) Elitism : We decide to always carry fittest individuals amounting to

10% of the entire population size to the next generation as part of our elitism

operation.

(iv) Population replacement: As in Chang et al [20], we employ a steady-state

population replacement approach, in which pair of newly bom children

replaces a pair of less-fit members of the old population and the process

continues until the desired population size is attained.

4.4 Description of the bi-objective problem implementation

All the designed algorithms were implemented in such a way that, when they are run

successfully to the end, they will be able to generate an approximate efficient frontier

of solutions of portfolios.

Page 144 of 277

Conventionally, our algorithms are able to return a single solution, but we have

modified them to behave in a repetitive fashion; so that at the end of any single

successful run, they would be able to return a set of number of solutions/points each

characterized by return and corresponding risk. When the points are plotted on a risk-

retum plane, a parabola-like curve of efficient points often referred to as an efficient

frontier is generated. These points are obtained by in(de)creasing the supplied target

return in an equally-spaced manner depending on the total number of points desired to

make up the frontier.

First of all, a given target return value is passed as input into an algorithm, which

seeks to find assets’ weights configuration that would determine a portfolio return that

is as close as possible to the supplied target. If a portfolio return that matches the

target is found, the algorithm would then try to (in subsequent iterations) find a lower

value of portfolio risk without compromising the corresponding portfolio return.

For instance, suppose we want to generate an approximate efficient frontier with 100

portfolios in which the initial target (return) is 15% and we want a final target return

value of 2% to be achieved. Now by following the rule of Arithmetic Progression

(AP), our first term (often denoted by a) is 15% while the (final) 100th term is 2%.

Thus, in order to find the common difference (often denoted by d); we work it out as

follows:

lslterm=> a = 0.15 4.4(a)
100th term ==> a + 99 x d = 0.02 4.4(b)

putting 4.3(a) into 43(b) yields :

(0 .02-0.15)
d = 5-------------- ' = -0.001313

99 ________

Page 145 of 277

From the above, it can be inferred that, the desired sequence of target returns starting

from the initial target supplied as input would be: 0.150000, 0.148687, 0.147374,

0.146061 ... and so forth up to the last (100th) term value of 0.02000.

4.5 Handling the return and budget constraints

This section discusses the handling of the basic (practical) constraints in our

unconstrained PSP formulation. Fuller detail on how we handled our constrained

implementation will follow in the relevant sections.

4.5.1 Handling Return Constraint:

Before we delve into explaining how we handled our return constraint, we feel it is

important to distinguish between the objective and cost functions, as both are often

inter-switched. The former, mostly represents the function that needs to be

maximized/minimized in solving the optimization problem; while the latter often

represents the function tasked with guiding the search process towards promising

regions of the search space. Although, nothing hinders an objective function from

serving as a cost function; however, di Tollo and Roli [34] posit that, search processes

have more chance of being guided towards promising solutions when using a cost

rather than an objective function.

In view of the above and going by the fact that, in our unconstrained PSP formulation;

one of the only two constraints that are likely to be violated as the search progresses, is

the return constraint; we decided to use a cost rather than objective function to solve

our unconstrained bi-objective optimization problem. We designed our cost function

in such a way that, it will allow us to penalize any violation of the return constraint,

Page 146 of 277

this enables the algorithms to make a rigorous search in order to make sure that the

desired target is achieved, while at the same time minimizing the risk. Our cost

function incorporates a penalty term, X e [0, 1] - a cost value associated with

penalizing return constraint’s violation, helps in achieving a trade-off in minimizing

portfolio risk and bridging the gap between the portfolio’s return and the desired target

return.

The cost function is a weighted sum of the two components (portfolio risk and return);

and takes the form:

Min [(1 - T)P o r t f o l i o Risk + X Por t fo l io R e t u r n - T a r g e t Return] - 4.5.1

From equation 4.5.1 above, it can easily be inferred that, the penalty value X plays an

important role in achieving a trade-off in minimizing the violation of return constraint

and the magnitude of portfolio risk.

To understand the effect of X, let’s now consider the two extreme values it can assume.

Suppose an X takes a maximum value of 1, this will mean that, there is a very strong

likelihood that the algorithm will find a portfolio configuration whose portfolio return

will (almost) exactly match the desired target, irrespective of the magnitude of its risk.

On the other hand, if X were to assume a value of zero, the resultant portfolio

configuration would be one in which minimizing the portfolio risk takes utmost

priority over achieving the given target.

After running our algorithms several times with different values of?,, we found that an

X value within the interval [0.65, 0.7] has been found to work satisfactorily well with

most of our algorithms’ implementations, as it is found that X values within this

Page 147 of 277

interval ensure that solutions obtained are still able to reach the target but at a

reasonably moderate risk value.

In order to save time and ensure that all solutions returned by our algorithms are

reasonably good, we modified our algorithms in such a way that whenever a final

solution to a given target is found, such solution is then passed as a starting solution

for the next target.

4.5.2 Handling Budget Constraint:

As it is believed that a repair approach for handling constraints’ violation provides a

trade-off between diversification and intensification [34]; we decided to implement

such an approach in satisfying the budget constraint of our unconstrained PSP

formulation.

In order to ensure that, the budget constraint is satisfied, after each iteration we

decided to normalize the weights so as to sum up to unity. This approach repairs assets

weights in the following way:

* W •

1 1 1 1^ s* o>

£

1

Where w* stands for the repaired (normalized) weight of asset /, while w,- represents

actual (unrepaired/un-normalized) weight of asset i. Notice that ̂ w; ^ 1, while
/

= 1 -/

Page 148 of 277

4.6 Performance Metrics & Evaluation of algorithms

In this section we present some metrics proposed in the literature for evaluating the

performance of our algorithms in solving multiobjective optimization problems. With

these performance measures, we will be able to evaluate the success of our algorithms

in solving a bi-objective PSP; we will also use these metrics in order to compare our

algorithms against each other. For both datasets, CPLEX solver and our algorithms

solved the same instance of PSP supplying (as part of the input set) 200 equally-

spaced target returns, bringing the total number of points/portfolios on the various

efficient frontiers generated by our algorithms and the solver to 200. In order to

achieve utmost numerical precision, all results were rounded to 9 decimal places.

In order to evaluate the performance of multiobjective optimization techniques, there

is the need to invoke the help of some performance measures. In doing so, it is

important to have more than one metric in evaluating such performances. Zitzler f 1561

suggested for computing at least N performance metrics for an N-objective

optimization problem. Deb [32] suggested for the classification of performance

metrics into three different classes: those for convergence, diversity and metrics for

both.

According to Jaszkiewicz [83], evaluation of algorithmic performance in solving

multiobjective optimization problems should consider two main measurement criteria;

and these comprise of: (1) computational requirement and, (2) the quality of the

returned solutions. The quality metrics can be further subdivided into either cardinal

or geometrical; where the cardinal measures (which quite often use relations such as

equivalence and/or dominance) enumerate some number of points/solutions satisfying

Page 149 of 277

some conditions. On the other hand, the geometrical measures consider the

geometrical position of the nondominated solutions in the objective space.

According to Zitzler et al. [157], there are three main goals in Pareto multiobjective

search that need to be identified and measured, including:

(a) Convergence: The convergence metrics mostly measure minimum

distance of the obtained nondominated solution to the actual Pareto front (if it

is known).

(b) Non-uniformity of Pareto front: Non uniformity metrics evaluate how

good is the distribution of the obtained solutions, and

(c) Coverage: These metrics aim at maximizing the size of the obtained

nondominated front (i.e. for each objective, a wide range of values should be

covered by the nondominated solutions).

In all cases, the set of exact solutions produced by the quadratic optimization software

(CPLEX 11.2) forming a frontier of optimal portfolios is regarded as the true Pareto

frontier which serves as a benchmark (reference) solution upon which all other

approximate Pareto solutions generated by our algorithms are evaluated.

In view of the suggestion made above by Zitzler et al. [157], despite the fact that our

PSP is a bi-objective optimization problem, we are going to evaluate our algorithms

based on the three metrics discussed below:

Page 150 of 277

4.6.1 Convergence Metric:

In order to measure the degree of convergence and how accurate our algorithms were

able to estimate the UEF, we decided to apply one of the solution quality metrics used

in Cura [26]. This performance measure is referred to as the Mean Euclidean Distance,

mEd, which is used to measure the area between the optimal UEF generated by the

CPLEX solver and the one generated by an algorithm. We can now define the mEd as

follows:

Let the pair (v fPLEX ,p f PLEX)(/ = l,...,^)b e the variance and mean return of a

point/portfolio i on the solver’s efficient frontier; and let the pair (v f , p ?)(/ = 1,...,^)

be the variance and mean return of a point/portfolio i on the efficient frontier produced

by algorithm A. Let also Rj (/ = l,...,i//)be the target return to be achieved at point /,

where in all cases y/ = 200. Thus,

A mEd = 0 means that algorithm A is able to perfectly produce the true Pareto front of

the optimization problem at hand; i.e. algorithm A is as effective (in generating the

optimal UEF) as the nonlinear solver (CPLEX 11.2). Thus, higher value of mEd

reveals the degree of algorithm A ’s ineffectiveness; hence, lower values of mEd are

always desired.

Page 151 of 277

4.6.2 Coverage Metric:

The main idea behind measuring this metric introduced by Zitzler et al. 1T571 is to

compare two different Pareto optimal solutions against each other by considering a

dominance relation.

Now with respect to our research, which is a bi-objective PSP; we give much

emphasis on two important terms by minimizing the portfolio risk while at the same

time bridging the gap between the portfolio return and the desired target. Now in order

to define what a dominance relation (V) means with respect to our type of problem,

we incorporated these two terms (return and risk) in determining when a given

solution r e R is said to dominate/outperform a corresponding solution s e .S .

Let the pair (y f)(/ = l,...,^)b e the variance and mean return of a point/portfolio /

on the approximate (Pareto) efficient frontier generated by algorithm R\ and let the

pair)(i = l,...,^)b e the variance and mean return of a point/portfolio i on the

efficient frontier produced by algorithm S. Let also Rf (/ = l,...,^)b e the target return

desired to be achieved by portfolio /. We can now define a strong dominance relation

by determining:

IF <^ - ^ = 1 ^ 1) 4 ^) > THENARyySat point z} - 4.6.2(a)

With the above relation, one can easily determine the total number or the ratio of

points in which solutions returned by algorithm R {strongly) dominates their

counterparts produced by algorithm S.

Page 152 of 277

There is, however, another way of defining a dominance relation with respect to our

type of problem. Suppose we let f, (^) = (1 — /I) v* 4- 71 — R f | be the optimized

cost function (as in equation 4.5.1) returned by algorithm R in achieving the zth target

return. Correspondingly, if we let f, (<S) = (1 — A) v(s + X |//.s — RJ. | be the optimized

cost function returned by algorithm S in achieving the same zth target. We can define a

weak dominance as follows:

IF{fi {R)<fi(S))'MEN{R>-SatvMi) - 4.6.7(b)

When the above relation is satisfied, we can say that algorithm R weakly dominates

algorithm S at point /. However, in our analysis we decided to conduct our algorithmic

analyses with the strong dominance relationship as described in equation 4.6.2(a)

above.

Now, let C(R, S) be the coverage metric when two Pareto front sets (R and S) are

compared; mapping the ordered pair (R, S) to the interval [0, 1]. It can be measured by:

{ s g S 1 3r e R : r >■>- s)

s

Where stands for the total number of solutions in set S and >- signifies a

dominance relation. Thus, r » - s simply means solution r e R strongly dominates

s e S (i.e. the objective values of r are better than those of s). In a nutshell, C(R, S)

shows the proportion of the number of solutions in S that are dominated by the

solutions in R. A C(R, S) = 1 means all solutions in S are dominated by corresponding

Page 153 of 277

solutions in R; while C(R, S) — 0 implies no solution in S is dominated by a

corresponding solution in R. Furthermore, if relation C(R,S)> C(S,R) holds, it

simply means that set R has recorded more better solutions than S did. It should also

be noted that, C(R, S) is not necessarily equal tol — C(S,R}. It is therefore obvious

that, there are situations when the C-metric cannot decide if a given solution

dominates the other and vice versa.

4.6.3 Non-uniformity of Pareto front:

In order to measure the degree of uniformity or otherwise inherent in the distribution

of a given Pareto front; Lee et al. [95] proposed a £>(•) metric. Suppose R is a set of

Pareto front; the quantity D (i?), which measures the distribution of the Euclidean

distance {dt) between two consecutive solutions along the Pareto front is given by:

D (S) = J i

^ I”1 - 4.6.3(a)

The numerical value of£>(*), quantifies the standard deviation of the distances (d i)

normalized by the average distance, d . A D(R) = 0 implies that there is a uniform

spacing in the R ’s Pareto front. Thus, higher values of D (7?) signifies non-uniformity

in the spacing of the R ’s Pareto front. Therefore, going by what has been described

above, a lower value of D(R) is desired. It should be understood that the £>(•) metric

can only be suitable and meaningful for a bi-objective optimization problem, due to

the fact that, it is very unclear how “consecutive” can defined in a more than two

objective problem.

Page 154 of 277

As per our PSP problem, by defining the pair(v?, ju? = 1 ,...,^), as described in

section 4.6.2 above; we can compute a Euclidean distance (d t) between two

consecutive points (/ & /+1) along the Pareto frontier by:

4 - V(v, - vw)2 + (ft - - 4.63(b)

4.7 Results & Discussions

In this section we present the results obtained by running a simulation of our designed

algorithms and separately a nonlinear optimization solver (CPLEX 11.2); purposely

for comparing their performance against each other by using some standard

performance evaluation metrics used by other researchers in the optimization

community. For both sets of data (sourced from Hang Seng and FTSE100 indices); the

CPLEX solver and our algorithms solved the same instance of PSP supplying (as part

of the input set) 200 equally-spaced target returns, thus giving us 200 points/portfolios

on the various efficient frontiers generated by our algorithms and the solver in which

all numerical values were rounded to 9 decimal places. The results were obtained after

taking the average of the outputs of 35 experimental trials for each algorithm (with its

best parameter configuration as outlined in section 4.3) to solve our unconstrained PSP

formulation.

Now in order to obtain a great numerical precision from our solver-generated exact

(optimal) solution, we decided to change the solver directives settings that are

responsible for producing very high numerical precision results from the default

settings. These perturbed directive settings are:

Page 155 of 277

(a) qcpconvergetol (default = 10'7)

Inserting the above directive in our AMPL script allows for setting the convergence

tolerance on complimentarity in quadratically constrained problems (such as the

constrained case of our PSP formulation). The barrier algorithm (the solver uses)

terminates with an optimal solution if the relative complimentarity is smaller than this

value. The default value of this tolerance limit (as can be seen above) is just 10'7.

However, in our implementation we decided to use an extremely smaller value of

10"1C 1 as doing so results in greater numerical precision.

(b) comptol (default = 10'8)

The other directive we used in our AMPL script is the comptol directive which can be

used to obtain higher numerical precisions for both linear (LPs) and quadratic

programming (QPs) problems when all the accompanying constraints are linear. As in

(a) above, the barrier algorithm returns an optimal solution if the relative

complimentarity is smaller than this value. The default value of this tolerance limit (as

can be seen above) is just 10'8. However, in our implementation we decided to raise

the bar higher by using even an extremely smaller value of 10'10; as doing so results in

greater numerical precision, which will definitely help in testing the ability of our

metaheuristic techniques.

In order to critically analyze and evaluate the performance of our designed algorithms,

we plan to present and discuss the results obtained by explaining the outputs in respect

of the three performance and evaluation metrics (convergence, coverage and

uniformity) as discussed in section 4.6 above coupled with other pictorial/graphical

representations aimed at showing the effort put on by the algorithms.

Page 156 of 277

4.7.1 Algorithmic analysis based on convergence ability:

As already stated before, this research considers to be a bi-objective PSP, we give

much emphasis on minimizing the portfolio risk while at the same time bridging the

gap between the portfolio’s and the supplied target returns; which is why our

convergence evaluation measure (the mEd) incorporates these two terms. An important

graphical tool to showcase algorithmic performances in solving an unconstrained PSP

in this research can be depicted by plotting the various portfolio risks against their

corresponding portfolio returns on a risk-retum plane. The result is a parabola-like plot

of points (portfolios) seemingly forming a frontier of nondominated points collectively

known as efficient frontier (EF) in financial literature. Each of them represents a

combination of several proportions of investment’s funds allotted to some carefully

chosen stocks offering a trade-off between maximization of portfolio return and

minimization of portfolio’s risk of investment. Typical example of EFs generated by a

nonlinear optimization solver (CPLEX 11.2) and our algorithms for the two different

datasets used in this research can be seen in figures 13(a) and 13(b) below:

U n constra ined E ffic ien t F ro n tie rs (UEFs) fo r th e FT SE

(78 assets) g enera ted by C P L E X & M etaheu ris tics
U nconstrained Efficient Frontiers ((/E f t) fo r th e Hang Seng Index

(31 assets) generated b y C P L E X & Metaheuristics

3 0.007

o 0.005

0.002 ;

Portfolio RiskPortfolio Risk
Figure 13(a) Figure 13(b)

Figure 13: showing mEds obtained by all the algorithms.

Page 157 of 277

From the results obtained, it is extremely difficult to tell the difference existing among

the various Pareto fronts shown in both figures 13(a) and 13(b); as mere eyeballing the

figures suggest that, all the 6 designed algorithms were able to produce outputs

(UEFs) that seem to be intimately comparable to those returned by the solver; and

even this achievement says much on their performances in respect of solutions’

quality. CPLEX solves these problems in about two seconds.

The following table summarizes the numerical results of the convergence performance

metric obtained by our algorithms for the two datasets used in this research.

Index Assets
Metaheuristic
Algorithms

(h)

Convergence Metric
Mean Euclidean Distance

m E d(* 1 O'6)

Average
Execution Time

per solution
(secs)

Hang Seng
31

SA 6.4998 1.19
ParSA 4.6334 1.79

TS 9.0278 1.08
PSO 0.1215 2.25

SW AN 0.0056 2.55
GA 4.8751 2.12

FTSE 100 78

SA 12.431 9.19
ParSA 5.8621 6.29

TS 22.157 6.97
PSO 1.6994 6.03

SW AN 1.2818 6.65
GA 9.9486 7.93

Table 1: Showing values of the mEd and average execution time

From Table 1 above, it can easily be observed that the numerical values of the mEds

are (in all cases across the various algorithms) very close to zero indicating that

virtually no significant difference exists between the results generated by the solver

and our algorithms in solving the unconstrained case. Recall that from section 4.6.1

above, an mEd value equal to or very close to zero is much desired as it indicates the

strength of a given algorithm’s ability in estimating the true Pareto front. It can also be

noticed that, although with less average execution time, the TS recorded a worst

performance with respect to an mEd value, (having maximum values of 9.0278 and

22.157 respectively for both Hang Seng and FTSE 100 indices) when compared to any

other of the remaining five algorithms. On the other extreme end, however; our newly

Page 158 of 277

designed algorithm - SWAN recorded the best performance in both datasets with

0.0056 and 1.2818 mEd values respectively. Even though, it recorded the highest

average execution time, we still believe an average time of at most 2.6 secs is still

reasonable enough for such a remarkable performance. The PSO seems to be the next

best algorithm after SWAN, even though it also recorded a high but reasonably

acceptable average execution time when compared to other algorithms.

In both cases, parallel SA seems to slightly outperform the GA. For the smaller Hang

Seng dataset, the parallel SA has an mEd value of 4.6334 as against the GA’s 4.8751;

similarly, parallel SA recorded an mEd value of 5.8621 in the FTSE 100 index as

against 9.9486 for the GA. SA, unlike TS, provided a much better solution than the

latter, although (as expected) at the expense of larger execution time; its mEd value in

both datasets is much smaller than those credited to TS, indicating a stronger ability in

estimating the true Pareto front. Of particular interest is the GA, which to our dismay

performed badly as against our expectation of its competitive potential, that we

thought would match that of our newly designed hybrid method and especially PSO,

being in the same category as highly revered EAs. In order to further visualize how

our algorithms performed against each other, we decided to depict the positions of

their mEd values on a radar plot in figures 4.7.1(c) and 4.7.1(d) below:

Page 159 of 277

A radar plot showing the mEds between the
various U E F sfo r th e Hang Seng Index

generated by the Meta heuristics

1.0E-05

GA

SWAN

Par SA

PSO

Figure 14(a)

A radar plot showing the mEds between the
various UEFs for the FTSE100 Index

generated by the Metaheuristics

2 . 5 E - 0 5

SWAN

Par SA

PSO

Figure 14(b)

Figure 14: showing mEds obtained by all algorithms for the Hang Seng and FTSE 100
indices respectively

In each of the two figures [14(a) and 14(b)] above, it should be understood that, the

closer a given point is to the origin (centre of the innermost hexagon), the better the

corresponding algorithm’s ability in estimating the true Pareto front.

Now considering figure 14(a) above, it will be extremely difficult to distinguish the

performance of PSO from that of the SWAN; both of whom points seems to be ‘spot-

on’ right at the origin; and mere eyeballing their respective points on the radar plot

reveals the degree at which both algorithms performed in relation to other algorithms.

The duo, by estimating the Pareto front with a very high degree of precision, further

attest to the power of EAs in solving difficult optimization problems. However, GA

(another member of EAs family) which is left trailing behind seems to be fiercely

competing for the 3rd position against the parallel SA, both of whose points fall in the

third inner hexagon. As can be seen from the same figure; although, SA positioned

itself in the 2nd outer hexagon being far away from the origin, its performance seems to

Page 160 of 277

be better than that of TS which is found to be worst among all the remaining five

algorithms studied in this instance.

Figure 14(b), we believe, is misleading in showcasing the performance of the six

algorithms in relation to the larger dataset; this is because, taking a hasty look at it

makes the reader wonder as to: why do the algorithms seem to perform better (as

majority of them appear to be in the innermost hexagon towards the origin) relative to

the smaller problem (Hang Seng index with 31 assets,); despite an inherent difficulty o f

the search process due to, especially a remarkable increase in the problem

size/dimension (recall FTSE100 index has 78 assets). In view of this (as the reader

might expect), the reverse is the case (i.e. performance of the algorithms in the smaller

[Hang Seng 31 assets] dataset is indeed better across all the algorithms), as it is easier

to handle a comparatively smaller search space. The proof to the above statement can

only be plainly noticed when performance values from both datasets are plotted on the

same radar plot (having the same axes) as can be seen on figure 15 below:

Page 161 of 277

SA31
2.5E-I

GA78 SA78
2.0E-(

1.5E-I
GA31 Par_SA31

SWAN78 -Q.OE+Offl Par_SA78

SWAN31 TS31

PS078 TS78

PS031

Figure 15: showing mEds o f all the algorithms for the Hang Seng and
FTSE 100 Indices plotted on the same axis._________________________________

To make it clearer for the reader as to which of the points on Figure 15 above is for

which algorithm and/or for which of the datasets; we add a numerical suffix equivalent

to the problem size to each of the abbreviations for the six algorithms. For instance, a

point depicting an mEd value on “GA78” axis shows the magnitude of GA’s

performance on the larger dataset (FTSE100 index); while a point on “SA31” axis of

the plot signifies the performance of SA on the smaller dataset (Hang Seng index).

Furthermore, for easier comparison we place axes of the same algorithm next to each

other. For instance, it can be seen that “SA78” is next to “SA31”, “Par_SA78” is next

to “Par_SA31”, and so forth.

Therefore, it can be noticed from the above Figure 15 that, there is a decline in

performance across all the algorithms; however, in some the decline is more apparent

and easily more noticeable than in others. For example, the decline is more visible in

TS, followed by SA, GA and then Par_SA. As for the PSO and SWAN their

Page 162 of 277

performance has been very consistent and encouraging; in the sense that, the problem

size seems to have a very negligible effect (if any) on the duo. Both seem to maintain

their positions in the innermost hexagon and clinging very tight to the origin, which

simply translates to their ability of producing results that matched that of the solver.

Another indicator of performance ability is the time taken by an algorithm to return a

solution on the average. Looking at the column displaying the average execution time

on Table 1 will reveal the degree of computational efforts exerted by the search

methods in providing a solution. The average execution times (in secs) are found to be

very reasonable, going by the size of the problems considered. The times recorded

would be appreciated and considered acceptable, given the fact that even for the

smaller 31 asset problem, a total of 992 data items (including a square covariance

matrix with 961 data items and a vector of 31 expected returns) are required as inputs.

Similarly, in solving the larger 78 assets problem apart from the vector of 78 expected

returns, there is also a square covariance matrix consisting of 6084 data items that are

necessarily required as inputs. It is quite interesting to see that, despite having such

dense matrices as inputs, our algorithms are able to find a solution in as low as

l.OSsecs for TS in the 31 asset problem, although at the expense of convergence.

However, other methods especially PSO and SWAN are able to return quality

solutions in a quite reasonable time frame without any compromise on performance.

Furthermore, our algorithms proved to be robust since the parameters we used in

running our algorithms were not further fine-tuned in order to solve even the larger

problem. The above assertion can be easily supported by observing their performances

when dealing with an even larger dataset from the FTSE 100 Index.

Page 163 of 277

4.7.2 Algorithmic analysis based on coverage ability:

After conducting some preliminary simulation runs, we observed that in extremely

rare cases the solutions returned by our algorithms do slightly dominate those of the

solver s; as our algorithms were able to meet the target at lower risk as defined in

equation 4.6.2(a) above. This is because the settings of the solver are such that they do

not guarantee an exact optimum solution. However, this dominance is extremely

negligible to the tune of 10'9on the average. It is in view of this, we decided to include

the solver’s outputs in Tables 2 and 3 in order to show the ratios in which our

algorithms were able to outperform the solver and vice versa.

The C-metric is an essential quantitative tool used in evaluating algorithmic

performance as discussed in section 4.6 above. We are now going to use it to discuss

the performances of the algorithms against the nonlinear solver as well as against each

other for the two different datasets used in this study. Primarily, we will discuss a

dominance relation especially where a given algorithm is found to outperform others.

The following table gives the result of dominance relation existing between the

various algorithms obtained by solving the smaller 31 assets (Hang Seng index) PSP.

C^Algorithm], Algorithm2) Algor ithm2
CPLEX SA ParS A TS PSO SWAN GA

Algorithm 1

CPLEX 0.920 0.805 0.900 0.680 0.665 0.975
SA 0.005 - 0.140 0.505 0.015 0.015 0.345

Par SA 0.005 0.430 - 0.710 0.025 0.020 0.495
TS 0.005 0.090 0.030 - 0.020 0.020 0.185

PSO 0.010 0.915 0.780 0.890 0.295 0.950
SWAN 0.015 0.920 0.795 0.895 0.555 0.975

GA 0.000 0.295 0.290 0.185 0.000 0.000 -
Table 2: Show ing the C-metric values for all algorithms against each other for the Hang Seng dataset

From Table 2 above, it can easily be observed that, the solver’s solutions

overwhelmingly dominate (see the row marked: CPLEX under Algorithmic most of

the solutions produced by our algorithms. However, there are mostly very rare cases in

Page 164 of 277

which the solver’s results were dominated also (see the column marked: CPLEX under

Algorithm2). For instance, it can be seen that, the solutions produced by the duo of

PSO and SWAN dominate the solver’s by 1.0% (in 2 out of the 200 solutions) and

1.5% (only 3 out of 200) respectively. The trio of SA, Par_SA and TS managed to

outperform the solver at only one solution (0.5%) each; while the GA was unable to

dominate the solver at any point on the EF. A little bit down the table, it is interesting

to see how the duo of PSO and SWAN perform very similarly with SWAN slightly

having an upper hand. SWAN dominates SA, Par_SA, TS and GA by 92%, 79.5%,

89.5% and 97.5% respectively; while PSO follow suit with 91.5%, 78%, 89% and

95% for SA, Par_SA, TS and GA respectively. Furthermore, it can be inferred from

the table, SWAN outperformed its closest competitor (PSO) in 71 (35.5%) out of the

total 200 solutions generated; while on the opposite PSO dominated a total of 59

(29.5%) out of the 200 solutions generated by the SWAN.

The performance of GA under the dominance relation described in equation 4.6.2(a)

against either the solver or any of the other 5 algorithms is surprisingly poor. This fact

can easily be observed when the reader noticed that, GA is the only algorithm that was

unable to dominate a single solution in the trio of CPLEX, PSO and SWAN; and even

in situations where it managed to dominate other algorithms (SA, TS and Par_SA); the

degree of such dominance is not up to 30% (the maximum being 29.5% against the

SA). Observing GA’s performance from another angle also reveals its outright failure.

For instance, taking a quick look at the column marked: GA under Algorithm2, the

reader can easily notice that GA has the most number of solutions dominated by the

duo of CPLEX and SWAN up to the tune of 97.5% (195 out of the entire 200

generated).

Page 165 of 277

Now, if we consider the performance of SA against TS, we realize that CPLEX

dominated SA by 92% as against the 90% of TS. Similarly, PSO outperformed 91.5%

of the solutions generated by SA as against the 89% of the TS; while SWAN to SA is

92% as against 89.5% for the TS. In the same vein, GA dominated SA by 29.5% as

against only 18.5% for the TS; therefore, with these results one can easily be misled to

believe that TS is better than SA. However, we argue that comparing the performances

of SA and TS based on Table 2 only will give a contradictory conclusion as can be

inferred on Table 1, where it is made apparently clear that SA recorded lower mEd

values (in both datasets) when compared to TS; and hence adjudged better. It should

be understood that, the convergence metric (mEd) described in equation 4.6.1 takes

into account all the 200 solutions generated on the EF; while the coverage metric

resulting from equation 4.6.2(a) considers only solutions that satisfy the conditions set

in the strong dominance relation described in equation 4.6.2(c). By this we are still of

the view that, as far as the smaller dataset problem is concerned, SA performed better

than TS.

The next Table 3 shows the output obtained by computing the C-metric values for the

solver and the designed algorithms in solving the larger 78 asset dataset problem.

C^Algorithml, Algorithm2) Algorithm 2
CPLEX SA Par SA TS PSO SWAN GA

Algorithm 1

CPLEX — 0.815 0.775 0.760 0.250 0.200 0.865
SA 0.010 0.025 0.390 0.010 0.010 0.315

Par SA 0.060 0.785 0.860 0.125 0.105 0.595
TS 0.035 0.180 0.105 - 0.010 0.005 0.325

PSO 0.115 0.870 0.690 0.845 - 0.065 0.720
SWAN 0.125 0.895 0.385 0.865 0.130 - 0.810

GA 0.005 0.210 0.170 0.265 0.020 0.015 -

Table 3: Showing the C-metric values for all algorithms against each other for the FTSE 100 dataset

Page 166 of 277

Table 3 above reveals a decline in the solver’s and other algorithms’ performances in

comparison with what is obtainable on Table 2, as even the solver seems to be feeling

the impact of dealing with a larger dataset of 78 assets (which translates to

approximately 150% increase in size) when compared to the smaller 31 assets dataset

analysis presented on Table 2.

A quick look at the row marked CPLEX under Algorithm1, would definitely show a

sudden drop in the solver’s performance when compared to the corresponding row in

Table 2. On Table 3 above, CPLEX dominated the solutions generated by SA,

Par_SA, TS, PSO, SWAN and GA by 81.5%, 77.5%, 76%, 25%, 20% and 86.5%

respectively as opposed to the corresponding values of 92%, 80.5%, 90%, 68%, 66.5%

and 97.5% on Table 2. Furthermore, a mere glance at the column tagged CPLEX

under Algorithm2, shows that, SA now dominated 2 solutions (1%) produced by

CPLEX as opposed to only 1 (0.5%) solution in the smaller dataset problem. Par_SA

dominates 6% as opposed to 0.5%, TS - 3.5% as opposed to 0.5%, PSO - 11.5% as

opposed to the previous 1%, SWAN - 12.5% as opposed to the previous 1.5%, and

GA has now managed to dominate only 1 out of the entire 200 solutions generated by

the solver as opposed to none in the smaller problem.

Despite the sudden drop in performance, the duo of PSO and SWAN maintained their

tight competition with SWAN leading the way again. In all other algorithms, except

for the Par_SA, it is easily noticeable that SWAN dominates more solutions than its

closest competitor - the PSO. The GA on the other hand recorded a slight

improvement in terms of the number of algorithms dominated; as in this case it

managed to dominate only 1 solution (0.5%) returned by CPLEX, 4 solutions (2%)

Page 167 of 277

from PSO and 3 (1.5%) from SWAN; unlike in the previous case where it was unable

to dominate even a single solution returned by the trio of CPLEX, PSO and SWAN.

4.7.3 Algorithmic analysis based on uniformity of solutions:

The (uniformity) metric often denoted as£>(•), as described in section 4.6.2 is aimed

at identifying the uniformity of the distributions of solutions inherent in the results

generated by our heuristic methods.

D(Algorithm) (x lO 5)
Index Hang Seng FTSE100
Assets 31 78

Algorithm

SA 5.1965 8.5266
Par-SA 5.0065 8.2996

TS 5.0441 8.4995
PSO 5.0339 8.2998

SWAN 5.0338 8.4939
GA 5.0329 8.4942

Table 4: Showing the values of uniformity metric for all algorithms from the two datasets used

From Table 4 above, it clear that the results generated by our algorithms are uniformly

distributed, as the/)(*) values obtained from our algorithms are very close to zero (i.e.

all to the tune of 10'5). It is also evident from the table that, the problem dimension has

very little effect (if any) at how any of the algorithms generates its solutions along the

EF.

Although in both datasets considered, all the results favored Par_SA as the algorithm

with highest degree of uniformity (recall that a lower value of D («)is desired) with

5 .0 0 6 5 x l0 '5 and 8.2996* 10' 5 for Hang Seng and FTSE100 indices respectively;

however, it is evident that the edge it has over other algorithms is very negligible, and

it seems all the algorithms have the same degree in generating uniform results.

Page 168 of 277

Section 4.7.3 has nothing to do with an algorithm’s degree of convergence or

coverage, but it is rather concerned with whether results generated are uniformly

distributed or not. Thus, now based on the results presented in sections 4.7.1 and 4.7.2

above, SWAN has the most ability to estimate the true Pareto front, hence, we can

now conclude it is the best performing algorithm and closely followed by PSO.

Page 169 of 277

5.0 Constrained PSP

5.1 The Constrained case

The main aim of this chapter is to introduce and describe in detail our newly

developed neighbourhood structure for solving a constrained version of the PSP

studied in this research. The constrained formulation is a special case of PSP in which

the final solution of the optimization problem has to fulfill some set of conditions.

However, imposing these conditions has some accompanying consequences, among

which is the risk of the problem becoming intractable as well as susceptible to falling

within some class of difficult optimization problems regarded as NP-hard; thereby

making it much harder or even (in most cases) impossible to solve by the conventional

exact methods embedded in most of the state-of-the-art nonlinear optimization solvers.

There are, however, quite number of practical constraints that are often incorporated

into the constrained PSP; a brief description of some of them can be found in section

2.4; but as far this research, we plan to incorporate only two among the practically

implementable constraints - namely the cardinality and floor & ceiling constraints.

Cardinality constraint: To implement this constraint in our formulation, we decided

to limit the number of assets that the portfolio composes. A value of k < n (typically 5

or 1 0) is chosen, such that the number of assets selected to constitute a portfolio is no

more than k.

Floor & Ceiling constraint: For this constraint, the weight of each asset selected to

form part of a portfolio is limited and lies within an interval, in which the minimum, I.

and maximum, ^.weights for each asset i are given. In our formulation, we impose

Page 170 of 277

that if an asset / is selected to be part of a given portfolio its weight w/ must satisfy

/,. < w(< jUj, otherwise it is set to zero.

For easier handling of the above constraints, we adopt the method used in Chang et al

[2 0] by declaring a binary variable 8(for each asset i in the universe of assets, taking a

value of 1 if asset i is included in the portfolio and a value of 0 otherwise. With this,

we now come up with a constraint pair:

The basic PSP, with the incorporation of the constraint pair above, becomes a mixed-

integer quadratic programming problem whose solution is much more computationally

difficult to find using the conventional methods.

Recall that, in this research, we designed and implemented six different metaheuristic

algorithms to tackle the unconstrained case of the PSP; out of which three (SA, TS and

Par_SA) are Local Searches, and the remaining three (GA, PSO and SWAN) are

Evolutionary Algorithms. Furthermore, recall that, GA’s performance in the

unconstrained case of the PSP (previous chapter) has not been so encouraging. So,

going by the poor performance recorded by GA in the less difficult (unconstrained)

case as presented in section 4.7 above; we decided not to implement a constrained

version of the PSP using GA.

n

=> cardinality constraint

5,h s w, £ 5,(1, => floor & ceiling constraint

The difficulty inherent in finding a very good solution within a practically reasonable

time frame in the constrained formulation of the PSP warrants the need to assist and

Page 171 of 277

guide the algorithms towards promising regions of the search space; and this can be

achieved by developing a sound and effective neighbourhood structure for this

purpose. Major contributions that our research has to offer to the academic knowledge

in general and optimization communities in particular are the development of two new

neighbourhood structures that are entirely different from (despite being inspired by)

those presented in the work of Schaerf [129]. In this chapter we are going to describe

how we implemented these two versions of neighbourhood structures as will be

described in sections 5.3 and 5.4 below. To the best of our knowledge, the way we

implemented these neighbourhood generating mechanisms is unique, and have never

been reported in any literature before. The first one, entitled: IDDIT (based on the

processes involved therein) is aimed at guiding the Local Searches (SA, TS and

Par_SA) in generating a neighbouring solution from the incumbent, while at the same

time ensuring that all constraints are satisfied.

The other neighbourhood mechanism is designed in such a way that it will be much

more suitable for our designed swarm algorithms (PSO and SWAN). It comprises

processes similar to those found in IDDIT, aimed at generating neighbouring solutions

from a swarm of particles. While ensuring feasibility of solutions and satisfiability of

constraints, this neighbouring-solution generating mechanism, maintains some degree

of interaction between a given particle (candidate solution) with its local best and

global best solutions as can be obtained in the conventional implementation of the

basic PSO and SWAN aimed at solving the unconstrained case. With the above brief

explanation of how our neighbouring-solution generating mechanisms operate; we feel

it is important to briefly describe the concept used in defining a candidate solution’s

representation in our constrained formulation of the PSP; and this is provided in the

Page 172 of 277

following section. We provide a thorough explanation of each of the two

neighbourhood relations in sections 5 . 3 and 5 . 4 below.

5.2 Solution Representation

Before we embark on thorough explanation about our neighbourhood structures, it is

highly important to describe how a candidate solution (portfolio) is represented in our

constrained case algorithmic implementations. It should be noted that, one of the

crucial aspects of our constrained PSP implementation has to do with the efficient

representation of a candidate solution. In this regard, we adopt the proposal provided

by Chang et al. [201 in which a given portfolio is characterized by two main parts. The

first denoted by L, is an integer set containing the indices of constituent assets in a

given candidate solution (portfolio); while the other denoted by W, is a set of real

numbers signifying the actual proportion of portfolio funds invested in corresponding

assets whose indices make up set L.

For instance, suppose there is a universe, U of n assets; each asset j e U has a

corresponding randomly generated real number(i.e. w j | 0 < w. < l) V/ e U which

potentially (after some renormalization process is executed) becomes its actual

proportion in a given portfolio fund. Now in order to represent a solution, we partition

a candidate portfolio into 2 distinct parts; a set L containing at most k chosen assets

and a set W of randomly generated real numbers (w. |0 < w. < l) Y/'eZ,. All assets

j e U have an associated binary variable, z;- taking a value 1 if asset j is included in

portfolio L(i . e . Z j = 1; V /e l) , otherwise it takes the value zero

(i.e. Zj = 0; V/ e {U - £}). All asset weights in the portfolio L [i.e. w. | VyeZ,) must be

Page 173 of 277

renormalized in order to serve as actual proportions of portfolio funds summing up to

unity; while all other assetsj'e {U — L) will have their Wj values implicitly set to zero

as far as portfolio L is concerned; because a given portfolio configuration involves

multiplying asset weights multiplied by their corresponding binary variable

[i.e. w. = w. x z i | V/'eZ,).

Suppose we have a portfolio L containing k assets; so, in order to ensure that all assets

in L at least satisfy the minimum threshold limit; we first allocate to each of them a

weight equivalent to the minimum threshold limit gy, and this implies a fraction

) of the total portfolio is already accounted for. Furthermore, in order to make

sure that the actual weights of all assets in L now sum up to unity, each Wj can now be

interpreted as relating to the share of the f r e e portfolio proportion (l _ X /6/£y)

associated with assets je L .

To further explain our approach; suppose we have n = 20 as the total number that

makes up the universe of assets, U, out of which no more than k = 3 assets should be

included in any portfolio and each of the portfolio’s constituent assets should have no

less thanf. = 15%; one possible solution might therefore be:

L = {3, 4,8} and W = {w3 = 0.7, w4 = 0.9, w8 = 0 . 6 } ; this means our portfolio consists

of assets 3 , 4 and 8 ; and since we know that each of the three chosen assets must have

a minimum proportion of 15%, then already '^JJeL£j = 45% has been accounted for,

then the remaining f r e e portfolio proportional - ^ jeL£j) = 55%. So the share of

asset 3 in the f r e e portfolio proportion will now be

Page 174 of 277

w3 / {w3 + w4 + ws) ~ 0.1/2.2 - 0.3182 and therefore, the actual portfolio proportion

w3 devoted to asset 3 can be obtained by adding the minimum proportion to asset 3’s

appropriate share of the f r e e portfolio proportion will be w3 = 0.15 + 0.3182 x 5 5 0 /0 =

0.325. Similarly, w 4 = 0.15 + 0.4091 x 55% = 0.375 and w8 = 0.15 + 0.2727 x 55% = 0.300.

It is important to note that, the main advantage of this approach is to ensure that all the

Wj values satisfy the minimum proportion limit ejt while at the same time satisfying

the budget constraint since they all sum up to unity. However, this approach does not

guarantee satisfying the maximum threshold limit 8 . as this can only be handled by

the repair mechanism to be discussed in section 5.5.

5.3 Neighbourhood Structure for the Local Searches (IDDIT)

Local searches’ trajectories over a given search or solution space are unique; they

traverse such a space by generating a neighbouring solution from an incumbent

solution with the aim of either avoiding entrapment in a local optimum or in order to

obtain a solution that is at least good and sometimes very close to an optimal one.

However, there might be several ways in which such neighbouring solutions are

generated. It should be noted that, a newly generated neighbouring solution does not

necessarily satisfy all constraints; thus, one such idea is the continual stochastic

generation of such neighbours until all incorporated constraints are satisfied. This idea

is, without any doubt, inefficient and extremely costly due to the wastage of valuable

time and other resources.

Page 175 of 277

In order to avoid such wastages in our constrained PSP implementation, there is the

need then to come up with an in te lligen t idea for generating neighbouring solution in

order to achieve the aforementioned purposes. The idea we came up with was inspired

by the three neighbourhood relations introduced in the work of Schaerf [129]. The

three neighbourhood relations introduced therein are idR ([z'Jncrease, [decrease,

[Replace), idID ([/Jncrease, [decrease, [/jnsert, [DJelete) and TID ([7]ransfer,

[7]nsert, [DJelete). Apart from some anomalies observed in the execution of these

neighbourhood relations which we are going to exhibit later; we also notice some

aspects of redundancy in their individual executions, and we argue that the operations

involved in these neighbourhood relations can be effectively merged together in a

single neighbourhood relation, while each operation can then be executed by

introducing some probability weighting mechanism. For clarity of description and to

easily showcase the identified loopholes, we hereby reproduce the first two

neighbourhood relations as represented in Schaerf [129]:

idR ([i] ncrease, [d] ecrease, [R] eplace):
Description: The quantity of a chosen asset is increased or decreased.

All other shares are changed accordingly so as to maintain the feasibility
of the portfolio. If the share of the asset falls below minimum it is
replaced by a new one.
Attributes: (a , s, a.) with a e A,s ,a. eA
Preconditions: a. eL and a. £ L

/ ./

Effects : Ifs =T then w. = w. • { \ + q), otherwise wt = w. • (t - q) . All
values w -e are renormalized and not x. to ensure that no asset rather

k k K

than a can fall below the minimum /
Special cases : Ifs = i and w. (l - q) < e., then a. is deleted ffomL and
a is inserted with w. = s.. Ifs = t and w. (l + q) >8., then w. is set to S.

Reference: Revised version of Chang et al. (2000).

_______ Figure 16: idR neighbourhood definition____________

Page 176 of 277

idD)([i]nerease, [d]ecnease, [ijnsert, [Djelete):
Description: Similar to idR, except that the deleted asset is not

replaced and insertions of new assets are also considered
Attributes: (a , s) with a e A,s e {'t , 4,

Preconditions: Ifs = 4 or T then a e L. ILs =H>thena &Li i
Effects: Ifs =Tthenw. = w. •(1+g);ILs = -Ithen w. =w. * (l-q)\
If.s' = then a :s. is inserted into L. The portfolio is repaired as
explained above for idR
Special cases: Ifs = ̂ and w .(\-q) < 6 ;.,thena is deleted from/, and
it is not replaced Ifs= T andw(l+g) ><5 , thenw is settop

____________Figure 17: idID neighbourhood definition____________

For instance, consider the special cases under idR neighbourhood relation; We argue

that when a decrease operation is executed, and consequently, the resultant weights are

renormalized accordingly in order to add up to unity and maintain portfolio’s

feasibility; it is still possible to notice that, at least one of the constituent asset’s weight

shoot up beyond the maximum threshold, Sj. In the same vein, we observed that, if an

increase operation was executed, it is likely to have another asset’s weight going

below the minimum threshold after renormalization. Let us now present our argument

by a simple numerical example as follows:

Suppose there are n = 10 assets in a given universe, U of assets

(i.e. U = {Al t A2, A3, A 4, A5, A6, A7, AS, A9, Awj) out of which no given portfolio is

allowed to contain more than k = 5 assets. Let the minimum and maximum threshold

limits for all assets weight be si = 1% and 8, = 70% respectively. Furthermore, let us

assume that, the step value, q = 0.95 (Refer to Figures 5.3(a) and 5.3(b)), and suppose

a given portfolio, L composed of 5 assets: [i.e. L = {A{, A5, A3, Ag, A2 whose

corresponding actual proportion of portfolio funds are

Page 177 of 277

{w j-0 .06 , w5 -0.11, w3 - 0.09, w9 =0.04, w 2 = 0.7} respectively; notice that, all

assets weights sum up to unity. Now according to the provisions in special cases of

idR neighbourhood relation, if a decrease operator is executed on, say, asset Aj

| i.e. wl = wr (l - and this implies wj = 0.06(1 — 0.95) = 0.003 which without any

doubt is less than the minimum threshold of 1%; and consequently asset Aj will be

deleted. Now suppose the deleted asset Aj is replaced by another asset A j (not already

in L before) with weight equal to the minimum threshold of 1%; then the new

composition of portfolio, L will now then be [A7, A5, A3, A9, A1} with corresponding

weights {w7 =0.01, w5 = 0.11, w3 =0.09, w9 =0.04, w2 =0.7} adding up to 0.95.

Now in order to maintain the feasibility of the resultant portfolio and at the same time

ensure that weights add up to unity; the weights have to be renormalized thereby

leading to a portfolio with new assets’ weights values of:

{w7 =0.010, w5 = 0.116, w3 = 0.095, w9 = 0.042, w2 = 0.737}. A problem that

immediately resurfaces in the resultant portfolio’s weight configuration is what we are

trying to make the reader be aware of; as it can easily be seen that, the weight of A 2 (in

bold) now has a value greater than the maximum threshold of 70%.

In another example, suppose q = 0.05 and consider another portfolio L consisting of

the same set of 5 assets {4 , A5, A3, 4 , A ^ as used in the previous example having

corresponding weights: {ry = 0.02, w5 = 0.01, w3 =0.24, wg = 0.04, w2 = 0.69}; now let

us suppose an increase operator is executed on asset A 2 \j.e. w2 - w2 (l + #)] , its

corresponding weight will now assume a new value of 0.7245

(i.e. w2 = 0.69 (1 + 0.05) = 0.7245) which is apparently greater than the maximum

Page 178 of 277

threshold value of 70%, and consequently (based on the provision of idR special

cases) has to be capped to the same maximum threshold value. With this new value of

W2 being set to 70%, the weights do not add up to unity anymore and the portfolio

consequently loses its feasibility, hence the need for renormalization. After the

renormalization operation is executed, the new set of renormalized portfolio weights

will now be: jwj =0.0198, r>. = 0.0099, w3 = 0.2376, wg = 0.0396, w2 =0.6931}, thereby

forcing to take a new value (in bold) under the minimum threshold of 1%.

These problems that resurfaced in our 2 simple examples after executing the

decrease/increase operations followed by weights’ renormalization proves the validity

of our argument on the accompanying loopholes with the way those neighbourhood

structures were implemented, and this further proves to us and the reader that, what the

idR procedure currently provides in replacing an asset whose weight falls below the

minimum threshold with another one as well as just capping the asset whose weight go

beyond the maximum threshold is definitely not enough; the repair (renormalization

only) mechanism is therefore flawed and thus, there is the need to do more by taking

into account other marginal cases that might occur as a result of executing the

aforementioned operations as outlined above. We believe the same argument can be

drawn from the other two neighbourhood relations contained therein. In view of these,

we proposed an efficient repair mechanism by adopting the repair strategy introduced

in Chang et al. [20]. Our iterative repair mechanism (to be presented later in section

5.5) will always guarantee providing a feasible portfolio satisfying both minimum and

maximum threshold constraints, while at the same time adding up to unity.

Page 179 of 277

Apart from the problems that result from the loopholes observed above; we further

noticed some redundancy in the operations of the three neighbourhood relations (idR,

idID and TID), where we noticed for example, the main difference between especially

idR and idID lies with the choice of either replacing or not replacing a given asset.

Similarly, TID has some elements of insertion and deletion of an asset as in the case

of idID, thereby rendering some operations redundant. In order to address these

redundancy concerns, we propose a single neighbourhood structure that incorporates

all the operations (Increase, Decrease, Delete, Insert and Transfer) obtainable in the

three neighbourhood relations presented in Schaerf [129]; hence, the name IDDIT.

The neighbourhood structure introduced in this section is designed to work with our

Local Search algorithms (SA, TS, Par_SA) for the implementation of the constrained

PSP formulation. It involves introducing and executing five different neighbourhood

operations with uniform probability of being chosen for execution. The five different

operations include increasing, decreasing, deletion, insertion and transfer. Because in

our formulation, the PSP variables are continuous; the concept of neighbourhood move

in the first two operations (increasing and decreasing) involves the notion of moving

within a given neighbourhood by using step (a real-valued parameter less than 1)

multiplied by a uniformly distributed number randomly generated and lying in the

interval (0, 1); the result of which is either added to/subtracted (as the case may be)

from a given asset’s actual portfolio proportion (weight), after which a renormalization

of the entire portfolio weights is executed - a process meant to enforce the

satisfiability of (an important) budget constraint. After several experimental trials we

found that, in both cases a step value of 0.975 is found to work well with our problem.

Page 180 of 277

As in Chang et al. [20], our neighbourhood structure allows each candidate solution

(portfolio) to be characterized by two sets as described in section 5.1 above. The first

set, denoted by L, is an integer set of asset indices; while the other denoted by W, is a

set of real numbers signifying the actual proportion of portfolio funds for the

corresponding assets in set L. We implemented our neighbourhood function in such a

way that it processes begin by randomly generating an integer value (we termed as

decision index) less than 5 (i.e. decision index e Z [0,4]) responsible for deciding which

among the five neighbourhood operations to execute; in which a decision index of 0 , 1 ,

2, 3 or 4 denotes the execution of increase, decrease, delete, insert or transfer

respectively. Next, we then randomly choose one or two asset’s indexes (two assets in

case of a transfer operation and one asset otherwise) from L upon which the selected

operation is to be implemented.

In a given iteration, when the decision index takes a value 0, an increase operator is

executed, the two sets (L and W) characterizing the solution of any given portfolio are

passed to the repair structure (to be discussed later) responsible for maintaining

portfolio’s feasibility and constraints satisfaction. However, when any of the

remaining four operations are executed, some checks and minor sub-operations are

conducted before passing the portfolio to the repair procedure. For instance, when the

decision index takes a value 1 and the decrease operator is executed on a randomly

chosen asset in L; now, before passing the portfolio to the repair mechanism; the

function first checks if the affected asset’s actual weight falls below the minimum

threshold, £ /,[/.e .//w ,(l-?x ra« rf(0 , l))< £ (.] , and if so, the function randomly

generates a binary variable [0 or 1] which decides either to just delete or replace the

affected asset. If the decision reached is to only delete; the function further checks if

Page 181 of 277

there are at least two assets in the portfolio (i.e. If |l | > 2) before the affected asset is

deleted, otherwise, it is spared. On the other hand, if the decision reached is to delete

and replace, the newly introduced asset assumes a weight whose magnitude is

equivalent to the minimum threshold value, ef.

The delete operator which is normally executed when the decision index takes a value

2 randomly deletes an asset from a given portfolio L provided there are at least two

assets in it, irrespective of whether its weight undershoots or overshoots the minimum

or maximum threshold limits respectively; the corresponding asset’s weight is then set

to the minimum threshold value, e,-. On the other hand, an insert operator is chosen for

execution when the decision index takes a value 3. This operator, provided the

cardinality of L is less than the maximum cardinality value of k (i.e. \l\ < k) , allows for

the insertion of an asset randomly chosen from set { U - L) into the portfolio L with a

portfolio proportion equal to the minimum threshold limit (i.e.w. =<?)■ Finally, a

transfer operator whose decision index takes value 4 can be executed if and only if

there are at least two assets in portfolio L, in which one serves as a ‘donor’ and the

other a ‘recipient’. A ‘donor’ asset deducts a portion of its weight with the aim of

transferring the same to the lucky ‘recipient’; if there are more than two assets in

portfolio L, both (donor and recipient) assets are chosen randomly, and when this

happens the portfolio’s feasibility remains unaffected, especially after passing the

results to the repair mechanism. The following pseudocode depicts how we

implemented our neighbourhood structure:

Page 182 of 277

Function IDDIT(k, e, 8, L,w)
Begin {

% N is the Universe o f assets
% L is the set containing at most K assets inthe current solution
% Wjisthe actual proportion associated with asset j e L
randomly generate decisionlndex (integer e [0,4])
randomly generate an index j e L
If (decisionlndex = 0)then

wj = wj x (l + step x rand [0 ,l])
Elseif (decisionlndex = l)then{

wj ~ wj x 0 ~~ steP x rand [O’l])
If (wj < s j) then {

If (|l | > l)then{
L = L - [j]
Wj = 0.0 }

}
}
Elseif (decisionlndex = 2)then{

If (|L| > l)then {
L = L - [j]
W j = 0.0 }

}
Elseif (decisionlndex = 3)then{

generate a new index j e N - L
If (|z| < &)then {

L = L u [j]
W j = S j }

}
Else {

If (4 | > l)then {
generate a donor index i e L
generate a recipient index j e L (j ^ i)
wi = wi ~ (w/ x 1 0 %)
w j - w . + (w(. x 10%) }

}
Call repairAssetWeights(K, £, 8, L ,w)

End

Figure 18: IDDIT (The neighbourhood structure for the local searches)

5.4 Neighbourhood structure for Swarm Algorithms

The neighbourhood structure described in the previous section is most suitable for our

Local Search algorithms, and can in no way be applied (without making some

modifications) to our swarm algorithms (PSO and SWAN) due to the rule behind their

basic implementation procedure. For instance, a basic PSO algorithm involves dealing

with several particles (solutions) that inter-communicate their search history and

progress with one another, while at the same time keeping track of their personal best

Page 183 of 277

ever found solution and that of the entire swarm. Furthermore, all particles update

their current positions on the search/solution space according to some rule that

imposes utilization of some information from the history of their trajectory and the

global best particle.

One aspect that makes implementation of constrained PSP in especially PSO (and by

extension, the SWAN) difficult is the concept of updating particles’ positions. This is

because, even if the search begins from a set of fully feasible solutions in which none

is found to violate either or both sets of (cardinality and floor & ceiling) constraints;

by the time particles undergo a velocity and particles’ position updating mechanism,

the new solution may well be infeasible; this scenario can easily be verified by

analyzing how the pair of equations 3.5.5(b) and 3.5.5(c) operate; we hereby

reproduce these equations below:

k +1 k . D kv.. = wv.. + C, R
1 . 7

lb: - x kI.J u + C2 R k . g b k - x2 2 , / C) , ,

x k+i = x k + v k+]
u V IJ

The above challenge, we opined, is what led to the very minimal implementation of

constrained PSP using PSO algorithm in comparison to other evolutionary algorithms

(like GA) where the individuals (candidate solutions) do what they want on the search

space without any need to track or utilize some information to do with their personal

history or that of the best individual.

In the constrained implementation of PSO/SWAN, it is extremely difficult to update

particles based on the conventional PSO update mechanism, due to the reasons stated

above. In view of this challenge we propose an implementation devoid of any velocity

Page 184 of 277

and position update mechanisms; however, we introduced a real-valued scoring term

(which we referred to as score velocity) that will be used to allow particles to make an

informed decision in moving to a neighbouring solution within their immediate

neighbourhood, by tracking the success of their search history (such as personal best

solution), as well as that of the entire swarm (global best). It should be understood

that, although, the concept of moving towards either the personal or global best is

extremely restricted (due to difference in cardinalities, and therefore operating in

different search subspaces), the proposal we present allows each particle to make a

decision of moving within its neighbourhood based on the information made available

to it about the composition of those reference (personal and global best) solutions.

In this constraint formulation of PSO/SWAN; each particle should be viewed as being

confined within its search subspace allowing it to search for better solutions within its

immediate neighbourhood. While doing that, each particle also has the ability to inter

communicate with other particles and relate their search history as well as that of the

entire swarm. We decide at this stage to introduce a neighbourhood structure (similar

to IDDIT described in the previous section) that will allow particles to search their

subspaces with a bit of guidance, unlike what is obtainable in the IDDIT structure,

where all operations and sub-operations are entirely based on a random chance. The

neighbourhood structure, occasionally allows a particle to ‘jump’ away from its

subspace to another after some quite number of iterations; this phenomenon will

eventually allow particles to converge at a global solution.

The neighbourhood relation developed, although similar to IDDIT has some

remarkable enhancements. The similarity between the two lies in using the same

Page 185 of 277

solution representation mechanism of defining a solution (portfolio) into two different

sets of asset indices (denoted by L) and asset’s weights (denoted by W also) as

introduced in section 5.2. It also uses the same five neighbourhood operations

(Increase, Decrease, Delete, Insert and Transfer) in executing a move from one current

solution to its neighbouring solution. As part of the enhancements we introduced, this

neighbourhood relation possesses a bit of intelligence by utilizing some fitness values

that allow it to wisely decide which asset should be eliminated from a given portfolio,

given that a delete operator is executed. It also smartly decides which asset to be

chosen (from the remaining ones in the universe) and inserted into portfolio L, if an

insert operator is executed. Let us now demonstrate how the neighbourhood structure

works and how particles can move around their immediate neighbourhood and how

the concept of particles’ ‘jump’ can be justified. Let the reader refer to the following

figure in the discussion that follows:

Page 186 of 277

Lots of Possibilities

Decrease
L1 - { 3 } = {2}

Particle —
L1 — {2} = {3} = L2 — {1}L1 = {2, 3}

L1 = {2, 3}

L1 = {2, 3}

Particle 2

L2 = {1, 3}

L2 = {1, 3}Decrease
L2 = {1, 3}

Lots of Possibilities

Figure 19: showing the concept of particles’ move and jump

Suppose there are n = 5 assets in a given universe, U of assets (/.<?. U = {l, 2 , 3, 4 , 5})

out of which any given portfolio is allowed to at most k = 3 assets. Assuming particles

1 and 2 each has two assets in their current portfolio (where LI = (2, 3} and L2 = (1,

3}); we now analyze how the two particles {particle 1 and particle2) operate under the

neighbourhood relation. It can be easily observed that, for both particles (and by

extension all other particles) when the increase or transfer operator is executed, the

portfolios’ asset composition remains unchanged; and thus, the particle’s search is

then confined within its immediate neighbourhood. On the other hand, the execution

Page 187 of 277

of any of the other three operators (decrease, delete and insert) can quite often result

in a portfolio with different asset composition; thereby enabling a particle to escape its

immediate neighbourhood and ‘jump’ over to another. The continuous jumping from

one subspace to another (by particles) will eventually lead them towards convergence

to the best solution.

To illustrate what we mean by ‘jumping’ to another search subspace region; suppose a

delete operator is executed on particle 1 (LI = (2, 3}) and that asset 2 was marked for

elimination (i.e. LI - {2}), the resultant portfolio will now consist of only asset 3 (i.e.

LI - {2} = {3}). This particle will find itself searching for better solutions in the same

neighbourhood as particle 2 (L2 = {1, 3}) when a delete operator acted upon it, and

asset 1 is eliminated (i.e. L2 - {1} = {3}), as can be seen in the upper gray-colored

rectangle on Figure 16. Similarly, if an insert operator introduced asset 1 in particle

l ’s portfolio composition (i.e. LI u {1}); the resultant portfolio will now consist of

three assets (i.e. LI u {1} = (1, 2, 3}); which is equivalent to the same search space

region in which particle 2 will find itself on, if another insert operator introduces asset

2 into its current configuration (i.e. L2 u {2} = (1, 2, 3}) as can be seen in centermost

gray-colored rectangle.

The neighbourhood structure uses an evolvable real-valued number we referred to as

score velocity which a given portfolio uses to communicate to the global and personal

best solutions. The same score velocity is used to compute a fitness value that will be

used in either deleting/inserting an asset from/into a given portfolio L . The delete

operator is executed, so that the asset with the lowest score velocity stands a higher

chance of being eliminated from the portfolio; while as for the insert operator, assets

Page 188 of 277

with higher score velocity (from the remaining ones in the universe) stands a higher

chance of being included into the portfolio, L. In the beginning of the search, the score

velocity for each particle is assigned a uniform value of 1 . 0 to all assets in the universe

of assets(/.e. scoreVelj = 1.01 Vz e £/); but if an asset is one of the constituents of the

personal best solution, its score velocity increases by some fraction of the total

cumulative score velocity of the constituent assets in L\ similarly, if it is part of the

assets that makes up the global best solution, its score velocity further increases by

some fraction of the current total cumulative score velocity of the current portfolio L.

The following two conditions illustrate how a score velocity of a given asset in a

portfolio, L evolves as the search continues:

\/p e swarm o f particles
Vz e l f {

If (z cz local best solution) then
SVP = SVP +3%x{total cummulative score velocity for Lp members)

If (z c global best solution) then
SVP - SVP + 5% x (total cummulative score velocity for Lp members)

}
I

______________ Figure 20: Updating particles' score velocity______________

This simply means, an asset which forms part of both the personal and global best

solutions receives ‘double reward’; thereby maximizing its chances of being included

in a portfolio when an insert operator is executed, provided it is not already part of the

current portfolio L\ similarly, such an asset has a minimum chance of being eliminated

from a current portfolio, L when the delete operator is executed.

The reader might be tempted to ask, then: “How can that be done?” To answer this

question, it is important if we make the reader understand that, any given asset in the

universe (i.e. asset i | Vz £ £/)can only be a member of one of the two subsets in the

Page 189 of 277

universe (i.e. {L}or[U - L}) at any given point in time. For all assets in portfolio L,

we decided to compute the inverse of their various score velocities after which we then

compute the cumulative inverse score velocity", while for all assets in the other subset

{U — L}\ we decided to compute their cumulative score velocity which helps in

choosing which asset to include in a given portfolio.

The following pseudocode shows how we are able to part the universe of assets into

two distinct sets and \U - L) , after which we compute the parameters that will help

us accomplish a move to a neighbouring solution.

Function computeSVParameters fscore Vel, L, Q, CumnSVQ, InvCiannSVL.)
Begin {

% f/isthe Universe of assets
% I f : set containingat most bassets inthQparticle p 's current solution
% Q f: set of all assets in the univese, U, not in portfolio Lp (i.e. f f := j U - Lp J)

o r - 0 % initialize Q to a null set
For all p^sw arm

For all / g U, If / £ then Q* := Q1 u[z] % partition the Universe into Lp Sc
totCwnmSVQp := 0; % initialize the fitness for Q 7 members
For all i e O ’ do{

totCumrnSVQp := + score Velj
CummSVQ'totCurmiSVQ ' }

totlnvCtmmSVU \= 0; % initialize the fitness for Lp members
For all j eL p do{

totlnvCurrunSVLf :=+ \j(scoreVel^
InvCummSVIfj :=totInvCurnmSVLp}

}End

_______________ Figure 21: Computing score velocity parameters_______________

The function in Figure 21 above accepts portfolio L and the score velocity vector as

input; while at the same time generating Q, CummSV and InvCummSV as output

variables. These variables evolve as the program progresses and different portfolios

are generated. CummSV is especially used when an insert operator is executed; it gives

Page 190 of 277

a higher chance of selection to an asset with high score velocity which is to be inserted

into a candidate portfolio. InvCummSV on the other hand, favours the asset with lower

score velocity for elimination when a delete operator is to be executed.

We now present the pseudocode of the program function used in implementing a move

around the immediate neighbourhood of a given particle.

Fun ct io n s w a r m I D D I T {k, s , S , s c o r e V e l , L p , w p)
Begin {

% U is the U n iv e r s e o f as set s
% L p : s e t o f a t m o s t k a s se t s i nd i ce s f o r p a r t i c l e p ' s p o r t f o l i o L
% Q p : s e t e q u i v a l e n t to j t / - Lp j
% w p is the a c t u a l p r o p o r t i o n a s s o c i a t e d wi th a s s e t j e L p
% t o t l n v C u m m S V V ’ is the t o ta l i nv e r se c u m m u l a t i v e s c or e ve loc i t y f o r L p
% t o t C u m m S V Q 1’ i s t h e to ta l c u m m u l a t i v e s c o r e ve loc i t y f o r Q p
ca l l c o m p u t e S V P a r a m e t e r s (s c o r e V e l , L p , Q p , C u m m S V Q p , I n v C u m m S V L p)
F o r all p e n u m p a r t i c l e s {

r a n d o m l y g e n e r a t e d e c i s i o n l n d e x { i n t eger e [0,4])
r a n d o m l y g e n e r a t e an i n t eger i ndex j e L p
I f (d e c i s i o n l n d e x = 0) th en j w p = w p x (l + s t ep x r a n d \ 0 , l]) j
Else if (d e c i s i o n l n d e x = l) th en{

w p = w p x (l - s t ep x r a n d [0 , l])
If (w p < £• j then { I f (| / / | > l) t h e n { / / = L p - [y] & w p = 0 . 0 } } }

E l s e i f [d e c i s i o n l n d e x = 2) the n{
va l = rand\ f) , \~\y. t o t l n v C u m m S V L ’’

If (v a l < I n v C u m m S V I f) then { If L p j > 1 j then (L p = L p - [/ ,[']} }
Else{

(j > o | vy e L p)

I f (v a l > I n v C u m m S V L f ^) & (v a l < I n v C u m m S V L p) t h e n {

If ([/ / | > l) th en (L p = L p - [L p }] } } }

E l s e i f (d e c i s i o n l n d e x = 3) then{
val - r a n d [0,1] x t o t C u m m S V Q 1’

I f (|L;'| < fc){
I f (v a l < C u m m S V Q p ^then { | L p = L p u [Q£] | & jw 0/; = e | }

Else{ (/ > 0 | V / e Q p)

\ i (v a l > C u m m S V Q ^))&. (v a l < C u m m S V Q j ') t h e n {

{ L p = L p u [Q p] } & { w p = f } } } } }
Else {

I f (| / / | > l) th en {
r a n d o m l y g e n e r a t e a d o n o r (i s L p) & re c ip i e n t (j e L 1 | j ^ i) i nd i ce s

w r = w p _ (w p x 1 0 %) & w p = w p + (w p x 1 0 %) } }

C a l l r e p a i r A s s e t W e i g h t s { k , s , 5 , L p , w p)
} E n d

_________ Figure 22: Swarm techniques neighbourhood definition_________

Page 191 of 277

From Figure 22 above, before the program moves into the For-loop of the different

particles, it has to first invoke/call the score velocity parameter function, in order to

make available some parameters (InvCummSVL, CummSVQ, totlnvCummSVL,

totCummSVQ) that will be found important for the successful implementation of the

operations. The superscript in most of the identifiers signifies a particle; while the

subscript identifies a given dimension. It can be seen also that, our swarm

neighbourhood structure is in many aspects similar to the IDDIT neighbourhood

structure for the local searches defined in Figure 18. The major difference between the

two, has to do with how the delete and insert operators are executed. For instance,

when the decision index takes the value 2 (delete operation), the function -

swarmlDDIT, randomly generates a real value, val, smaller than or equal to the total

inverse cumulative score velocity (itotlnvCummSVL) of all assets in a given portfolio L\

if this value falls between 2 consecutive InvCummSVL values, the asset with higher

InvCummSVL value is eliminated from the portfolio, provided there is more than one

asset in that portfolio, otherwise the asset is spared.

On the other hand, when the insert operator is to be executed, there is the need to

randomly generate a real value, val, whose magnitude is at most equal to the total

cumulative score velocity (<totCummSVQ) of all assets in the universe who are not

members of L (Q = {U-Lj). As in the case of a delete operation, this value is

positioned between two consecutive CummSVQ values, in which an asset with the

highest cumulative score velocity (CummSVQ) is eliminated from Q and inserted into

portfolio L with corresponding weight equivalent to the minimum threshold; provided

there is room for insertion of an additional asset (i.e |L| < k).

Page 192 of 277

5.5 The Repair Mechanism

It is obvious that, executing any of the five operations described in our neighbourhood

structures defined in sections 5.3 and 5.4 above will definitely distort the feasibility of

a given solution. For example, this distortion occurs when the proportion of one of the

constituent assets in any portfolio (as described in section 5.1) is either increased or

decreased by a small (step) value in the interval (0, 1). Similarly, when an asset and

its corresponding portfolio proportion are deleted or a new one is inserted into the

portfolio, there is the need to repair the assets’ weights in order to satisfy the budget

as well as the floor & ceiling constraints. It should be understood that, the constraint

relating to the minimum proportion limit e7 can be easily satisfied (by all assets in

portfolio L) in a single iteration as described in section 5.2 above. However, an

iterative mechanism would definitely be required to ensure that constraints relating to

the upper proportion limit 5/ are satisfied also. Our repair approach is adapted from the

approach used in Chang et al [20] which ensures an effective handling of constraint

violation. In view of this, we hereby present our repair mechanism in the following

pseudocode:

Page 193 of 277

FUNCTION repairAssetWeights(K, e, 8, L, z, w)
Begin {

% U is the universal set containing all assets
% L is the set containing at most k assets in a given portfolio
% vv. is the actual proportion associated with asset j e L
% z. is a binary variable taking value 1 fo r all assets j e L and 0 otherwise

A = ' ^ JjeLsj % A is the accounted portfolio proportion

F is the free portfolio proportion

Sumw = vv. % Sumw is the sum o f the unnormalized weights
w.

w. = e. h — x F
1 1 Sumw

M - 0 % M is a set o f assets j whose weights are pegged at S.
set Infeasible = True
While Infeasible Do {

set Infeasible=False
While i 5 j e L - M with vv > 8j Do { % I f any wj(VJeL_M) exceeds Sj

L = L — [j] % Remove asset j from L
M = M u [/'] % Insert asset j into M

}
Sumw = i m Wj % Theupdated sum o f the weights

I , M Sj j % The updated free portfolio proportion

w. = Sj V/ e M % All weights o f assets in M are set to Sj
w.

vv = e. h — x F \ / je L - M % Updated weights might violate constraints
Sumw

I f 3 y e L - M with vv; > 8. Then % I f some weights violate some constraints
Infeasible = True % Goto outer While - Do loop

}
End

)
\ / ieL,Zj= 1 &V/ z. =0;
V/ G U, W/ = x zi

Figure 23: An effective repair approach for constrained PSP formulation

By taking a critical look at our iterative repair method in Figure 23 above, the reader

can easily notice that, the repair mechanism ensures that all assets weights satisfy both

set of constraints (the budget and the floor & ceiling constraints).

5.6 Results and Evaluation

For the constrained case, we decided to test and evaluate our algorithms by solving

different constrained cases, in which portfolios are restricted to have no more than a

specific number (also known as cardinality) of assets composition as well as making

sure that any constituent asset has at least the minimum allowable proportion of the

Page 194 of 277

portfolio funds invested in it. Recall that, in our unconstrained implementation

(Chapter 4); our high expectations of GA’s performance were unfounded, when

surprisingly its performance was found to be poor in comparison to other EAs (such as

PSO and SWAN); and because of this, we decided not to implement a constrained

version of GA unless we are able to sort out what went wrong in its implementation.

In view of this, we run the constrained implementation of the remaining 5 algorithms

under different combinations of cardinality and floor & ceiling constraints. We first

run our algorithms in which any candidate portfolio is restricted to have a maximum

cardinality of only 10 assets under 3 different set of minimum threshold limits of 1%,

10% and 20%. Although, there were no explicit ceiling constraints, some were implied

by the other (cardinality and floor) constraints. In the second set of experimental runs

we scaled down the maximum cardinality value to 5 with similar combinations of

minimum proportion limits (0.01, 0.1 and 0.2) as above (i.e. K < 10, 5 and sj = 1%,

10% and 20%). We conducted a total of 60 simulation runs (5 algorithms x 2 datasets

x 2 cardinality values * 3 minimum threshold limits) generating a total of (60 x 200)

1 2 0 0 0 different points on the various heuristics constrained efficient frontiers.

5.6.1 Results:

This part is aimed at showing the various graphical representations of the results

generated by our algorithms. It is important to make it known at this point that,

although we intend to present the constrained results generated by the solver; we were

unable to do so, due to the ‘fear’ of unfair comparison against the solver. This is

because, the solver (being an exact solution provider) was not able to find solutions at

some higher values of target return for both datasets, as it returns an empty output;

hence, unable to determine any solution (be it optimal or otherwise) unlike our

Page 195 of 277

algorithms which do produce solutions; even if these solutions are non-optimal, they

are far better than no solution at all. Because of this, it will be hard to objectively

compare our algorithms and the solver in the constrained cases. We thus, then decided

to compare the algorithms among themselves.

The following figures shows the various EFs generated by our algorithms in solving

the constrained case using two different data sets of varying sizes.

C ardinality C onstrained EfficientFrontiers (K = 10, r = 0 .0 1)fo r the
H ang Seng Index (31 assets) generated by the Metaheuristics

0.011

0.01

Oi 0.007 •CPLEX/UC
•SA
* ParSA
♦TS
‘ PSO
•SWAN

0.005

0.004

0.003

0.002
0.001 0.002

Portfolio R isk
0.003 0.004 0.005

Cardinality ConstrainedEfficientFrontiers(K = 10,e = 0.1)forthe
Hang Seng Index (31 assets) generated by the .Metaheuristics

0.011

0.01

0.009

£ 0.008
3
« 0.007a

.2 0.006
&
u 0.005
0Ph

0.004

0.003

0.002

• CPLEX/UC
•SA
• ParSA
•TS
•PSO
•SWAN

0.000 0.001 0.002 0.003 0.004 0.005

Portfo lio R isk

Figure 24: CCEF for Hang Seng dataset (K=10, e=l%) Figure 25: CCEF for Hang Seng dataset (K=10, 8=10%)

Cardinality Constrained Efficient Frontiers(K = 5, s= 0.01) for the
H angSeng Index (31 assets) generated by the Metaheuristics

0.011

0.01

0.009

S 0.008

3
"3 0.007 g
3 0.006

l. 0.0050fiu
0.004

0.003

0.002

0.000

C P L E X U C

Pa r SA

0.002 0.003

P ortfo lio R isk

Figure 26: CCEF for Hang Seng dataset (K=5, £=1%)

Cardinality Constrained Efficient Frontiers (K = 5, e = 0.1) fo r the
Hang Seng Index (31 assets) generated by the Metaheuristics

0.011

0.01

0.009

0.007

0.006

)• 0.005

0.004

0.003

0.002

0.0030.001 0.002

P ortfo lio R isk
0.004 0.0050.000

Figure 27: CCEF for Hang Seng dataset (K=5, £=10%)

Page 196 of 277

Cardinality Constrained Efficient Frontiers (K = 5, c = 0 .2)forthe
Hang Seng Index (31 assets) generated by the .Metaheuristics

0.011

0.01

0 ,009

■ - 0 .006

t 0 .005

1.004

0 .003

0.002

0.000 0.001 0 .002 0.003

P ortfo lio R isk
0 .004 0.005

Figure 28: CCEF for Hang Seng dataset (K=5, 8=20%)

Note: CCEF stands for Cardinality Constrained Efficient Frontier.

CPLEX/UC denotes the CPLEX solutions for the unconstrained case. These of course

may not be feasible solutions for the constrained case, but they give useful bounds.

Figures 24 through 28 above show the various EFs generated by our 5 algorithms for

the smaller dataset consisting of 31 assets. It can easily be noticed that, Figure 24

looks smoother than others in this category, because its combination of cardinality and

floor & ceiling constraints (i.e. K < 10 and sy- = 1%) are comparatively less tight.

However, in the other plots, the more the constraints get tighter, the more crooked the

EFs seem to be. Also, it can easily be observed that, in the constrained EF plots

(unlike in the unconstrained ones), there are some discontinuities. In view of this, we

can say these are justifiable, as they are the direct effects/consequences of the

cardinality constraints and/or floor & ceiling constraints [20]. Although, it is

extremely difficult to distinguish the various EFs based on their algorithmic origin; it

is however, easy to notice that, the frontiers generated by PSO and SWAN are less

crooked and have discontinuities; hence, more stable. This, we believe, is the ‘ fruit’ of

Page 197 of 277

a bit of intelligence incorporated in the neighbourhood structure for the swarm

algorithms discussed in section 5.4 of this chapter.

The next sets of plots {Figures 29 through 33} are the various efficient frontiers

generated by our algorithms for the larger dataset of 78 assets originally from

FTSE100 index.

C a rd in ality C onstra ined E f fic ie n tF ro n tie rs (K = 1 0 ,e = 0.1) fo rth i
FT S E 100 Index (78 assets) generated by the M etaheuristics

Cardinality Constrained Efficient Frontiers (K = 10, c=0.01) for the
FTSE 100 Index (78 assets) generated by the Metaheuristics

0.01

0.009

0.007

• C PLEX /U C
0.006

• P a rS A
0.005

•P S O
• SWAN

1.004

0.003

0.002

0.000 0.002 0,004

Portfolio R isk

0.004 0.006

Portfolio R isk

1.006 0.010

Figure 30: CCEF for FTSE 100 dataset (K=10, £=10%)Figure 29: CCEF for FTSE100 dataset (K=10, e=l%)

C ard inality C onstra ined E fficient Fron tiers (K = 5, e = 0.1) f o r the
FTSE 100 Index (78 assets) generated by the M etaheuristics

C a rd in a li ty C o n s tra in e d E ffic ie n t F ro n tiers (K = 5 , e = 0 .01) f o r the
F T S E 100 Index (78 assets) g e n e ra te d by the M etaheu ristic s

0.01

0.005■ - 0 .005

0 .004

0.0030.003

0.0020.002

0.002 0.0100.0100 .004 0 .006

P ortfo lio R isk Portfolio R isk

Figure 31: CCEF for FTSE 100 dataset (K=5, 8=1%) Figure 32: CCEF for FTSE 100 dataset (K-5, 8-10%)

Page 198 of 277

C ard in alii}' C onstra ined Efficient Fron tiers (K = 5 , r = 0.2) fo r the

FTSE 100 Index (78 assets) generated by the M ctaheuristics

0.01

0.009

0.002

• CPLEX/UC
•SA
• Par_SA
•TS
•P S O

•SWAN

0.001

0.000 0.002 0.004 0.006

Portfolio Risk
0.008 0.010

Figure 33: CCEF for Flang Seng dataset (K=5, 8=20%)

Just like what is obtainable in the first set of five EF plots {Figures 24 through 28} for

the smaller dataset; the second set of constrained EF plots for the larger dataset are

almost indistinguishable. However, due to the effect of larger dataset coupled with the

imposition of both set of constraints; the EF plots are, apparently, more ‘chaotic’ and

discontinuous. Critical observation of the various frontiers reveals one striking feature

common to all plots; and this has to do with the way algorithms find it hard to ‘get it

right’ at the bottommost part of the frontiers. It should be noted that, this should be

expected, because at the bottommost side of the frontiers more and more assets are

needed than at the upper part where the number of assets involved are fewer.

Furthermore, as in the smaller dataset plots, the SWAN and PSO seem to perform

better than the local searches (SA, TS and Par_SA) whose neighbourhood structure

(IDDIT) based its decisions entirely on random chance.

5.6.2 Evaluation:

In this part, we will evaluate the results obtained by running our algorithms in solving

the constrained implementation of the PSP. Unlike in the unconstrained formulation,

Page 199 of 277

where we analyze results based on three evaluation measures (convergence, coverage

and uniformity), here, we are going to analyze the performance of the algorithms

based on only their convergence ability. This decision is informed by the nature of the

results generated in the constrained case which is quite often discontinuous and non-

uniform due to the effect of the constraints. So, it might not make much sense, to

evaluate the algorithms based on how many of their solutions are found to dominate

other algorithms and vice versa. However, it would be fine to evaluate them based on

the proximity of their (entire) generated results to a certain reference point/solution. In

view of this, we evaluate how well an algorithm does in terms of returning a very good

solution by measuring (as in the unconstrained case) the area between the approximate

constrained frontier generated by our methods and the exact (optimal) efficient frontier

returned by the CPLEX solver for the unconstrained case. This enables us to access

how good a particular heuristic constrained frontier is; as the closer it is to the optimal

one the better. In order to accomplish this, we decided to measure the mEds of the

various solutions generated by different algorithms in relation to the exact

unconstrained solution generated by the nonlinear quadratic optimization solver

(CPLEX 11.2) as done in chapter 4 dealing with the unconstrained case.

The following table gives a summary of the mEds and the average time taken (in

seconds) by the algorithms to arrive at a solution in this constrained case.

Page 200 of 277

Index
(Assets)

k £ Methods mEd
(xlO-4)

Average
Time
(secs)

SA 0.3962 4.98
ParSA 0.2709 7.76

0.01 TS 0.3401 4.82
PSO 0.1812 5.47

10
SWAN 0.1649 5.91

SA 1.5103 3.89
ParSA 1.2016 4.07

0.10 TS 1.4001 2.71
PSO 1.0904 3.07

SWAN 0.9243 3.21

Hang
Seng
(SI)

SA 2.1108 2.11
ParSA 1.8113 3.59

0.01 TS 2.0013 2.12
PSO 1.2411 2.01

SWAN 1.1812 2.09
SA 2.9223 2.67

ParSA 2.1581 4.44
5 0.10 TS 2.4276 3.28

PSO 2.0003 3.87
SWAN 1.9053 3.91

SA 6.4209 4.59
ParSA 5.7657 5.64

0.20 TS 6.1312 4.03
PSO 4.8413 6.01

SWAN 4.5641 6.24
Table 5: Showing the mEds and the average time (in secs) for the Hang Seng dataset

From Table 5 above, it can easily be observed that, the mEds values are (in all cases

across the various algorithms) close to zero indicating that the distance between the

reference (unconstrained) EF and those generated by our algorithms is very small. It

should be recalled (from section 4.6.1) that, smaller values of mEd are much desired. It

can also be noticed that, the more the constraints get tighter, the more the performance

deteriorates. For instance, when the cardinality is set to 10 and the minimum allowable

proportion is set to 1%, almost all the algorithms performed quite well, producing

mEds values to the tune of 10'5. One other thing worthy of noting and mentioning is

the time (in secs) that algorithms take on average to return a solution. It can be

Page 201 of 277

observed that, in comparison to the results obtained in chapter 4, the algorithms take

much time; this we believe, is not unconnected with the effect of the imposed

constraints.

Index K £ Methods mEd
Average

Time
(Assets) (xlO'4) (secs)

SA 1.4421 7.13
ParSA 0.7745 10.87

0.01 TS 0.9487 6.91
PSO 0.6945 8.18

10 SWAN 0.6420 8.54
SA 2.9671 6.99

ParSA 2.0173 9.74
0.10 TS 2.5114 6.21

FTSE 100
(78)

PSO 1.3915 7.49
SWAN 1.3055 7.97

SA 2.9915 5.71
ParSA 1.9349 6.04

0.01 TS 2.6228 5.73
PSO 1.4211 6.94

SWAN 1.3852 7.18
SA 4.7653 4.27

5 ParSA 3.8365 9.10
0.10 TS 4.4113 4.01

PSO 1.9957 7.91
SWAN 1.7616 8.28

SA 5. 8353 7.19
ParSA 4.5703 12.45

0.20 TS 5.0009 6.01
PSO 3.8914 8.81

SWAN 3.7340 9.15
Table 6: Showing the mEds and the average time (in secs) for the FTSE100 dataset

Table 6 above further reveals the difficulty inherent in solving the constrained cases,

especially when dealing with larger datasets. There is an apparent proof of

performance deterioration and the average time taken seems to be growing at an

exponential rate. The Tables 5 and 6 above further supports the superiority of the

(guided) neighbourhood structure (for the swarm algorithms) described in section 5.5

Page 202 of 277

over the (unguided) IDDIT neighbourhood structure described in section 5.4. This is

so, because our swarm algorithms (PSO and SWAN) seem to produce a more stable

EF plots than their local search counterparts (SA, Par_SA and TS) whose EFs seem

more discontinuous and chaotic. In the same vein, despite the growth in dataset size

coupled with constraints imposition, the mEd values for both PSO and SWAN remain

consistently lower when compared to those produced by the trio of SA, Par_SA and

TS.

5.7 Comparison with previous results

The Portfolio optimization problem as one of the most widely studied research areas in

finance has been studied in several researches in which a wide range of models have

been introduced or improved upon. In many of those researches different formulations

involving lots of different objective functions, varying constraints sets, and different

variable definitions have been proposed. In many of these studies, for instance; it is

not uncommon to find several authors in different articles giving much credit to their

findings as well as claiming superiority and advantages of their models and methods

over others. But in many of such situations, it is almost impossible to fully justify such

assertions, due to several factors that need to be taken into consideration: algorithmic

implementations differ, datasets may be different, loopholes in actual implementation

rarely reported, performance measures might be different, implementation platforms

(such as systems’ capacities) varies, and furthermore, a given model might do well

over a given dataset it was tested upon without any assurance of robustness to other

different datasets. Other researches, we must admit, are aimed at pursuing different

goals, such as testing the efficiency and/or effectiveness of algorithms [25, 26, _129,

152, 155]; others aim to discard the conventional problem formulation in order to

Page 203 of 277

develop a model alleged to be more suitable and appropriate than the standard one [91,

i0> 49]; and others might be interested in developing a commercially viable model

with good performance in order to help in professional decision making activities. All

these factors can lead to wrong or biased comparisons and conclusions, hence, fair

comparison among different works by different authors might be difficult.

5 . 7 . 1 C o m p a r i s o n w i t h C h a n g et al

One of the only two datasets used in this research was originally used by Chang et al

[201 and made publicly available by one of the authors at the OR Library [117]; so, it

would really be desirable if we are able to compare our results with Chang et aVs.

However, due to some of the issues raised above, we may not be able to do so. For

instance, when one considers the work of Chang et al, it can be realized that, after

including the expected return constraint into the objective function; they also

introduced a weighting parameter 2 (0 < 2 < l) which when continuously varied

(increased/decreased) will be used to trace the efficient frontier. Chang et aVs model is

of the form:

n n n
Minimize 2 Y L Wl a :iWi

_' = 1 j = \
- 0 - -*) _/=i

Subject to
n

£ > , = 1
/ = 1
n

t z> = K
(=1

£izj < w(. < SjZf, i =

z , e [0,1], i =

Although, this (weighting) approach will allow for gaining more information (as they

claimed) on some portions of the constrained frontier; its major implication involves

Page 204 of 277

its inability to trace out the entire EF, and consequently rendering some portions

invisible.

Another thing to consider is that the weighting approach does not produce an equally-

spaced (i.e. homogeneously distributed) points/portfolios on the EF, thereby making it

difficult for point-to-point comparison with our results, in which the problem is solved

by considering different instances (of equally-spaced) values of target return. In

addition, the results for the constraint case solved with the weighting approach were

not provided; hence, the results cannot be reproduced and/or compared. Furthermore,

their cardinality constraint was formulated with equality rather than with an inequality

as in our case.

5.7.2 Comparison with Schaerf

If there is any work that we would be delighted to compare our results with, it should

be no other than Schaerf s [1291. Recall that, our newly developed neighbourhood

structure (IDDIT) and even some part of our swarm neighbourhood definitions were

inspired by the neighbourhood relations contained therein. However, due to some

reasons, some of which were raised above, we could not achieve that either. The major

obstacle hindering us from comparing our results with Schaerf s is that, their results

were not made publicly available as in the case of Chang et aVs unconstrained case.

Instead of providing the results of their cardinality constrained solutions provided by

their neighbourhood structures; their main concern was to compare the performance of

the different neighbourhood definitions among themselves under different parameter

settings At a point, they had to admit: “Given that the constraint problem has never

Page 205 of 277

been solved exactly, we cannot provide [emphasis mine] an absolute evaluation o f our

results. .. '’’1

In their conclusion remark, they further state “We solved public benchmark problems,

but unfortunately no comparison with other results is possible at this stage.’’’’

Page 206 of 277

6.0 Testing Algorithms on other problems

6.1 Some Applications

In this chapter we aim to explore the potential of our designed algorithms in some

optimization applications other than the PSP. We intend to subject our algorithms to

some tests of robustness in other academic researches such as function optimization in

order to observe how well they adapt to other problems. However, it should be clearly

understood that, this chapter is not primarily aimed at comparing our results to those

of other previous researches with the hope of outperforming them; but rather to have a

glimpse of how far our algorithms can go in optimizing standard test functions (both

constrained and unconstrained) with known global optimum (i.e. how close to the

global solutions our algorithms will be able to reach). In view of this, we selected the

two best performing algorithms (PSO and SWAN) for testing their capability in

solving the standard test functions as reported in the literature. In other parts of this

chapter also, we intend to analyze the results obtained by our algorithms using some

standard statistical techniques such as test of statistical hypothesis.

6.2 Global Optimization

Searching for an optimal state or configuration is one of the fundamental principles in

many aspects of our life. This search begins in the microcosm when very tiny particles

(such as atoms) join with one another (to form molecules) in order to minimize the

energy in their electrons. Molecules also bond with one another to form solid bodies

through the processes of freezing, and by so doing; they assume an optimal crystalline

structure having the minimum energy.

Page 207 of 277

In the same vein, several aspects of our life revolve around finding an optimum setting

with the least effort possible. For instance, when we plan to travel, for holidays we

want to have an utmost enjoyment at the lowest possible cost. The same goes for flight

tickets, in which we prefer to have ‘first class’ treatment at lower costs. Many business

organizations thrive by making or rather maximizing their profit, while at the same

time being alert to cut unnecessary costs; even investors (conventionally) would prefer

to invest in a collection of assets that will result in maximizing their profit/return at the

lowest possible risk. When we consider the field of Engineering; designers always

prefer to maximize the performance of their designed products, while at the same time

trying every way possible to minimize costs. With the above few examples, it is

obvious that, studies in optimization are of immense importance, in which both our

scientific interests and practical implications stand to benefit more from such studies.

Before we continue with our analysis on how well our designed algorithms perform in

respect of optimization on some standard test functions; there is the need to provide

some definitions of some basic concepts.

6.2.1 Mathematical Optimization

It should be understood that, it is quite often possible to formulate any real world

problem with a certain objective into a corresponding optimization problem; and all

optimization problems can be represented in an explicit generic form provided they

have an explicit objective. Therefore, according to Boyd and Vandenberghe [13], a

mathematical optimization problem or simply, optimization problem takes the form:

Minimize /(•*).VG'Ji"
Subject to

</)r (x) < br, {r = 1,2,..., w),

Page 208 of 277

Where the components x,- of the vector: x = (xl,x2,...,x;;)/ e 91”are referred to as

optimization, design or decision variables which can take discrete or continuous values

or even a mixture of both. The function f : 91" —> 9T is called the objective or the cost

function; the functions^. :9?" —>91, [r = l,2 ,...,m), are the (inequality) constraints,

and the constants 6;., (r = 1, 2 , .. . , m) , are the bounds or limits of the constraints.

An optimization problem can generally be classed as either linear or non-linear

depending on some characteristics taken by the objective and constraint functions. For

instance, when the constraints^, (x), (r = 1,2,...,m), take on linear form, the problem

is regarded as a linearly constrained optimization problem. It is considered as a linear

programming problem, if the constraints and the objective are all linear. Furthermore,

if the decision variables take on integer values, the linear programming problem is

known as integer programming or integer linear programming. If on the other hand,

the objective is at most quadratic accompanied by linear constraints, the resultant

optimization problem is regarded as quadratic programming.

Since we are able to define what an optimization problem is all about and briefly

describe the different forms it can take; it is worthwhile to, also, briefly discuss what

makes a given solution of an optimization problem to be regarded as optimal; knowing

that the main goal behind the formulation of an optimization problem is to (if possible)

find an optimal solution.

A given solution x* is said to be optimal, provided that among all vectors that satisfy

the constraints set, it has (respectively for minimization/maximization problem) the

Page 209 of 277

smallest/largest objective value: for any s with^, (5) < bx (s) < bm we have

/ (■ *) - / (x) • An optimum solution for different type of optimization problems with

varying degree of complexity can be obtained whenever the objective is composed of

either a univariate function or a multivariate function. When optimizing a single

objective optimization problem, an optimum can either be its maximum or minimum

depending upon what the problem is aimed at addressing. The following definitions

are due to Weise [148].

6.2.1.1 Local Optimum

A local optimum of an optimization problem can either be a local minimum or a local

maximum. Thus, a local optimum is said to be a local minimum [maximum], if for any

s e X of single (objective) function / : X i-> 91 it serves as an input element satisfying

f [s) < f (x)[f (s) > f (x)] for all x in the neighbourhood of s.

Now, if X c 91, we therefore can write:

Vs 3e > 0 : f (s) < f (x)[f (s) > f (x)] Vx e X , |x - s\ < s .

6.2.1.2 Global Optimum

A global optimum of an optimization problem can either be a global minimum or a

global maximum. Thus, a global optimum x* e X is said to be a global minimum

[maximum], if for any s £ A of single (objective) function^: X h-> 9̂ it serves as an

input element sa tisfy ing /(i)< / (x) [/ (j)> / (*)] V x e X . The Figure below from

Weise [1481 shows some instances of both local and global optimum

(minimum/maximum):

Page 210 of 277

glob id m bxl mumU k 'B .1 maximi:

Figure 34: Global & local optima o f a two-dim ensional function

6.2.2 Standard Test Functions

There are numerous test functions in the literature that are used to test and evaluate the

performance of optimization algorithms [1551. These tests can either be classed as

either unconstrained or constrained problem optimization. An unconstrained

optimization problem, as the name implies, is an optimization problem without any

constraint attached to it; while the constrained one has some accompanying constraints

that any candidate solution must satisfy for it to be feasible.

6.2.2.1 Unconstrained Optimization Problems

Whether an optimization problem is a constrained or unconstrained one, the main goal

is to find an optimal solution that minimizes/maximizes the objective better than in

any other feasible candidate solution in the solution space. In an unconstrained

optimization, an optimal solution occurs at the critical points that makes the stationary

co n d ition /'(jc) = 0 only if f is differentiable; However, this stationary condition is just

Page 211 of 277

a necessary (but non-sufficient). It should be noted that, if / '(* *) = 0 and/" (* *) > 0,

the solutionx*, is a local minimum; however, if / '(x *) = 0 and /"(x*) < 0, it is a local

maximum. If on the contrary/'(x*) = 0, but

f (x*) is indefinite (both positive and negative) when x—»x* then x* is a saddle point.

In testing our algorithms we decided to use some standard test functions that are

widely reported in the literature [153, 154, 155]; these include De Jong’s, Rastrigin’s,

Goldstein-Price’s, Schewefel’s and Beale functions.

(i) De Jong’s function: De Jong is a unimodal as well as a convex function with

global optimum /(* *) = 0 occurring atxr* = (0,0,...,0). The function is also known as

a sphere function and is given by:

n
/ (*) = 2 > f -5.12 <5.12 KII

7=1

The figure below shows a graphical representation of De Jong’s function for n = 2:

60

40

20

0
6

-6 .6
Figure 35: Graphical representation o f De Jong's function (n = 2)

Page 212 of 277

(ii) Rastrigin’s function: is a function whose terrain is contaminated by several

local minima. Its global optimum /(* *) = 0 occurs at** = (0 ,0,...,0); and the search

domain is mostly restricted within—5.12 < x- < 5.12. The function is given by:

n

/ (*) = lOw + X (xy - 1 0 cos(27TXj)j ,-5.12 < Xj < 5.12 Vy = 1
 M____________________________

The figure below shows a graphical representation of Rastrigin’s function for n = 2:

Figure 36: Graphical representation o f Rastrigin's function (n - 2)

(iii) Goldstein-Price’s function: is a little bit flat-terrain function with only two

variables whose search domain is normally restricted within- 2 < x j <2. The function

has its global (minimum) solution/(* *) = 3 occurring at** = (0 ,-1); and it is given

by:

f (x) =(l+(x, +*,*, +l)2(19-14*,- +3Xj -14*,*, +6 xjXJtl +3j£,))

(30+(2; -3 xh ((18-32*, +12*; +48*J+I -36*,*,*, +27*;*,)J = 1

The figure below shows a graphical representation of Goldstein-Price s function:

Page 213 of 277

12 ̂

Figure 37: Graphical representation o f Goldstein-Price's function (n = 2)

(iv) Schwefel’s function : is a function whose terrain is also contaminated by

several local minima. Its global optimum

/(* *) = 0 is obtainable a tx t =420.9687 [for i = ; and the search domain is

mostly restricted within-500 < x; < 500, for i = 1,2,..., n . The function is given by:

/ (x) = 418.9829/? - x(. sin
i=i

The figure below shows a graphical representation of SchwefePs function for n = 2:

Figure 38: Graphical representation o f Schw efel’s function (n = 2)

500

o

-500

1000
500

500

Page 214 of 277

(v) Beale function : is another flat-terrain function with only two variables whose

search domain is normally restricted within—4.5 < <4.5. The function has its

global (minimum) solution/ (* .) = 0 occurring at x* = (3 , 0 .5) ; and it is given by:

f (x) = (l.5-x, + x,x,)~ +(2.25-^ +XjX̂)“ +(2.625-x1 +x,x)̂~

The figure below shows a graphical representation of Beale function:

Figure 39: Graphical representation o f Beale's function (n = 2)

6.2.2.2 Constrained Optimization Problems

A constrained optimization problem takes the form:

Minimize / (x)
xe9?n

Subject to

V r (*) = 0 > (r = 1, 2 ,.. , ,m),

I (*) ^ o. (■s = 1. 2 ,..

A
’

j-TllX e9T

Where f , i//r and are real valued functions defined on the search space S cR ".

In order to test the capability of our algorithms we decided to solve an optimization

problem involving two of the popular constrained optimization problems: G il and

Pressure Vessel Design (PVD) problems as reported in Hedar [7JJ as well as in Global

Optimization website [1431. The functions are defined as follows:

Page 215 of 277

(i) G il problem : is a two-variable optimization problem whose global minimum

/ (* *) = ■} occurs atx* = (± 7 ^ ,7). The problem is given by:

Mn f (x) = x2 +(x2 -1) 2

subject to

g(x):x2 - x f = 0 .

- 1 < x(.<1 , * = 1,2

(ii) Pressure Vessel Design (PVD) problem : is an optimization problem with four

design variables whose objective is to minimize total cost comprising costs of

material, forming and welding of a cylindrical vessel. The problem has previously

been tackled by Sandgren [128] using Branch and Bound algorithms; Kannan and

Kramer [85] using an augmented Lagrangian Multiplier approach; Deb [31] using

genetic adaptive search (GeneAS); Coello and Montes [23] using GA and Hedar [71]

by using FSA. Coello and Montes [23], especially solved the problem using the

following bounds [l < x,, x2 < 99, & 10.0 < x3, x4 < 200.0]; where x, & x2 are

considered as (real values rounded to the closest integer value) multiples of 0.0625;

while x3 & x4 were considered as just floating point values.

The following figure shows the cylindrical vessel dissected to reveal the variables used

in the optimization problem copied directly from Coello and Montes [23].

Page 216 of 277

Figure 40: A dissected cylindrical vessel showing design variables in PVD problem

The 4 design variables are: xi[Ts - thickness of the shell], x2 [Th - thickness of the

head], x2[R - inner radius], and X4 [L - length of the vessel’s cylindrical section

excluding the head]. The minimization problem can be formulated by:

Mn /(x) = 0.6224x,x5x4 + 1.7781x2x; +3.1661xfx4 + 19.84x12x3

subject to
c) :-x, +0.0193x5 < 0 ,

s{>;): -x, +0.00954x3 < 0 ,

t(x): -77X3X4 + j ttXj3 +1296000 < 0,

w(;c) :x4 -240<0,

6.2.3 Results and Discussions

In this part we aim to present the results obtained from our algorithms (PSO and

SWAN) obtained by solving some standard optimization test functions (both

constrained and unconstrained) in relation to those obtained by other studies

conducted before. In all cases we conducted a total of 30 different trials in which we

noted the best number of optimum solutions found in each case across the various

algorithms.

Page 217 of 277

For all problems, a given candidate solution is considered to be optimal if the absolute

difference between it and the global optimum is less than a specified tolerance limit, e.

Mathematically, we can express this relation as follows:

I f (| global solution - candidate solution < s ^ j T h e n {

T e r m i n a t e t h e S e a r c h P r o c e s s

R e t u r n c a n d id a te s o lu t io n
}

Where s = 10'10.

For the unconstrained solutions, we defined a success rate (%) as follows:

number o f trials an optimal solutionis returnedsuccess rate = ----------------- ---------------------- - --- x 1 0 0 %
Total number o f trials

The following is the result obtained after solving the unconstrained optimization

problems

Problem
Number

o f
Variables

Optimal
Solution

Performance
Best Worst Success rate (%)

PSO SWAN PSO SW AN PSO SW AN
D e Jong2 2 0.00 0.00 0.00 0.00 0.00 100.0 100.0
D e Jong5 5 0.00 0.00 0.00 0.00 0.00 90.00 100.0
D e Jongio 10 o o 0.00 0.00 0.00 0.00 76.67 90.00
Rastrigin2 2 0.00 0.00 0.00 0.00 0.00 96.67 100.0
Rastrigin5 5 0.00 0.00 0.00 0.00 0.00 _73.33 83.33
Rastriginio 10 0.00 0.00 0.00 0.00 0.00 63.33 80.00

Goldstein-Price 2 3.00 3.00 3.00 3.00 3.00 93.33 100.0
Schwefel 2 0.00 0.00 0.00 1.2601 0.6445 30.00 53.33

Beale 2 0.00 0.00 0.00 0.00 0.00 96.67 100.0
Table 7: Comparison o f the results for the unconstrained optimization problems

From Table 7 above, it can be observed that, our selected algorithms performed

extremely well in returning quite a number of optimal solutions out of the total number

of 30 trials conducted. For the De Jong’s function we tried three different versions

with 2, 5 and 10 variables respectively; similarly, for the Rastrigin’s function, three

versions were also implemented with 2, 5, and 10 variables respectively. The red

coloured values, we believe, will draw the reader’s attention: as to why the values for

Page 218 of 277

the worst solutions generated by our algorithms do not (in anyway) differ from those

of their corresponding best (optimal) in the same corresponding instances, despite the

fact that in such cases it is apparent that the success rates are not up to 100%? The

answer to this question can be answered when the reader is made to understand that,

this is due to approximation. For instance, let us consider the Rastrigin function with 5

variables (Rastrigins) in which the PSO recorded a success rate of 73.33% (i.e. 22 out

of the 30 trials conducted returned an optimal solution); the (actual) configuration of

the worst solution generated by PSO in such instance is:

X = (8.70052*10'7, 7.58468* 10'5, -3.21291 x 1 0 -7, 3.04434*10'6, 6.51759* 10-6} in

which the computed objective function value would be 1.1517*1 O'6 which is virtually

equivalent to zero. Similarly, when we consider the Beale function with only two

variables in which PSO recorded a success of 96.67% (i.e. 29 successful runs out of

30); the only worst solution has an objective value of 3.98985391337173*1 O'6 which

occurs a t : x = (2.998079, 0.4999075}.

The Schewefel’s function optimization appears to be extremely difficult for both

algorithms (PSO and SWAN) going by the success rates they recorded. PSO recorded

only 30% success (9 successful out of the total 30 runs); while SWAN managed to

record a little bit more than half of the total number of runs with 53.33% success (16

successful out of the total of 30). This difficulty, we believe, is as a result of several

local optimum solutions that characterizes the search space of the Schwefel’s function

coupled with a relatively vast search domain: —500 < xf < 500, for i = 1 , 2 .

In the constrained problems, we compared our results with those obtained in some

previous studies, especially those of Filter Simulated Annealing (FSA) reported in

Page 219 of 277

Hedar [71]. The following table shows the comparison of results obtained for the G11

constrained case.

Problem Optimal Solution Degree of This research FSA
/(**) = * Performance PSO SWAN H i]

G il
Best 0.750000

(7.56)
0.750000

0 1 .1 2)
0.749999

Average 0.753377
(7.01)

0.750132
(9.91)

0.749999

Worst 0.760192
(1 0 .1 1)

0.750823
(13.21)

0.749999

Table 8: Comparison o f the results for the G 11 constrained problem

Although we are unable to reproduce the run times for the FSA in Hedar [71]; Table 8

displays (in parentheses) among other things the (best, average and worst) run times

(in secs) for PSO and SWAN.

From Table 8 above, it can be seen that, although our algorithms’ average

performances are inferior to those obtained by FSA as reported in Hedar [71]; still

they were able to obtain good solutions in quite a number of runs. The average

solutions for the PSO and SWAN are respectively: {*/, x2) = (0.707664, 0.497418}

and (0.707059, 0.499800}. The SWAN also seems to have an upper hand over PSO in

this instance in which its worst solution (0.750823) occurring at {xj, X2 } — (0.707664,

0.497418} seems slightly better than the worst solution (0.760192) returned by PSO

with {xi, x2} = (0.707107, 0.489910}.

The Table 9 below compares the results obtained by our designed algorithms to other

studies conducted previously and reported in the literature concerning the PVD

problem:

Page 220 of 277

Design
Variables

and
constraints

Best solution found
This Research

FSA

[Zi]
GA
[23]

GeneAS
[31]

Kannan
[85]

Sandgren
[128]PSO SWAN

x ,\T x] 0.7900814 0.7890814 0.76832571 0.812500 0.937500 1.12500 1.12500
X2Vh\ 0.3900000 0.3890010 0.37978380 0.437500 0.500000 0.62500 0.62500
XjIR] 40.549900 40.545510 39.8096222 42.097398 48.32900 58.29100 47.7000
x4[L] 197.01002 196.90000 207.225559 176.65405 112.6790 43.69000 117.7010
r(x) -0.007468 -0.0065531 -9.9087E-13 -0.000020 -0.00475 0.000016 -0.20439
s(x) -0.003154 -0.0021968 -5.4296E-11 -0.035891 -0.038941 -0.068904 -0.16994
t(x) -986.9696 -107.69857 -10.706469 -27.88607 -3652.8768 -21.22010 54.22601
u(x) -42.98998 -43.100000 -32.774405 -63.34595 -127.32100 -196.3100 -122.299

Best f(x) 5960.2483 5946.9668 5868.76484 6059.9463 6410.3811 7198.0428 8129.104
Average f(x) 6199.4917 6065.1485 6164.58587 6177.2533 N/A N/A N/A

Worst f(x) 6762.0298 6456.6611 6804.32810 6469.3220 N/A N/A N/A
S td dev 350.19279 207.51562 257.473670 130.92970 N/A N/A N/A

Table 9: Comparison o f the results for the P VD problem

From Table 9 above, the reader can easily notice how our algorithms performed well in

relation to the previous studies conducted on the PVD problem. Although, FSA by

Hedar [71], to our knowledge, is the best known solution with a global minimum of

f(x*) - 5868.764836 occurring at x* = {0.768325709391, 0.379783796302,

39.809622248187, 207.225559518596}; however, we feel there are other positive

things to consider about our algorithms too. For instance, it can easily be seen that, our

algorithms performed better than all other previous algorithms except for the Hedar’s

FSA. SWAN produced the next best solution, and followed closely by PSO; while

Coello and Montes’ GA occupies the 4th position. It can also be observed that, the

average solution (6065.1485) produced by SWAN was better than any of the average

solutions produced by any other technique shown on Table 9 above.

Furthermore, it could be seen that even the worst solution [6456.6611 whose variables

take on values: {xj, X2, X3, X4 } = {0.798001, 0.513715, 39.9022, 206.012487}]

generated by our SWAN algorithm outperformed all the other worst solutions

recorded in the previous researches as presented on the table above. Additionally, even

the PSO’s worst solution [(6762.0298) with variables configuration: {xh x2, x3, x4) =

Page 221 o f 277

(0.851091, 0.493715, 40.81002, 197.12400}] is better than the FSA’s worst solution

with objective value of 6804.32810. Now, considering the degree of variability of

solution generation; it can be observed that, there is an indication that, out of the total

number of trials conducted; SWAN produced more good solutions than FSA as

evidenced by the value of its standard deviation (207.51562) as against the FSA’s

257.473670. This simply means, probably SWAN slightly misses the chance of

producing the best solution.

One other thing to note especially from the table is that, all the algorithms (PSO,

SWAN, FSA, GA, and GeneAS) which produce very good, but still feasible solutions

allocate larger values to design variable {x4 - length of the vessel’s cylindrical section

excluding the head); implying that varying other design variables while allocating

larger values to x4 is the most reasonable decision for producing feasible vessel’s

design at lower cost. Note that Kannan and Kramer’s [85] approach is the only

algorithm that allocates lower value (43.690000) to variable x4\ and consequently,

ended up with an infeasible solution by slightly violating the first constraint whose

value is 0.000016. The Branch and Bound algorithm of Sandgren [128], however, was

the worst among all those reported in Table 9; in the sense that, apart from producing

an infeasible solution (due to the violation of the 3rd constraint), it also provided a

solution with the worst objective value of 8129.1036.

6.3 Test of Statistical Hypothesis

The primary objective of this section is to compare the average performance of SWAN

and FSA algorithms in relation to the optimization of the PVD problem introduced in

the previous section, using a well known statistical tool, namely, the test of statistical

Page 222 of 277

hypothesis (TSH). The TSH would be used for assessing and comparing the

effectiveness of both algorithms in obtaining a high quality solution, when the search

begins from diverse and randomly generated initial solutions. In this context, we found

the definition given by Hassan et al [69] as most appropriate; who defined

Effectiveness as: “ ... the ability o f a given algorithm to, repeatedly, find a global [best

known] solution or arrives at sufficiently close solution when the algorithm is

[re]started from many [different] random points [initial solutions] in the design

space”. In other words, Effectiveness can be defined as the probability of obtaining

(on average) a high quality solution.

It should be understood that, effectiveness, in our research, relates to how an algorithm

is (on average) able to produce high quality solutions that are close to the global or

best known solution. However, before we descend into the detailed analysis of

algorithmic performances; it is important and worthwhile to have a brief look at the

elements of TSH.

Definition: A statistical hypothesis is a statement concerning the probability

distribution of a random variable or population parameters that are inherent in a

probability distribution [1 2 2 1 .

In any hypothesis testing problem, null (H0) and alternative (Hi or Ha) hypotheses are

formulated, such that when the Ho is rejected, the Hi has to be accepted and vice versa.

The Ho is usually a statement made such that when the objective of an experiment is to

establish a claim, the nullification of the claim should be taken as the Ho. The

experiment is often performed to determine whether the Ho is false. For instance,

Page 223 of 277

consider a situation when a prosecution wants to establish (with evidence) that a

certain person is guilty of a crime. The Ho in this case, should be that the person is

innocent; while the Hi would be that the person is guilty; thus, the claim now becomes

the alternative. It should be noted that, decisions are always drawn with respect to the

Ho\ in the sense that failure to reject it does not necessarily means it (Ho) is true. For

example, when a person is judged “not guilty” does not necessarily means he/she is

innocent, but rather the prosecution fails to provide evidence (beyond reasonable

doubt) against him/her to nullify the presumption of innocence.

In TSH, there is a chance (probability) that Ho will be rejected, when in fact it should

not have been rejected (i.e. Ho = True); and this probability is known as type I error.

On the other hand, a type II error is when Ho is accepted when in fact it is false (i.e. Ho

= False) and should be rejected. The table below shows the possible decision options

available in any TSH.

Decision Taken
Actual situation of Ho

Ho is True Ho is False
Do not Reject Ho Correct Decision Type II error (3)

Reject Ho Type I error (a) Correct Decision
Table 10: Possible decisions in a test o f statistical hypothesis (TSH)

There are basically five elements (steps) involved in conducting a TSH [122, 1441; and

these include the following:

1. The Ho and H f are formulated, defined and stated; where H 0 is usually the

nullification of a claim, while H , is normally the claim itself.

2. Decide on the desired level of significance a, which is an important parameter

in deciding the critical/rejection region of the test under consideration.

Page 224 of 277

3. Determine and compute the value of the appropriate test statistic; which is a

function of the sample measurements upon which the decision of rejection/non

rejection of H0 will be based.

4. Determine the rejection/critical region of the test — a region (depending on the

size of the level of significance) specifying the values of the observed test

statistic for which H0 will be rejected.

5. Draw a conclusion: if the value of the (observed) test statistic (computed from

step 3 above) falls in the rejection region (defined in step 4), then Ho has to be

rejected; and one concludes that there is enough evidence [from the sample] to

decide in favor of the alternative Hi, otherwise the conclusion will be that: Ho

cannot be rejected based on the premise of non sufficient evidence from the

sample.

Now coming back to the discussion of our main goal in this section; which is to

answer a research question in relation to the constrained PVD problem discussed in

section 6.2 above; and this is to test (by using techniques of TSH) whether (based on

the sample information available):

The average performance o f SWAN algorithm is better than that o f FSA.

At this point we want the reader to be aware that, the word ‘better’ in this context

means having smaller objective value (since PVD is a cost minimization problem); so

if we have two or more algorithms in which one among them produces feasible

solutions with lower objective value than the rest; then it should be adjudged as better

than them.

Page 225 of 277

Now using mathematical notation, we want to represent average performances of

SWAN and FSA t y SWANPperf and FSAjuperf respectively. In order to test our hypothesis,

we are going to sequentially follow the steps outlined above as follows:

Page 226 of 277

SIEP[\

SIEP2:
(0 a - 5% and (ii) a - 1%

STEPS:

Test statistic, Z -
S W A N - FSA—

X p e ,f X p e ,f

SWAN , '-'FSA
+ -

H rSfVAN " FSA

where:

swan- ^ [Sf/iesai?p[eavef,age perfornnnceof SWAN and is equal to 6065.1485,

is the sample average perfornnnceof FSAandisequalto 6164.5859,

Swan (estimateqf cfWAN) isthesamplevariance for SWAN and is equal to (207.5156)2,

s2̂ {estimateof crj:̂) is the sanple variance for FSAandisequalto (257.4737)2,

n swAN is the sample size[nwnber of trials) for SWAN and is equal to30,

nm is the sanple size(number of trials) for FSAand is equal to 30.

Hur, , 6065.1485 -6164.5859 _ ,

I (207.5156)2 (257.4737)2
V 30 + 30

S7EP4:
Therejectionregjon for
(/) a = 5% is: reject H0ifZ< -Za; w/zere - Z0 05 = -1.6450.

Therefore, sinceZ <-ZQ 05 (i.e. - 1.6469 < -1.6450); we then reject H0
(ii) a = \%is: reject H0 if Z< -Za; where - Zm = -2.3260.

Thus,sinceZ >-Z00] (i.e.—1.6469 > -2.3260); we then DonotrejectH0

STEPS:
(/) Since the decision reached in step4 is to reject H0, we conclude that: The random sanple
provides sufficient evidence to believe that, the average performance of SWAN is better
than that of FSA at 5% level of significance.
(ii) Since the decision reached in step4 is not to reject I f , we conclude that: The random sample
do not provides sufficient evidence to believe that, the average performance of SWAN is better
than that of FSA at 1% level of significance.

Table 11: A TSH analysis between SW AN and FSA______________________

From Table 11 above, it can be observed that, we tested for the validity of the claim

that: 44The average performance o f SWAN is better than that o f FSA under two

Page 227 of 277

different levels of significance (i.e. a = 5% and a = 1%). It can be seen that, for 5%

level of significance, the sample provided [just] enough evidence to reject the Ho,

thereby warranting the acceptance of Hp, and this literally means that: we are 95%

confident that: the average performance o f SWAN is indeed better than that o f FSA.

However, for 1% level of significance, the sample does not provide enough evidence

to reject Ho, thereby warranting its acceptance; and this literally means that: at 1%

level of significance, we cannot claim that: the average performance o f SWAN is

better than that o f FSA.

Page 228 of 277

7.0 Conclusion and Future Research

7.1 Conclusion & Future Work

In this thesis we addressed the classical (unconstrained) as well as the constrained PSP

using some selected metaheuristic algorithms that are widely reported and

implemented in the literature. PSP being one of the most widely studied areas in

finance has drawn much interest from both academia and industry enjoying varying

implementation strategies using approximate (especially metaheuristic) algorithms. In

this research too, like in several others before it; we solved the classical problem using

six different metaheuristic search techniques of which three (SA, TS, and Parallel SA)

among them are Local searches, two (GA and PSO) are EAs and the last one (SWAN)

is a hybrid of SA and PSO.

7.1.1 Conclusion

The entire thesis report has been partitioned into seven different chapters, each with its

subsections aimed at giving thorough details of what has been discussed therein.

Chapter one, for instance, discussed in great detail the origin of the PSP, what the

classical Markowitz E-V model is all about, and various critics’ view on some

shortcomings that came along with the model. In the same chapter we discussed why

this research is important as well as what makes it difficult and challenging. The major

contributions that this research has on offer were outlined in chapter one and these,

once again, include:

• Designing and implementing an algorithm (entitled SWarm ANnealing -

SWAN) which a hybrid of PSO and SA aimed at exploiting the PSO’s

exploration (diversification) potential as well as SA’s exploitation

Page 229 of 277

(intensification) ability to return very promising solutions for both constrained

and unconstrained cases of PSP.

• Designing and implementation of a neighbourhood structure (entitled IDDIT)

for Local searches aimed at guiding our algorithms to explore the

neighbourhood of the incumbent solutions in order to either find a very

promising solution or escape entrapment in local optima.

• Developing and implementation of (even more challenging and more

advanced) neighbourhood structure purposely designed for our swarm

algorithms (PSO and SWAN). This neighbourhood definition strategy has

some form of guidance enabling the algorithms to intelligently decide which

asset should be deleted from or inserted into a candidate portfolio.

• Proposing a model (based on the ideas put forward by a previous research) for

solving PSP with a semi variance as an alternative to the conventional objective

(variance); while at the same time incorporating some real world (cardinality

and floor & ceiling) constraints.

Chapter two built on the description of the classical Markowitz E-V model provided in

the chapter one, and further defined what constitutes an E-V investor. Limitations and

shortcomings of the classical E-V model were outlined therein and various

implementations (in the literature) to address the problems that such shortcomings

pose were studied. Chapter two also discusses the possible strategies of extending the

classical E-V model which can be achieved by either substituting the original objective

(the variance) with other alternatives (such as mean absolute deviation, semivariance,

value at risk, e.t.c.) or incorporating some other real world constraints (such as

cardinality, floor & ceiling, transaction cost, e.t.c.) and sometimes both. The chapter

Page 230 of 277

concluded by describing the conventional computation of semivariance as well as a

thorough explanation about the implementation of our proposed mean-semivariance

portfolio selection model.

In chapter three, we provided some acceptable definitions of metaheuristics as

provided in the literature. We also reviewed some literature on the successful

applications and implementations of metaheuristic algorithms in other diverse research

areas as reported in the literature. Due to the fact that, classical PSP itself can be

viewed as a bi-objective, and indeed a variant of multiobjective optimization

problems; we decided to review other applications and successful implementation of

heuristics/metaheuristics in other multiobjective optimization areas of research. In the

same chapter also, we specifically decided to look at some other related researches that

deals with the metaheuristic applications to portfolio selection. In the final part, the

chapter provided a thorough explanation of the six metaheuristic algorithms used in

this research.

The algorithmic details concerning the practical implementation of the classical

(unconstrained) PSP were described in chapter four. These details range from the

different decisions related to parameter choice to the thorough description of how the

bi-objective PSP problem is implemented. The bi-objective problem is such that we

aim to select a portfolio of assets which minimizes the portfolio risk while at the same

time maximizing the portfolio return such that its gap to the supplied target return is

made as small and as negligible as possible. The chapter also provides an explanation

to some set of popular performance and evaluation metrics which would be used to

assess the performance of our algorithms amongst themselves as well as against a well

Page 231 of 277

known non-linear optimization solver (The CPLEX). The chapter concludes with

discussion of the results obtained for the solutions of the classical PSP from the solver

and our implemented algorithms.

The fifth chapter was dedicated to discussing the details involved in the

implementation of the constrained PSP. Because of the challenges involved in dealing

with a constrained formulation; we decided to give a thorough explanation on how we

represent a candidate solution - which involves two different sets; the integer set of

assets’ indices that constitutes a candidate portfolio and a set of real numbers

representing the actual portfolio funds invested in the corresponding elements

(indices) in the integer set. The chapter went ahead to provide a detailed explanation of

the two neighbourhood move definition strategies developed in this research (which

form integral parts of this research’s contribution). The first one (entitled IDDIT) is

meant to serve our Local search algorithms; while the other (which is more advanced

having IDDIT-like operations and some forms of guidance) is meant to serve our

swarm algorithms. The chapter also discusses the type of repair mechanism

implemented which is aimed at enforcing feasibility and constraints satisfaction. The

chapter concludes by discussing the results and evaluation of the algorithms.

Chapter six is meant to assess how well our algorithms (PSO and SWAN) perform in

solving some other applications of optimization problems other than the PSP they

were originally designed for. The chapter gave a very brief overview of some popular,

but standard optimization test functions that are used to evaluate newly developed

optimization algorithms. The search space’s terrain of most of these test functions are

characterized by multiple local solutions which makes it quite challenging for any

Page 232 of 277

algorithms to easily locate the global solution. We decided to look at solutions of

minimization problems for both constrained (involving PVD and G il constrained

problems) and unconstrained instances (involving De Jong’s, Rastrigin, Goldstein-

Price, Shwefel’s and Beale test functions); after which we compare our results with

some previous ones found in the literature. Going by the degree of success recorded

by one of our algorithms (SWAN) in solving the PVD problem; we decided to answer

a certain hypothetical question we formulated using one of the major statistical tools

(statistical hypothesis testing) which can be used to establish the validity or otherwise

of the hypothesis. The hypothetical statement we wanted to assess its validity was:

“The average performance o f SWAN algorithm is better than that o f FSA,\ The

hypothetical statement was tested under two different levels of significance (5% and

1%) after which appropriate conclusions were drawn.

7.1.2 Future works

There are several ways in which any given research can be taken to the next level; in

our own particular case, our future plan will center on dedicating much of our

available time to further our research on metaheuristic algorithms designed to solve

difficult optimization problems. We will be much interested in the technicalities that

explains why a given algorithm behaves the way it does; this has to do with various

algorithmic parameter settings and their effect on performance. We plan to, initially,

begin with GA by thoroughly analyzing its various parameter settings (involving

crossover and mutation probabilities, choice of suitable number of chromosomes,

elitism issues and many more). This drive is motivated by the relatively poor

performance of the GA in solving (even the relatively simpler) unconstrained

formulation of the PSP; we plan to give the algorithm another chance by thoroughly

Page 233 of 277

looking at the above mentioned factors in relation to how they were implemented to

solve the problem at hand in order to see if the algorithm would live to its expectations

as one of the best performing EAs.

SWAN has, undoubtedly, proved itself as a very promising (hybrid) algorithm, whose

success can be credited to the diversification power of PSO coupled with the

intensification potential of SA. The algorithm was found to be very competitive, while

at the same time excelling in producing very good results, irrespective of whether it is

PSP or other applications of optimization problems. As part of our future work; in

order to fully understand the behaviour of the (SWAN) algorithm and to explore more

of its capabilities, we plan to implement it in such a way that the SA part comes before

the PSO part, and this essentially means to start with the SA processes until

convergence, after which the best solution found will be used to (further) generate

some (particles) candidate solution which would serve as the key players in the

subsequent PSO processes; by doing so, we hope to come up with even stronger

algorithm having better search abilities.

We also plan to raise the difficulty level of our proposed PSP model by incorporating

additional real world constraints (such as class/sector constraints, transaction costs,

roundlot constraints and even integer variables formulation); so that the model will be

as representative of investors’ real world decision options as possible; and these would

consequently leads to the development of even more advanced and intelligent

neighbourhood structures for both our local searches and swarm algorithms.

Page 234 of 277

REFERENCES

1. Aarts, E.H.L and Korst, J. (1989). Simulated Annealing and Boltzman

Machines: A Stochastic Approach to Combinatorial Optimization and Neural

Computing. John Wiley & Sons, Chichester, UK.

2. Abido, M. A. (2009). Multiobjective particle swarm optimization for

environmental/economic dispatch problem. Electric Power Systems Research,

79(7): 1105- 1113.

3. Alaya, I., Solnon, C. and Ghedira, K (2007). Ant Colony Optimization for

Multi-objective Optimization Problems. In 19th IEEE International Conference

on Tools with Artificial Intelligence (ICTAI2007), 1: 450 - 457.

4. Armananzas, R. and Lozano, J. A. (2005). A Multiobjective Approach to the

portfolio Optimization Problem. In The 2005 IEEE Congress on Evolutionary

Computation, 1388- 1395.

5. Arora, S. and Barak, B. (2009). Computational Complexity: A Modem

Approach. Cambridge University Press.

6. Atkinson, A. B. (1970). On the measurement of inequality. Journal o f

Economic Theory, 2, 244 - 263.

7. Ballestero, E. (2005). Mean-Semivariance Efficient Frontier: A Downside Risk

Model for Portfolio Selection. Applied Mathematical Finance, 12(1): 1 - 15.

Page 235 of 277

8. Baykasoglu, A. (2001). Goal Programming Using Multiple Objective Tabu

Search. The Journal o f Operational Research Society, 52(12), 1359 - 1369.

9. Bhandarkar, S. M. and Chirravuri, S. (1996). A study of Massively Parallel

Simulated Annealing Algorithms for chromosome reconstruction via clone

ordering. International Journal o f Parallel, Emergent and Distributed Systems,

9(1 &2): 67-89.

10. Bienstock, D. (1996). Computational Study of a Family of Mixed - Integer

Quadratic Programming Problems. Mathematical Programming, 74: 121 -

140.

11. Blum, C. and Roli, A. (2003). Metaheuristics in Combinatorial Optimization:

Overview and Conceptual Comparison. ACM Computing Surveys, 35(3): 268 -

308.

12. Boyd, R. and Richerson, P. J. (1985). Culture and the evolutionary process.

University o f Chicago Press.

13. Boyd, S. P. and Vandenberghe, L. (2004). Convex Optimization. Cambridge

University Press, New York, USA.

14. Briant, O., Naddef, D. and Mounie, G. (2008). Greedy approach and multi-

criteria simulated annealing for the car sequencing problem. European Journal

o f Operational Research, 191: 993 - 1003.

Page 236 of 277

15. Burke, E. K. and Kendall, G. (2005). Introduction. In SEARCH

METHODOLOGIES: Introductory Tutorials in Optimization and Decision

Support Techniques. Chapter 1. E. K. Burke, and G. Kendall (editors). Springer

Science + Business Media Inc., NY.

16. Calvet, L. E., Campbell, J. Y. and Sodini, P. (2009). Fight or Flight? Portfolio

Rebalancing by Individual Investors. The Quarterly Journal o f Economics,

124(1): 301 -348 .

17. Carlisle, A. and Dozier, G. (2001). An off-the-shelf PSO. In Proceedings o f the

Workshop on Particle Swarm Optimization, Indianapolis, USA.

18. Catanas, F. (1998). On a neighbourhood structure for portfolio selection

problems. Technical Report, Departamento de Metodos Quantitativos do

ISCTE, Lisboa, Portugal.

19. Cemy, V. (1985). Thermodynamical approach to the Travelling Salesman

Problem: An Efficient Simulation Algorithm. Journal o f Optimization Theory

and Applications, 45(1), 4 1 -5 1 .

20. Chang, -T. J., Meade, N., Beasley, J. E. and Sharaiha, Y. M. (2000). Heuristics

for cardinality constrained portfolio optimization. Computers & Operations

Research, 27: 1271 - 1302.

Page 237 of 277

21. Chen, W., Zhang, R-T., Cai, Y-M. and Xu, S. (2006). Particle Swarm

Optimization for Constrained Portfolio Selection Problems. In Proceedings o f

the Fifth International Conference on Machine learning and Cybernetics.

22. Clash, J. M. (1999). Focus on the Downside. Forbes (02.22.99); available at:

www.forbes.com/forbes/1999/0222/6304162a.html.

23. Coello, C. A. C. and Montes, E. M. (2002). Constraint-handling in genetic

algorithms through the use of dominance-based tournament selection.

Advanced Engineering Informatics, 16, 193 -203.

24. Coley, D. A. (1999). An Introduction to Genetic Algorithms for Scientists and

Engineers. World Scientific Publishing Company, Singapore.

25. Crama, Y. and Schyns, M. (2003). Simulated annealing for complex portfolio

selection problems. European Journal o f Operational Research, 150: 546 -

571.

26. Cura, T. (2009). Particle swarm optimization approach to portfolio

optimization. Nonlinear Analysis: Real World Applications, 10: 2396 — 2406.

27. Cvijovic, D. and Klinowski, J. (1995). Taboo Search: An Approach to the

Multiple Minima Problem. Science, 267(5198): 664 - 666.

Page 238 of 277

http://www.forbes.com/forbes/1999/0222/6304162a.html

28. Da Silva, A. P. A. and Falcao, D. M. (2008). Fundamentals of Genetic

Algorithms. In Modem Heuristic Optimization Techniques: Theory and

Applications to Power Systems, K. Y. Lee and Mohamed A. El-Sharkawi

(editors), A John Wiley & Sons, Inc., Hoboken, New Jersey, USA.

29. Darwin, C. R. (1859). On the Origin of Species by Means of Natural Selection

or the Preservation of Favoured Races in the Struggle for life. John Murray,

London.

30. de Werra, D. and Hertz, A. (1989). Tabu Search Techniques: A tutorial and

applications to neural networks. OR Spectrum, 11, 131-141.

31. Deb, K. (1997). GeneAS: a robust optimal design technique for mechanical

component design. In (Dasgupta. D, Michalewicz. Z. editors) Evolutionary

algorithms in engineering applications. Springer, Berlin.

32. Deb, K. (2001). Multiobjective optimization using evolutionary algorithms.

John Wiley and Sons, Chichester, UK.

33. Deb, K., Pratab, A., Agarwal, S. and MeyArivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6(2), 182 - 197.

Page 239 of 277

34. di Tollo, G. and Roli, A. (2006). Metaheuristics for the Portfolio Selection

Problem. Technical Report R-2006-005, Dipartimento di Scienze, Universita

“G. D’Annunzio” Chieti-Pescara.

35. Donohue, C. and Yip, K. (2003). Optimal Portfolio Rebalancing with

Transaction Costs. The Journal o f Portfolio Management, 29(4): 49 — 63.

36. Dorigo, M. and Di Caro, G. (1999). Ant colony optimization: a new meta

heuristic. In Proceedings o f the 1999 IEEE Congress on Evolutionary

Computation, vol. 2, 1470 - 1477.

37. Dowsland, K. A. (1995). Simulated Annealing. In Modern Heuristic

Techniques for Combinatorial Problems, C. R. Reeves (editor). McGraw-Hill

International (UK) Limited.

38. Dowsland, K. A. (1995). Variants of Simulated Annealing for Practical

Problem Solving. In Application o f Modern Heuristic Methods, V. J. Rayward-

Smith (editor), Alfred Waller Limited, Publishers, Oxon.

39. Dreo, J., Petrowski, A., Siarry, P. and Taillard, E. (2006). Metaheuristics for

Hard Optimization Methods and Case Studies. Springer-Verlag, Berlin

Heidelberg.

40. Dueck, G. and Winker, P. (1992). New concepts and algorithms for portfolio

choice. Applied Stochastic Models a n d Data Analysis, 8, 159 — 178.

Page 240 of 277

41. Eberhart, R. C. and Hu, X. (1999). Human Tremor Analysis Using Particle

Swarm Optimization. In Proceedings o f the Congress on Evolutionary

Computation, 1927-1930.

42. Eberhart, R. C. and Shi, Y. H. (1998). Comparison between genetic algorithms

and particle swarm optimization. 7th Annual Conference on Evolutionary

Programming, 1447: 611 -616.

43. Eglese, R. W. (1990). Simulated Annealing: A tool for Operational Research.

European Journal o f Operational Research, 46: 271 -281 .

44. Erera, A., Karacik, B. and Savelsbergh, M. (2008). A dynamic driver

management scheme for less-than-truckload carriers. Computers and

Operations Research, 35: 3397 - 3411.

45. Estrada, J. (2000). The Cost of Equity in Emerging Markets: A Downside Risk

Approach. Emerging Markets Quarterly (Fall 2000). 19 — 30.

46. Estrada, J. (2002). Systematic Risk in Emerging Market: The D-CAPM.

Emerging Markets Review, 3(4): 365-379.

47. Estrada, J. (2006). Downside Risk in Practice. Journal o f Applied Corporate

Finance, 18(1) 117- 125.

Page 241 of 277

48. Estrada, J. (2007). Mean-Semivariance Behaviour: Downside Risk and Capital

Asset Pricing. International Review o f Economics and Finance, 16(2): 169 -

185.

49. Estrada, J. (2008). Mean-Semivariance Optimization: A Heuristic Approach.

Journal o f Applied Finance - Spring/Summer 2008: 57 — 72.

50. Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A. and Focardi, S. M. (2007).

Robust Portfolio Optimization and Management. John Wiley & Sons, Inc.,

Hoboken, New Jersey.

51. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and

Empirical Work. The Journal o f Finance, 25(2): 383 -417.

52. Farrell, J.L., (1997). PORTFOLIO MANAGEMENT: Theory & Applications,

2nd ed. Mc-Graw-Hill International Editions, Finance Series.

53. Feiring, B. R., Wong, W., Poon, M. and Chan, Y. C. (1994). Portfolio

Selection in downside risk optimization approach: application to the Hong

Kong stock market. International Journal o f Systems Science, 25(11): 1921 -

1929.

54. Feng, Y , Zheng, B. and Li, Z. (2010). Exploratory study of sorting particle

swarm optimizer for multiobjective design optimization. Mathematical and

C o m p u te r Modelling, 52(11-12), 1966 - 1975.

Page 242 of 277

55. Fernandez, A. and Gomez, S. (2007). Portfolio selection using neural

networks. Computers & Operations Research, 34: 1177 - 1191.

56. Fishbum, P. C. (1977). Mean-Risk Analysis with Risk Associated with Below-

Target Returns. American Economic Review, 67, 116 - 126.

57. Gallego, R. A., Alves, A. B., Monticelli, A. and Romero, R. (1997). Parallel

Simulated Annealing applied to long term transmission network expansion

planning. IEEE Transactions on Power Systems, 12(1), 181 - 188.

58. Ghoseiri, K. and Nadjari, B. (2010). An ant colony optimization algorithm for

the bi-objective shortest path problem. Applied Soft Computing, 10(4), 1237 -

1246.

59. Gilli, M., Kellezi, E. and Hysi, H. (2006). A data-driven optimization heuristic

for downside risk minimization. Journal o f Risk, 8(3), 1 -1 8 .

60. Glover, F. (1986). Future paths for Integer programming and links to Artificial

Intelligence. Computers and Operations Research, 13, 533 — 549.

61. Glover, F. (1989). Tabu Search - Part I. ORSA Journal on Computing, 1, 190 —

206.

62. Glover, F. (1990). Tabu Search - Part II. ORSA Journal on Computing, 2 , 4 -

32.

Page 243 of 277

63. Glover, F. and Laguna, M. (1997). Tabu Search, Kluwer Academic Publishers,

Dordrecht, The Netherlands.

64. Glover, F., Mulvey, J. M. and Hoyland, K. (1995). Solving dynamic stochastic

control problems in finance using tabu search with variable scaling. In

Proceedings o f the Metaheuristics International Conference, Kluwer Academic

Publishers, 429 - 448.

65. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and

Machine Learning. Reading, MA: Addison Wesley.

66. Goldreich, O. (2008). Computational Complexity: A Conceptual Approach.

Cambridge University Press.

67. Hallow, W. V. (1991). Asset Allocation in a Downside-Risk Framework.

Financial Analyst Journal, 47(5), 28 - 40.

68. Hamza, F. and Janssen, J. (1998). The Mean-Semivariances Approach to

Realistic Portfolio Optimization subject to Transcation Costs. Applied

Stochastic Models and Data Analysis, 14: 275 — 283.

69. Hassan, R., Cohanim, B., de Week, O. and Venter, G. (2005). A comparison of

Particle Swarm Optimization and the Genetic Algorithm. In P ro ceed in g s o f the

46th AIAA/ASM E /ASCE/AH S/ASC Structures, S tru ctu ral D yn am ics a n d

M a teria ls Conference.

Page 244 of 277

70. Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms, 2nd ed.

John Wiley & Sons, Inc.

71. Hedar, A. A. (2004). Studies on Metaheuristics for Continuous Global

Optimization Problems. PhD Thesis, Kyoto University, Kyoto, Japan.

72. Henderson, D., Jacobson, S. H., and Johnson, A. W., (2003). The Theory and

Practice of Simulated Annealing. In Handbook o f Metaheuristics, F. Glover

and G. A. Kochenberger (editors), International Series in Operations Research

& Management Science, 57. Kluwer Academic Publishers, Dordrecht, The

Netherlands.

73. Henderson, D., Vaughan, D. E., Jacobson, S. H., Wakefield, R. R. and Sewell,

E. C. (2003). Solving the shortest route cut and fill problem using simulated

annealing. European Journal o f Operational Research, 145: 72 - 84.

74. Hertz, A. and de Werra, D. (1987). Using Tabu Search techniques for Graph

Coloring. Computing, 39, 345 -351.

75. Hertz, A. and de Werra, D. (1991). The Tabu Search metaheuristic: How we

use it. Annals o f Mathematics and Artificial Intelligence, 1, 111 — 121.

76. “Heuristic” A Dictionary of Computing (2004). Oxford Reference Online.

http7/www.oxfordrefftrenr,e.com/views/ENTRY.html?subview=Main&entry=tl,! .̂ 236].•

Page 245 of 277

77. Hogan, W. and Warren, J. (1974). Toward the Development of an Equilibrium

Capital-Market Model Based on Semivariance, Journal o f Financial and

Quantitative Analysis, 9(1), 1 - 11.

78. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An

Introductory Analysis with application to Biology, Control, and Artificial

Intelligence. University o f Michigan Press, Ann Arbor, Michigan.

79. http://oxforddictionaries.eom/view/entry/m en gb0840030#m en gb0840030

accessed on August 18th, 2010 at 11.25am.

80. Hu, N. (1992). Tabu Search method with random moves for globally optimal

design. International Journal for Numerical Methods in Engineering, 35: 1055

- 1070.

81. Huang, X. (2008). Portfolio Selection with a new definition of risk. European

Journal o f Operational Research, 186, 351 - 357.

82. Jacob, C. and Khemka, N. (2004). Particle Swarm Optimization in

Mathematica: An Exploration Kit for Evolutionary Optimization. 6,h

International Mathematica Symposium, Banff, Canada (IMS 2004).

83. Jaszkiewicz, A. (2001). Multiple objective metaheuristic algorithms for

combinatorial optimization. Habilitation thesis, Poznan University of

Technology, Poznan.

Page 246 of 277

http://oxforddictionaries.eom/view/entry/m

84. Jobst, N.J., Homiman, M.D., Lucas, C.A., and Mitra, G. (2001).

Computational Aspects of Alternative Portfolio Selection Models in the

Presence of Discrete Assets Choice Constraints. Quantitative Finance, 1(5): 1

-1 3 .

85. Kannan, B. K. and Kramer, S. N. (1994). An augmented Lagrange multiplier

based method for mixed integer discrete continuous optimization and its

application to mechanical design. ASME Transactions, Journal o f Mechanical

Design, 116(2), 405 -411.

86. Kendall, G. and Su, Y. (2005). A particle swarm optimization approach in the

construction of optimal risky portfolios. In Proceedings o f the 23rd IASTED

International Multi-Conference on Artificial Intelligence and Applications, 140

-145 .

87. Kennedy, J. (1997). The particle swarm: Social adaptation of knowledge. In

Proceedings o f the International Conference on Evolutionary Computation,

303 -308 .

88. Kennedy, J. and Eberhart, R. C. (1995). Particle Swarm Optimization. In

Proceedings o f the IEEE International Conference on Neural Networks, 4:

1942- 1948.

89. Kennedy, J., Eberhart, R. C with Shi, Y. (2001). Swarm Intelligence. Morgan

Kaufmann Publishers, San Francisco, CA, USA.

Page 247 of 277

90. Kirkpatrick, S., Gellatt, C. D. and Vecchi, M.P. (1983). Optimization by

Simulated Annealing. Science, 220: 671 - 680.

91. Konno, H. and Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio

Optimization Model and Its Applications to Tokyo Stock Market. Management

Science, 37: 519 - 531.

92. Koza J. R. (1995). Survey of genetic algorithms and genetic programming. In

Proceedings o f 1995 WESCON Conference Record: Microelectronics,

Communications Technology, Producing Quality Products, Mobile and

Portable Power, Emerging Technologies, pg 589 - 594. Piscataway, NJ: IEEE

Service Center.

93. Lawler, E. L. (1976). Combinatorial Optimization: Networks and Matroids.

Holt, Rinehart, and Winston, New York.

94. Lee, E. K. and Mitchell, J. E. (2000) Computational experience of an interior

point SQP algorithm in a parallel branch-and-bound framework. In H Frenk et

al, editor, High Performance Optimization, Kluwer Academic Publishers,

Dordrecht, The Netherlands, pp 329 - 347.

95. Lee, S., von Allmen, P., Fink, W., Petropoulos, A. E. and Terrile, R. J. (2005).

Comparison of Multi-Objective Genetic Algorithms in Optimizing Q-Law

Low-Thrust Orbit Transfers. GECCO’05 Late-breaking paper, Washington,

USA.

Page 248 of 277

96. Leite, J. P. B. and Topping, B. H. V. (1999). Parallel simulated annealing for

structural optimization. Computers and Structures, 73, 545 - 564.

97. Lin, C. K. Y. and Kwok, R. C. W. (2006). Multi-objective metaheuristics for a

location-routing problem with multiple use of vehicles on real data and

simulated data. European Journal o f Operational Research, 175: 1833 - 1849.

98. Mansini, R. and Speranza, M. -G. (1999). Heuristic algorithms for the

portfolio selection problem with minimum transaction lots. European Journal

o f Operational Research, 114(2): 219 - 233.

99. Mao, J. C. T. (1970). Models of Capital Budgeting, E-V vs E-S. Journal o f

Financial and Quantitative Analysis, 5(5), 657 - 676.

100. Maringer, D. (2005), Portfolio Management with Heuristic Optimization,

Springer-Verlag, New York Inc.

101. Markowitz, H. M. (1952). Portfolio Selection. Journal o f Finance, 7: 77 - 91.

102. Markowitz, H. M. (1956). The optimization of a quadratic function subject to

linear constraints. Naval Research Logistics Quarterly, 3, 111 — 133.

103. Markowitz, H. M. (1959). Portfolio Selection: Efficient Diversification of

Investments, John Wiley, New York, USA.

Page 249 of 277

104. Markowitz, H. M. (1999). The early history of portfolio theory: 1600-1960.

Financial Analysts Journal, 55(4): 5 -1 6 .

105. Markowitz, H., (1991). Portfolio Selection: Efficient Diversification of

investments, 2nd ed, Cambridge, MA, Basil Blackwell

106. Markowitz, H., Todd, P., Xu, G. and Yamane, Y. (1993). Computation of

Mean-Semivariance Efficient Sets by the Critical Line Algorithm. Annals o f

Operations Research, 45(1): 307 - 317.

107. Metropolis, N., Rosenblutch, A., Rosenblutch, M., Teller, A. and Teller, E.

(1953). Equation of state calculation by fast computing machines. Journal o f

Chemical Physics. 21: 1087 - 1092.

108. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution

Programs (3rd ed). Springer-Verlag, New York.

109. Michalewicz, Z. and Fogel, D. B. (2004). How to Solve It: Modem Heuristics.

Springer-Verlag, Berlin.

110. Misevicius, A., Blazaukas, T., Blonkis, J., and Smolinskas, J. (2004). An

Overview of Some Heuristic Algorithms for Combinatorial Optimization

Problems. Informacines Technologijos Ir Valdymas, Nr. 1(30).

Page 250 of 277

111. Mitra, G., Kyriakis, T , Lucas, C. A. and Pirbhai, M. (2003). A Review of

Portfolio planning: Models and Systems. An invited chapter In Advances in

Portfolio Construction and Implementation, S. E. Satchell & A. E. Scowcroft

(editors). Butterworth & Heinemann, Oxford.

112. Mohamed, C., Bassem, J. and Taicir, L. (2010). A genetic algorithms to solve

the bicriteria shortest path problem. Electronic Notes in Discrete Mathematics,

36, 851 -858 .

113. Monticelli, A. J., Romero, R. and Asada, E. N. (2008). Fundamentals of

Simulated Annealing. In Modern Heuristic Optimization Techniques: Theory

and Applications to Power Systems, K. Y. Lee and Mohamed A. El-Sharkawi

(editors), A John Wiley & Sons, Inc., Floboken, New Jersey, USA.

114. Morgan, J. P. (1996). Risk Metrics, Technical Document, 4th ed.

115. Nawrocki, D. (1999). A brief history of Downside Risk Measures. Journal o f

Investing, 8(3), 9 -2 5 .

116. Onbasoglu, E. and Ozdamar, L. (2001). Parallel Simulated Annealing

Algorithms in Global Optimization. Journal o f Global Optimization, 19(1): 27

-5 0 .

117. O R Library: h t t p : / / p e o p l e .b r u n e l .a c . u k / ~ m a s t n b / i e b / o r l i b / f i l e s / .

Page 251 of 277

http://people.brunel.ac.uk/~mastnb/ieb/orlib/files/

118. Osman, I. H. and Laporte, G. (1996). Metaheuristics: A bibliography. Annals

o f Operations Research, 63, 513 - 623.

119. Perold, A. F. (1984). Large-Scale Portfolio Optimization. Management

Science, 30(10): 1143 - 1160.

120. Quirk, J. P. and Saposnik, R. (1962). Admissability and Measurable Utility

Functions. Review o f Economic Studies.

121. Ram, D. J., Sreenivas, T. H. and Subramaniam, K. G. (1996). Parallel

Simulated Annealing Algorithms. Journal o f Parallel and Distributed

Computing, 37(2), 207 - 212.

122. Ramachandran, K. M. and Tsokos, C. P. (2009). Mathematical Statistics with

Applications. Elsevier Academic Press, San Diego, California, USA.

123. Reeves, C. R. and Beasley, J.E (1995). Introduction. In Modern Heuristic

Techniques fo r Combinatorial Problems, C. R. Reeves (editor). McGraw-Hill

International (UK) Limited.

124. Reeves, C. R. and Rowe, J. E. (2002). Genetic Algorithms-Principles and

Perspectives: A Guide to GA Theory, Operations Research/Computer Science

Interfaces Series, Vol. 20, Springer Berlin Heidelberg New York.

Page 252 of 277

125. Reynolds, C. (1987). Flocks, herds, and schools: A distributed behavioral

model. Computer Graphics, 21(4), 25 - 34.

126. Rolland, E. (1997). A tabu search method for constrained real number search:

applications to portfolio selection. Technical report, Department o f Accounting

and Management Information Systems, Ohio State University, Columbus,

USA.

127. Roy, A. D. (1952). Safety first and the holding of assets. Econometrics, 20, 431

-449 .

128. Sandgren, E. (1988). Nonlinear integer and discrete programming in

mechanical design. In Proceedings o f the ASME Design Technology

Conference, Kissimine, FI; 95 - 105.

129. Schaerf, A. (2002). Local Search Techniques for Constrained Portfolio

Selection Problems. Computational Economics, 20: 177 - 190.

130. Shi, Y. and Eberhart, R. C. (1998). A Modified Particle Swarm Optimizer. In

IEEE International Conference o f Evolutionary Computation.

131. Shi, Y. and Eberhart, R. C. (1999). Empirical Study of Particle Swarm

Optimization. In Proceedings o f the Congress on Evolutionary Computation,

1945- 1949.

Page 253 of 277

132. Siarry, P. and Berthiau, G. (1997). Fitting of Tabu Search to optimize functions

of continuous variables. International Journal for Numerical Methods in

Engineering, 40: 2449 - 2457.

133. Silver, E. A. (2004). An overview of heuristic solution methods. Journal o f the

Operational Research Society, 55: 936 - 956.

134. Speranza, M. G. (1996). A heuristic algorithm for a portfolio optimization

model applied to the Milan stock market. Computers & Operations Research,

23(5): 433-441 .

135. Streichert, F., Ulmer, H. and Zell, A. (2003). Evolutionary Algorithms and the

Cardinality Constrained Portfolio Optimization Problem. In D. Ahr, R.

Fahrion, M. Oswald, and G. Reinelt, editors, Operations Research Proceedings

2003, Selected Papers o f the International Conference on Operations

Research, Heidelberg, Springer.

136. Suman, B., Hoda, N. and Jha, S. (2010). Orthogonal simulated annealing for

multiobjective optimization. Computers and Chemical Engineering, 34(10),

1618-1631.

137. Suppapitnarm, A., Seffen, K. A., Parks, G.T. and Clarkson, P. J. (2000). A

Simulated annealing: An alternative approach to true multi objective

optimization. Engineering Optimization, 33, 59 — 85.

Page 254 of 277

138. Taillard, E. D. (1990). Some efficient heuristic methods for the flow shop

sequencing problem. European Journal o f Operational Research, 47(1), 65 -

74.

139. Taillard, E. D. (1991). Robust taboo search for the quadratic assignment

problem. Parallel Computing, 17, 443 - 455.

140. Taillard, E. D. (1993). Parallel iterative search methods for vehicle routing

problems. Networks, 23, 661 - 673.

141. Taillard, E. D. (1994). Parallel taboo search techniques for the job shop

scheduling problem. ORSA Journal on Computing, 6(2), 108 - 117.

142. Talbi, E-G. (2009). Metaheuristics: From Design to Implementation. John

Wiley & Sons Inc., Hoboken, New Jersey.

143. Test Problems for Constrained Global Optimization available at:

http://www-optima.amp.i.kvoto-u.ac.ip/member/student/hedar/Hedar files/TestGO files/Page422.htm.

144. Trosset, M. W. (2009). An Introduction to Statistical Inference and its

Applications with R. Chapman & Hall/CRC, Boca Raton, FL.

145. Uryasev, S. and Rockafellar, R. T. (1999). Optimization of conditional Value-

at-Risk, Research Report, ISE Department, University of Florida, USA.

Page 255 of 277

http://www-optima.amp.i.kvoto-u.ac.ip/member/student/hedar/Hedar

146. van den Bergh, F. (2001). An Analysis of Particle Swarm Optimizers. Ph D.

Thesis, University of Pretoria, Pretoria, South Africa.

147. Wang, X. FI. and Li, J. J. (2004). Hybrid Particle Swarm Optimization with

Simulated Annealing. In Proceedings o f the Third International Conference on

Machine Learning and Cybernetics, pp. 2402 - 2405.

148. Weise, T. (2009). Global Optimization Algorithms - Theory and Application.

Available at www. it-weise. de/projects/book. pd f and accessed on 19th

November, 2010; 6:10am.

149. Wright, MB (2003). An Overview of neighbourhood search metaheuristics.

Working paper, the Department of Management Science, Lancaster University,

UK.

150. Xiang, Z., Chu, C. and Chen, H. (2006). A fast heuristic for solving a large-

scale static dial-a-ride problem under complex constraints. European Journal

o f Operational Research, 174: 1117 - 1139.

151. Xiang, Z., Chu, C. and Chen, H. (2008). The study of a dynamic dial-a-ride

problem under time-dependent and stochastic environments. European Journal

o f Operational Research, 185: 534 -5 5 1 .

Page 256 of 277

152. Yahaya, A. and Wright, M. (2010). SWAN — A hybridized approach for

solving Portfolio Selection Problems. In Proceedings o f the 2nd Student

Conference on Operational Research (SCOR2010), pp 69 - 73.

153. Yang, X. -S . (2008). Introduction to Mathematical Optimization - From

Linear Programming to Metaheuristics. International Cambridge International

Science Publishing, Cambridge, UK.

154. Yang, X. -S . (2010). Engineering Optimization: An Introduction with

Metaheuristic Applications. John Wiley and Sons.

155. Yang, X. -S . and Deb, S. (2010). Engineering Optimization by Cuckoo Search.

International Journal o f Mathematical Modelling and Numerical Optimization,

1(4), 330 -343 .

156. Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization:

Methods and applications, PhD thesis, Swiss Federal Institute of Technology

Zurich.

157. Zitzler, E., Deb, K. and Thiele, L. (2000). Comparison of multiobjective

evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2),

173 - 195.

Page 257 of 277

158 . Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: improving the

strength Pareto evolutionary algorithm. Swiss Federal Institute o f Technology,

Tech Rep: 103.

Page 258 of 277

APPENDIX 1

Endogenous

In this section, we want to illustrate (with a very small numerical example) the

endogenic nature ot a semicovariance matrix (which is one of the vital inputs in the E-

S portfolio optimization problem) computed using equation 2.5.1(d) as suggested by

Markowitz f 103].

Consider a set of two fictitious assets {Asset 1 & Asset2) with annual returns expressed

in % (D6:E15) over a ten-year period from 1997 through 2006. Columns F(F6:F15),

G(G6:G15) and H(H6:H15) in Table I below respectively represent portfolio return

values for three different portfolios in which the first invested 80% in Asset 1 and 20%

in Asset2, the second invested 40% in Assetl and 60% in Asset2\ while the last

invested 10% in Assetl and the remaining 90% in Asset2.

A B C D E F G H J J K L f.l 1 0 P Q 5 _ T U V

2 Proving th e E ndogeneity of Sem icovariance M atrix com pu ted based on M arkow itz ' [2] suggestion as in eq u a tio n 2 .5 .1 (d)
i] Benchmark, B = 0.01
4 Returns for diff Portfolio Configurations 80% - 20% Portfolio 40% - 60% Portfolio 10%-90% Portfolio
5 s /n o YEARAssetlAsset2 801i -20 SAOH-OO" 10% - 905: CondRet_AssetlCondfiet_As5et2 Product CondRet_Assetl CondRet_Asset2 Product C ondR et.A ssetl CondRet.A sset2 Product

1 1997 0.310 -0.212 0.206 -0.003 •0.160 0.000 0.000 0.000 0.300 -0.222 -0.067 0.300 -0.222 -0.067
7 2 1998 0.267 -0.093 0.195 0.051 -0.057 0.000 0.000 0.000 0.000 0.000 0.000 0.257 -0.103 -0.026

3 1999 0.195 0.368 0.230 0.299 0.351 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OM 0.000
4 2000 -0.101 -0.272 •0.135 •0.204 •0.255 ■0.111 •0.282 0.031 •0.111 -0.282 0,031 -0.111 -0.282 0.031

10 5 2001 -0.130 -0.235 -0.151 •0.193 •0.225 -0.140 •0.245 0.034 •0.140 -0.245 0.034 -0.140 -0.245 0.034

11 6 2002 -0.234 -0.186 -0.224 •0.205 •0.191 -0.244 -0.196 0,048 -0.244 •0.196 0.048 -0.244 -0.196 0.048
12 7 2003 0.264 0.245 0.260 0.253 0.247 0.000 O.OM 0,000 0.000 0.000 0.000 0.000 0.000 0,000

13 8 2004 0.090 0.076 0.087 0.082 0.077 ' 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000
14 9 2005 0.030 0.402 0.104 0.253 0.365 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 10 2006 0.136 0.069 0.123 0.096 0.076 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16
17 Endogenous SemiCov Matrix 0.009 0.011 0.018 0.005 0.025 0.002

18 based on equation 2.5.1(d) 0.018 0.023 0.024

19
20 Portfolio SemiVariance 0.010 0.013 0.020

21 based on equation 2.5.1(h)

Figure 41: Proving the endogeneity of semicovariance matrix

Now suppose the benchmark return (cell L3), B = 1%. Table I shows among other

things, the conditional returns of Assetl (CondRet_Assetl) [cells K6:K15] computed

Page 259 of 277

using equation 2.5.1(d) (Chapter Two). When any of the return values of the 80% —

20% portfolio [cells F6:F15] outperformed the benchmark (B = 0.01), the

corresponding conditional return value will be 0. But when the portfolio’s return value

is outperformed by benchmark, the corresponding conditional return value will

definitely take a negative value [Recall (Ri, - B) in equation 2.5.1(d)]. To clarify what

has been said; the conditional return of Assetl takes a value of 0.0 (cell K7) in 1998,

because the 80% - 20% portfolio yielded a return value of 0.195 (cell F7), thereby

outperforming the benchmark; similarly, it takes a value of -0.14 (cell K10) in 2001

[Recall (Rit - B)\, because the 80% - 20% portfolio yielded a return value of -0.151

(cell F10), thereby underperforming the benchmark. Similar approach was executed to

obtain conditional returns for Asset2 (cells L6:L15); and the next column (cells

M6:M15) was just the product of the two preceding columns (K6:K15 and L6:L15).

We now explain how we compute the elements of the Endogenous Semicovariance

matrices (K17:T18) from equations 2.5.1(c) and 2.5.1(d). Sticking to the 80% - 20%

portfolio example; now by squaring the conditional returns of Assetl and taking their

average [refer to equation 2.5.1(c)] we obtain 5Xse/i(o.oi) - 0.009 (cell K17). By

executing similar operations with conditional returns of Asset2 we obtain

S L , 2 (0 . 0 I) = ° ' 0 1 8 (Cel1 L 1 8)> W h ' l e S^nA,,e,2(0.0,) = 0 -0 1 1 (C e ,] L 1 ?) r e S U l t S d i r e C t , y

from equation 2.5.1(d). Thus, it follows from equation 2.5.1(h) that the semivariance

of the 80% - 20% portfolio (cell K20) is:

[(0.8)2 (0.009) + (0.2)2 (0.018) + 2(0.8)(0.2)(0.011)} = 0.010. The corresponding

values for 40% - 60% portfolio (cell 020) and 10% - 90% portfolio (cell S20) are

respectively 0.013 and 0.020.

Page 260 of 277

Now, it is clear just from the two-asset example considered, the semicovariance

matrices, although resulting from the same expressions [equations 2.5.1(c) and

2.5.1(d)] and same set of asset returns (cells D6:E15) are remarkably different and this

is because their elements depend on the asset weights, hence endogenous.

Exogenous

In this section, we want to illustrate why the semicovariance matrices obtained using

Estrada’s [49] heuristic as in equation 2.5.1(g) are exogenic. Table II below

reproduces the returns over the 1997 - 2006 of Assetl, Asset2, 80% - 20% portfolio,

40% - 60% portfolio and 10% - 90% portfolio all taken from Table I above. As

already shown above, the elements of the semicovariance matrices that result from

equations 2.5.1(c) and 2.5.1(d) for the 80% - 20% portfolio are different from those of

the 40% - 60% portfolio as well as those of the 10% - 90% portfolio, thereby

confirming the endogeneity of the Markowitz’ definition of semicovariance.

Recall that, with Markowitz definition of semicovariance, the knowledge of whether

portfolio’s return (and not assets’ return) underperformed the benchmark B is

required (thereby generating the endogeneity problem discussed above). However,

with Estrada’s definition too, knowledge of whether assets’ {and not portfolio’s)

return underperformed the benchmark B is needed; and as will be shown the resultant

semicovariance matrices are invariant of the portfolio configuration considered, and

are thus symmetric as well as exogenic.

Page 261 of 277

A 0 C D E F G h i J K L M « 0 P Q • R 5 T U V

Proving th e Exogeneity of S em icovariance M atrix co m p u ted b ased on E strada 's [20] suggestion as in eq u a tio n 2.5 .1(g)
Benchmark, 8 = 0.01

Returns lor diff Portfolio Configurations EOS • 20% Portfolio 4054 • 6031 Portfolio 10S - 90S Portfolio
s /n o YEAR A ssetl Asset2 8031 • 205/ AOri • 60: 10* • 90S CondRet_ A ssetl CondRet_Asset2 Product C ondftet_Assetl C ondRet. Asset2 Product C ondRet.A ssetlC ondR et Asset2 Product

1 1997 0 310 -0.212 0.206 -0.003 •0.160 0.000 ■0.222 0.000 0.000 -0.222 0,000 0.000 -0.222 0.000
2 1998 0.267 -0.093 0.195 0.051 •0.057 0.000 •0.103 0.000 0.000 -0.103 0.000 0.000 -0.103 0.000
3 1999 0.195 0.368 0.230 0.299 0.351 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000
4 2000 -0.101 -0.272 •0.135 •0,204 •0.255 •0.111 ■0.282 0.031 -0.111 •0.282 0.031 •0.111 •0.282 0.031
5 2001 -0.130 -0.235 •0.151 -0.193 •0.225 -0.140 •0.245 0.034 -0.140 •0.245 0.034 -0.140 -0.245 0.034
6 2002 -0.234 -0.186 -0.224 •0.205 -0.191 -0.244 -0.196 0.048 -0.244 -0.196 0.048 -0.244 -0.196 0.048
7 2003 0.264 0.245 0.260 0.253 0,247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 2004 0.090 0.076 0.0E7 0.082 0.077 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 2C05 0.030 0.402 0.104 0.253 0.365 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 2006 0.136 0069 0.123 0.096 0.076 0 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Exogenous SemiCov Matrix 0.009 0.011 0.009 0.011 0.009 0.011
based on equation 2.5.1(g) 0,024 0.024 0.024

Portfolio SemiVariance 0.010 0.015 0.021
based on equation 2.5.1(h)

Figure 42: Proving the exogeneity of semicovariance matrix

By considering again a benchmark return, B of 1% (cell L25), we can compute the

four elements of the 80% - 20% portfolio semicovariance matrix as follows: We now

redefine the conditional returns [CondRet_Assetl (K28:K37) & CondRet_Asset2

(L28:L37)] to take a value of 0.0 when the corresponding asset return is larger than

(thus outperforming) the benchmark B; and to take the value of the difference (R,-, - B)

when the corresponding asset return is smaller than (thus underperforming) the

benchmark B.

To clarify further, the conditional return of Assetl in 1997 takes the value 0.0 (cell

K28), due to the fact that, Assetl delivered a return value of 0.31 (cell D28) thereby

outperforming the benchmark; however, in 2002 it took a negative value {Rn — B) o f —

0.244 (cell K.33), because the same Assetl now yielded a negative return o f -0.234

(cell D33) thereby underperforming the benchmark B of 1%. It is important to note

that, because these conditional returns (for both Assetl and Asset2) depend on their

corresponding original asset (and not portfolio) returns underperforming the

benchmark, they are very relevant not only to the 80% — 20 /o portfolio, but to other

Page 262 of 277

portfolios of any kind of configuration (whether it is 10% - 90%, 50% - 50% and/or

even 1% - 99%).

The four semicovariance terms for the 80% - 20% portfolio that follow from Estrada’s

equation 2.5.1(g) can be computed as follows: By squaring the conditional returns of

Assetl (K28:K37) and taking their average we obtain />j.w.e/l(00i) - 0.009(cell K39) and

^Asseti(o.o\) “ 0.024 (cell L40) is obtained in similar fashion from conditional returns of

Asset2\ while £ /(i,.eM/|,w/2(o.oi) -0 .011 (cell L39) is obtained by taking the average of

the elements in the product column (M28:M37). As described in illustrating

endogeneity of the semicovariance matrix, we can, in similar way, compute [from

equation 2.5.1(h)] the semi variance of the 80% - 20% portfolio (cell K42 by:

|(0 .8)2 (0.009)+ (0.2)2 (0.024) + 2 (0 .8)(0.2)(0.011)} = 0.010. The corresponding

values for 40% - 60% portfolio (cell 042) and 10% - 90% portfolio (cell S42) are

respectively 0.015 and 0.021.

It is important to note that, the semicovariance matrices for the 80% - 20% portfolio,

40% - 60% portfolio and the 10% - 90% portfolio have te same number o f elements

with all corresponding terms being equal and the only difference is in the different

weights allotted to the assets in different portfolio configurations. It is also equally

important to note that, the values for the portfolio semivariance using Estrada’s

approximation are either equal (K42 = K20) or very close (042 = 020 & S42 = S20)

to the actual values they tend to estimate.

Page 263 of 277

APPENDIX 2

Justification for algorithms param eter choice

Although, algorithmic parameter settings are problem-dependent; we decided to run

our algorithms several number of times in order to have an idea about the best

parameter choice for our implemented algorithms. The figures and tables under each

algorithm show the results obtained after such experimental runs were conducted. In

each case, we reported the time taken (in seconds) for the algorithm to generate an

entire UEF (consisting of 200 portfolios). We further computed the mEd to measure

the distance between the UEF generated by a particular setting and the optimal UEF

generated by a non-linear optimization solver - CPLEX 11.2. In all cases, the smaller

the numerical values of these measures, the better the algorithmic settings.

SA parameter choice decisions

Going by the fact that SA has several parameters needing proper and careful tuning,

we decided to run the algorithm several times with different parameter settings in

order to come up with a set of parameter combinations that seem to be able to estimate

the (approximate) PSP Pareto front better, and in a computationally reasonable time

frame.

In order to come up with parameter combinations that will produce good results for

our SA implementation, we decided to run the simulation several times using different

set of parameter combinations. The set of parameters collectively known as cooling

schedule comprises of the Initial temperature (T0), the cooling rate (a), the length of

Markov chain (AO and the final temperature (7». We tested several cooling schedules,

but due to time and space constraints, we are only able to report the performance of

P age 264 o f 277

five of them. In all the five cooling schedules (CS1 - CS5) reported, the initial and

final temperatures were pegged at 1.0 and 0.001 respectively; while the cooling rate

and length of the Markov chain were made to vary such that in all cases, the total

number of iterations will be approximately 6600 (a little bit more than twice the

number of iterations in our multi-agents techniques).

The following table gives a summary of the settings in each cooling schedule.

Cooling Schedules Cooling rate, a Markov Chain, N Total iterations
CS1 0.99063 9 6606
CS2 0.9 100 6600
CS3 0.8 213 6603
CS4 0.5 660 6600
CSS 0.25 1320 6600

Table 12: Summary of different settings on cooling schedules

The figure and table below show the results obtained by running SA using the above

five mentioned cooling schedules.

U n con stra in ed E ffic ien t frontiers fo r the 31 assets d a taset generated
0.012 by SA u sin g d ifferen t C oo lin g S ch ed u les

0.011

0.01

0.009

c
3 0.008 • CPLEX
"8 y ■ csi
AC
O 0.007 / • CS2

£ / • CS3
U 0.006 / * CS4
o / * CS5

0.005 /
0.004 1
0.003

0.002
0 0.001 0.002 0.003 0.004 0.005

P ortfolio R isk
Figure 43: UEFs generated by different cooling schedules using Hang Seng dataset

Page 265 of 277

Cooling Schedules Time (s) ruEd

CS1 298.9 4.961-06

CS2 305.8 5.99E-06

CS3 300.5 7.89E-06

CS4 323.0 9.74E-06
CSS 326.3 6.91E-06

Table 13: Summary of objective values and time taken by different cooling schedules

From the figure above, mere eyeballing is not sufficient to reveal any difference

whatsoever between the different UEFs generated by CPLEX and SA (using the 5

cooling schedules - CS1 through CS5); however, the neighbouring table shows some

interesting results. Although, there is not much significant difference in the

performance of different cooling schedules; it can easily be noticed that: CS1

marginally outperformed the other cooling schedules (on the average) in terms of the

mEd and the total time taken to generate a frontier of efficient portfolios. It is also

interesting to note that, our results agree with and proved the importance of the

suggestion made by Eglese [43] that: it is important for the (SA) algorithm to spend

less time at extreme (higher and lower) values of the control (temperature) parameter;

and this is exactly what our CS1 does, as the numerical value of its length of Markov

chain is just 9 unlike the other CS whose length is more than 100 in each case, thereby

wasting much time at both extremes of the temperature parameter.

Now going by the superiority of the average performance of CS1 over other cooling

schedules (CS2 through CS5); we decide to implement all SA’s experimental runs

with this cooling schedule.

Page 266 of 277

Parallel SA param eter choice decisions

This search method operates in similar manner as the SA, the only difference lies in

the number of solutions dispersed over entire search space, hence parallel SA.

Therefore, all the decisions (generic and problem-specific) reached in relation to the

SA are as well adopted in this algorithm. However, we decided to fix the number of

(parallel) solutions to the magnitude of the size (dimension) of our problem. So for our

31 asset dataset, we generated 31 parallel solutions and each considers neighbours

twice the dimension of the problem. With this method, we hope to obtain solutions

that are at least as good as those obtained by SA.

TS parameter choice decisions

(i) Tabu Tenure: we tried some different set of values for the tabu tenure based on

the empirical evidence obtained by running our algorithm quite a number of times.

The reason behind choosing our tabu tenure value can be seen in the following chart

and table

S/No Tabu Tenure lime (s) mEd
1 j 1.94.3 4.51E-04
1 5 207.1 5.79E-05
« - v

J tj 235.2 I.29E-06
A-a 11 271.1 1.02E-06
5 17 324,3 1.12E-07
6 21. 375.0 I..OGE-0S

Table 14: Summary of objective values and time taken for different sizes of tabu tenure

(ii) Tabu Region: After several independent runs we arrived at a reasonable

Euclidean distance threshold value (between two neighbouring solutions) of 10'5.

(iii) Total Number o f Neighbours considered: This is set as in section 4.2.2.1 above.

Page 267 of 277

PSO param eter choice decisions

(i) The Acceleration Coefficients'. The following figure and table show the results

obtained after running the PSO algorithm a number of times to reveal the effect of

changing different values of acceleration coefficients (Ci & C2).

U nconstra ined E fficien t Frontiers for the 31 assets d ataset generated
by P SO using d ifferent A cceleration coefficients (C l & C 2) settings

0.011

0.01

0.009

EP 0.008
" 3
si
_0 0.007
‘o

• C P L E X

• C 1 = 0 ; C 2=2

• C l = 2 ; C 2=0

• C l= 2 ; C 2 —2

• C l = 1 .5 ; C2=2

• C l= 0 .9 5 ; C 2=2.955

0.006

0.005

0.004

0.003

0 .0 0 50 .003 0 .0 0 40 0.001 0 .002

Portfolio R isk

Figure 44: UEFs generated by PSO using different acceleration coefficients settings using Hang Seng dataset

A cceleration coefficients Time (s) mEd
C1=0; C2=2 151.4 1.29E-06
Cl=2; C2=0 190.0 1.77E-03
Cl=2; C2=2 209.8 1.29E-07

Cl=1.5; C2=2 196.3 1.45E-07
Cl=0.95; C2=2.955 189.5 1.17E-07

Table 15: Summary of objective values and time taken for different settings of acceleration coefficients

Page 268 of 277

From Figure 45 above, it is hard to notice any difference in the UEF generated by 4

different settings other that of C\=2 and C2=0 (green points) which plainly deviates

from the optimal and the remaining UEFs. However, from the table, it can be seen

that, the worst performance of the algorithm in terms of (mEd) occurred when C\ = 2,

and C2 = 0, and this setting literally means an implementation of cognition only PSO,

because all particles are attracted to only their personal best solutions without the

potential of exploring the entire search space; and each particle has no idea what or

where the global best solution is positioned on the search space and neither does any

particle’s movements get influenced in anyway by the global best solution; hence, the

reason for the poor performance. On the other hand, the implementation of the social

only PSO (where Ci = 0 and C2 = 2), in which all particles cooperate with one another

by using information from the global best solution to continue with their search

trajectories (without following any personal experience) was found to be superior (in

performance) than the cognitive only implementation, and this result is in agreement

with what was obtained by Kennedy [871.

Kennedy and Eberhart [88] in their original PSO implementation suggested for

acceleration coefficients’ setting of Ci = C2 = 2. Based on our PSP, this setting yielded

a better result than either the cognition or social only implementations, with an mEd =

1.29E-07 taking approximately 210secs to generate the entire UEF of 200 portfolios;

and this (we believe) is not unconnected with the fact that: although, the social factors

seemingly, by empirical evidence, play more important role (in PSO’s performance)

than their cognitive counterparts; the combination of both (cognitive and social)

components play even more important role in PSO s successful implementation.

Page 269 of 277

We further explored the potential of our algorithm, by trying different settings to the

one suggested in literature, in which we notice an improvement in the algorithm’s

performance when the cognitive (Ci) factor takes a value slightly less than one and the

social factor (C2) takes a value greater than two. After different settings were tried and

several experimental runs conducted, we finally settled on: C j = 0 . 9 5 a n d C 2 = 2 . 9 5 5 . As

can be seen from the table above, this setting provided a better result (in terms of mEd)

in comparison to all the results reported therein and faster (in terms of time taken) in

comparison to the results provided by the three settings just above it in the table. It

provided the smallest value of mEd = 1.17E-07 and was found to take on average less

than one second for each of the generated points on the UEF (i.e 189.5 secs for 200

points on the UEF).

(ii) The Inertia W eight:

The Figure and table below shows the effect of changing inertia weight, w, in different

experimental runs to generate UEF.

Unconstrained Efficient frontiers for the 31 assets dataset generated
by PSO using different Inertia W eight (w) settings

0 o.OOl 0.002 0.003 0 .004 0 .005

Portfolio Risk
Figure 45: UEFs generated by PSO using different Inertia weights settings using Hang Seng dataset

Page 270 of 277

Inertia Weight, iv Time(s) mEd
w = 0 49,0 2.79E-03

TV =0,1 155.5 l.M -0 5
tv=0.4 171,7 3.39E-06
w=0,9 197,3 9.951-07

0,4<=n<= 0,9 190,1 3.19E-07
Table 16: Summary of objective values and time taken for different settings of Inertia Weights

From Figure 45 above, the only UEF that deviates from the optimal one (generated by

CPLEX 11.2) was the one generated by setting w = 0 (see red points). This setting

literally means, particles’ decisions on their next position in the search space is not in

any way governed by the previous velocity in the previous time step. In agreement

with the results of Shi and Eberhart F1301, it is easily noticeable from the above table

that, as the inertia weight, w value approaches unity; there is an apparent improvement

of the algorithm’s performance, though with an accompanying time-cost

consequences. From the table, it can easily be seen that, there is a steady improvement

in the mEd values (2.79E-03 to 1.28E-05 to 3.39E-06 to 9.94E-07) for the respective

settings when w takes values: w = 0, w = 0.1, w = 0.4 & w = 0.9.

Going by the suggestion of Kendall and Su [86] and in order to allow our algorithm to

properly explore a very large area of the search space at the beginning of the

simulation runs and to further refine the search at later stage, we decided to adopt the

dynamic approach in which the inertia weight, w, initially takes the maximum value of

0.9, and as the search progresses it takes different values within the real interval [0.4,

0.9] up to the point where it takes the minimum value of 0.4. This setting was found,

Page 271 of 277

among other different settings tried, to be good in estimating the UEF as well as

reasonable in the amount of time taken to generate such a frontier.

Going by the fact that, the dynamic setting (in which the inertia factor, w, takes values

within a real interval [0.4, 0.9] inclusive) provided a better result than all other results

reported in the above table; we decided to adopt such setting in all our PSO

implementations (both constrained and unconstrained).

(iii) Particles’ size: Particles’ size undoubtedly is a parameter to reckon with in any

PSO implementation. In our PSO implementation, we tested several particles’ sizes

involving 20, 31 (equivalent to the problem’s dimension), 50, 62 (twice the problem’s

dimension), and 93 (thrice the problem’s dimension) for the 31 assets dataset.

U neon stra in ed E f ficien t F ron tiers f o r th e 31 a ssets d a ta set gen era ted
by PSO using differentParticle sizes

0.011

0.01

0.009

0.008

* 0.007

0.006

0.005

0.004

0.003

0.002
0.0050.0040.0030.0020.001

Portfolio Risk

Figure 46: UEFs generated by PSO using different particle sizes using Hang Seng dataset

Page 272 of 277

Particles Size Tirae(s) mEd
p=:o 76.9 3.34E-06
P = 31 117,7 1.64E-06
P = 50 188,1 6.66E-07
P = 62 236.S 8.16E-08
P = 93 351,9 4.711-08

Table 17: Summary of objective values and time taken for different particles' sizes

The UEFs generated in the figure above using the five different particles’ sizes settings

cannot be easily distinguished, as they all seem to coincide with the one generated by

the nonlinear optimization solver (CPLEX 11.2). However, the neighbouring table

reveals the difference in performance (in terms of mEd) and time taken.

From the above table, it can easily be noticed that, performance improves with

increase in the number of particles; however, this achievement has an accompanying

costly consequences. This is because, the number of particles seems to be positively

correlated strongly with the total time taken. Based on the result reported, we settled

on a size of 50 particles in both constrained and unconstrained PSO implementations.

This setting was found to be sufficient in obtaining near-optimal solutions, yet at a

very reasonable time frame.

SW AN param eter choice decisions

As this method comes into being as a result of hybridizing PSO and SA, it is not

strange to see that it combined parameters of both algorithms. We decided to run the

algorithm with different number of settings in order to determine which one would be

more appropriate in generating a UEF within a reasonable time frame. Although, we

Page 273 of 277

tried different settings, we decided to report only 5 among them out of which we

consider the best in our implementation. Each setting comprises of five different

parameter choices, namely: the acceleration coefficients (Ci & C2), inertia weight (w),

PSO total iterations, SA’s cooling rate, a and length of Markov chain, Nr.

The following table shows the different parameter choices under the 5 SWAN

parameter settings

SWAN Parameter settings
Settings Acceleration coefficients Inertia Weight PSO iterations Cooling rate, a Markov Chain, N

setl C H , 95; 0 2 , 9 5 5 0,4<=w<= 0,9 2266 0.99063 1

set2 C1=0; 0 2 w =0 2274 0,9 11

set3 0 2 ; 0 0 IT = 0,1 2287 0,8 23

set4 Cl=2; 0 2 it=0,4 2290 0,5 71

set? 0 = 1 ,5 ; 0 2 w =0,9 2290 0,25 142

Table 18: Summary of different SWAN parameter settings

The SWAN parameter settings depicted in the figure above were meant to make sure

that in the entire experimental run, a total of 3000 (for both PSO and SA parts)

iterations are conducted as in other multi-agent techniques such as the PSO, GA and

parallel SA.

Page 274 of 277

Unconstrained Efficient frontiers for the 31 assets dataset generated
by SWAN using different parameter setting

0.012

0.011

0.01

0.009

• CPLEX
= 0.008 * setl

C 0.007

t . 0.006

0.005

0.004

0.003

0.002

0.001 0.002 0.003

Portfolio Risk
0.004 0.005

Figure 47: UEFs generated by SWAN using different parameter settings using Hang Seng dataset

Settings Time (s) mEd
setl 329.7 1.O0E-O7
s el 195.4 2.451-05
se t3 213.5 2.47E-05
set4 313.8 1.8 IE-06
setS 230.5 7.77E-07

Table 19: Summary of objective values and time taken for different SWAN parameter settings

Like other comparative UEF plots in this section; If not for some few number of

points that deviated from the main frontier, it is difficult to distinguish the UEF plots

generated by different settings. However, the neighbouring table reveals that the best

performing setting is setl with mEd of 1.00E-07.

Page 275 of 277

GA param eter choice decisions

(i) Population size: This refers, to the total number of individuals that are initially

begin with and continued to be maintained throughout the search history. These are

synonymous to particles and parallel solutions in PSO and parallel SA

implementations respectively. During the initial implementation of this algorithm we

tried a population size of 100 (more than 3 times the dimension of our smaller dataset),

but as we kept on improving it, we found that as few as 31 individuals often provide

very competitive solutions.

(ii) Generations’. This is synonymous to the total number of iterations in other

search methods. So to keep in tune with other algorithms, we set the total number of

generations to complete a cycle at 2700, but after several simulation runs we found out

that 1000 generations is enough to provide a very good solution.

(iii) Genetic Operators'. A typical GA uses three to four basic operators: selection,

crossover, mutation and elitism to direct the population of individuals towards

convergence to a global optimum. These operators are discussed below:

(a) Selection: Although, there are several ways in which this operation can

be executed, for this research we found roulette-wheel selection approach

(which is proportional to the fitness of an individual) more convenient to our

type of problem.

(b) Crossover: The following figure and table justifies the choice of the

type of crossover and the corresponding probability that seem to give an

Page 276 of 277

approximate estimate of the UEF.

(c) Mutation: The following figure and table justifies the choice of the type

of the probability of mutation that seem to give an approximate estimate of the

UEF.

(d) Elitism: We decide to always carry fittest individuals amounting to 10%

of the entire population size to the next generation as part of our elitism

operation.

(iv) Population replacement: As in Chang et al [201, we employ a steady-state

population replacement approach, in which pair of newly born children replaces a pair

of less-fit members of the old population and the process continues until the desired

population size is attained.

Page 277 of 277

