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A bstract

This thesis is concerned with constraint handling for systems described by a Non- 

Minimal State Space (NMSS) form. Such NMSS models are formulated directly 

from the measured input and output signals of the controlled process, without 

resort to the design and implementation of an observer. The thesis largely focuses 

on the application of Model Predictive Control (MPC) methods, a very common 

technique for dealing with system constraints. It is motivated by earlier research 

into both NMSS and MPC systems, with features of both combined in this thesis 

to yield improved control.

The main contribution lies in the development of new methods for constraint 

handling of NMSS/MPC systems that contrasts with the ad hoc approach previ­

ously used for NMSS design based on the Proportional-Integral-Plus (PIP) algo­

rithm. Structural aspects of NMSS/MPC design are considered, tha t result from 

mathematical manipulation of the closed-loop block diagram or from the definition 

of the state space description. The properties of these structures are investigated 

to provide an insight on features of the proposed strategies.

More specifically, a Reference Governor scheme is utilised as a supervisory con­

troller to account for constraints. This can lead to constraint handling in cases 

where a controller is already available. Furthermore, the use of an internal model is 

considered in the case of the ‘Forward P ath ’ NMSS/MPC controller tha t is shown 

to have improved robustness properties in comparison to the conventional ‘Feed­

back’ structure. In contrast to existing internal model approaches, this technique 

utilises the NMSS structure of the state vector and estimates only the elements 

of the state vector that are related to past values of the output. In addition, an 

optimal tuning technique is presented for MPC controllers. This approach allows 

for multiple objectives to be specified, whilst satisfying any system constraints. It 

is also shown that a specific NMSS/MPC structure that is proposed in this thesis,



namely the NMSS/MPC controller with an integral-of-error state, provides the 

designer with additional freedom when using this tuning method.

New NMSS/MPC methods are presented for both linear and non-linear sys­

tems, with the latter case being described by State Dependent Parameter (SDP) 

models. The development and analysis of M PC/SDP control in this thesis repre­

sents the first constraint handling control system and associated stability results 

for this class of non-linear models. Simulation examples are used to illustrate the 

advantages and potential limitations of the various control structures in compari­

son to existing solutions.
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Chapter 1

Introduction

1.1 M otivation

Every physical system is subject to constraints. A car for example has a maximum 

acceleration (that depends on the loading of the car, the terrain it drives on, etc.) 

and a maximum speed (again dependent on various factors). Furthermore, safety 

issues impose additional constraints, such as an upper speed limit when cornering 

or when travelling in an urban area. The above rather simple everyday example 

makes apparent the need to account for various constraints when dealing with any 

kind of physical system.

In the same manner, it is important to account for constraints when designing 

control systems. When considering control systems, the presence of constraints 

introduces a non-linearity that complicates the analysis. In practice, to avoid this 

increased complexity, some control systems are designed to operate far from the 

constraints within specified safety bounds (e.g. a car is driven much slower than i t ’s 

maximum speed allowing for safe travelling at various conditions). However, this 

approach is sub-optimal in the sense that it does not fully exploit the operating 

capability of the system that is usually achieved by operating near the constraints. 

Furthermore, there are many practical examples where such an approach is not 

acceptable. In the process control industry for example, many chemical plants
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need to operate very close to or on the limits of constraints for an acceptable 

performance to be achieved.

Research that has previously been conducted at Lancaster University on control 

systems, has focused on systems described by a Non-Minimal State Space (NMSS) 

form and has revealed some interesting properties of such systems (see Section 1.2 

for a brief description). However, there was no inherent consideration for system 

constraints when dealing with systems described in such a way until recently when 

Wang and Young (2006) proposed a Model Predictive Controller (MPC) based 

on a NMSS system description. In the same direction, this thesis exploits the 

structural properties of this controller and considers the properties of various other 

NMSS/MPC control systems proposed by the author. More specifically, systematic 

approaches of constraint handling when dealing with NMSS systems are sought by 

combining results from both NMSS and MPC fields.

1.2 N M SS and Proportional—Integral—P lus Con­

trol

In control design of systems described in a minimal state space form, a state 

reconstructor (that asymptotically converges to the actual system state vector) is 

necessary. This can be for example a deterministic state observer or the ubiquitous 

Kalman filter (Kalman, 1960). The introduction of such an observer results in a 

more complex analysis that needs to account for the observer dynamics (e.g. Zak, 

2003, Chapter 3). To overcome this, Young et al. (1987) used a Non-Minimal 

State Space (NMSS) description of the system that is based on a state vector which 

consists of directly measurable system parameters (namely present and past values 

of the outputs and past values of the inputs). For this state space description, 

they developed the Proportional-Integral-Plus (PIP) control structure that can 

be considered as a powerful extension to the well-known Proportional-Integral-
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Derivative (PID) controller.

Since then, a lot of theoretical contributions have been presented tha t develop 

and extend the NMSS/PIP control scheme. For example, Wang and Young (1988) 

further extended the PIP control theory; structural aspects of NM SS/PIP control 

have been considered by Taylor et al. (1996); Young et al. (1998) and Chotai et al. 

(1998) developed the PIP controller for continuous time systems described in an 

NMSS form; Taylor et al. (1998) evaluated a Smith Predictor to account for pure 

time delays in the system; while Taylor et al. (2000a) revealed the relationship 

between PIP and the Generalised Predictive Controller (GPC) of Clarke et al. 

(1987a, b).

In addition to the theoretical results, the NMSS/PIP controller has been tested 

in a wide range of real applications. For example, Taylor et al. (2000b) applied 

PIP control to a carbon dioxide enrichment process; Quanten et al. (2003) used 

PIP for temperature control within a car; Gu et al. (2004) used the PIP controller 

for an autonomous excavator; Taylor et al. (2004b) designed a PIP controller for 

ventilation of agricultural buildings; Van Brecht et al. (2005) controlled the 3-D 

distribution of air within a ventilation chamber; and Taylor et al. (2006b) applied 

the PIP controller to the very demanding application of a vibro-lance.

However, in the above references, constraint handling has always been an issue 

tha t was dealt with by using trial and error methods in order for the controller 

to avoid constraint violation as is discussed by Taylor et al. (2001). This thesis 

is therefore concerned with dealing with constraints using the NMSS framework; 

and applying techniques that have previously been developed for the NMSS/PIP 

controller to the proposed NMSS/MPC control structures. In this regard, the 

predictive control framework presented in the next section is considered.
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1.3 M odel P redictive Control

Model Predictive Control (MPC) is a widely used technique, especially in the 

chemical and process control industries (Qin and Badgwell, 1996). According 

to Morari (1994) MPC dates back to the 1960s, while the paper by Kwon and 

Pearson (1977) establishes the foundations for MPC in a form similar to the one 

used today. A further great step in the evolution of MPC is the Generalised 

Predictive Controller (GPC) of Clarke et al. (1987a,b) tha t initiated a whole new 

area of research. More recently Bemporad et al. (2002) have exploited the state 

feedback structure of MPC and introduced an explicit solution tha t makes the 

on-line solution of an optimisation obsolete. In this latter work, the authors 

divide the state space into smaller areas where a feedback controller that satisfies 

the constraints can be calculated. Depending on the state of the system, the 

appropriate feedback controller needs to be chosen degrading the optimisation 

problem to one of finding the appropriate feedback controller from a look-up table.

During the last decades, a lot of researchers have been working on different areas 

of MPC such as i t’s stability (for example Mayne and Michalska, 1990; Rawlings 

and Muske, 1993: Bemporad, 1998b; Primbs and Nevistic, 2000; Bloemen et al., 

2002; Cheng and Krogh, 2001, present stability results for various MPC problem 

formulations) or i t’s optimality (e.g. Scokaert et ah, 1999; Kouvaritakis et al., 2000, 

consider sub-optimal solutions to the MPC problem). A comprehensive review of 

stability and optimality of MPC is performed by Mayne et al. (2000). Various 

robust solutions have been presented (some approaches include those of Kothare 

et al., 1996; Badgwell, 1997; Magni, 2002; Fukushima and Bitmead, 2005), while 

a review is made by Bemporad and Morari (1999). Finally, a lot of effort has been 

put in reducing the on-line computational load (see for example Borrelli et ah, 

2001; Kouvaritakis et ah, 2002; Bacic et ah, 2003; Grieder et ah, 2004; Imsland 

et ah, 2005, and references therein).

The research presented in this thesis follows from the research of Wang and
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Young (2006) tha t presented a MPC scheme using a NMSS framework (another 

NMSS approach to MPC can be found in Chisci and Mosca, 1994) tha t led to 

improved results compared to existing structures using a minimal state space de­

scription. Variations of the NMSS/MPC structure are considered and the NMSS 

system description is exploited to allow for improved simulation results when com­

pared to existing minimal representations of MPC.

1.4 A cadem ic C ontribution

As already stated, the main topic of this thesis is to incorporate systematic con­

straint handling techniques into the NMSS framework extending the work of Wang 

and Young (2006); and to use experience and methodology developed for the PIP 

controller to the proposed MPC/NMSS control structures.

More specifically research carried out has contributed towards:

• The importance of structure in the N M SS/M PC control scheme. Various 

predictive structures are presented throughout the main body of this thesis. 

By exploiting the properties of NMSS models and considering approaches 

evaluated for PIP control, different model descriptions are considered (Chap­

ters 3, 4 and 7), their properties are presented and comparisons among them 

are made. Furthermore, an alternative NMSS/MPC control structure that 

makes use of an internal model is considered (namely the Forward Path 

Controller, Chapter 6); i t ’s properties are presented and it’s performance is 

compared to conventional NMSS/MPC in the presence of model uncertainty.

• Tuning of MPC Controllers. An automatic tuning technique is presented 

for MPC controllers (Chapter 5). The approach is applicable to controllers 

based on both minimal and non-minimal state space descriptions. This 

is the first methodical tuning approach for MPC and allows for trade-off 

between different design objectives. Furthermore, i t ’s application to different
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MPC control structures is compared and it is shown tha t the NMSS/MPC 

controller introduced in Chapter 4 forms the structure of choice when using 

this tuning technique.

• M PC of State Dependent Parameter (SDP) models. Chapter 8 of the thesis 

considers constraint handling for the potentially highly non-linear class of 

SDP models. This is the first approach in this direction and can lead to 

better understanding of control of such systems. An iterative algorithm is 

proposed tha t utilises the predicted output to form a prediction of the system 

matrices. The predicted system evolution is subsequently used to form a new 

predicted output that is closer to the actual output of the system (based on 

the calculated control trajectory). In contrast to existing approaches of MPC 

of non-linear systems a simple stabilising algorithm is presented tha t is based 

on improved predictions and assumptions very similar to the linear case.

1.5 T hesis O utline

The rest of the thesis is organised as follows. Chapter 2 provides some neces­

sary background mathematical concepts on system identification and optimisation. 

Furthermore, the notions of Receding Horizon Control (RHC) and Lyapounov sta­

bility tha t are used throughout the rest of the thesis are briefly reviewed.

Chapter 3 presents a reference management technique and focuses on applica­

tion to existing PIP-controlled systems. Via simulation examples it is shown that 

a Reference Governor (RG) can provide a fast and reliable solution to constraint 

handling in existing control applications.

Chapter 4 introduces a NMSS/MPC controller that is based on a system de­

scription with an explicit integral-of-error state; the chapter considers i t ’s stability, 

reference tracking and disturbance rejection properties. Then, Chapter 5 presents 

an optimisation technique for tuning MPC controllers based on multiple objec­
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tives providing the necessary framework for trade-off between the objectives. It 

is furthermore shown that the control structure presented in Chapter 4 provides 

a more flexible framework compared to existing MPC realisations when using this 

tuning method.

Next, Chapter 6 evaluates experience from PIP control and alters the structure 

of the controller of Wang and Young (2006) and proposes a potentially more robust 

NMSS/MPC control structure, namely the Forward Path  controller.

Chapter 7 considers NMSS/MPC control in the presence of modelled measured 

disturbances. Two structures are considered that lead to improved closed loop 

response when compared to the conventional NMSS/MPC approach that does 

not account for the disturbance model. Furthermore, a case study of an actual 

temperature control ventilation installation is presented and one of the proposed 

structures is simulated for this particular application.

Chapter 8 deals with the constraint handling problem for the highly non-linear 

class of SDP models. The RG approach of Chapter 3 is initially considered, while 

a direct application of MPC is described later in the same chapter. The evolution 

of the system matrices is subsequently considered to improve the state and output 

predictions leading to two NMSS/MPC controllers with guaranteed asymptotic 

stability under assumptions very similar to the case of linear systems.

Finally Chapter 9 summarises the most important results of the present re­

search and draws future research directions.



Chapter 2

Background C oncepts

This chapter introduces some concepts tha t are present in MPC systems. It pro­

vides the necessary background on issues that arise by presenting existing results 

and methods. Moreover, references are given to more advanced and detailed text­

books in each subject. However, since it is intended to be a reference chapter, 

formal proofs are omitted and only the essence of some ideas is highlighted.

Initially some background information on system identification techniques is 

given in Section 2.1. The general discrete-time difference equation tha t is used 

throughout the thesis is given and methods to identify it from open-loop simulation 

data are highlighted. Furthermore an introduction to estimation of the system 

uncertainty is given, that is used in some of the simulations in chapters that follow 

(in Section 6.3.2 for example).

The MPC law is derived by the minimisation of a cost function subject to 

constraints. Therefore, some key concepts of constrained optimisation theory are 

provided (Section 2.2). Additionally, a brief presentation of Receding Horizon 

Control (RHC), which is the key concept to applications of MPC is made (Sec­

tion 2.3). Although RHC is a well understood technique, some of i t ’s basic ideas 

are still presented and discussed for completeness.

The presence of constraints and the fact tha t MPC can handle them inherently, 

makes it a non-linear control technique. Therefore, in order to study i t ’s stabil­



Chapter 2: Background Concepts 9

ity, the widely used Lyapounov theory can be employed. The basic conclusions 

of Lyapounov stability theory for discrete-time systems are therefore presented in 

Section 2.4 and reference to them is made in the main body of the thesis (e.g. in 

Sections 4.3.2 and 6.1.1 where the stability of different control structures is con­

sidered).

2.1 System  identification

In order to develop a control algorithm, a linearised representation of the system is 

first required. For non-linear systems, the essential small perturbation behaviour 

can usually be approximated well by simple linearised transfer function models. 

Although different model structures have different properties in control system 

design (see Pearson, 2003, for a review of non-linear models in control), the present 

thesis considers only the following linear, g-input, p-output discrete-time system, 

written in difference equation form as follows,

Yk +  A-iYk-i +  . . .  +  A ny k_n = BiU^-i +  B 2Ufc_2 +  . . .  +  B mUfc_m (2.1)

where the subscript k is a sampling index (i.e. yk =  y{k))\ y  = [yi y2 • • • yP]T 

and u =  [u\ u2 . . .  uq]T are the vectors of output and input variables respectively; 

while Ai, i =  1,2, ...,n  and B i; i =  1,2, ...,ra are p x p and p  x q matrices of 

system coefficients.

For NMSS design, the model (2.1) is usually identified from measured input- 

output data, collected either from planned experiments (as for example in Sec­

tion 7.4.2) or during the normal operation of the plant. Alternatively, they are 

obtained from a data-based model reduction exercise conducted on the high order 

simulation model (as for example in Section 4.4.2 for the IFAC ’93 benchmark and 

in Section 6.3.4 for the ALSTOM gasifier simulation benchmark). Here, the analy­

sis utilises the Refined and Simplified Refined Instrumental Variable (RIV/SRIV)
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algorithms (Young, 1976, 1984, 1991), since these are optimal in statistical terms 

and often more robust to noise model specification than alternative estimation pro­

cedures (Young, 2006). Such statistical estimation analysis results in an estimate 

p of the reduced order parameter vector p and an associated covariance matrix P*. 

For transfer function models, the standard errors on the parameter estimates are 

then computed directly from the square root of the diagonal elements of P*. Also, 

P* provides an estimate of the uncertainty associated with the model parameters, 

which can be employed in Monte Carlo analysis to investigate the robustness of 

various control designs.

Finally, for a given physical system, an appropriate model structure first needs 

to be identified, i.e. the order of the various polynomials and the pure time delays 

in sampling intervals. In the latter regard, it is straightforward to introduce into 

equation (2.1) a time delay between the control signal and the output by assuming 

tha t the appropriate coefficients in B* are zero. The two main statistical measures 

employed to help determine the model structure are the coefficient of determination 

based on the response error, which is a simple measure of model fit; and the 

Young Identification Criterion (YIC), which provides a combined measure of fit 

and parametric efficiency, with large negative values indicating a model which 

explains the output data well, without over-parametrisation (Young, 1991).

2.2 O ptim isation  techniques

This section provides some background concepts on optimisation and the related 

mathematical notions. For brevity and simplicity, formal proofs of theorems are 

omitted, but reference is made to publications in which they can be found. At this 

point it should be noted that optimisation is a huge area of ongoing research and 

a great number of publications exist. However, this is just a simple presentation 

of some results tha t are used specifically in MPC.

There is a huge amount of work in the area of constrained optimisation by



Chapter 2: Background Concepts 11

numerous researchers and different research groups around the world (e.g. Biegler, 

1998; Borrelli et ah, 2001; Chisci and Zappa, 1999; Diehl and Bjornberg, 2004; Rao 

et ah, 1998) that is not covered here. Moreover, specific attention should be paid 

on explicit solutions to the MPC problem (e.g. Bemporad et ah, 2002; Grieder 

et ah, 2004; Rossiter and Grieder, 2005) that make the online optimisation obsolete. 

However, this is out of the scope of this thesis and such methods are not presented 

here.

In the following, mention is made to convexity of sets and functions that is 

im portant in constrained optimisation (and is the same as the MPC problem con­

sidered throughout the thesis). Definitions and basic theorems related to convexity 

are presented in Appendix B.

2.2.1 T he general constra ined  op tim isa tion  p roblem

The general form of a constrained optimisation problem can be described as follows:

The next theorem gives the conditions under which local and global minima for 

the problem (2.2) coincide, along with a condition for the uniqueness of a solution.

T h eo re m  2.2.1 (Global and unique minima (Goodwin et ah, 2005)). Consider' the 

problem defined in (2.2), where X  is a nonempty convex set in and f  : X  —> 9ft 

is convex on X . I f  x* 6 X  is a local optimal solution to the problem, then x* is a 

global optimal solution. Furthermore, if either x* is a strict local minimum, or if 

f  is strictly convex, then x* is the unique global optimal solution.

minimise /(x )  

subject to: gfix) < 0  i = 1, 2 , . . . ,  m  

hj(x) = 0 j  = l , 2 , . . . , l  

x  G X

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d)
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Next, the Karush-Kuhn-Tncker (KKT) necessary and sufficient conditions are 

presented. They provide the necessary and sufficient conditions under which a 

feasible1 solution of the problem (2.2) is a local or global minimum. Combining 

them with Theorem 2.2.1, the conditions for a feasible solution of (2.2) to be a 

unique global minimum can be derived. Furthermore, the KKT conditions are 

employed by algorithms that solve the problem (2.2) such as the ones presented 

in Sections 2.2.3 and 2.2.4.

T h eo re m  2.2.2 (Karush-Kuhn-Tucker Necessary Conditions (Goodwin et ah, 

2005)). Let X  be a nonempty open set in 3?n; and let f  : ffi1 —> gi : —» 3̂

and hj : 5?n —>• 5? for i =  1, 2 , . . . ,  m  and j  = 1 , 2 , . . . , / .  Consider the problem 

defined in (2.2). Let x  be a feasible solution, and X  — {i \ gi{x) =  0}. Suppose 

that f  and gi, for  i G I  are differentiable at x , that each gi; for i X  is con­

tinuous at x., and that each h,j for j  =  1 , 2 , . . . , /  is continuously differentiable at 

x. Furthermore, suppose that V ^ (x )r  and V /q(x)T for i G X and j  =  1, 2, . . . , /  

are linearly independent. I f  x  is a local optimal solution, then there exist unique 

scalars Xg. and Â  . for i G X and j  =  1, 2 , . . . ,  /; such that:

i
V/(x)r +  Y  A 9lV gi(x)T + Y i  \ V h j ( 5 i f  =  0

i£Z j=1
A g{ > 0  i G X

Furthermore, i f  gi, i ^ X are also differentiable a t x ,  then the above conditions can 

be written as:

m I

V/(x)T + Y  K  V3i(x)T + Y  ̂  Vft3-(x f = 0
i=1 j=1

A3i5'(x) =  0 i =  l , 2 , . . . , m

Xgi > 0 2 — 1, 2, . . . ,  771

1 Any solution th a t satisfies the constraints of the optim isation problem is said to  be feasible.
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T h eo re m  2.2.3 (Karush-Kuhn-Tucker Sufficient Conditions (Goodwin et ah, 

2005)). Let X  be a nonempty open set in $Rn; and let f  : gi : $Rn —> -ft

and hj : 5Rn —■> 5ft for' i =  1, 2 , . . . .  m and j  = 1,2, . . .  ,1. Consider the problem 

defined in (2.2). Let x be a feasible solution, and X  — {i : gi(x) =  0}. Suppose 

there exist scalars X*. and \*hj for i G X and j  = 1,2, . . .  ,1, such that

i
V /(x ) r  +  ] T  A ;v 3,(x )r  +  V /V /^ (x )r  =  o (2.3)

i£l j=1

Let J  =  j j  : \*h. > o j  and K, =  |jf : X*x. < o | .  Further, suppose that f  is pseu- 

doconvex at x ,  gi is quasiconvex at x  for i G X, hj is quasiconvex at x  for j  G J , 

and hj is quasiconcave (i.e. —hj is quasiconvex) at x  for j  G 1C. Then x  is a global 

optimal solution to problem (2.2).

Although the form (2.2) is convenient to extract valuable results for the opti­

misation problem, in the MPC framework it is usually formed in a way where the 

constraints are presented in a more compact matrix form as is shown for example 

in the next section (Equations (2.4b) and (2.4c)). In this regard, it would be more 

convenient to write the KKT conditions in a compact matrix form as follows:

V /(x ) r  +  V g (x )TAj +  ' Vh ( x ) TXj = 0

>h 9 ( x ) = 0

Aj >  0

where V g (x ) is the m  x n  Jacobian matrix whose zth row is V<ft(x); V k (x ) is

the I x n  Jacobian matrix whose ith  row is V/p(x); g (x ) is a vector whose zth 

element is <ft(x); and A* and Aj are vectors containing the Lagrange multipliers A» 

and Xj respectively.

The above KKT conditions describe in a mathematical form the idea that there 

is no direction along which the cost function /(x )  at the optimal solution is de­
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creasing without violating the imposed constraints. In other words, the derivative 

of the cost function can be described by a linear combination of the derivatives of 

the constraint regions at the minimising point. An interesting geometrical inter­

pretation of the KKT conditions can be found in Papalambros and Wilde (2000).

Although the cost function in MPC can be of any kind, it is very common for a 

quadratic cost function to be minimised subject to equality and inequality con­

straints, while an interesting consideration of the results of using a linear cost 

function can be found in Rao and Rawlings (2000). The general problem for­

mulation with a quadratic cost function that is used in the rest of the thesis is:

where, A e  and A j are matrices that represent the equality and inequality con­

straints and the inequality sign refers to element by element inequalities.

Prom Lemmas B.1.4 and B.2.3 it follows that the optimisation problem defined 

above is one of minimising a convex function over a convex set and according to 

Theorem 2.2.1 any local minimiser is a global one. Furthermore if H >- 0, i.e. H  

is positive definite, then from Theorem 2.2.1 it results that this global minimiser 

is unique.

It follows that a necessary and sufficient condition for a point x* to be a unique 

global minimiser of (2.4) is for the KKT conditions to be satisfied, i.e. there exist 

Lagrange multipliers A; for i e l  — {i, A jx < 0} and A j for j  e £  = {i, A E5t =  0}

2.2.2 T he M P C  op tim isa tion  p roblem

minimise {x TH x +  pTx}  

subject to: A ^x  =  0 

A /x  < 0

(2.4a)

(2.4b)

(2.4c)
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such that:

Hx +  p r  -j- A/A; +  A^Aj = 0 (2.5a)

Aj > 0 (2.5b)

Xj  ( A j x  — b/) =  0 (2.5c)

where, A i and A j are vectors containing A * and Xj respectively. It should be noted 

here that (2.5c) is added to account for the inactive inequality constraints (for 

more details see Goodwin et ah, 2005). Furthermore, it is clear tha t the inequality 

and equality constraints of (2.4) must also be satisfied at x*.

This section introduced the quadratic program tha t will be used throughout 

this thesis and presented the KKT conditions for it. It is evident that it takes 

a simpler form than the general one and as mentioned before, a lot of efficient 

algorithms exist to solve this simplified problem. The underlying ideas of the 

two most commonly used categories of algorithms are presented in the next two 

sections.

2.2.3 A ctive set m ethods

In active set methods, it is assumed that an initial feasible solution exists (although 

this is a difficult problem on its own, especially in large optimisation problems). 

At this point the active constraints are identified and a decreasing direction d 

is sought such that / (x )  < / ( x fc), where x fc is the initial feasible solution and 

x  =  xj, +  d. If x is feasible for the original problem (2.2), then it is set as an 

initial condition and the same procedure is repeated. If not, then a line search is 

made along the direction of d to identify the point were feasibility is lost (i.e. the 

point at which a previously inactive constraint becomes active). This procedure is 

repeated until there is no decreasing direction, i.e. d =  0.

At this instant, if the KKT conditions are satisfied, the point x  is accepted
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as a global minimum and the algorithm stops. If not, then there is a direction 

along which some active constraint becomes inactive and the function /(x) has a 

smaller value. This constraint is identified by i t ’s associated Lagrange multiplier 

in the KKT conditions (it is negative). Then a descent direction away from this 

constraint is calculated and the algorithm proceeds on to the next iteration.

More information on the details of active set methods can be found in Fletcher 

(1981) and Gill et al. (1981), while the above presentation is a summary of infor­

mation found mainly in Maciejowski (2002) and Goodwin et al. (2005).

An attractive feature of active set methods is that the solution lies all the time 

inside the feasible region. So, in cases were the algorithm needs to be terminated 

before the global minimiser has been found, the solution would be feasible, which 

is very important in real applications (feasibility can be more important than 

optimality in some cases (Maciejowski, 2002)). Yet, the problem of finding an 

initial feasible solution is hard enough for the general case (even with the quadratic 

program of (2.4)) and a drawback for active set methods. However, in the case of 

MPC, the previous solution to the problem can provide (in the absence of large 

disturbances) not only a feasible solution, but also one tha t is close to the optimal 

one.

An active set method is evaluated by the quadprog function (that is used in 

the simulations presented in this thesis) of the MATLAB® optimisation toolbox 

in ‘Medium-Scale’ mode (i.e. in most cases considered in this thesis).

2.2.4 In te rio r po in t m ethods

There are a lot of different variations of interior point methods with their main 

characteristic being that, in contrast to the active set methods, they don’t search 

for the optimal solution at the boundary of the constraint region. On the contrary 

they start from an arbitrary point and create a path (usually not geometrically 

intuitive) to the optimal solution. A useful property of these algorithms is the fact
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tha t a lot of them don’t necessarily require a feasible initial point (making the 

problem easier to solve, although a good initial guess can drastically improve the 

convergence of the algorithm (Melman and Polyak, 1996)). However, the majority 

of them will not provide a feasible solution until the end of the optimisation pro­

cedure, which can cause problems in large scale problems where a feasible solution 

is required even if the algorithm has not terminated (as already mentioned in the 

description of the Active Set methods in Section 2.2.3).

In a bit more detail, the idea underlying the primal-dual interior point methods 

is presented here. In this class of algorithms, a barrier' function is introduced that 

is dependent on the constraint region of the initial optimisation problem and the 

following unconstrained problem is introduced:

minimise {/(x) -  fbarrier(v, ^(x)> hj i x ))} (2-6)

where / barrier (') is a function that that monotonically decreases while fi —> oo; and 

/(•), gi(-), i = 1, . . . , m  and hj(-), j  = 1 , . . . , /  are defined in (2.2). Both (2.6) 

and i t ’s dual are subsequently solved sequentially for increasing values of /i. It 

can be shown that as /i increases, the solutions of the primal and dual problems 

come closer and eventually converge to the solution of the initial constrained prob­

lem (2.2).

There are a lot of variations and algorithms for interior point methods in the 

literature. A collection of some, along with a discussion on some issues that arise 

can be found in Anstreicher and Freund (1996). Some intuitively nice guidelines 

are also given by Maciejowski (2002) and Goodwin et al. (2005), while Rao et al. 

(1998) present an optimisation algorithm that exposes the structure of the MPC 

problem for improved speed.

The quad prog function that is used in the simulations of this thesis uses an 

interior point method to solve ’Large-Scale’ optimisation problems.
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2.3 R eceding Horizon Control (R H C )

As already mentioned the control law to be applied to the system results from an 

optimisation problem that can take the form of (2.4). To introduce the notions of 

prediction and control horizon, the following optimisation problem is defined:

NP Nc- 1

minimise E X f c + i Q x f c + i  "b E (2.7a)
i=1 i—0

subject to: x fc+i =  / ( x fc+i_i, u fc+i_i) (2.7b)

x fc+i G X  i = 1 , . . . ,  Np (2.7c)

u k+i e U  i =  0 , . . . ,  Nc -  1 (2.7d)

where the minimisation is performed over the control input sequence {ufc+ f̂c}, 

% =  0 , . . . .  Nc — 1, where the subscript |k defines the sampling instant at which

the prediction is based on and A and U represent constraint sets on the state and

inputs of the system respectively. This is in the form of the well-known Linear 

Quadratic Regulator (Mosca, 1995) with the addition of constraints, but instead of 

taking into account the system evolution x fc+i =  / ( x fc+i_i, u k+i-i) for i =  1, . . . ,  oo, 

only Np steps ahead are considered, and Np is called the prediction horizon. In the 

same manner N c future values of the control signal are sought, and N c is called 

the control horizon. Details on how to bring the problem (2.7) in the form of (2.4) 

are given in later chapters for the specific cost function tha t is used in each MPC 

formulation of the problem.

However, something unexpected can happen before the end of this horizon

(when a new control sequence would be calculated). In this case the predicted

system evolution differs from the actual one. To avoid this kind of mismatch, (2.7) 

is solved at every sampling instant and the receding horizon strategy is evaluated.

According to the Receding Horizon Control (RHC) strategy, only the first 

element of the computed control sequence is applied while the rest are discarded
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and the optimisation problem is solved again. In more detail, the control steps are 

described in the following.

1. At time instant k the problem (2.7) is solved and the optimal sequence 

{ ufc|fc,. . . ,  Ufc+w.-ip} is calculated.

2. The first first value of the control sequence is applied to the system and 

the rest is discarded.

3. A new measurement of the system state x fc+1 is made at the following sam­

pling instant k +  1.

4. Based on the new measurement the optimisation problem (2.7) is solved 

again and a new control sequence {ufc+1|fc+i , . . . ,  u&+wc|ah-i } is calculated.

A graphical representation of the RHC strategy is given in Figure 2.1. The 

prediction and control horizons are shown, while it becomes apparent tha t they 

slide along to the future, at each sampling instant.

It is clear that in the disturbance free case and when there is no model mis­

match, the difference in the optimal control sequences reduces by increasing the 

control and prediction horizons and eventually it converges to the optimal solution 

of the infinite horizon control problem (in the absence of constraints).

The receding horizon control strategy allows for the controller to take into 

account new information about the system’s environment as they become appar­

ent. Getting closer to system constraints for example may result in the controller 

producing a more ‘conservative’ control sequence that will allow constraint sat­

isfaction that would not have been the case at a previous sampling instant were 

the system was far from the constraints. Furthermore, knowledge of a particular 

modelled disturbance can give the controller adequate information to react before 

the disturbance becomes apparent in the measurements as is shown in Chapter 7. 

Such an example can be the surrounding temperature of a controlled environment 

tha t will affect i t ’s temperature several samples into the future.
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Figure 2.1: The Receding Horizon Control strategy. It is evident tha t a mismatch 
between the predictions of two consecutive sampling instant may occur.

2.4 Lyapounov theory

A very general definition of stability is the one of Bounded-Input Bounded-Output 

stability as defined below.

D efin ition  2.4.1 (Boundecl-Input Bounded-Output Stability (Marlin, 1995)). A

system is stable if  all output variables are bounded when all input variables are 

bounded

However, the above definition is quite general and although it provides a useful 

insight on the notion of stability, it is not very helpful when it comes to formally 

addressing this issue. In this regard, the more widely used Lyapounov stability 

is considered below, according to which an equilibrium point is stable if a small 

perturbation of the state or input results in a continuous perturbation of the 

subsequent state and input trajectories. More formally, it is defined as:

D efin ition  2.4.2 (Lyapounov Stability (Letov, 1961)). Let S  be a set in 3Rn that 

contains the origin. Let f  : 3Tl+m be such that f ( S )  C  S.  Suppose that the
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system

Xfc+i =  / ( x fc, u fc) (2.8)

with Xfc G 5ftn, has an equilibrium point at (x, u), that is / (x ,  u) =  x. Let Xfc0 G <5 

and {xfc0+,;} G 5 , for i > 1, 6e the resulting sequence satisfying (2.8) for a control 

sequence Uk0+i, i > 1. The equilibrium point is stable in S  i f  for any e > 0, there 

exists 5(e) > 0  such that

XfcQ G S  and
T

(Xfco -  x)T , (u ko -  u )T || < 5

(xfco+i -  x )T , (u ko+i -  u )T
T

< e, Vi > 0

T
Furthermore, if  in addition || (xfc0+i — x) , (ukQ+i ~  u) 

it is asymptotically stable.

0 as i —> oo then

Since it is the most widely used stability definition and has been extensively 

used in the literature, in the rest of the thesis only Lyapounov stability is con­

sidered. The notion of Lyapounov stability of an equilibrium point requires the 

system to remain near that point after a disturbance in the state or the input 

of the system, while asymptotic stability requires for the equilibrium point to be 

reached eventually. The most common way of showing tha t a point is Lyapounov 

stable in nonlinear control theory is by means of Lyapounov’s theorem that is 

presented below.

L y ap o u n o v ’s T heo rem . (Maciejowski, 2002). If there is a function V (x ,u) 

which is positive definite, with C (x ,u ) =  0 only if (x, u) =  (0,0), and has the 

property that

II [xi,Ui] II > II [x2,U2] II => ^ ( x ^ U i )  > y (x 2,u 2)

and if, along any trajectory of the system x fc+1 =  / ( x fc, u fc) in some neighbourhood
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of (0, 0) the property

V(xk+Uuk+1) < V{xkluk)

holds, then (0,0) is a stable equilibrium point. If, in addition, V(xfc,u*.) —>• 0 as 

k —> oo then it is asymptotically stable. Such a function is called a Lyapounov 

function

Lyapounov’s theorem states the conditions for stability and asymptotic stabil­

ity of the origin. Yet, with a change in the system coordinates any equilibrium 

can be moved to the origin. Therefore, the Lyapounov theorem can be applied to 

prove stability of any equilibrium point.

A stability proof for the general MPC scheme can be found in Appendix C that 

poses the basis for stability proofs throughout this thesis.

2.5 C onclusions

This chapter reviewed background concepts that are used later in this thesis. The 

identification procedure that is later used to obtain the model used in the predic­

tions has been presented, along with concepts of constrained optimisation tech­

niques. Furthermore, the Receding Horizon technique tha t is used in the MPC 

strategies presented throughout the thesis was briefly presented. Finally, concepts 

of Lyapounov stability were presented since this is the main tool for stability anal­

ysis.



Chapter 3

Reference governor over P IP  

control

As already mentioned, a common control structure for systems described in the 

NMSS is Proportional-Integral-Plus (PIP) control, tha t can be considered a pow­

erful extension of the well known Proportional-Integral-Derivative (PID) control 

scheme. In the cases however where constraint handling is an issue, PIP (and 

PID) control is designed off-line in an ad-hoc manner to avoid constraint viola­

tion (e.g. Taylor et al., 2001; Taylor arid Shaban, 2006, adjust the LQ weights 

using off-line simulations).

Two common techniques to deal with constraint handling when a controller is 

already available are the Closed Loop Paradigm (CLP) (e.g. Rossiter, 2003) and 

the Reference Governor (RG) (e.g. Bemporad et al., 1997). In both, an optimal 

supervisory control scheme is applied to the already controlled system to ensure 

constraint satisfaction. Although it can be proved tha t both control schemes are 

equivalent (Rossiter, 2003) with the only difference being in the way the degrees 

of freedom (dof) are parametrised, they have different properties regarding the 

conditioning of the resulting optimisation problem and the insight they provide as 

to the effect of the constraints to the closed loop system.

This chapter considers the problem formulation as in that of the RG, while

23
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Figure 3.1: The Reference Governor Control Scheme

parametrising the dof as perturbations around the reference signal (even though 

this is more common in the CLP approach, it is chosen here due to i t ’s simplicity 

and the insight it can provide on the effect of the constraints on the closed loop 

system). The underlying idea of RG techniques is that as long as a stable controller 

exists, there can be a reference sequence that can lead to constraint satisfaction 

whilst preserving the closed loop system properties for this artificial reference 

(or for the actual one when operating far form the constraints). It can also be 

considered as a nonlinear reference filter that alters the reference signal when it 

would cause constraint violation if it was directly applied to the system. A block 

diagram of the RG control scheme is presented in Figure 3.1.

The approach presented in this chapter is a first attem pt for systematic con­

straint handling within the NMSS. It can easily be applied to systems were a PIP 

controller is already available and improve the performance of the overall control 

scheme (as is shown by a simulation example in Section 3.4). The same technique is 

later evaluated for an initial approach to constraint handling in the more demand­

ing context of the non-linear class of State Dependent Parameter (SDP) models 

as described in Chapter 8. Reference will be made here for the basic notions of 

the RG scheme and formulation of the control problem.

Next, Section 3.1 presents the formulation of a PIP controller in the absence of 

constraints, while Section 3.2 introduces the RG. This is followed by Section 3.3 

that briefly consi ers the stability and reference tracking properties of the RG 

scheme and Section 3.4 that compares by simulation a closed loop system with



Chapter 3: Reference governor over PIP control 25

and without a RG. Finally, Section 3.5 concludes the present chapter.

3.1 System  description and closed loop control

Consider the g-input p-output system described by the difference equation (2.1). 

As described in Young et al. (1987), the system described by (2.1) can take the 

following NMSS form:

x fc =  A xfc_i +  B u fc_i +  D rfc 

Yk =  C x fc

(3.1a)

(3.1b)

where r  =  [r\ r 2 ■ • • rp]T is the reference level vector and the (n + l)p + m (g  — 1) x 1 

state vector x  is defined as:

r T  T  T T T
X fc  =  [ y I  y jfe - 1  • • • Y k - n +1 U fc- 1  u k - 2 u zTl k —m + 1  k  J (3.2)

in which =  x-z~T (r/c — Yk) is the integral-of-error state variable tha t is used 

to ensure type one servomechanism performance (e.g. Taylor et ah, 2000a). The 

system matrices in (3.1) are:

A  =

-A x  •• A n_x A n b 2  • B m_x B m O p

I p  •• O p O p 0  p q O p q O p g O p

oP • I p O p 0  p q O p g O p g O p

0  q p 0  q p 0  q p 0 ,  •• ■ o9 0 g O g p

0  q p 0  q p O q p I, • o9 0 , O  q p

0  q p 0  q p O q p 0 ,  ■ I« O g O q p

A x •• A n —1 A n - b 2 • B m_x — B m I p

(3.3a)
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T

(3.3b)

D  =  o  o  o  o T  n T  . . .  n T  t

^  I p  '  O p  O p  O p g  • • • O p g  O p g  O p (3.3d)

(3.3c)

where Ip and 0p are the p x p identity and zero matrices respectively, while 0Pg is 

a p x q matrix of zeros.

The above system representation has been extensively studied and numerous 

applications exist that evaluate the PIP control methodology (e.g. Lees et ah, 

1996; Taylor et ah, 2000b; Quanten et ah, 2003; Gu et ah, 2004). As in any control 

structure there are various control design methods for PIP controllers (such as pole 

assignment or LQ optimal design). However after designing the controller to give 

the system the desired properties (i.e. rise and settling time, overshoot, etc.1), it 

takes the following state feedback form:

where — [I^i 1^-2 ’ ' ’ I^-n+i * ’ ' i K-n+m] is the gain ma­

trix. The controlled system can now be described by the free response state space 

model defined by:

in which A  =  A — BK , while the slack reference vector signal w  that is defined 

in the next section is used instead of the actual one. At this point w k = rk 

is considered and it is clear that the system (3.5) is the one of (3.1) after the

1The controller properties hold in the case where constraints are not present or the controller 
operates away from the constraints. In the presence of input constraints for example, the control
signal might sa turate  and as a consequence the system response differs from the designed one.

u& =  - K x fc (3.4)

y k — Cx/j

x fc =  A xfc_i +  D w fc (3.5a)

(3.5b)



Chapter 3: Reference governor over PIP control 27

application of the control law (3.4).

3.2 C ontrol D escription

As mentioned before, the underlying idea of the RG is to predict the system 

evolution, detect any constraint violations and produce a slack reference sequence 

that, if applied to the system, results in constraint satisfaction. This slack reference 

should converge to the actual one so that there is offset free tracking of the actual 

reference. Although there are numerous options on how to parametrise this slack 

reference sequence (e.g. Bemporad et al., 1997; Bemporad, 1998a; Oh and Agrawal, 

2005), a perturbation around the actual one is used in the following:

where is the artificial reference that is applied to the system and the perturba-

example (Figure 3.5), the above parametrisation of w  can also provide a measure 

of the effect of the constraints on the closed loop system.

Using the parametrisation (3.6), it is sensible to try  and minimise the perturba­

tions around the reference while maintaining the system within the region defined 

by the constraints. In this regard, the following constrained optimisation problem 

is solved at each sampling instant:

w fc =  rfc +  (3k (3.6)

tion vector has the form (3 =  [fli . . .  fip\T. As is later shown by the simulation

hi v-,&Np
mm (3.7a)

i=  1

u < Ufc+i <  u

subject to: < A u  < Au*+j < A u  i = 0, . . .  7 Np — 1 (3.7b)

y < yk+i+i < y\
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where is given by (3.4); Aujt+i =  u k+i — u k+i-i is the vector of control in­

crements at each sampling instant; the system evolution is tha t of (3.5); j. and 7 

refer to minimum and maximum allowed values for the system variables; and the 

inequalities in the constraints are element by element inequalities. It is clear that 

in the absence of constraints, the minimising /3-sequence is zero and the reference 

remains unchanged. Yet, when the actual reference results in constraint violation 

by the controlled system within the prediction horizon, the predictive control law 

intervenes and changes the reference input so that the constraints are satisfied.

For commercial optimisation tools to be used, the above constraint optimisation 

problem needs to be cast into a more compact matrix form. In this regard, the 

optimisation parameters are formed into a single vector as:

and the following predicted state, future control input, future control input incre­

ment, future reference and predicted output vectors are defined:

r 1 T

T

P = P i P i ... P lp

x X fc+1 X fc+2
■T V T T

Xfc+ArP
T

u
T

A U A u  I  A u Tk+1

S rk+1 rk+2 . . .  rk+Np
T

Y yk+i yfc+2 • ■ ■ y k+Np

Substituting (3.6) to (3.5), the state predictions for the system take the following
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form:

x fc+i = Ax/e +  Dr^+i +  D/3j

xfc+2 — A.X/-+1 + Dr^+2 +  D/32

=A  2Xk  + ^ADrfc+i +  Dr^+2̂  +  ^AD/3} +  D/32̂

JVo-l JV„ - 1

x /e+wp —A NpXk +  ^  A*Drfe+jvp-i +  ^  A *D ^fc+̂vp_i 
i = 0  ? = 0

or in a more compact matrix form:

X = Fxfc +  HrS + H r(3

in which

A D Or • 0!

F =
A2

; Hr =
AD D • 0!

I 1

£ i 0 a ^ - 2d  • D

(3.8)

where 0i is a (n +  l ) p +  (m — l ) q x p  matrix of zeros. Next, the following matrices 

can be defined in order for the future control input vector to be w ritten in a similar 

m atrix form,

-K 02 02 02 o2

o2 -K 02 02 02

KX = 02 ;K 2 = o2 -K  •• • o2 o2

o2 02 02 -K 02

(3.9)

where K is the control gain matrix defined in (3.4) and 02 is a zero matrix of
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dimension (n +  1 )p +  {m — 1 )q x q. The future control input vector can now be 

written as:

U  = K lXfc + K2X

= (K! + K2f )  x* +  K2HrS + K2Hr/3

In the same manner, and noting that A U  =  —CiUfc_i +  C 2U, with:

1
Cr<

HH
1

1—1
1

o, 0, ••• 0, 0,

0, - I , i , 0, ••• 0, 0,

0, IIC<J
o 0, - i , I, 0* 0,

0, o5 0, - I ,  I, 0,

1
o

i ° , 0,

1—1 1CP
o

p

the future control increment vector is written as:

A U  = CiUk-i +  C2 ^Ki + K2f )  Xfc + C2K2HrS +  C2K2Hr/3

Finally, defining the pNp x ((rc +  l)p  +  (m -  1 )q)Np block diagonal matrix C, with 

C on i t ’s diagonal, the predicted output vector is written:

Y = CX

= CFxfc -P CHrS T  C H r(3

At this point, it is useful to note that the double inequalities of (3.7b) can be 

written as two single inequalities and in matrix form as for example for the first
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one:

-U  < -U  (3.11a)

U < U (3.11b)

where U and U are vectors with the minimum and maximum allowed values for

u. The second and third double inequalities of (3.7b) can also be described in

m atrix form as in (3.11) with AU, AU, Y and Y appropriately defined. Now, 

the control problem (3.7) can take the following matrix form:

rmn {3T(3 (3.12a)

subject to: M(3 < N (3.12b)

where,

- K 2Hr - U  + ( k , +  K2f ) x fc + K2HrS

K2Hr U -  ( k 2 + K2f ) x t -  K?HrS

—C2K2Hr -  A U  -  Cju*-, + C2 ( k , +  K 2f ) Xfc +  C2K2HrS
/ \;N  =

C2K2Hr A U  + Cnifc.! -  C2 +  K2FJ -  C2K2HrS

-C r fcHr —Y  + CFxfc +  CHrS

CV fcH r Y  -  CFxfe -  CHrS

and the inequality sign refers to element by element inequalities.

This is now clearly in the form of (2.4) with H =  I Arp, p = 0 and no equality 

constraints and can therefore be solved using any of the existing constraint op­

timisation techniques. In this regard, the quad prog function of the MATLAB® 

optimisation toolbox is evaluated that uses an active set method (see Section 2.2.3) 

or an interior point (see Section 2.2.4) to solve the optimisation program (depend­

ing on the problem size). Finally, the RHC approach is used and the problem is
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solved at every sampling instant.

3.3 Stability  and R eference Tracking

Since a stabilising control law is already applied to the system, stability of the 

control scheme is trivial. In the presence of constraints, the RG produces a se­

quence of reference signal perturbations that leads to constraint satisfaction and 

therefore stability is guaranteed whilst satisfying the constraints.

A common approach to ensure type one servomechanism performance for the 

RG controlled system is to force the (3 parameters to zero after a specific point 

within the prediction horizon (i.e. the reference that would be applied is the actual 

one and the PIP controller would ensure type one performance). Another approach 

to ensure reference tracking is to parametrise the perturbation as /3k =  (3kfik5 where 

jik is monotonically decreasing with k and (3k is bounded, which is in principle the 

same as forcing (3 to zero (yet in a smoother way). This is based on the approach 

by Bemporad et al. (1997) where a different (but decaying) parametrisation of the 

perturbation is used. However, in this thesis it is assumed tha t reference tracking 

is practically achieved though it is clear that the approach can be adequately 

changed to force a decaying (3.

3.4 Sim ulation exam ple

To present the characteristics of the RG technique presented above, the follow­

ing reference tracking control problem is considered. Let a marginally stable, 

non-minimum phase Single Input Single O utput (SISO) system be defined by the 

following difference equation:

yk -  1.7yk-i +  yk- 2 — -0.5iifc._x +  2 ufc_ 2
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The control objective is to track constant reference signals while the input 

signal has a maximum magnitude of 2 units (i.e. \u\ <  2) and the rate of change of 

the input signal is of magnitude less than 0.5 units/sample (i.e. |A'u| < 0.5). Both 

the input and i t ’s rate-of-change are considered to saturate at their boundary 

values. Initially, the system is expressed by the NMSS state space form described 

in Section 3.1, with the state vector being:

Then, a PIP controller is designed using pole assignment and to highlight the 

difference between the RG technique and regular PIP control, the closed loop is 

designed to have a fast response to reference changes. Namely, two of the poles 

are placed in the origin while the other two at 0.2 of the z-plane. This results in 

a state feedback controller of the form of (3.4) with the following gain vector.

At this point, it should be noted that, to avoid integral windup, the implemen­

tation of the PIP controller is based on i t ’s incremental form (see Taylor et al., 

2004a), according to which, the control signal is given by:

A simulation of the closed loop system for two reference changes (one small 

from 0 units to 5 units at the 5th sampling instant and one large from 5 units

T
Ilk Vk—1 U'k—1 %k

k — 3.16 -3.05 6.10 -0 .64

ufc =  ufe_i -  K A x fe (3.13a)

with the following corrections:

(3.13b)
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Figure 3.2: System output (top figure), input (middle figure) and input rate-of- 
change (bottom figure) for the case where the constraints are not present. In the 
top figure the reference signal (thin line) is also shown.

to -5 units at the 31st sampling instant) when no constraints are applied to the 

system is shown in Figure 3.2 (the initial condition for the system is considered to 

be x 0 =  0). It is clear that both the input signal and i t ’s rate-of-change violate 

the constraints defined by the system specifications. In order to systematically 

deal with the constraints, a RG is designed for the closed loop system.

Using a prediction horizon of Nv =  10 for the RG, the system is again simulated 

for the same reference signals as before, with saturating constraints on the control 

input signal and i t ’s rate-of-change, and the same initial conditions. The result 

is depicted in Figure 3.3 for both the system with and without the RG. It is clear 

tha t the system with the RG manages to overcome the unwanted oscillations that 

appear in the small reference change and results in a stable response in the case of 

the large reference change (in the latter case, the system without the RG produces 

an unstable response).

Although the response of both systems seems to be very close until they initially
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Figure 3.3: Output (top figure), input (middle figure) and input rate-of-change 
(bottom figure) for the system with (thick solid lines) and without (dotted lines) 
the RG. In the top figure the actual (thin solid line) and the artificial (thin dashed 
line) reference signals are also shown.

reach the set point, the system without the reference governor fails to remain close 

to it. It fluctuates before settling (small reference change) or even goes unstable in 

the case of the large reference change. This is directly related to closed loop system 

dynamics and the saturation of the control signal and it’s rate-of-change. In this 

example an initially very fast closed loop system was designed to emphasise this 

phenomenon. Both systems hit the constraints when the set point change occurs, 

but in the case of the system with the RG the reference signal is smoothened in 

order for the controller to approach the actual set-point slightly slower and avoid 

unnecessary oscillations or instability. It is therefore evident tha t the introduction 

of the RG can improve the system response of a closed loop system in the presence 

of saturating constraints.

To show the effect of the prediction horizon Np, the case of a much shorter and 

a much longer prediction horizon (namely Np = 3 and Np =  30) is presented in 

Figure 3.4. As can be seen, a longer prediction horizon results in smother handling
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Figure 3.4: Comparison of the system response for the cases where Np =  3 (dotted 
line) and Np — 30 (dashed line). The actual reference signal is shown as a solid 
line.

of the nonlinearity caused by the constraint and tends to decrease the overshoot 

in the large reference change. In the small reference change the result is not 

noticeable since the available dof are enough for a smooth response. At this point, 

it should be stressed that even in the case of the very small prediction horizon of 

Np =  3 the RG system produces a stable system output. It should also be noted 

tha t the response for the cases of NP — 10 and Np =  30 is indistinguishable. This 

is because a prediction horizon of 10 is already long enough for the RG to foresee 

and avoid any constraint violation (as is for the small reference change between the 

RG with Np = 3 and Np — 30 shown in Figure 3.3). However, a larger set-point 

change might require a longer prediction horizon and in a practical situation it 

should be chosen based on experience and knowledge on the expected set-point 

changes.

The resulting [3 parameter for the short and long prediction horizons is shown 

in Figure 3.5 and as already mentioned it can provide useful insight on the effect
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Figure 3.5: The reference perturbations for the RG controlled system with Np = 3 
(dotted line) and Np =  30 (solid-star line).

of the disturbances to the controlled system. By the values of (5 and (3.6) it is 

can be seen tha t the slack reference signal is brought towards the actual system 

output and subsequently moved closer to the next set-point. This is the case for 

both set-point changes. However, in the large set-point change, the RG with the 

longer prediction horizon has already foreseen the need for the controller to slow 

down and therefore the oscillations of j3 around zero are minimised.

3.5 Concluding remarks

This chapter has presented the RG technique for constraint handling when a sta­

bilising controller is already present. This controller is used to pre-stabilise (if 

necessary) the open loop system and fulfil the design requirements in the con­

straint free case. The RG is then applied to change the reference signal in order 

for the closed loop system to satisfy the constraints.

Although the RG approach to constraint handling is not new, the parametri-
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sation of the problem that has been developed in this thesis resembles the one 

used in the CLP approach rather than other RG approaches. This is mainly due 

to i t ’s simplicity in implementation and the insight it can provide on the effect 

of the constraints to the controlled system. Concerning reference tracking, it is 

common for RG approaches to require for the perturbation around the reference 

signal to decay (and eventually reach zero), but in this case it is argued tha t once 

the set-point is within the constrained region, it will be reached and the resulting 

perturbation will be minimal (since the square of the perturbations is minimised). 

Nevertheless, a methodology is sketched in order to formally provide reference 

tracking.

The simple principle that underlies the RG technique makes it an attractive 

tool for non-linear systems (a detailed study of the RG for non-linear systems 

is presented by Bemporad, 1998a). In this regard, this chapter also serves as an 

introduction to the notion of the RG that will later be applied to the non-linear 

class of SDP models (Chapter 8).



Chapter 4 

M PC  w ith an integral—of—error 

state

The dependence of Model Predictive Controllers on the estimated model of the 

system is of particular importance (e.g. Rossiter, 2003). In this regard, as already 

mentioned, Wang and Young (2006) have recently proposed an approach to MPC 

based on the definition of a NMSS model. This approach eliminates the need for 

an observer such as a deterministic state reconstructor or a stochastic Kalman 

filter.

Such NMSS models have previously been used for linear (fixed gain) PIP con­

trol system design (e.g. Young et ah, 1987; Taylor et ah, 2000b). As already 

presented in Chapter 3, for NMSS/PIP control, the state vector consists only of 

the present and past values of the output variable, past values of the input variable 

and an integral-of-error state variable, introduced to ensure type one servomech­

anism performance. All these state variables are directly measurable, making the 

controller potentially less sensitive to the problems of model mismatch than the 

minimal state equivalent using an observer.

Wang and Young (2006) develop an approach for inherent handling of system 

and actuator constraints for NMSS models using MPC methods. Furthermore, 

they show that the NMSS/MPC approach leads to improved performance (re­

39



Chapter 4: MPC with an integral-of-error state 40

garding the chosen performance objectives) in comparison to conventional minimal 

MPC with an observer. However, in order to ensure steady state tracking, Wang 

and Young (2006) defined a state vector consisting of the differences of past output 

and input values, an approach that is very common in chemical and process con­

trol industries. Nevertheless, since a number of useful tuning techniques have been 

developed for the NMSS/PIP form, including multi-objective optimisation of the 

linear quadratic cost function weights (Tych, 1994; Tych et ah, 1996; Chotai et ah, 

1998), the present chapter delivers an MPC control scheme using this alternative 

framework with an explicit integral-of-error state variable.

This new approach is formed to serve as a starting point for experience gained 

in PIP design to be adopted within the NMSS/MPC framework. In this direction, 

it is later shown in Chapter 5 that this particular formulation of the NMSS/MPC 

controller provides the designer with extra freedom (that is a result of the form of 

the state vector and the integral-of-error state variable) to deal with performance 

requirements.

In the following, Section 4.1 presents the NMSS/MPC controller of Wang and 

Young (2006) for comparison and future reference while Section 4.2 presents the 

alternative controller formulation proposed by the author and Section 4.3 develops 

i t ’s disturbance rejection and set-point following properties along with stability 

results. Then Section 4.4 presents it’s properties using simulation examples while 

Section 4.5 summarises the conclusions of this chapter.

4.1 T he controller o f W ang and Young (2006)

This section presents briefly the NMSS system description and controller formu­

lation tha t has initially been described by Wang and Young (2006). Then, Sec­

tion 4.2 presents an alternative NMSS/MPC controller based on the state space 

description of (3.1), used for PIP control and the state vector (3.2).
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4.1.1 System  D escrip tion

Consider the difference equation description (2.1) of a g-input p-output system. It 

can also be represented in terms of differenced input and output variables yielding 

embedded integral action in the MPC system as:

Ay^+AiAyfc_! +  . . .+ A nAyfc_n =  BiAu/c_ i+ B 2 Au/c_2 +. . .+ B mAu/e_m (4.1)

where A is the difference operator (i.e. Ay*, =  — y^-i). Defining the NMSS

state vector as:

XA,k ~ A y f A y ...  Ay[_„+1 A u f., A u £.2 (4.2)

where the subscript a refers to the fact that the state vector is defined using 

the differenced values of inputs and outputs, while the subscript * refers to the 

sampling instant. The state space description of the system has the following form:

A xAifc = A AA xAjfc_i + BAArtfc_i 

A yfc =  CAA xA)fc

The matrices in the above state space description are:

A /

1
1 > A n_i A n b 2 B rn—l B m

l
h

n

PQ
i

*v ■■ op O p 0 pq 0pq 0 pq 0 qp

O p  • • Ip O p 0 pq 0pq 0 pq
; b a —

0 qp

0 q p O q rp 0 qp 0,  •• ■ o9 % h

0 qp 0 qp 0 qp I<7 ■ o9 09 09

0<7P 0 qp 0 qp 0,  •• I , o q _ A .

(4.3a)
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and

C A - I p  O p  '  ’ O p  O p  0 p q  • • • O p g (4.3b)

Subsequently, the augmented state vector is defined as:

A x T v TA,fc Y k (4.4)

The NMSS representation of the system that is used for state and output predic­

tions in the MPC algorithm is then defined as:

A u fc_i (4.5a)

(4.5b)

where 0 is a rvp + (m — 1 )q x p matrix of zeros. For notational simplicity, in the 

sequel the matrices A, B and C are defined as:

A a 0 B a
Xfc = Xfc-l +

C aA a \ CmBA

Yk = 0T Ip Xfc

A

i
o<

1

B a r -I
; B = and C = 0r  Ip

C aA a Ip CmBA
(4.6)

4.1.2 C ontro l D escrip tion

Following the standard MPC approach, the future state, future output and control 

increment vectors are defined as:

X  = 

Y  = 

A U  =

rT  y-T  
Nfc+1 ^k+2 ■ • •

Yk+i Yk+2

“"fe+JVr

y 1 + n p

A u J  A u Tfc+1 ■ • ^ Ut+ATC-I

(4.7a)

(4.7b)

(4.7c)
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where Np and N c are the prediction and control horizons respectively as described 

in Section 2.3. The future state, the future control increment, future output and 

the current state vectors, are related by the following equations:

X  -  F x fc +  $ A U  

Y  =  CX

where

F =

A B 0 0

A 2 A B B 0

A Nc ; $  = A iVc_1B

PQ1<

B

^ ■ / V c  + l A ^ B > 1 td A B

> $ 
"

1

a ^ - 2b  • • A np~NcB

(4.8)

and C is a Np block diagonal matrix of dimensions pNp x ((n +  l ) p +  (m — 1 )q)Np, 

with the matrix C on it’s diagonal. The future reference trajectory vector is 

subsequently defined as:

S = T* T*Lk + l  k+2 k + N p (4.9)

The control law is then defined by minimising the following cost: 

J  =  (S -  Y )r  Q (S -  Y) +  A U t R A U (4.10)

at each sampling instant, subject to constraints on the inputs, outputs and the 

rate-of-change of the input signals. In the above cost function, the Q is a pNp xpN p 

positive definite matrix, and R  is a qNc x qNc positive semi-definite matrix.
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More information on the above NMSS/MPC description, a detailed discription 

of i t ’s properties and a methodology to formulate the constraints in the required 

matrix form can be found in Wang and Young (2006).

4.2 The alternative N M S S /M P C  controller

This section presents an alternative MPC formulation that is based on the NMSS 

system description that is used for PIP control. Specifically, the system described 

by the state space description (3.1) defined in Section 3.1.

In a similar manner to PIP Linear Quadratic optimal control, the following 

index is defined:

Np Nc- 1

J (x fc, rk) = +  ^2 u l+iR u k+i (4.11)
i — 1 0

where Xfc+i, i = 1 , . . . ,  Np are the predicted state vectors (based on the system 

evolution of (3.1)) and u^+i, i =  0 , . . . ,  N c — 1 are the predicted control vectors, 

which are also the variables to be optimised.

Remark 4.2.1. Although the dependence of .J on r k is not explicitly shown in 

(4.11), it is implicit since the state depends on r k and i t ’s evolution through the 

integral-of-error state. This dependence is merely stated to point out that the cost 

function is related to the set point and as will be shown in Section 4-3 the proposed 

control scheme results in a closed loop1 system that follows any constant reference 

without any error.

The control action is therefore derived by numerically solving the following 

optimisation problem:

min J ( x fc, r fc) (4.12a)
U/cv.Ufc + jVc-l

1The term  closed loop is used at this point to refer to the controlled system. As is also 
depicted in Figure 4.1, output information is fed back to  the controller in order for the next 
control signal to be calculated, leading to a closed loop formulation.
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M < u k+i < u , z =  0 , . . . ,  iVc — 1

subject to: < A u  < A u Hi < A u  , i = 0 , . . . ,  N c -  1 (4.12b)

V y < Yk+i < y =

where A u ^  =  u k+i — u k+i-i is fhe vector of control increments at each sampling 

instant;  ̂and 7 refer to minimum and maximum allowed values for the system vari­

ables; and the inequalities in the constraints are element by element inequalities. 

As in Section 3.2, for commercial optimisation tools to be used, the optimisation 

problem needs to be cast into a more compact matrix form. In this regard, the 

predicted state, future output, future control input increment and future reference 

are defined as in (4.7) and (4.9) respectively and the future control action as:

where it should be noted that the vector U  is also the vector of the optimisation 

parameters.

From this point on, it is assumed that the control signal retains i t ’s last value 

after the control horizon (i.e. u k+i =  Ujfe+jvc- i ,  i = NC, . . . , N P), although other 

alternatives are clearly possible (e.g. it can be forced to obtain i t ’s steady state 

value for a given set-point at the end of the control horizon and retain tha t value).

T

(4.13)
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By recursive application of (3.1a), the predicted system evolution is:

Xfc+i —

Xfc+2 =

* k + N c =  

X/c+JVp =

and the prediction equations can take the following matrix form:

X  =  F x fc +  ($  +  $ i)  U  +  H rS (4.14)

where the matrices F  and H r that represent the effect of the current state and 

reference signal to the predicted states are defined as in (3.8) and is given by 

(4.8). It should be noted here that the matrix which represents the effect of the 

control inputs to the predicted states is split into $  and to distinguish between 

the effect of the control inputs until the end the control horizon and the one due 

to the application of the last control input into the rest of the prediction horizon.

Ax/, +  Biifc +  Dr^+i 

Axfc+1 +  Bu/~+i +  Drfc+2 

A Xfc + (ABufc + Biifc+i) +  (ADr^+i +  Dr*^)

N c - l  Nc- 1

A Ncx.k + AlBufe+jvc- i- i  +  AzDrfc+jvc-i 
i=o i =o

Np—l / N p - N c- 1 \

A^Xfc + ^  AlBufc+ivp_i_i +  I A*B J Ufc+jvc- i  +
i = N p- N c \  i=0  )

Nv- 1

+ AlDrk + N p - i
i=0
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The $ 1  matrix is defined as follows:

0 • 0 0

0 • • • 0 0

0 • • 0 B

0 • • • 0 B + A B

0 • 0 B +  A B  +  A 2B

0 • • • 0 B H------- b A np~Nc~

The function to be minimised can subsequently take the following matrix form:

JM =  X t QX +  U t R U  (4.15a)

=  (4)TQ|> +  R.) U  +  ( # r Q (Pxfc + HrS ) )TU + consl{4.15b)

where $  =  $  +  $ i;  Q and R  are block diagonal matrices with Q and R  on their 

diagonals respectively; Equation (4.15b) is derived by substitution of (4.14) to 

(4.15a) and const, in (4.15b) refers to elements that are not affected by the choice 

of U and therefore are not of interest in the optimisation procedure.

Finally, in order to represent the output and control increment constraints in 

matrix form, the output prediction (Y =  CX) and control increment prediction 

equations can be written as:

Y = CFxfc + C $ U  + CHrS

A U  =  — C^u/c-i +  C 2U

where the matrix C is a block diagonal matrix with C on it’s diagonal and the 

matrices Ci and C2 are defined as in (3.10). Therefore, and following a procedure 

similar to the one presented in Section 3.2 for the constraint inequalities (i.e. con-



Chapter 4: MPC with an integral-of-error state 48

verting each double inequality to two single ones as in (3.11)), the optimisation 

problem takes the following form:

1 _  ( ~ t -  \ T

subject to: M U  < N

min -XJ1 Q $ + R ) U +  ( $  Q (Fxfc +  HrS ) ) U (4.16a)

(4.16b)

where,

M =

~Inc - u
bvc u
- c 2 —A U  — CiUk-i

; N =
c 2 A U  + CiUk-i

-C l* —Y  T CFxfc +  CHrS

Y -  CFxfc CHrS

(4.16c)

and the inequality in (4.16b) refers to element by element inequalities.

It is clear that the above optimisation problem is in the form (2.4) with H =
f  ~ T  -  ~ - \  ~ T  -( $  Q4? +  R ) and p = 4* Q (Fx*, + HrS). The control vector u& is subsequently 

derived by solving the problem (4.16) at every sampling instant and is applied to 

the system following the Receding Horizon technique presented in Section 2.3.

4.3 Properties of the control schem e

4.3.1 S e t-p o in t following and d istu rbance  rejection

This section exploits the block diagram form of the alternative MPC formulation 

presented in the previous section and delivers the required steady state tracking of 

the reference input, along with i t ’s disturbance rejection properties. It should be 

rioted that the unconstrained case is considered, while Remark 4.3.1 extends the 

results to the general case where constraints are present.
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The unconstrained solution to the problem (4.16) is derived by direct differen­

tiation of (4.15b) (it should be noted that the second derivative of Jm  over U is 

non-negative resulting in a minimum of Jm  (see Gill et ah, 1981, p. 61)). Omitting 

the details for brevity, the solution has the fixed gain controller form:

U -  —Ksx(fc) -  R sS (4.17)

where,
z .T  -  ~

K s =  $  Q $  +  R  $  Q F
- l

~ T
R s =  $  Q $  +  R  $  Q H

- l

Letting the first qNc rows of K s and R s be:

k P  =

R{q) =

K i • • • K n K n+i • • • K n+m_i K n+m 

R l R  Nr

and exploiting the structure of the state vector x fc, the control law is written:

u*; = — (Kiyfc + K2yA:-i +  • • • +  Knyfc_n+i)

(K-n+l^fc—1 +  ' ' ' +  K-n+m—l^fc—m+l)

—  ( R i T f e + i  +  R 2 r f c + 2  ‘ '  ' +  R w p ^ k + N p )

Kn+rn^fc

where u k consists of the first q elements of U. Next, defining the polynomials,

P M

L M

R(z)

Ki +  K.2z 1 +  ''' T Knzn

=  K Z 1 +  ~Kn+ 2 z  2 +  • • ■ +  K  n + m - lZ ™

= RjVp +  R vp-i2 1 +  • • • +  R iz Np+1
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Yk+Np ,-Np L(z)'

P(2)

R ( z )

System -> y

Figure 4.1: Block diagram of the MPC control scheme based on a model description 
with an integral-of-error state variable

and substituting K m+n with —K j and z k =  1_^_1 (r^ — y fc), the control law can 

be written in the following polynomial form:

u k =  L (z) - l
1 -  z

— K ^ y k  -  rk) -  P (z )y k -  K (z )rk+Np

The unconstrained control system can now be represented by a block diagram as 

illustrated in Figure 4.1.

Defining the polynomials:

A(z) =  Ip +  A i z 1 +  A2z 2 +  . . .  +  A nz 71 

B(z) =  Biz  1 +  B22: 2 +  . . .  +  B mz m

tha t correspond to the left Matrix Fraction Description (MFD) form (Kailath, 

1980) of the system input-output relationship (i.e. y k = A (z)_1B (z)u fc), straight­

forward manipulation of the block diagram in Figure 4.1 leads to the following 

closed-loop transfer function:

T(z) =  [ A W - 'B M m r 1 (K , -  (1 -  2 - ') P ( : ) )  -  (1 -  z~ l) \v]

[A(z)_1B (z)L(z)_1 (K ,  +  (1 -  z - 1)R (z )z -w")]



Chapter 4: MPC with an integral-of-error state 51

for which lim^_>1T(z) =  Ip. This means that the closed-loop will follow any 

constant reference input with no steady state error. Similarly, the transfer function 

from a control input disturbance to the output is:

Si(2) =  [(1 -  z - l ) ip -  A (z )-1B (z)L(2) - 1 ( k ,  -  (i -  r ' l P W ) ] ' 1 

[(1 -  z - 'JA fz ^ B C z )]  (4.20)

and from an output (load) disturbance to the output:

S„(z) =  [(1 -  z- %  -  A (z)-1B (z)L(z)_1 (K j -  (1 -  z ^ P ^ ) ) ] ' 1

[ ( l - z - 1)^]  (4.21)

In the above equation the subscripts z- and 0 refer to the input and output distur­

bance transfer functions respectively. From equations (4.20) and (4.21) it follows 

that,

limSi(z) =  0pq
z —>1

lim S0(.z) =  0p
Z—>1

Hence, the closed-loop system rejects any constant input or output disturbances.

R e m a rk  4.3.1. A t the steady state, if  the desired output is in the feasible region 

(i.e. it can be reached with the available control inputs), the solution to the quadratic 

program will be the one of the unconstrained case. Therefore the steady state 

tracking and disturbance rejection properties hold for the constrained case as well.

4.3.2 S tab ility  analysis

As already mentioned in Section 2.4, a general stability analysis is performed in 

Appendix C. Since the constrained optimisation problem (4.12) is the same as
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(C.l), the asymptotic stability of this alternative MPC formulation can be shown 

as in Appendix C.

4.4 Sim ulation Exam ples

In this section, two simulation examples are considered. The first example illus­

trates the reference following and disturbance rejection properties of the proposed 

control scheme, while the second example is an approach to a simulation bench­

mark and the complete design procedure is described. Furthermore, by this second 

example, an initial comparison is made between the proposed controller and the 

one of Wang and Young (2006).

4.4.1 D ouble in teg ra ting  p lan t

Consider a continuous time double integrating plant (i.e. G(s) = ^ ) ,  that is a 

hard to control open loop unstable system. Using a sample time of Is, the discrete 

time transfer function is:

G W 1) =
- 2O .bz^ + Q.bz

1 -  2z~1 +  z~2

To represent the above transfer function in the state space form of (3.1), the 

following non-minimal state vector is selected,

x fc =  [Uk Vk-i uk-1 Zk\
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and the system matrices are given by,

2 - 1 0.5 0 0.5 0

1 0 0 0 0 0
A = ; B = ;D  =

0 0 0 0 1 0

- 2 1 -0 .5 1 -0 .5 1

;C  = 1 0 0 0

For the purposes of the present example, the prediction and control horizons are 

chosen Np — 5 and N c = 3 respectively, that are relatively short but still lead 

to an acceptable response. By trial and error, the matrix Q is chosen as the 4 x 4  

matrix with the value ^  on it’s diagonal, while R vanishes to a single constant 

tha t is chosen to be It is evident that they are both defined here as ratios 

between the weight and the prediction or control horizon. Clearly, other ways to 

choose the weighting matrices are possible, but the way it is done here reflects 

the relative weighting between the state and control action. As is presented in 

more detail in Chapter 5 an optimisation procedure can be followed to define the 

weighting matrices regarding the design objectives.

The control objectives are to keep the output of the plant at the origin, despite 

the presence of input and output disturbances, while also satisfying the saturating 

constraints on the input (\u\ < 10 units) and rate-of-change (|Au| < 7 units/s).

For the simulation presented in Figure 4.2, a step output disturbance of mag­

nitude 15 units is applied to the system after 5 seconds from the start of the 

experiment, while a step input disturbance of —5 units is applied after 20 seconds. 

As expected, the controller rejected both the input and output disturbances, while 

ensuring type one servomechanism performance. Furthermore, both the input and 

rate—of—change are kept within the defined bounds.
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Figure 4.2: Presentation of the disturbance rejection properties with a closed loop 
simulation of the double integrating plant. Top subplot: reference level and out­
put. Middle subplot: control input (solid trace) and constraints (dash-dot); Lower 
subplot: input rate-of-change (solid) and constraints (dash-dot).

4.4.2 T he IFAC ’93 benchm ark

The IFAC ’93 benchmark (Whidborne et ah, 1995) is a difficult problem since 

it includes stringent closed loop performance requirements, despite the fact that 

the parameters of the plant are known only within a certain range. In fact, the 

plant operates at three different stress levels, with higher stress level implying 

greater time variations of the unknown parameters. The deterministic 7th order 

continuous time transfer function has the following form:

K { - T 2s + 1)cj{
^   ̂ (s2 +  2(,ljoS +  ujq)(T \s +  1) (s2 +  2Qujss +  ujg)(Tfs +  1)(T| s  +  1)

where Tj =  5, T2 =  0.4, loq =  5, (  =  0.3, K  = 1, T f  =  | ,  T = p>, 105 = 15 and 

(s =  0.6. For the closed-loop tests, the command level is specified as a square 

wave varying between +1 and -1  with a period of 20s, while an over/undershoot 

of 0.2 is allowed. In cases where these limits are exceeded, the absolute output
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constraint of +1.5 and —1.5 should not be violated2. The rise time should be 

designed to be as fast as possible, without compromising the robustness. Finally, 

the plant input is constrained between the limits -5 and +5 and saturates at these 

levels.

To obtain the control model (2.1), the plant is simulated in open loop and data 

collected at a sampling rate of 0.5 seconds. Experimentation suggests that such 

a sampling rate allows for the estimation of a suitable backward shift operator 

model and is fast enough to handle the stochastic disturbances associated with 

the time varying parameters (see Taylor et ah, 2001, for a complete discussion and 

application of the PIP controller to the same problem). As described in Section 2.1, 

the SRIV algorithm is used to estimate the model for this system. The discrete 

time transfer function model obtained in this manner takes the form:

rrt i\ 0.0946z 2
H{Z ] =  1 3 0 .9055 ^  (423)

The prediction and control horizons are Np =  50 and N c = 10 respectively, while 

the matrix Q is assigned the value on i t ’s diagonal, and R  is set to ^  (chosen 

by trail and error to provide an acceptable closed loop response for the nominal 

case). The output and control signal when this controller is applied to the actual 

7th order transfer function are depicted in Figure 4.3. This response resembles the 

one achieved by Taylor et al. (2001) (by visual inspection). However, since there is 

no detailed data (rise time, settling time, etc.) a direct comparison is not possible.

To assess the robustness of the design, the benchmark is subsequently simulated 

for the positive and negative extremes of Stress Level 2 of the system parameters 

as they are presented in Table 4.1. This results in 32 realisations that are depicted 

in Figure 4.4. This is merely to show that the proposed MPC design retains the 

robustness properties of the PIP realisation based on the same system (Taylor

2In the following, these are referred to as hard constraints. However it is not m eant th a t they 
can not be violated, but rather th a t in an acceptable design they should not be violated.
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Figure 4.3: Nominal response for the IFAC ’93 benchmark. Top subplot: reference 
level and output (thin solid lines) along with the soft (dashed lines) and hard (thick 
solid lines) output constraints; Lower subplot: Control input (thin solid line) and 
constraints (thick solid lines).
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Figure 4.4: Robustness test for the IFAC ’93 benchmark of the MPC controller 
based on a model with an integral-of-error state variable. The soft (dashed lines) 
and hard (thick solid lines) output constraints are also shown.
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Table 4.1: Parameter variations for the 3 Stress Levels of the IFAC ’93 Benchmark.
Stress Level 5T2 6u0 5K

1 ±0.20 ±0.05 ±1.50 ±0.10 0
2 ±0.30 ±0.10 ±2.50 ±0.15 ±0.15
3 ±0.30 ±0.15 ±3.00 ±0.15 ±0.50

'3
H>XS3

“o 5 10 15 20 25 30
Tim e (s)

Figure 4.5: Robustness test for the IFAC ’93 benchmark of the NMSS/MPC con­
troller of Wang and Young (2006). The soft (dashed lines) and hard (thick solid 
lines) output constraints are also shown.

et ah, 2001). It is clear however, that some of the realisations violate the output 

constraint that represents an unwanted system response. At this point reference 

is made again to the approach of Taylor et al. (2001) where at their initial control 

design the closed loop system also violated the output constraints when simulated 

for Stress Level 2. To overcome this problem, they optimised the weighting pa­

rameters of the PIP controller. This procedure is presented in Chapter 5 where 

application to MPC controllers is considered.

For comparative purposes, the same robustness test is performed for the MPC 

controller formulation of Wang and Young (2006) and the result is shown in Fig­

ure 4.5. In this regard, the NMSS/MPC controller of Wang and Young (2006) is 

tuned to produce a closed-loop response with a similar settling time as the one
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proposed here, in the nominal case, so that the two controllers are comparable. 

However, as can be seen by direct comparison of Figures 4.4 and 4.5 they yield 

different responses when model mismatch is introduced. It is also evident that 

the proposed NMSS/MPC controller, utilising an explicit integral-of-error state 

variable, yields a higher proportion of well behaved responses than the equiva­

lent controller of Wang and Young (2006). Of course, these figures represent just 

one simulation example and are merely presented to show tha t the controller for­

mulation proposed here can in some cases produce better results than existing 

controllers.

R e m a rk  4.4.1. Although the results in this chapter have initiated from earlier 

research on the PIP framework, tuning of the proposed MPC scheme can present 

difficulties. It clearly resembles the infinite time LQ optimal approach that is used 

for PIP controllers, but the fact that the optimisation is performed over a finite 

horizon alters the effect of the weightings depending on the prediction and control 

horizons (an unacceptable initial tuning is later shown in Section 5.3.1). The fact 

however that the weightings refer to specific meaningful parts of the state vector 

(as in any NMSS model based on the approach of Young et al. (1987)) is evaluated 

in the next chapter to optimise them and is shown that the present formulation of 

MPC can provide the designer with more freedom when tuning the controller.

4.5 Conclusion

This chapter is motivated by earlier research on MPC using a NMSS form (Wang 

and Young, 2006). In that work, the differenced values of the input and out­

put signal are utilised in the non-minimal state vector, to ensure type one ser­

vomechanism performance. Such NMSS/MPC design has potential performance 

and robustness benefits, when compared to conventional MPC using a minimal 

state space model with observer as is shown by simulation examples in Wang and 

Young (2006).



Chapter 4: MPC with an integral-of-error state 59

The present chapter developed an alternative framework for NMSS/MPC de­

sign based 011 the directly measured (rather than differenced) values of the input 

and output variables, together with an integral-of-error state variable tha t is used 

to ensure type one servomechanism perfomance. This approach has close parallels 

with linear PIP methods, particularly with regard to the tuning of the control 

weighting matrices. However, the advantage of the NMSS/MPC approach is the 

inherent handling of constraints, albeit at an increased computational cost (by 

increase of the state vector and hence the optimisation problem).

In the simplest ‘trial and error’ case, the control engineer can adjust the total 

weights assigned to the input and output variables, together with the integral-of- 

error state, to achieve satisfactory performance. Such an approach has analogies 

with tuning the classical three term PID algorithm, albeit within a much more 

powerful framework. More advanced methods, such as multi-objective optimisa­

tion of the weighting matrices in Q and R  are also possible (Tych et ah, 1996; 

Chotai et ah, 1998) and is considered in Chapter 5 for MPC controllers.

In both cases, the explicit integral-of-error state variable may provide addi­

tional degrees of freedom allowing for improved control. In fact, a full comparison 

of the proposed NMSS/MPC algorithm, the approach of Wang and Young (2006) 

and conventional minimal MPC methods, is the subject of Section 5.3 in Chapter 5. 

However, preliminary simulation results presented in this chapter have shown that 

the robustness and performance characteristics of the new approach are at least as 

good, or better, as those obtained by Wang and Young (2006). Finally, this chap­

ter has shown by analysis and simulation, that the required set point tracking and 

disturbance rejection properties are maintained. Initial results of this alternative 

NMSS/MPC formulation have also been presented by the author in Exadaktylos 

et al. (2006).



Chapter 5

M ulti—objective optim isation

Model Predictive Control (MPC) is a control technique tha t has been extensively 

used in the last decades (Morari, 1994). Most of the research conducted in the 

field has been towards increasing the robustness of the controllers (e.g. Kothare 

et ah, 1996; Bemporad and Morari, 1999) and reducing the online computational 

load (e.g. Bemporad et ah, 2002; Grieder et al., 2004).

In all the above cases, it is assumed that the cost function weighting matrices 

are process dependent and defined by economic or process related factors that 

are out of reach for the designer of the controller. However, it is possible to face 

a control problem that states some process related constraints (e.g. actuator con­

straints) and also defines control objectives that need to be achieved (e.g. rise time, 

overshoot, settling time). Especially in the M ulti-Input M ulti-Output (MIMO) 

case, it is sometimes of great importance to dynamically decouple the system out­

puts. In this regard, various approaches have been presented in the literature 

(e.g. Wang et ah, 2000, 2002; Gilbert et ah, 2003; Liu et ah, 2007) for analytical 

decoupling of PI/PID  controllers, an approach that is not applicable to MPC due 

to the need for online optimisation at every sampling instant and the presence of 

constraints.

In the direction of optimising the controller performance for specific design ob­

jectives, Evolutionary Algorithms (EAs) have recently been used in control prob-

60
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lerns (see Fleming and Purshouse, 2002, for a review). However, apart from the 

approaches of Vlachos et al. (1999) and Mei and Goodall (2000), they are mostly 

evaluated to deal with the control problem itself rather than tune existing control 

structures. In the direction of controller tuning, Fleming and Pashkevich (1986) 

have applied the goal attainment method to design a SISO compensator, while 

Tych et al. (1996) andChotai et al. (1998) evaluated the same method in order to 

tune PIP controllers for MIMO systems.

However, the problem of designing an MPC controller tha t achieves perfor­

mance objectives has not been addressed in the relevant literature. Although the 

approach of Omnen et al. (1997) uses a Genetic Algorithm (GA) to solve the 

MPC problem, it is still in the category of solutions tha t calculate the control 

action rather than tune the controller.

This chapter presents a preliminary approach to performance optimisation of 

MPC controllers and addresses some of the issues tha t arise in the tuning pro­

cess. In this regard, the goal attainment method that has already been used in the 

tuning of PIP controllers (e.g. Tych et ah, 1996) and the design of a SISO compen­

sator Fleming and Pashkevich (1986) is utilised in tuning MPC controllers. The 

approach is presented for the cases of minimal MPC design, the NMSS/MPC con­

troller of Wang and Young (2006) and the alternative formulation that is based on 

a system with an explicit integral-of-error state that has been presented in Chap­

ter 4. It is shown that this method can be used in tuning MPC controllers for 

both the SISO and MIMO cases, while in the latter, both performance (e.g. speed 

of response) and dynamic decoupling can be achieved. Furthermore it is suggested 

that the NMSS formulation presented in Chapter 4 provides the algorithm with 

extra freedom (because of the structure of the state vector) to result in improved 

performance.

In the following. Section 5.1 briefly summarises the control structures and 

presents the partitioning of the weighting matrices that are later used by the sim­
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ulation examples. Section 5.2 describes the goal-attainment method tha t is used to 

tune the controllers and applies the approach to the MPC case. Then, Section 5.3 

shows the results of the multi-objective optimisation process by simulation exam­

ples, while Section 5.4 concludes the chapter by summarising the results.

5.1 Predictive Control D escriptions

In this section, the control descriptions that are later considered are briefly pre­

sented. Although they have already been presented elsewhere in this thesis or 

are widely known in the relevant literature, the problem statement is presented 

here for completeness and a possible parametrisation of the weighting matrices is 

suggested.

5.1.1 M P C  w ith  an  in teg ra l-o f— erro r s ta te  variable

As already presented in Chapter 4 the NMSS/MPC can potentially provide some 

advantages compared to the controller of Wang and Young (2006). The cost func­

tion to be minimised at every sampling instant has initially been presented in 

(4.15a) and has the following form:

Jx =  X t Q X  +  U r R U  (5.1)

where the future state and control input vectors are given by (4.7a) and (4.13) 

respectively. For reasons that will be made clear in the following, the Q and R
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W'eighting matrices can be partitioned as:

Q =

Q 0 • 0 0 R 0 •• 0 0

0 Q 0 0

, R  =

0 R 0 0

0 0 Q 0 0 0 •• R 0

0 0 • 0 Q. 0 0 •• • 0 R

(5.2)

where Q is a square matrix of the dimension of the state vector and R  is a square 

matrix with dimension the number of control inputs.

5.1.2 T he controller of W ang and Young (2006)

In the same manner as before, the cost function to be minimised at each sampling 

instant (already given in (4.10)) has the form:

J2 = ( S -  Y) Q (S -  Y) + A U r R A U (5.3)

where the future set point, the predicted output and control input increment vec­

tors are given by (4.7b), (4.7c) and (4.9). Since the cost function (5.3) is based on 

the error of the output and not the state vector, the weighting parameters are in 

general less than in the case where the cost function is given by (5.1). In this regard, 

in a similar manner to (5.2), the weighting matrices Q and R  are parametrised 

in such a way that allows for weights to vary throughout the prediction horizon. 

That is:

Q =

Qi o • 0 0 Ri 0 • 0 0

0 Q2 • 0 0

, R  =

0 r 2 0 0

0 0 • • QivP-i 0 0 0 • ■ % - l 0

0 0 • 0 1
£O
’ 0 0 • 0 R ac.

(5.4)
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Clearly the same partitioning of the Q and R  matrices can be adopted in the case of 

the controller of Section 5.1.1 that would provide extra design freedom. However, 

this is not considered necessary, at least in the examples considered here, since the 

form described in (5.2) can already produce the desired results.

5.1.3 T he m inim al controller

In the case of an MPC controller based on a minimal state space representation, 

the cost function can take various forms, depending on the problem formulation. In 

the examples presented here, to account for type one servomechanism performance 

without the need for coordinate transformation, a cost identical to the one of Wang 

and Young (2006) is considered (i.e. the cost function is the one depicted by (5.3)). 

A cost similar to (5.1) is possible but, in the general case, this would require a 

coordinate transformation to ensure steady state output tracking tha t is inherent 

in the NMSS description used by the approach described in Chapter 4. In the 

following, the weighting matrices Q and R  for the case of the minimal MPC 

controller are also parametrised as in (5.4).

5.2 Tuning the M PC  controllers

It is evident from the above that the choice of Q and R  affects the controller 

behaviour and therefore the closed loop system response. Although these weights 

are sometimes defined by the process itself, or are dealt with by intuition, this does 

not always result in the desired system behaviour. Even for the SISO case, where a 

fairly good understanding of the input-output correlation can be achieved, it is not 

always easy for all of the design objectives (rise time, overshoot, settling time, etc.) 

to be achieved. Furthermore, in more complex MIMO systems with strong cross 

coupling among the inputs and the outputs, objectives such as dynamic output 

decoupling are difficult to achieve by intuitively choosing the cost function weights. 

In this regard, Tych et al. (1996) evaluated goal attainment to optimise the
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LQ cost function weights to meet multiple design objectives in the case of the PIP 

controller, while Mei and Goodall (2000) used GAs for the same purpose in the 

case of an optimal H2 controller. In the following, the goal attainm ent method 

is used for the optimal tuning of MPC controllers and guidelines are provided for 

choosing the weights to be optimised. For completeness, some background on the 

goal attainm ent method is also provided.

5.2.1 T he goal a tta in m en t m ethod

The goal attainment method involves expressing a set of goal objectives T * =  

{F\*, F2*, . . .  , F*}, which are associated with a set of design objectives F (f)  =  

{Fi(f), F2(f), . . .  , Fn(f)}, where f is a vector of optimisation parameters. The 

problem formulation allows for the objectives to be over- or underachieved, al­

lowing for very optimistic goals to be defined without leading to an infeasible 

problem. The relative weighting among the objectives can also define which of 

them are more important, allowing the des gner to define every desirable objective 

but over-evaluate those that necessarily need to be satisfied.

Defining the goal, objective and weighting vectors as,

F* =  F* f * . .  . F*x  r l  r 2 r n

T

F ( f ) =  F\(f) F2(f) ••• Fn(f)

r i T
w =  Wi  W 2 • • • w n

the optimisation problem can be defined as

min A
A£M,f £S"2

(5.5)

such that

F(f) -  wA < F*
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In cases where a u>i is zero in the weighting vector, the respective objective is 

meant to be a hard one that will result in an optimisation vector tha t will satisfy 

it (if possible). Depending on the meaning of the optimisation parameters f, it is 

sometimes necessary to constrain them to a specified region (linear or nonlinear). 

This is also possible in the context of goal attainm ent (region Q in (5.5)). The 

examples here utilise the fgoalattain function from the optimisation toolbox in 

M atlab®  to solve the goal attainment problem.

5.2.2 A pplication  to  M PC

To apply the optimisation method presented in the previous section to MPC, 

the optimisation parameters need to be identified. Any combination of the el­

ements of the weighting matrices can be chosen with the additional constraint 

that the weighting matrices Q and R  need to be positive and semi-positive defi­

nite respectively. To account for this extra constraint, the Cholesky factorisation 

(e.g. Q =  LLT where L is lower diagonal1) of the matrices can be used and the 

elements of L can be the parameters that need to be optimised (as in Chotai et al., 

1998).

Following directions for tuning PIP controllers, general guidance is provided for 

tuning the MPC controller that is based on a system description with an integral- 

of-error state variable. In this regard, and to simplify the optimisation problem, 

a subset of the Q and R  can be chosen to be optimised as follows:

Q =  diag W  v • • • W v W „ -  • • • W ,r  W , (5.6a)

R  =  w u (5.6b)

w y, w u- and w z correspond to weightings for the present and previous values of 

the outputs, the previous values of the inputs and the integral-of-error states of

1In case more elements of the Q need to be optimised the Cholesky factorisation should of 
course be applied to the Q and not to the Q (although positive definiteness of Q implies th a t of

Q)
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the state vector; while w u corresponds to weightings for the current inputs. In 

any case the weightings w are square matrices of appropriate dimensions.

In both the controller of Wang and Young (2006) and the minimal case, the 

cost function for set-point following consists of the output error and the control 

action (or i t ’s increment), the Q matrix in that case can have the form:

Q  =  W y

while the R  has the same form as before. An alternative to that, and because 

the number of optimisation parameters is limited, a further extension to the above 

can be made, allowing for both Q and R  matrices to vary over the prediction and 

control horizons respectively. That is:

Qi = w j!) , z =  1, ...,JVp

Ri =  wW , I = 1 , . . . ,  N c

Any other combination of optimisation parameters is possible and mainly depends 

on the designer, the number of design objectives and the system to be controlled, 

but the above offers an adequate framework for performance optimisation as is 

shown in the next section by simulation examples.

5.3 Sim ulation Exam ples

This section presents the effectiveness of the proposed tuning method by applica­

tion to simulation examples. First the SISO system of the IFAC ’93 Benchmark is 

simulated by application of the controller of Chapter 4 and the controller of Wang 

and Young (2006) to demonstrate the applicability of the approach in cases with 

a relatively small number of optimisation parameters. Then the ‘Shell Heavy Oil 

fractionator’ simulation benchmark is utilised as a basis to exploit the dynamic
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decoupling capabilities of the tuning technique and to compare the responses of 

the NMSS/MPC control structures and the minimal realisations of MPC presented 

in Section 5.1.

5.3.1 SISO case: T he IFAC ’93 benchm ark

As already mentioned in Section 4.4.2, the IFAC ’93 benchmark (Whidborne et ah, 

1995) is represented by the 7th order continuous-time transfer function (4.22) that 

needs to follow a square wave with lower value —1 units, higher value 1 units and 

period T  — 20s. Furthermore, the control input is constrained to values between 

—5 units and 5 units, while the output should have as fast a rise time as possible 

and not exceed —1.5 units and 1.5 units (preferably —1.2 units and 1.2 units).

In the same manner as in Section 4.4.2 the necessary open loop simulations are 

performed to obtain a reduced order discrete time transfer function model. For 

MPC control based on a state space description with an explicit integral-of-error 

state, the above system is represented in the state space form (3.1), with the state 

vector:

Xfc

T

Vk ^k—1 ^k

For the present simulations, the prediction and control horizons are chosen to 

be Np = 10 and Nc — b respectively. The initial weighting matrices are chosen as 

Q =  diag[ 1 1 1] and R  =  1 in (5.2) (the reason for not choosing the same values 

as in Section 4.4.2 is explained in the following). The response for these values 

of the weights and horizons is shown as dashed lines in Figure 5.1. Evidently, 

this response does not satisfy the control objectives. Although in Section 4.4.2 an 

acceptable response was achieved (Figure 4.3) with a fairly intuitive choice of the 

weightings, this was mainly due to the long prediction and control horizons and 

the fact the the weighting for the control signal was chosen much smaller than the 

one for the state vector. In this simulation, the horizons are deliberately chosen 

shorter to depict the fact that in this case tuning the controller is not intuitively
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Figure 5.1: System output (top figure) and control signal (bottom figure) for the 
nominal case of the IFAC 93 benchmark simulation before (dashed lines) and 
after (solid lines) multi-objective optimisation of the weighting parameters for the 
controller based on a system with an explicit integral-of-error state variable.

straightforward.

Therefore, to improve the system response, the goal attainment methodology 

tha t is described in Section 5.2.1 is employed. In this regard, minimisation of the 

overshoot is chosen as the first objective and is considered tha t no overshoot is 

desired (i.e. F* = 1). However, it is clear that the optimisation procedure can 

result in a very slow response without any overshoot. To avoid such a situation, 

the minimisation of the rise time is chosen as the second objective and is set 

to equal the rise time of the non-optimised response (i.e. F2* =  F2(f0), where

fo is the vector of the initial values of the optimisation parameters). Such an 

objective is over-optimistic (and contradicting to the first objective) but as already 

mentioned it is possible to set very ambitious objectives without any practical 

implications. Finally, and to force a smooth system response, the integral of 

absolute error from the output to the set-point (i.e. f  (|r(t) -  y (t)|) dt) is chosen 

to be minimised and the desired value is set to 80% that of the non-optimised
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response (i.e. F3* =  0.8F3(fo)).

Subsequently, and according to the general guidance provided in Section 5.2.2, 

the Q matrix is partitioned as:

Q =  diag W y wu- wz

while R  — wu. The optimisation parameter vector is then defined as:

f = W y  W u -  w2 wu

After the optimisation procedure, the closed loop system clearly yields an improved 

response tha t is depicted with solid lines in Figure 5.1, and corresponds to the 

following weightings:

Q =  diag 

R  -  1.0155

12.4315 1.3277 0.1222

For comparative purposes, and to show that the proposed technique can be 

directly applied to any MPC structure, the same procedure is followed to tune the 

MPC/NMSS controller of Wang and Young (2006). In this regard, the system is 

brought in the form of (4.5) with the following state vector:

The prediction and control horizons are chosen as before to be Np =  10 and 

N c =  5 respectively, while the initial weightings are set to Q* =  1 and R j =  1, for 

i =  1, ., Np and j  =  1 , . . . ,  Nc respectively. This results in the system response

depicted on Figure 5.2 in dashed lines. Although this is a fairly good response that 

satisfies the control objectives), it still has a quite long settling time and a slight 

overshoot. Subsequently it is shown that it can further be improved by evaluating
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Figure 5.2: System output (top figure) and control signal (bottom figure) for 
the nominal case of the IFAC 93 benchmark simulation before (dotted lines) and 
after (solid lines) multi-objective optimisation of the weighting parameters for the 
controller of Wang and Young (2006)

the multi-objective optimisation procedure. In this regard, the same optimisation 

objectives as before are chosen and the Q and R  partitioning described in (5.4) 

is adopted. The improved response is shown as solid lines on Figure 5.2 and 

corresponds to the following weighting matrices:

Q =  diag [1 1.0275 1.0395 1.0392 1.0317 1.022

1.0145 1.0085 1.004 1.0004]

and

R  =  diag 0.643 1.0935 1.0496 1.0233 1.0095

As can be seen from the values of the weighting matrices, in order for the improved 

performance to be achieved, the weights need to be slightly changed. However, 

this small change is difficult to be found without a proceduie like the one presented 

above. This leads to the conclusion that the multi-objective performance optimisa-
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Table 5.1: Steady State Gain (SSG), Time Constant (TC) and Time Delay (TD) 
for each input-output pathway for the Shell Heavy Oil Fractionator simulation 

Input 1 Input 2 Input 3
SSG TC TD SSG TC TD SSG TC TD 

O utput 1 4.05 50 27 1.77 60 28 5.88 45 27
O utput 2 5.39 50 18 5.72 60 14 6.90 40 15
O utput 3 3.66 9 2 1.65 30 20 5.53 40 2

tion can form a powerful framework in tuning MPC controllers. The next example 

presents a complete optimisation procedure of the performance of a MIMO plant 

while an example of optimisation for robust performance is given in Section 6.3.3.

5.3.2 M IM O  case: T he Shell H eavy Oil F rac tio n a to r Sim­

u la tion

In this section, a MIMO example is considered, namely the ‘Shell Heavy Oil Frac­

tionator problem’ (see Sandoz et al., 2000, for a brief description). This was 

introduced by Shell in 1987 and although it does not relate to any real system, it 

contains all the significant elements of a fractionator and can be used as a bench­

mark for multivariable control. However, in this case, it is evaluated as a basis 

to highlight the tuning properties presented in Section 5.2 and the control objec­

tives defined by the benchmark are not considered (see Vlachos et ah, 2002, for an 

approach to the actual benchmark simulation and it s objectives).

For completeness, a brief description of the benchmark is presented in the 

following. The fractionator consists of 5 input and 7 output variables (i.e. 35 m put- 

output pathways with various steady state gains, time constants and time delays). 

However, only 3 of the outputs need to be controlled, while 2 of the inputs are 

uncontrollable disturbance signals. This leaves a 3-Input 3-O utput system with 

the continuous time steady state gains, time constants and time delays of each 

input-output pathway shown in Table 5.1. To illustrate the format of Table 5.1, 

the relationship of the third input to the second output in continuous transfer
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function from is:
6.9e-40s

For convenience, the units employed here are seconds, although it is possible to 

use any other units that reflect the response of the plant under consideration. 

Furthermore, it should be noted that although the initial benchmark description 

requires the control signals to be constrained, this is not taken into account in the 

present simulations since the main goal here is to highlight the tuning technique 

and not to present a complete solution to the benchmark.

As already shown in previous examples, to form the MPC problem, open loop 

simulations are performed to the continuous plant and data are collected with a 

sampling rate of 10s. Subsequently, the SRIV algorithm is applied for model order 

detection and system identification as is discussed in Section 2.1. Four Multi Input 

Single O utput systems are identified and combined in one MIMO system described 

by the following difference equation:

yk + Aiyk-i  +  A 2yfc-2 + A3yfc_3 = BiUfc_i + B2Ufc_2 +  B3iifc_3 +  B4iifc_4 + B5Ufc_5

(5.7)

in which:

1.6637 0 0 0.6918 0 0

A i =  0 -2.4418 0 A2 = 0 1.9864 0

0 0 -1.9553 0 0 1.2334

0 0 0

A3 = 0 -0.5383 0

0 0 -0.2473
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and

74

Bi =

£ ,  -

Bn =

0 0 0

0 0.4173 0.5851

0 0 3.9167

0.5079 0.2737 0.7375

-1.6010 -0.4722 -1.1641

-1.0690 -0.6085 2.3036

0 0 0 

0 0 0 

0.0492 0.1303 0

Ba =

0.1232 0 0.1789

0.9853 -0.2036 -0.0301 

0.9993 0.8873 -6.0118

-0.5173 -0.2241 -0.7511 

0.6493 0.2940 0.6520

0.1557 -0.2109 0

5.3.2.1 D ynam ic Decoupling

From this point on, the difference equation (5.7) is considered and no mention is 

made to the actual continuous time plant. This is mainly to emphasise the tuning 

approach, i t ’s capabilities and the differences among different MPC structures 

(namely the NMSS controller described in Chapter 4, the one of Wang and Young 

(2006) and the minimal MPC realisation as described in Section 5.1.3).

In this regard, the above system is expressed in the state space form of (3.1) for 

application of the NMSS controller presented in Chapter 4, with the state vector:

y k y i - 1  y k - 2  u i - i  w-2 u*-3 w-4

where,

Ufc

2/1, k V2,k V3lk

Uitk u2,k Uz,k

For the purposes of the present example, the prediction and control horizons are
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Figure 5.3: System outputs for the Shell Heavy Oil fractionator example. Each line 
corresponds to a step to the reference of the respective output. In every case the 
controller based on a system description with an explicit integral-of-error state is 
employed before (dashed lines) and after (solid lines) multi-objective optimisation

chosen Np — 10 and Nc =  5 respectively, while the Q and R  matrices are chosen 

as the identity matrices of appropriate dimensions (for this non-optimisecl simula­

tion). Applying a step change of amplitude 1 unit to the reference of each output, 

results to the system response that is depicted with dashed lines in Figure 5.3. 

Here, each line of figures corresponds to a step reference change to the respective 

output, while the off-diagonal plots show the cross-coupling among the outputs. 

From Figure 5.3 the cross-coupling is apparent and since in many cases such a 

response in not acceptable, it is shown in the following that it can be reduced 

and in some cases even be eliminated. In this regard, the partitioning depicted in 

(5.6) is adopted for the Q and R  matrices while the Q and R  have the form (5.2). 

The optimisation problem has 9 parameters that need to be minimised (i.e. the 

integral of absolute error between each output and the corresponding reference 

all three simulations) and 15 optimisation paiameteis that result from the
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parameterisation of w y, w u-, w u and wz, were the first three are 3 x 3  diagonal 

matrices (i.e. 3 parameters for every matrix) while the last one is a symmetric pos­

itive definite 3 x 3  matrix (i.e. 6 parameters). After optimisation2, the weighting 

matrices are:

w y - diag 

w u- =  diag 

w u =  diag

0.056 1 0.629 

0.01 0.01 0.01 

0.01 0.01 0.1163

and

0.0360 0.0050 0.0050

0.0050 0.0050 0.2118

0.0050 0.2118 0.1923

The optimised responses are shown in Figure 5.3 as solid lines, and it can be 

seen tha t the cross-coupling has been considerably reduced without substantially 

affecting the response of the output that needs to follow the step. As already 

stated, any combination of the weighting matrices can be chosen as the parameters 

to be optimised that can lead to different results. The above is chosen since 

previous experience on PIP control suggests that only the diagonal elements of 

the weighting matrices for the present and past input and output variables are 

optimised, while the diagonal and off-diagonal elements of the weighting that 

correspond to the integral-of-error variables are optimised.

The same control design procedure is followed for the controller of Wang and 

Young (2006), were the system is expressed by the form (4.5) with the following

2The values w ithin the matrices are deliberately constrained to  a small positive value to avoid 
conditioning problems in the optimisation procedure. It can also be seen th a t many of the values 
of the weighting matrices are actually on this limit.
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Figure 5.4: System outputs for the Shell Heavy Oil fractionator example. Each 
line corresponds to a step to the reference of the respective output. In every case 
the controller of Wang and Young (2006) is employed before (dashed lines) and 
after (solid lines) multi-objective optimisation

state vector:

= Ay I Ayf_ A y [ lv Aufl, A u i l2 A uL 3 A i i r  V Tfc—4 y  k

By choosing the prediction and control horizons Np = 10 and Nc — 5 respectively 

and the weighting matrices Q and R  to be the identity matrices, the resulting 

responses are shown in Figure 5.4 as dashed lines. Although the cross-coupling is 

not as evident3 as in the case of the controller with an explicit integral-of-error 

state (which is the result of the initial choice of the weighting matrices), the same 

optimisation procedure is evaluated in order to reduce it even further (whilst trying 

to preserve the system response to the step input). In this regard, the pararnetri-

3 As can be seen in the top left sub-plot of Figure 5.4, the step response of the first output is 
much slower than  the respective one in Figure 5.3 which is probably the reason for the reduced 
cross-coupling of the outputs. Reducing the speed of response in the controller w ith an explicit 
integral-of-error state will probably decrease the cross-coupling.
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sation (5.4) is chosen for Q and R, while the Q; and R j matrices are chosen to 

be equal for i = 1, . . . ,  Np and j  = 1 ,.. .  7 Nc respectively. Furthermore, they are 

required to be positive definite, hence the Cholesky factorisation introduced in 

Section 5.2.2 is used. The resulting optimised responses where the cross-coupling 

is almost eliminated are shown as solid lines in Figure 5.4, tha t correspond to the 

following weighting matrices:

0.1000 0.1572 0.05 2.2165 0.7181 3.4158

Q = 0.1572 6.5895 0.05 ; R  = 0.7181 0.2831 1.3949

0.0500 0.0500 10 3.4158 1.3949 1.6922

5.3.2.2 ‘D esigned For’ R esponse

This section presents a more realistic and demanding design example, where not 

only dynamic decoupling of the outputs is required, but also a specific system 

response is desirable. In this regard, each of the system outputs is required to 

have a step response that is as close as possible to a first order system with one 

real pole located at 0.7 in the z-plane (and a steady state gain of unity) as shown 

by the transfer function (5.8) while the cross coupling should be reduced to a 

minimum.

(5'8>

The same procedure as before is followed and the results are presented in Fig­

ure 5.5.

In more detail, each row of Figure 5.5 corresponds to the optimised response 

for a different control structure (the first row is for the controller based on a 

system description with an explicit integral—of—error state, the middle row for the 

controller of Wang and Young (2006) and the bottom row for the minimal MPC 

controller as described in Section 5.1.3). Furthermore, each column represents 

a step to the respective input reference signal. For example, the sub plot with 

coordinates (2.3) corresponds to a step reference change in the thiici output for
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Figure 5.5: ‘Designed for’ response of the Shell Heavy Oil fractionator example for 
the controller presented in Chapter 4 (top row), the controller of Wang and Young 
(2006) (middle row) and a minimal MPC controller (bottom row). Each column 
corresponds to a step to the reference of the respective output. In every case the 
desired output is the thick dashed line, the respective output is the thin solid line 
and the outputs that should remain to zero are plotted as thin dashed lines.

the controller of Wang and Young (2006). There, the desired response should be as 

close to the one presented by the thick dashed line (the actual is shown as a solid 

line), while the responses of the first and second outputs (dashed lines) should 

remain as close to zero as possible.

To obtain the above results, the weighting matrices for the controller presented 

in Chapter 4 are partitioned as in Section 5.2.2 with the respective matrices being:

0.9873 0.1308 0.0097 0.4785 0.5000 0.5000

Wy = 0.1308 0.4687 0.0433 ; wu- = 0.5000 0.3093 0.0050

0.0097 0.0433 0.8913 0.5000 0.0050 0.1895
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and

0.0792 0.0167 0.0050 0.9705 0.0648 0.4984

W z = 0.0167 0.0327 0.0140 ; w u = 0.0648 0.9987 0.0050

0.0050 0.0140 0.0758 0.4984 0.0050 0.0154

The optimised weighting matrices for the controller of Wang and Young (2006) are 

chosen to be constant throughout the prediction and control horizons and their 

values are:

0.0642 0.0050 0.0612 1.8544 1.7499 0.6671

Q wang — 0.0050 0.2921 0.0050 , R,wang 1.7499 1.6666 1.0602

0.0612 0.0500 0.2344 0.6671 1.0602 6.1138

To obtain a minimal representation for the design of a minimal MPC controller, the 

obsvf function of the MATLAB® Control System toolbox is evaluated tha t com­

putes the observability staircase form of a state space system and the observable 

part is used. The state observer is set to have poles close to the origin (random real 

poles with zero mean and 0.1 standard deviation), so that it has a near dead-beat 

response4. The optimisation procedure is subsequently evaluated that results in 

the following weighting matrices (constant throughout the prediction and control 

horizons):

0.0664 0.0050 0.0634 1.9229 1.8211 0.7260

Qminimal 0.0050 0.3033 0.0050 > Rrmmmai 1.8211 1.7400 1.1332

0.0634 0.0500 0.2420 0.7260 1.1332 6.4104

Since from Figure 5.5 all three controllers seem to perform in a very similar way 

(especially the minimal case and the controller of Wang and Young (2006) have a

4Using the randn M A TLA B®  function many times, various values of the observer pole posi­
tions were obtained. However, the results did not differ leading to the conclusion th a t such fast 
observer dynamics do not reflect to the overall closed loop performance.
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Table 5.2: Integral of absolute error values for the Shell Heavy Oil Fractionator 
example for the controller of two parametrisations of the controller described in 
Chapter 4, the controller of Wang and Young (2006) and a minimal MPC realisa­
tion.

Controller Reference Cross-Coupling Total
Chapter 4a 2.3381 4.2569 6.8896
Chapter 4b 3.7155 3.1741 6.5950

Wang and Young (2006) 3.1704 6.8514 10.0218
Minimal 3.1650 6.8456 10.0056

visually identical response), Table 5.2 presents the integral-of-error between the 

actual and desirable system responses. The controller marked with a refers to the 

parametrisation presented above. For comparative purposes and to show that even 

with less optimisation parameters the controller that is based on a system with 

an explicit integral-of-error state yields improved system responses, the controller 

marked with b in Table 5.2 corresponds to parametrisation of the weights as in 

Section 5.2.2 with:

wy =  diag 

w u- =  diag 

w u =  diag

0.2164 0.2940 1 

0.01 0.01 0.01 

0.005 0.005 0.01

and

0.0345 0.0122 0.0050

wz = 0.0122 0.0583 0.0050

0.0050 0.0050 0.1076

As can be seen from Table 5.2 the alternative controller description of Chap 

ter 4 yields improved results (closer following of the desired response) compaied 

to the controllers of Wang and Young (2006) and the minimal MPC representa­

tion for this particular example. Although it may be argued this is due to the
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increased number of timing parameters, the second approach to tuning the the al­

ternative controller of Chapter 4 with less optimisation parameters (marked with 

b in Table 5.2) suggests that it is a result of the structure of the controller and 

not the number of the tuning parameters. The above results and conclusions are 

summarised in the following section.

5.4 C onclusions

This Chapter proposed a performance optimisation method for MPC controllers 

based on the goal attainment method. It focused on forming an off-line optimisa­

tion problem with optimisation parameters the cost function weightings, that can 

pose as tuning parameters for the controller. The goal attainm ent optimisation 

procedure allows for multiple and even conflicting objectives to be defined that is 

inherited to the tuning method.

It was shown by simulation examples that the proposed tuning technique can 

be applied to different MPC structures. It was applied to both SISO and MIMO 

systems with various design objectives (rise time, settling time, dynamic output 

decoupling, and specific system dynamics). Moreover, the result of the last simula­

tion suggests that the structure of the alternative controller described in Chapter 4 

provides the algorithm with more freedom. This added freedom can be the result of 

the chosen state vector and the introduction of the integral-of-error state variable.

Concluding, it is claimed that as long as an adequate number of tuning param­

eters is chosen (and physical constraints allow), the goal attainment method can 

form an optimal tuning approach in the MPC framework.



Chapter 6

The Forward Path M PC

As has been mentioned in various places in this thesis, recent research on MPC 

has mainly focused on reducing the on-line computational load resulting from the 

solution of an optimisation problem of the form (2.4) (e.g. Borrelli et al., 2001; 

Bartlett et al., 2002; Bemporad et al., 2002; Bacic et al., 2003; Imsland et al., 

2005) and to improve i t ’s robustness properties (e.g. Bemporad and Morari, 1999; 

Kouvaritalds et al., 2000; Wang and Rawlings, 2004; Rodrigues and Odloak, 2005; 

Mayne et al., 2005).

The use of NMSS models can address these issues as has been presented 

by Wang and Young (2006). The present chapter extends the results in Wang 

and Young (2006) by considering two control structures for NMSS/MPC design, 

namely the conventional ‘feedback’ form and an alternative ‘forward path’ struc­

ture. The latter approach uses the control model to form part of the state vector, 

although an outer feedback loop of the measured output variable is still utilised to 

ensure type one servomechanism performance. The development of both forms is 

motivated by the analogy with linear PIP control, where each control structure is 

found to have certain performance and robustness advantages in practice (Taylor 

et ah, 1998).

To investigate the properties of these control structures in the present NMSS 

context, three simulation examples are considered: a marginally stable, linear

83
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transfer function model; the IFAC’93 benchmark system tha t has already been 

presented in Section 4.4.2 (Whidborne et ah, 1995); and a multivariable process 

control example, namely the ALSTOM nonlinear gasifier model, recently utilised 

as the basis of the IEE Benchmark Challenge II (Dixon and Pike, 2005). Stochastic 

simulations are utilised to compare the relative robustness of the control structures.

6.1 System  and Control D escription

The methodological approach reviewed below follows from earlier research into 

model predictive control (Wang and Young, 2006) based on the representation 

of the system using NMSS models (Young et ah, 1987; Taylor et ah, 2000a). I t’s 

properties and some control simulations have been extensively studied in Wang and 

Young (2006), while here i t ’s structure is considered and the control methodology 

is extended to form the Forward Path NMSS/MPC controller.

Consider again the difference equation (4.1) that allows for embedded integral

action in the MPC system, hence ensuring type one servomechanism performance.

Defining the state vector as in (4.4), the system can take the following state space 

form:

x fc+i =  A xfc +  B A u  k (6.1a)

y k = C xk (6.1b)

where the A, B and C matrices are given by (4.6).

The controller is subsequently derived from the numerical minimization of the 

following index at each sampling instant,

N p N c - 1

J (k : rk) - ^ 2  llr fc+4fc -  Yk+i\k\\Q +  ^ 2  l l ^ u fc+i|fcllR (6-2)
i=i i=0

subject to the system constraints (4.12b), where || • ||P refers to the matrix weighted
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squared 2 norm  of a vector, i.e. ||x||p =  xTPx. It should be noted here that 

(6.2) is equivalent to (4.10), while the former is used here to make the stability 

analysis that follows more transparent.

Inequalities (4.12b) allow for the definition of system constraints, including 

both saturation and rate limits on the control input, together with level con­

straints on the output. Similarly, the cost function (6.2) takes a standard MPC 

form with a penalty on the future error and input signals. A wide range of nu­

merical solutions to this type of constrained control problem exist (two of which 

are presented in Sections 2.2.3 and 2.2.4) and have been studied extensively in 

the literature. In this regard, the examples below utilise the quad prog function 

from the optimisation toolbox in Matlab®. The receding horizon approach is em­

ployed, with only the first element of the predicted input signal Au*, utilised at 

each sample k, as presented in Section 2.3.

6.1.1 S tab ility  analysis

The stability properties of MPC are well understood and a general proof has been 

given in Appendix C. For the approach presented here, the candidate Lyapounov 

function is expressed in the form (C.2) and reference is made to Theorem C.2.1.

As in Appendix C only stability of the origin is considered while with an ap­

propriate coordinate transformation any equilibrium can be moved to the origin. 

In this regard, the following assumptions are made.

T h eo re m  6.1.1. Under the Assumptions C.2.1 and C.2.2 the Model Predictive 

Control scheme presented here is asymptotically stable.

Proof. The minimum of the finite horizon cost function (6.2) is chosen as a candi­
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date Lyapounov function:

n p N c - 1

F ( x * A U j ^ )  =  2̂ ||r fc+i|* “  | |q  +  || A U f t + i j * | | r
i- 1 i=0
N p  N c — 1

~  n ^ x fc+tifciiQ+ iiAufc+iijfeiiR 
i = l  i = 0

n p N c - 1

=  T xhi|fcCrQCxfe+i|t +  J2 A u g ^ R A ii^
i = l  i = 0

It should be noted that ?k+i\k =  0 since the origin is considered the operating 

point. The above is in the form (C.2) with the decision variables being A u * ^  

and the weighting matrix of the predicted states being C TQC. Therefore, from 

Theorem C.2.1 it follows that the system is asymptotically stable, which completes 

the proof. □

6.1.2 Feasibility

Many authors have addressed the problem of feasibility and several potential solu­

tions to this problem are briefly discussed here. An obvious approach is to soften 

the output constraints by dropping them and instead introducing a constraint vi­

olation penalty in the cost function (see Section 3.4 of Maciejowrski, 2002, for an 

example). This method of regaining feasibility using slack variables, together with 

a way to guarantee that the constraints will be satisfied if possible, is also discussed 

by Kerrigan and Maciejowski (2000). Another approach, considered by Rawlings 

and Muske (1993), identifies the smallest time beyond which, the constraints can 

be satisfied and enforces the constraint after that time. By contrast, Scokaert and 

Rawlings (1999) regard constraint violation as a multi-objective problem.

In the cases presented in this thesis, both input and input rate-of-change con­

straints are considered saturating and therefore cannot be violated. However, in 

cases of large disturbances or uncertainty the output constraints may be violated 

(they are considered as constraints posed by peifoimance or safety issues). To
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deal with such cases any output constraints are simply removed at the time of 

infeasibility so that the control structure does not become complicated and the 

effect of the structure is more apparent (and not the effect of the infeasibility han­

dling techniques). When the system is returned to the region where the quadratic 

program becomes feasible, the constraints are reinstated.

6.2 Control structures

In order to develop new control structures for implementing the above algorithm, 

consider in the first instance the unconstrained solution. By analytically calculat­

ing the derivative of (6.2), the incremental control signal at time k becomes,

A u fc =  —K sXfc +  r s (6.3)

in which r s is a q x 1 column vector accounting for set-point changes and the state 

feedback gain matrix takes the following block matrix form,

Kh Kb K 2 ■ ■ Kn Kn+i • • • K m+n_i K m + n

where,

Kh =  <

/
k 1Ki, 1 k 1Ki, 2

1

k h k h
• k 2i,p

k h k h  "
■ k qi,p

< z

k 1 k 1Ki, 2 • k 1

k 2 k 2 ■Ki, 2 ■ k 2

k qKi, 1 k q ■Ki, 2
• k qi,q_

i = 1,. . . ,  n or i = -m -\-n

i =  n + l , . . . , r a  +  n — 1
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in which K i ■ • • K m+n are the control gain submatrices. Equation (6.3) is particu­

larly straightforward to implement in the NMSS case, since x*, is directly available 

for feedback and hence an observer is not required.

6.2.1 Feedback s tru c tu re

At this juncture, it is useful to represent the MPC algorithm in polynomial form, 

so tha t equivalent block diagrams can be developed. In this regard, consider the 

following matrices with polynomial functions as elements,

P(z) = PjCz) P2(z) ■ ■ • Pp(z)

L(z) =  L ,(2) L2(z) ■■■Lq(z)

where.

and
’n + m —l, i

'n + m —l , i

.1 (m—1)

( m — 1)

U (z) =

1 +  K i + l , i Z 1 +  k n + 2 A z  2 -1  k n + m -
(m— 1)

The feedback control law is subsequently written as follows,

(1 -  z - 1) L(z)U(z) -  w sR(z) -  (1 -  z - 1) P {z)Y (z)  -  K n+mY(z)

where w s t  ̂ =  r s and the command vector r^ is the inverse z transfoim of R(^). It 

is straightforward to show that ws =  ‘K.m+n and, therefore, the control law takes
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System1 — 2

Figure 6.1: NMSS/MPC represented in feedback form.

the form,

U(z) =  L - 1^ )  ( f y j — t) K „+m (R(z) -  Y (z)) -  P (z )Y (z ) j (6.4)

The above NMSS/MPC control strategy is illustrated in Figure 6.1 and in terms 

of state variable feedback is clearly in a feedback form.

6.2.2 Forw ard p a th  form

Equation (6.4) exposes the matrix of integral gains for each input-output pathway 

K n+m, i.e. that part of the control gain matrix associated with the outputs y  in the 

NMSS state vector. As a consequence, in order to achieve type one servomechanism 

performance, the last p elements of the state vector should always be the directly 

measured values of the outputs.

However, this is not strictly necessary for the other elements in the state vector. 

In fact, following a similar approach to PIP control system design (Taylor et al., 

1998), the other state variables can be replaced with those obtained from the con­

trol model. The forward path formulation that this approach yields is illustrated 

in Figure 6.2, where the left Matrix Fraction Description (MFD) (Kailath, 1980) 

of the control model is defined by S(z), i.e. y (k) = S(z)u(k). In this case, the 

closed loop MFD relating the command input to the output variable, y k = T (z )rfc,
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System

Figure 6.2: NMSS/MPC represented in forward path form.

is defined as follows,

T(z) = (1 -  z ‘ %  + S(z) (I, +  L -‘(z)P(z)S(z) ) L_1(z)K„+nl

-1
Ln + m

(6.5)

It follows that limz_̂ i T(z) =  Ipxp, hence the closed loop system tracks a constant 

set point change without steady state error. Similarly, the closed loop MFD for 

an input disturbance to the output, =  Si(z)du>k, is,

Si ( z )  =
- l

(1 -  z- %  +  S(z) (I, +  L -1(z)P(z)S(z)J L- \ z ) K n+m 

(1 — z—1 )S(z) f l ,  + L -1(z)P(z)S(z)
(6 .6)

while the equivalent MFD for an output disturbance, yr =  S J z ) d ytk, is,

S„(z) = (1 -  z 1)Ip + S(z) ( I ,+  L 1(z)P(z)S(z)) L 1{z)K n+m
(6.7)

[(1

From equations (6.6) and (6.7) it follows that,

limS;(z) = 0px,
Z—>1

limS0( )̂ =  OpXp
z—*l

Therefore, the closed loop system will reject any constant disturbance.
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6.2.3 C onstra in ts

In the presence of constraints, the control action is still derived by numerical 

optimisation of (6.2) subject to constraints (4.12b). However, in the forward path 

case, the Ax.m^  part of the current measurement of the state vector (4.4) is replaced 

by A xm,/cj formed from the output of the estimated system S(2 _1) and not the 

actual outputs of the system (i.e. y fc =  S (z)u k) as follows:

A x T —rn.k ~ Ay I  Aypj ... AyL„+1 A uf., Anf_a ... A uP m+1

The quadprog function of the M atlab® identification toolbox is subsequently eval­

uated to solve the resulting quadratic program, as mentioned above.

Although the set-point following and disturbance rejection results have been 

developed for the unconstrained case, the following remark now considers the gen­

eral solution when constraints are present. The remark assumes only that the 

reference levels have been realistically chosen, i.e. they can be reached in practice 

given the input constraints.

R e m a rk  6.2.1. When the outputs of the system are near the reference levels, 

the controller has the unconstrained form. Furthermore, the set-point following 

and disturbance rejection properties presented above, all refer to the steady state. 

Therefore, they also hold in the general case where constraints are present.

6.3 Perform ance tests

In this section, the performance of the proposed forward path NMSS/MPC algo­

rithm  is compared with that of the feedback form, as applied to three simulation 

examples. The research takes advantage of Monte Carlo Simulation (MCS), which 

provides one of the simplest and most attractive approaches to assessing the sen­

sitivity of a controller to parametric uncertainty. Here, the model parameters for
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each stochastic realisation are selected randomly from a given probability distri­

bution.

6.3.1 M onte Carlo S im ulation (M CS) based u n certa in ty  

analysis

It can be shown (Young, 1976, 1984) that the RIV and SRIV estimation algorithms 

introduced in Section 2.1 are optimal in statistical terms if the additive noise has 

a normal Gaussian distribution. In this situation, the parameter estimates will 

have a joint probability distribution with mean and covariance matrix defined by 

the estimated r  x 1 parameter vector p and its associated r  x r covariance P*. 

In MCS analysis (e.g. Taylor et ah, 2004b; Young, 1999), these statistical results 

are used to generate a large number or ‘ensemble’ IV, of stochastically generated 

random samples, or ‘realisations’, of the model parameters from the multivariate 

normal distribution defined by p and P*.

In order to compute the random ensemble of model parameters that can be 

considered to characterise the model in a stochastic sense, it is necessary to gener­

ate random numbers from the normal distribution P*). This is accomplished 

by noting tha t P* is a positive definite matrix, so that it can be decomposed using 

the Cholesky decomposition,

P* =  LLt

where the Cholesky factor L is a nonsingular r x r lower triangular matrix. Consider 

now the set of N  random vectors,

P i =  Lej =  (6.8)

where e* =  A f(0 ,1) is an r  x 1 vector of independent, normally distributed random 

variables, each with zero mean and unity variance. By construction, the vectors
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Pi, i — 1, • ■ • ,N  have the properties:

E(pi) = 0

cov(p.j) =  = LF(e^ef)L t  -  LLT

The vector p^, generated in this manner, has the same covariance matrix as the 

parameter estimates. Consequently, the vector,

P* =  P +  Pi (6.9)

can be considered as a random sample from the estimated parametric probability 

distribution P*), as required for MCS analysis.

In the present context, the reduced order model is obtained by performing a 

planned, open loop experiment on the large system model using selected perturba- 

tional input signals. Since the noise level is low in such an experiment, the SRIV 

algorithm is used both to identify the reduced order model structure that describes 

the data adequately and estimate its parameters, together with their associated 

covariance matrix. Given this information, MCS analysis can be used to evalu­

ate how the uncertainty in the parameter estimates affects other properties of the 

open or closed loop system: for instance, plots of the closed loop step, impulse and 

frequency responses; and plots of the closed loop pole positions or ‘stochastic root 

loci’ (e.g. Taylor et ah, 2004b).

The computational implementation of MCS analysis is straightforward. For 

the ith realisation, the r elements of the white noise vector e* are generated as 

independent, normally distributed random numbers using, for example, the randn 

function in M atlab®. The Cholesky transformation in (6.8) is then applied to 

obtain p w h i l e  the parameter vector p* from (6.9) defines the randomly selected 

model. This model is then used to compute the ith realisation of the model property 

being investigated. After this has been repeated N  times, the resulting ensemble of
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Feedback Controller Forw ard P a th  Controller
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Figure 6.3: Root loci for 100 Monte Carlo simulations for 15% variation in each 
numerator parameter of the transfer function (6.10). Left figure: feedback form. 
Right figure: forward path form.

N  realisations can be plotted directly, as shown in the examples considered later, 

or they can be represented by their statistical properties (e.g. Young, 1999): these 

could include an empirical estimate of the probability distribution for a derived 

parameter in the form of a normalised histogram; the mean and 95 percentile 

bounds of a response; (etc.). Naturally, the accuracy of these empirical estimates 

is a function of the ensemble size N  but, in these days of fast digital computers, 

it is normally possible to choose this to be sufficiently large.

6.3.2 M arginally  stab le system

Consider the second order, marginally stable and non-minimum phase model in­

troduced in Section 3.4 in the following transfer function form,

Since the above system is marginally stable, introducing uncertainty is likely to 

cause instability of the closed loop system. To evaluate the performance of the 

structures presented above, they are both applied on this system. For the purposes 

of this example, the prediction and control hoiizons are selected as Np — 20 and 

N c =  5. The Q and R  matrices are ^  and respectively, chosen by trial and 

error to obtain a satisfactory response for the nominal case.

(6 .10)
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Feedback Controller Forw ard P a th  Controller
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Figure 6.4: Root loci for 100 Monte Carlo simulations for 5% variation in each 
denominator parameter of the transfer function (6.10). Left figure: feedback form. 
Right figure: forward path form.

W ith these settings and 100 MCS realisations performed in both MPC struc­

tures presented in Section 6.2, Figure 6.3 shows the closed loop transfer function 

poles for 15% variation in each numerator parameter (i.e. every numerator param­

eter was randomly varied within ±15% of i t ’s nominal value), while Figure 6.4 

illustrates the case for 5% variation in the denominator parameters. For these 

initial simulations, the level of parametric uncertainty has been artificially cho­

sen, in order to highlight the difference between the two control structures and to 

illustrate the way the closed loop poles are affected by parameter variation.

In both this and the following example, such closed loop pole positions refer 

to the poles of (6.5). Although these are for the unconstrained case, they provide 

insight into the behaviour of both controller structures under uncertainty. The 

NMSS/MPC pole positions presented in Figures 6.3 and 6.4 mirror results obtained 

from earlier research into NMSS/PIP control (Taylor et ah, 1998, 2001), i.e. the 

forward path controller yields more unstable responses in the case of parametric 

uncertainty of the denominator, while the feedback structure yields more unstable 

responses when there is only uncertainty in the numerator parameters.

By contrast, Figure 6.5 illustrates 100 MCS realisations for simultaneous varia­

tions in both the numerator and denominator parameteis, based on the estimated 

covariance matrix, as discussed in Section 6.3.1 above. In this case, the analysis 

utilises P* identified from an initial open loop experiment with artificially intro-
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Figure 6.5: 100 Monte Carlo simulations for variation in both the numerator and 
denominator parameters of the transfer function (6.10) based on the estimated P *  

matrix. Top figure: forward path form, also showing the response to input and 
output disturbances. Bottom left figure: root loci for the feedback form. Bottom 
right figure: root loci for the forward path form.

duced, additive white noise and is given by:

0.4 -0.33 -4 .2 7.9

-0.33 0.38 -1 .2 -2 .9

-4 .2 -1 .2 410 -380

7.9 -2 .9 -380 440

The feedback controller yields numerous highly unstable realisations, as illustrated 

by the closed loop pole positions. For this reason, the upper subplot of Figure 6.5 

only shows the time responses of the forward path controller. Figure 6.5 represents 

the most realistic comparison of the two controllers, from which it is clear that 

the forward path structure yields the most robust performance. However, it is 

im portant to note that, not only has a difficult marginally stable system (6.10) 

to control been chosen, but the parametric uncertainty has been artificially scaled 

up, in order to facilitate this comparison of the relative robustness.
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Figure 6.5 also illustrates the disturbance rejection properties of the proposed 

forward path algorithm. Here, a pulse input disturbance of length 30 samples and 

amplitude 0.2 is initiated at the 20th sample, while a pulse output disturbance 

of 20 samples length and amplitude —0.5 starts at the 80th sample. As would 

be expected from the analysis in Section 6.2.2, the algorithm satisfactorily rejects 

both these disturbances in steady state.

Finally, for all the examples above, the forward path structure generally yields 

closed loop poles in the vicinity of the theoretical design poles, while in the case 

of the feedback controller the poles are more widely distributed. When the design 

poles are well inside the unit circle, this might be expected to yield stable MCS 

forward path responses closer to the design specifications, as shown by the next 

example.

6.3.3 T he IFAC ’93 B enchm ark

As already mentioned in Section 4.4.2, the IFAC ’93 benchmark is a difficult prob­

lem since it includes stringent closed loop performance requirements, despite the 

fact tha t the parameters of the plant are known only within a certain range. In 

fact, the plant operates at three different stress levels, with higher stress levels im­

plying greater time variations of the unknown parameters and a continuous time 

transfer function representation takes the form of (4.22).

For brevity, the present section does not repeat the system description that has 

already been presented in Section 4.4.2, the reduced order transfer function for the 

model is given by (4.23). For the control simulations presented in the following, 

the prediction and control horizons, together with the weighting terms are chosen 

as follows: Np = 50, Nc = 10, Q =  ^  and R  =

The benchmark transfer function (4.22) is already a reduced order model (see 

Whidborne et ah, 1995, for details), hence the P* matrix (see Section 6.3.1) as­

sociated with (4.23) is not necessarily an appropriate representation of the true
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Table 6.1: Lower and upper bounds of parameter uncertainty that result in the 
stochastic closed loop poles lying within 0.1 of the nominal case for the IFAC ’93 
Benchmark, where e\ and e2 are given by equation (6.11).

£1 £2

Min. Max. Min. Max.
Feedback 0.837 1.126 0.939 1.105

Forward Path 0.735 1.449 0.868 1.071

uncertainty. However, for the purposes of the present chapter, it is the relative 

performance of the two control structures that is of most interest; for this exam­

ple, multiplicative uncertainty is introduced into the numerator and denominator 

parameters of (4.23) in the following manner:

62 =  £1^2
(6 .11)

CL\ — t 2 a \

in which b2 and ai are the values that were used while designing the controllers 

(i.e. b2 =  0.0946 and ai =  -0.9055). The lower and upper values of £1 and c2 

tha t allow for all the poles of the uncertain closed loop to lie inside a circle of 

radius 0.1, with the centre defined as the associated nominal closed loop pole, are 

determined numerically and shown in Table 6.1. This problem is sol\ed using the 

fmincon function of the MATLAB® optimisation toolbox, defining the polynomial

roots as nonlinear constraints.

For this system, Table 6.1 shows that the forward path controller yields closed 

loop poles ‘near’ the nominal case for a wider range of the uncertain parameters 

than the feedback structure. For example, the above condition holds for b2 m the 

range 0.74 to 1.45 of the nominal value for the forward path structure, compared 

with a more constrained range of 0.84 to 1.13 in the feedback case. It should be 

noted tha t only one of £1 and £2 is allowed to vary at a time, since simultaneous 

variation of both parameters does not allow the formulation of an optimisation 

problem that can be solved without compromise between variation of the parame-



Chapter 6: The Forward Path MPC 99

w
3
4-53a
3O

'3
vi
4̂>2O,
o

Figure 6.6: Closed-loop simulations of the IFAC ’93 benchmark with the paramet­
ric variation at Stress Level 2 as shown in Table 4.1. Top figure: feedback form. 
Bottom figure: forward path form.

ters. By contrast, the additional simulations described in the following paragraph 

apply to variations of the parameters of system (4.22).

To support the results above, 32 simulations were obtained based on the posi­

tive and negative extremes of each of the 5 stochastic parameters (see Table 4.1), 

now using the benchmark system (4.22). Although it is possible that more extreme 

responses may be obtained with certain combinations of the parameters in their 

intermediate range, the simulations employed here provide a reasonable guide to 

the overall performance. The results are illustrated in Figure 6.6, where it is clear 

tha t the forward path controller yields an improved response (with no unstable re­

alisations) compared to the feedback algorithm at the specified level of parametric 

uncertainty.

It should be noted that the objective of the present simulations are only to use 

Figure 6.6 to highlight the difference between the two control structures and not 

to present a finally designed control system. For instance, some of the realisations,

Feedback Controller

Forward P ath  Controller
2

1

0

1

■20 10 155 20 25 30
Tim e (s)
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even in the case of the forward path algorithm, have relatively large excursions 

from the command level.

In this regard, the performance shown in Figure 6.6 for the forward path con­

troller is similar to the initial fixed gain NMSS/PIP controller developed in Taylor 

et al. (2001). In this latter case, a multi-objective optimisation approach was sub­

sequently utilised to significantly improve the results (Taylor et al., 2001). This 

approach has been presented for MPC controllers in Chapter 5 and clearly offers 

a solution to tuning the present controller. To further improve the robustness of 

the Forward Path controller, the decrease of the overshoot of the worst case in 

the robustness test is identified as a performance requirement, while at the same 

time the rise time of the slowest response should not be dramatically deceased. 

The optimisation parameters are chosen as the evolution of the Q and R  matrices 

(i.e. elements in the present SISO example) within the prediction horizon. Defin­

ing the parametrisation of (5.4) for the Q and R  matrices, the optimised values 

are the following:

Q =  diag [0.4394 0.1545 0.1465 0.2611 0.4041 0.4914

0.5561 0.6027 0.6354 0.6572]

and

R  =  diag 0.001 0.9284 0.9072 0.8042 0.6891

Finally, the resulting optimised closed loop robustness test, along with the respec­

tive control signals is depicted in Figure 6.7, where it is clear tha t all the design 

objectives are satisfied.

6.3.4 T he ALSTOM  B enchm ark

This section of the chapter applies the NMSS/MPC approach to the nonlinear AL­

STOM Benchmark Challenge II (Dixon and Pike, 2005). The simulation includes
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Figure 6.7: Closed loop simulations and control signals for the IFAC ’93 benchmark 
with the parametric variation at Stress Level 2 as shown in Table 4.1 and multi­
objective optimisation of the weighting parameters of the Forward Path Controller. 
Top figure: System Output. Bottom figure: Control signal.

all the significant physical effects related to the gasification system of an integrated 

gasification combined cycle power plant; e.g. drying processes, desulphurization 

and pyrolysis. It has previously been validated against measured time histories 

from a British Coal experimental test facility.

In essence, the benchmark is a nonlinear, multivariable simulation based on 

four highly constrained controllable inputs, i.e. a linked coal and limestone vari­

able (WCOL), air (WAIR), steam (WSTM) and char extraction (WCHR), to­

gether with a pressure disturbance and various boundary conditions, including a 

coal quality parameter. The pressure (PGAS), temperature (TGAS), bed-mass 

(MASS) and gas quality (CVGAS) must all be maintained within specified limits, 

despite the effects of the disturbance signal.

To identify an appropriate control model, the gasifier simulation is first per­
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turbed by impulse input signals in open loop. A sampling rate of Is is utilised1 

to make the results directly comparable with those of Al Seyab and Cao (2006), 

where it is suggested that the present controller, although linear, can result in 

improved performance when compared to the nonlinear one of Al Seyab and Cao 

(2006). In this case, the SRIV algorithm, coupled with the YIC and identifica­

tion criteria (see Section 2.1), suggest that the gasifier is well represented by four 

multi-input, single-output transfer function models. In this manner, the following 

system description is developed,

A y k +  Ai A y n  + A2Ayfc_2 + A3Ayfc_3 = Bi A u ^ i  +  B 2Aiifc_2 (6.12)

where Ay*, consists of the PGAS, TGAS, MASS and CVGAS variables; Au^ is a 

vector of inputs, WCOL, WAIR, WSTM and WCHR; and,

A i =  diag

A 2 =  diag

A 3 -  diag

-1.8225 -1.7652 -0.8469 -0.9984

0.8298 0.7663 0.1195 0

0 0 -0.0268 0

B i =

0.0135 -8.3538 3.0317 -5.7507

-0.0773 -0.1199 0.0734 -0.1603

0.0001 0.0271 0.0066 0.0434

0.0174 0.0405 -0.0371 -0.0139

Bo =

0 7.4359

0 0

0 -0.0065 

0 0

-2.4752 7.0412

0 0

0 -0.0079

0 0

1A shorter sampling time of 0.25s seems to be a better choice and to  offer an adequate descrip­
tion of the short term  dynamics and ensures a rapid response to  the disturbances as described in 
Taylor and Shaban (2006). Although the results presented here are w ithin the specified limits, 
using faster sampling leads to improvement in the controller performance. However, a sampling 
tim e of Is is chosen for the reasons stated in the main body of the text.
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Table 6.2: Boundary values for the control signals of the ALSTOM nonlinear 
gasifier system.

Input Amplitude Rate-of-change
Min. Max. Min. Max.

U \ 0 3.5 -0.2 0.2
U 2 0 20 -1 1
U3 0 10 -0.2 0.2
U 4 0 6 -1 1

The prediction and control horizons are selected as Np =  20 and N c =  7 respec­

tively; the weighting matrices on the error and the control increment signals are 

given by Q =  diag [0.25 0.1 1000 10] and R  =  diag [1 10 0.1 10] respec­

tively. Finally, the level and rate-of-change constraints on the control signals are 

listed in Table 6.2 (Dixon and Pike, 2005).

Figures 6.8 and 6.9 illustrate the output and input signals, respectively, for 

the forward path controller, showing the response of the closed-loop system to a 

sine wave pressure disturbance. This simulation experiment is one of the standard 

benchmark tests (Dixon and Pike, 2005). It is clear that all foui output vaiiables 

are controlled well within the required limits, wheie the latter are shown as the 

horizontal dotted traces in Figure 6.8. Note that the basic performance specifica­

tions are met for both control structures although, for brevity, the response of the

feedback algorithm is not plotted here.

As expected, the control inputs also remain wdthin the specified level limits 

at all times, similarly represented as dotted traces in Figure 6.9. However, it is 

the rate-of-change constraints on the control signals for both the feedback and the 

forward path forms of the MPC algorithm that are of most interest to the present 

example, illustrated in Figures 6.10 and 6.11 respectively. Here, it is clear that 

the rate-of-change for the inputs of the forward path controller are considerably 

smaller than in the feedback case, representing a rather smoother control signal. 

For a practical system, the latter result suggests that the forward path design may 

yield reduced wear of the actuators, with the potential for lower operating costs
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Figure 6.8: System outputs of the ALSTOM gasifier in response to a pressure sine 
wave disturbance at 100% load using the forward path form.
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Figure 6.9: System inputs of the ALSTOM gasifier in response to a pressure sine 
wave disturbance at 100% load using the forward path form.
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Figure 6.10: Rate-of-change for the four control input signals of the ALSTOM 
gasifier system at 100% load using the feedback form.

Table 6.3: Integral of absolute error values for the ALSTOM nonlinear gasifier 
system for the NMSS/MPC controller and the controller of Al Seyab and Cao 
(2006) (NMPC), shown for three operating levels.

Output 0% load 50% load 100% load
NMSS NMPC NMSS NMPC NMSS NMPC

CVGAS 705.31 295.29 316,51 760.38 398.95 898,07
MASS 430.63 9292,00 28 i .20 1010.70 211.91 434.99
PGAS 25.25 13.61 17.61 6.41 13,65 5.24
TGAS 51.81 101.38 32.13 66.17 22.85 45.95

at no loss of performance.

Although the controller was designed for the 100%; load operating condition, 

similar results are obtained for the other simulations specified by Dixon and Pike

(2005). In particular, Table 6.3 presents the integral of absolute error from the 

set-point for all four output variables, for a, sine wave load disturbance at all 

three operating conditions, i.e. 0%, 50'% and 100%. For comparative purposes, 

the equivalent values given in the paper by Al Seyab and Cao (2006) are also

presented in Table 6.3.

Comparing the values, it is evident tha t the NMSS/MPC controller .in general

6
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Figure 6.11: Rate-of-change for the four control input signals of the ALSTOM 
gasifier at 100% load using the forward path form.

performs better for the 100% and 50% load conditions (exept for the PGAS output 

variable where the controller of Al Seyab and Cao (2006) uses a non-linear model 

to estimare), while the nonlinear controller of Al Seyab and Cao (2006) is superior 

(for some variables) at the 0% load condition. Bearing in mind that the controller 

of Al Seyab and Cao (2006) is designed for the 0% load condition, while the one 

presented here is based on the 100% load case (as initially required by the bench­

mark organisers), this conclusion is to be expected. The fact tha t the NMSS/MPC 

controller yields better results for the middle 50% load condition suggests that it 

may be more robust to operating level changes. However, this result needs further 

investigation and is included here merely to show that the NMSS/MPC controller 

can produce at least similar results to existing MPC formulations.

Finally, it should be pointed out that the NMSS/MPC algorithm yields similar 

results to the NMSS/PIP controller also developed for the gasifier (Taylor and 

Shaban, 2006). However, the latter algorithm was obtained by an off-line trial 

and error tuning of the control weighting terms using the full nonlinear simulation,
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in order to minimise activation of the constraints, while the new NMSS/MPC 

approach builds these constraints directly into the design process.

6.4 Conclusions

This chapter, motivated by earlier research on NMSS/MPC by Wang and Young 

(2006), in which the NMSS formulation is compared to the conventional minimal 

solution, has considered the implementation structure of this NMSS/MPC con­

troller. In particular it has identified the controller of Wang and Young (2006) as 

a conventional feedback structure, and considering earlier research on NMSS/PIP 

control by Taylor et al. (1998) proposed an alternative arrangement that takes ad­

vantage of the identified model, namely the Forward Path NMSS/MPC controller.

The relative robustness of the proposed structures are evaluated by Monte 

Carlo Simulation (MCS). Here, the model parameters for each stochastic reali­

sation are obtained from the joint probability distribution of the parameter esti­

mates. W ith the availability of fast digital computers, this provides one of the 

simplest and most attractive approaches to assessing the sensitivity of a controller 

to parametric uncertainty and is widely applicable in the process control industry.

Such MCS analysis, including examination of the closed loop pole positions, 

suggests that the suggested Forward Path MPC scheme generally offers improved 

robustness properties in comparison to the feedback approach of Wang and Young 

(2006), whilst preserving the latter’s disturbance rejection properties. Further­

more, the control signals are typically smoother in the forward path case. It is 

recommended, however, that the feedback structure is used when dealing with 

marginally stable or unstable systems. In these cases, the forward path controller 

is more likely to yield an unstable realisation in the presence of parametric un­

certainty. These characteristics are of particular impoitance in real applications 

where system uncertainty is inevitable and smooth handling of the control signal 

actuators is nearly always desirable.
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Furthermore, it was shown that the proposed control structure can produce at 

least similar (if not better) results compared to a nonlinear controller presented by 

Al Seyab and Cao (2006). Therefore, it is suggested that this particular structure 

can pose a simple alternative to more complicated nonlinear controllers.



Chapter 7 

Disturbance Handling

7.1 Introduction

This chapter presents a NMSS/MPC formulation for systems with a modelled 

measured disturbance. Modelled disturbances can be any measurable but un­

controllable s}fstem inputs that affect the system state or output. Examples can 

include wind speed and environmental temperature in ventilation systems, envi­

ronmental conditions (e.g. heavy rain) in wastewater treatment plants and others 

tha t are generally hard to control but relatively easy to measure. Although it 

could be argued that integrators in the control design will deal with any constant 

disturbances (see Muske and Badgwell, 2002; Pannocchia and Rawlings, 2003, for 

a detailed approach to non-rnodelled disturbances), it is true that in this context 

better predictions (that result from better modelling) will lead to better control 

performance (Rossiter, 2003).

In the relevant literature, two ways of dealing with modelled disturbances are 

considered (see Bemporad, 2006, for a brief review), namely improving the predic­

tions by taking into account the disturbance measurement and model (Rossiter, 

2003, Sec. 4.9.3) and augmenting the state vector with disturbance values (Ma- 

ciejowski, 2002, Sec. 7.4). An implementation of the latter is also presented in 

Sanchez and Katebi (2003) for a wastewater treatment simulation.

109
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Here, both approaches are presented for the NMSS/MPC framework. The 

system description is given and the optimisation problem is defined. A simulation 

example shows the improvement in the tracking performance of the presented 

strategies compared to approaches where the disturbance model is not taken into 

account. Finally, a case study of temperature control in an installation is presented, 

where the temperature of the surrounding environment is considered a disturbance.

7.2 System  description

The methodological approach presented below follows from earlier research into 

model predictive control (Wang and Young, 2006) based on the representation of 

the system using non-minimal state space models (Young et ah, 1987; Taylor et ah, 

2000a) with the addition of the modelled disturbance signals. The controller of 

Wang and Young (2006) is extended to take into account modelled disturbances 

(either by augmenting the state vector or explicitly). While integral action is still 

accounted for inherently by definition of the system in terms of the differenced 

input, output and disturbance signals. In this regard, consider the g-input, p-  

output system with r measured disturbance signals described by the following 

difference equation

Yk =  ~  ■^■lYk—l ~~ A-2Yk-2  — . . .  -  A n Y k —n

+ BiUfc_i + B2Ufc_2 + . . . + BmUfc_m

+ GiVfc-i +  G 2Vfc_ 2  +  . . .  +  G(Vk-i

where =  [yi,k 2/2,a; • ■ * VpA > u k =  [ui,k u 2,k ■ • • uqA and v fc =

[vi k V2 k vr,k]T are the outPu t> the control input and the disturbance vec­

tors1 respectively, and the A^, Bj and G^ are p x p, p x q and p x r matrices

1 A lthough v  is a vector of disturbance signals, in terms of the estim ation algorithm it can 
be treated  as any other input of the system. In this regard, the SRIV algorithm is utilised to 
determ ine the value of I and the matrices as described in Section 2.1.
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respectively, for i = 1 , . . . ,  n, j  =  1 , . . . ,  m  and k =  1 , . . . ,  I.

The above system can represented in terms of the differenced output, input 

and disturbance variables, yielding embedded integral action as

A y fc =  -  Ai  A y fc_! -  A 2A y fc_2 -  . . .  -  A nA y fc_n

Based on the difference equation (7.1) the following sections describe two dif­

ferent approaches to disturbance handling, namely by augmenting the state vector 

(Section 7.2.1) and by direct evaluation of the disturbance model in the prediction 

equations (Section 7.2.2).

7.2.1 A ugm enting th e  s ta te  vector

Based on the state space representation of Wang and Young (2006) the NMSS 

state vector (4.2) is augmented with disturbance measurements as:

A x l t  = [ A y l  Ay*’. ,  • • • Ay AuJ_, Au[_2 • • • AuJ_m+1

+ B iA u n  + B2Aufc_2 + ... + BmAuk - m (7.1)

+  GiAvfc_ 1 +  G 2 Avfc_ 2  +  . . .  +  G;Avfc_i

A v [  Av£_! • • • A vJ_m ]

The NMSS state space form is now

A x a ,/c+ i  —  A a A x a ,/c T  B a A u /j - t-  G a A v ^

Ayfc+i = CaAxa,/c+i

(7.2a)

(7.2b)

where the system matrices can be partitioned as
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Table 7.1: Dimensions of the matrices in the state space form
Matrix Dimension

A a , i np +  ( t o  - -1)9 X np - f  ( t o  - - 1)7
A a ,2 np +  (m -- 1)? X lr
A a ,3 lr X lr
B a . i np +  ( m  --1)7 X 7
G a , i np +  ( t o  - -  1)7 X r
C a,i V X np +  ( t o  - -  1)7

The A a . i ,  B a , i  and C a , i  are given by (4.3) and A a , 2 , A a ,3  and G a , i  are defined 

as:

A aq —

_

1
O 0 r • 0 r 0 r

G 2 G 2  • • • G i _ !

l r O r  • • 0 r O r

O p r O p r O p r O p r

; A a ,3  — 0 r l r • 0 r O r

1
O O p r O p r O p r

0 r 0 r  • I t 0 r

and

r T  - C L  C L  0 r  0 r (L 0 T

while 0m>i is a np +  (to -  l)q x I matrix of zeros. The dimensions of the above

matrices are given in Table 7.1.

The state vector is subsequently redefined, to include the curient measurement

of the system outputs as:

Xu = A x £ >fc y j

It should be noted that the state vector still consists of only measured system 

variables and there is no need for a state reconstructor. In the same manner as 

described in Section 4.1, the state space description of the system takes the form:
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“ - - r -] r

A x A )H 1 A a  0 A x a  ,k B a G a
— + A u fc +

yfc+i C a A a  Ip y  k CaB a

i
<0<u

1

A vt

y  k 0T L
AXa,/c

yfc

(7.3a)

(7.3b)

where x  is of dimension (n + l)p + (m -l)q + lrx  1 and 0 is a (n + l)p + (m -l)q + lrx p  

zero matrix. The system is therefore described in the following state space form

x fc+i =  A xfc +  B A u fc +  G A vfc (7.4a)

yfc+i =  Cxfc+i (7.4b)

where the system matrices are defined in (7.3).

7.2.2 D irect use of th e  d isturbance m odel

In this section the state space model that is used for the second approach to 

disturbance handling is developed. In this case, the state vector is the one of Wang 

and Young (2006) given by (4.4), while the state space description is extended to 

take into account the disturbance model.

Consider again a system model in the difference equation form of (7.1). To

describe the system in the a NMSS form similar to the one of Wang and Young

(2006), the state vector is defined as in (4.4) and the corresponding state space 

model is defined as,

X/m =  Axfc +  B A u^ +  G A ^  

Y k+i =  Cx&+ 1

(7.5a)

(7.5b)
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in which

-  Vfe_ !  

V * _ 1  -  ¥ f e _ 2

V f e - I + I  ~

a n d  the system m a t r i c e s  A, B  .a n d  C a x e  described a s  i n  (4.6), w h i l e :

G p
1 1x2 "  *

O p r  O p r  '  '  '  O p r

G  =
Opr Opr 0

Onr 0 ,'qr 09 r

Ojjjf 0(jjf " 0g|-

Q i G 2

R em ark 7.2.1. From the above, it is clear that, in comparison to the second ap­

proach, augmenting the state space model increases the state dimension. Dt htrd vg 

on the disturbance model this increase can be considerable compared to * 

state dimension. However, as pointed out in Bempomd (2006) it is a mom geneml

approach to rejecting measured dt imtmnrns in control systems that am based on 

linear models and therefore it is wiusukred here for completeness (an application

of this approach to P IP  control of systems with measured modelled disturbances 

can be found in Lees (1996)).
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7.3 C ontrol D escription

In both the above system descriptions, the controller is derived from the numerical 

minimisation of the index2 (6.2) at each sampling instant, subject to the system 

constraints (4.12b)

In the following, the above optimisation problem is expressed by a more com­

pact m atrix form where the system predictions are based on the system description 

(7.5). Clearly, by substitution of A v  with A v  and using the appropriate matri­

ces, the same result holds for the system description (7.4) tha t is based on an 

augmented state vector.

In a similar manner to Section 4.2 and assuming tha t the control action retains 

i t ’s last value after the end of the control horizon (i.e. Aujs+i =  0, i =  N c, . . . ,  Np), 

the system prediction equations can be formed as:

Xfc+1 =  Axfc +  B Au/j +  GAv/,

Xfc+2 =  Ax/c+i +  B A u fc+i +  G A v fc+i

=  A 2Xfc +  (ABAufc +  BAufc+i) +  (A G A v^ -f- Gv^+i)

Nc- 1 Wc-1

Xfc+;vc =  A NcXk +  2 2  A lB A u fc+ivc- i - i  +  2 2  A lG A rfc+ivc_i_j 
i=0 i=0

Np- 1 Np- 1

■Kk+Np =  A ^ X fc  +  2 2  A 'B A ufc+iV p-1 - i  +  2 2  A * G A v fc+jvp_ i_ i
i= N p-N c

R em ark 7.3.1. In the above predzctzon eguatzons it zs assumed t h a t  future vclIubs 

of the rate-of - chang e (and therefore th&ir actual v o Iu b s )  fov tJiB disturbance signals 

are available. However) in most veal situations they are not available and a deci- 

sion should be made regarding the predictions. There are numerous alternatives, 

based on both the designers’ knowledge on the nature of the disturbance and the

2T his index is identical to the one 7sed by Wang and Young (2006) and in Chapter 6. However, 
the ou tpu t predictions are based on the models described in the previous sections.
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computational load that can be handled online. To name a few, the evolution of the 

disturbance can take the form of a predefined model (e.g. an A R  model) that can 

be used for predicting future values, or simply the disturbance can be constrained to 

retain i ts ’ present value in the future. Another widely used approach is to consider 

the disturbance signal as the output of a predefined model driven by white noise.

From this point on, the disturbance in the prediction equations is treated fol­

lowing the next assumption.

A ssu m p tio n  7.3.1. The disturbance signals retain their present value throughout 

the prediction horizon (i.e. Vk+i — v /c; i — 1) ■ • • > Nv)

Subsequently, the future state, output, and control increment vectors are given

by (4.7), the future set-point trajectory vector by (4.9) and the future control 

signal vector by (4.13). From Assumption 7.3.1 it follows tha t the A v  vanishes to 

a zero vector after I samples into the future (i.e. =  0 for i = I +  1, . . . ,  Np).

In this regard, the future disturbance vector is defined as3:

3in general case where the evolution of the disturbance is considered known or modelled, 
A V  could be defined an A V T =  [A v J A v f+1 . . .  A v fW i _ ,]  and the H „ would have the 
appropriate  dimensions. However, in the present this would only increase the  dimensions of the
related  m atrices w ithout providing more information on the disturbance values (they would be

AVT = AvJ A v f +1 . . .  A v ^

The state and output prediction equations can now take the form:

Y  =  CX

X  =  Fx(jfe) +  4 A U  +  H v A V (7.6a)

(7.6b)

zero).
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where F  and $  are given by (4.8), U v is defined as

a, -

G

AG

0

G

A 'G  A*-1G

A i+1G A '+2G

0

0

G

A G
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A "v~ l G A Np~2G  ••• A ^ - i_1G

and C is a Np block diagonal matrix of dimensions pNp x ( ( n +  1 )p + (m — 1 )q)Np, 

with the m atrix C on i t ’s diagonal. The optimisation problem presented at the 

beginning of this section can then take the general form of the MPC problem (2.4):

min Js = (S — Y )t  Q (S — Y ) +  A U TfiA U  (7.7a)

subject to,

-A U < AU < A U

- U < U < U (7.7b)

- Y < Y < Y

where the notation : and 7 is used to denote lower and upper boundaries for the 

appropriate vectors; the inequalities refer to element by element inequalities and 

the Q and R  matrices are defined as,

Q =  diag

R  --- diag

Q Q . . .  Q

N v

R  R  . . .  R

N c

By straightforward manipulation of (7.6) and substitution on (7.7a), the optimi­



Chapter 7: Disturbance Handling 118

sation problem takes the form,

min 7̂  A U T ($ r C TQ C $  +  R ) A U +

+  [$ t C Q  (C F x (A) +  C H „A V  -  s)]r A U

subject to: M A U  < N

where the inequality M A U  < N  is the combination of (7.7b) into a single in­

equality in terms of the decision variable A U . The M  and N  matrices are given 

by:

1 1—
1 

£
1

- A U

A U

- c 2
c 2

; N  =
—U  +  Q\Uk-\ 

U  — Cinfc_i

-c $ —Y  +  CFxfc +  C H A V

Y  -  C F x fc -  C H „A V

and the C i and C 2 matrices are defined as follows,

V

i
1—

1 
*<3 ° p •• • Op Op

ip I p I p '■ • Op Op

O II ; C 2 =

ip I p I p " • Ip Op

.ip. .Ip Ip '■ ■ Ip Ip.

7.4 S im ulation  E xam ples

In the following, two simulation examples are considered. Initially, a SISO sec­

ond order discrete time system with modelled measured disturbance is considered 

to highlight the differences among control structures tha t take into account the
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disturbance model and the ones tha t don’t. Then, a MIMO tem perature control 

installation is considered where the modelling and control simulation procedures 

are presented for a complete approach to control a real installation with modelled 

measured disturbance. In this latter example, only the approach presented in Sec­

tion 7.2.2 is considered because it does not increase the size of the optimisation 

problem and is more suitable for the outdated hardware th a t accompanies the 

installation.

7.4.1 SISO E xam ple

Consider the second order discrete time system with modelled measured distur­

bance described by the following difference equation4:

yk — lA y k - i  +  0.45j//c_2 =  0.3?/fc_i — 0.27u/c_2 +  0.4ufc_i — 0 .2 u^ _2

where y  is the system output, u is the control input and v is a measured distur­

bance. It is straightforward to express the above model in the form of (7.1) that 

is the basis for both system descriptions considered in this chapter. For compara­

tive purposes, in the following, a NMSS/MPC controller is evaluated for both the 

system with the augmented state and that which models the disturbance directly. 

Their performance is subsequently compared to the alternative control structure 

presented in Chapter 4 and the controller of Wang and Young (2006) that do not 

take into account the disturbance model. In these latter cases it is assumed that 

a measurement of the disturbance is not available. Although such a comparison is 

in favor of the structures tha t make use of the measured disturbance, it is merely 

performed to show th a t making use of the available measurement can dramatically

improve performance.

4This system  is introduced by Lees (1996) and is used here for a possible comparison between 
the different control structures.
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7.4 .1 .1  A ugm enting  the sta te  vector

By the description presented in Section 7.2.1 the augmented state vector for the 

above system is:

Xfc = A yk Ayk_x A ufc_i A v k Aufc_i yk

The state  space form is subsequently defined as in (7.4) with the system matrices 

and vectors as described in Section 7.2.1

7 .4 .1 .2  D irect use o f th e  disturbance m odel

To describe the system in the form presented in Section 7.2.2 for direct use of the 

disturbance model in the prediction equations, the state vector is defined as:

Xfc = Ayk A y k- i  A ufc_i yk

A v =

Subsequently, the system takes the form (7.5) with the system matrices and vectors 

defined in as Section 7.2.2 while the difference of the disturbance vector Av is given 

by:

V k  —  v k - 1 

Vk- 1 — Vk-2

As already mentioned in Remark 7.2.1 it is clear from the above system descriptions 

tha t augmenting the state vector to account for the disturbance model increases the 

dimension of the system description. However, the present chapter presents both 

approaches and demonstrates their application to NMSS/MPC without attempting 

to compare them directly.

7 .4 .1 .3  C ontrol Sim ulation

For the purposes of the present example, the system is simulated in closed loop 

with the desired reference signal considered to be a step from zero to one units
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Figure 7.1: Reference signal (thick solid lines), System output (thin solid lines) and 
disturbance signal (dashed lines) for a simulation example for the control structure 
th a t directly accounts for the disturbance model (top) and the one based on an 
augmented system model (bottom).

and occurring after 10 samples. The disturbance signal is defined as white noise 

with standard deviation a 2 = 0.3 units and i t ’s mean value is changing from zero 

to 0.5 units after 50 samples. The resulting simulations are presented in Figure 7.1 

for the two control structures introduced here, and in Figure 7.2 for the controller 

presented in Chapter 4 and the controller of Wang and Young (2006). It should 

be noted the the latter two do not take into account the disturbance model in 

the prediction equations. Visual inspection of Figures 7.1 and 7.2 shows that the 

control structures tha t account for the disturbance model, reject the disturbance 

almost completely despite the relatively large amplitude of the disturbance signal.

For a more detailed look, Table 7.2 presents the absolute error at every sam­

pling instant for each one of the control structures. The improved results when 

the disturbance model is taken into account are evident and supports the fact 

tha t the better the model, the better the control when MPC is considered. In 

addition, for the present example, the controller that is based in the system with
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Chapter 4
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Figure 7.2: Reference signal (thick solid lines), System output (thin solid lines) 
and disturbance signal (dashed lines) for a simulation example for the control 
structure presented in Chapter 4 (top) and the controller of Wang and Young 
(2006) (bottom).

an augmented state produces better results in terms of disturbance rejection than 

the one tha t explicitly takes into account the disturbance model in the prediction 

equations. Furthermore, it should be noted tha t all controllers reject a constant 

disturbance (the change in the mean value of the disturbance signal in this case), 

which is expected as this is already considered in Section 4.3 and the paper of 

Wang and Young (2006). However, the effect of the constantly varying part of 

the disturbance signal (the white noise in this case) is evident in the cases of the 

controllers th a t don’t account for the disturbance model and considerably reduced 

for the structures presented in this chapter.

7.4.2 C o n tro l of a  te m p e ra tu re  con tro l in sta lla tio n

In the following, a simulation of NMSS/MPC control using the system description 

presented in Section 7.2.2 tha t explicitly accounts for the disturbance model is

shown.
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Table 7.2: Sum of absolute errors for the controller tha t makes direct use of the 
disturbance signal, the controller that is based on an augmented system model, the 
controller presented in Chapter 4 and the controller of Wang and Young (2006).

Controller Sum of absolute errors
Direct Use 3.0156

Augmented state 2.5159
Chapter 4 9.7692

Wang and Young (2006) 8.6010

A

Outlet

i Q

Figure 7.3: Schematic of the installation. The places of the tem perature actuators 
are also shown, with different markers denoting the three areas th a t were identified 
as having a different response to the controlled inputs and disturbance.

7.4 .2 .1  D escrip tion  of the installation

This section presents a brief description of an installation for tem perature control, 

located in Leuven (Belgium)^, a schematic of which is presented in Figure 7.3. 

The installation has dimensions 12m long x 4m wide x 5m high and is located 

near the wall of a large room. Temperature sensors (type-T  thermocouples) are 

located inside the installation as depicted in Figure 7.3 while a measurement of the 

surrounding tem perature is also available. The manipulated variables are the inlet 

air tem perature and ventilation rate, while the surrounding temperature outside

5T he d a ta  acquisition was performed by members of the M 3-BIO RES group of the Catholic 
University of Leuven in Belgium. Thanks goes to  everyone involved and especially Prof. Daniel 
Berckmans for agreeing to  use this dataset in this thesis.
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the installation can be considered as a disturbance signal.

Experimentation and evaluation of the step experiment results presented in 

the following section (Figure 7.4) suggested tha t the tem perature sensors inside 

the installation can be divided into three groups (marked with different markers 

in Figure 7.3) depending on the way they respond to changes in the control inputs 

and the disturbance. The first group (Group I) is located near the ‘front’ wall 

of the installation (marked with • in Figure 7.3) and is greatly affected by the 

surrounding tem perature, requiring higher effort from the controller to alter their 

tem perature. The second group (Group II) is comprised by the sensors tha t are 

located near the ‘back’ wall of the installation (marked with <0 in Figure 7.3) that 

are also greatly affected by the surrounding tem perature but, on average, maintain 

a higher tem perature than those of Group I. Finally, the third group (Group III) 

includes the actuators in the ‘middle’ part of the installation and the actuators 

with numbers 3, 15 and 27 (marked with o in Figure 7.3). The temperature at 

this group seems to be easier to control and responds faster to the control inputs 

than the two other groups.

The control objective is to maintain the tem perature at every point inside 

the installation as close as possible to 23°C. However, the size of the installation 

and the placement of the fans result in an uneven spread of the heat inside the 

installation. Therefore, there is a spread in the tem perature at different places 

inside the installation. In order to minimise the variation of the temperature, 

the average tem perature of Group I and the average tem perature of Group II are 

controlled. These two, somehow conflicting objectives (in general, Group II has 

higher tem perature than Group I), provide a reasonable value of the temperature 

variation throughout the installation. The output, input and disturbance signals 

are summarised in Table 7.3.
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Table 7.3: Input, Output and Disturbance signals
Signal Description

Vi Average temperature of Group I (marked with 0 in Fig. 7.3)
V2 Average temperature of Group II (marked with • in Fig. 7.3)
U i Ventilation rate
u 2 Inlet temperature
V Surrounding tem perature

Sensor Temperature

150100
Temperature

° 0  50 100 150

Ventilation Rate 
4000 |------------------------------   ~ ~ l

_i_________________   i_______ ___________ ___________ —
50 100 150

time (h)

Figure 7.4: Step Experiment. Temperature response at every sensor (top figure); 
Inlet (solid line) and surrounding (dotted line) tem perature (middle figure); Ven­
tilation rate (bottom figure).

7.4 .2 .2  S ystem  Identification

As explained in Section 2.1, in order to estimate a linearised model for the system, a 

step experiment was conducted to the installation during a 6  day period in October 

2006 and data  were collected with a sampling rate of 1 sample every 6  minutes that 

is faster than 10 times the time constant of the system. The experiment included 

steps in both the ventilation rate and the temperature of the incoming aii while 

at the same time the temperature of the surrounding environment (disturbance) 

was measured. The result for all 36 actuators is presented in Figure 7.4.

Experimentation suggested that using n  =  1, m  = 3 and I =  3 (as defined m
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(7.1)) results in an accurate (R|. — 0.95) yet robust (Y I C  = —7.6) description of 

the system. The average temperature of Group I and Group II are subsequently 

modelled for control purposes resulting in the system description of (7 .1 ) with the 

following parameters:

A ,
-0.9799 0

0 -0.9788

B 1
- 0 . 0 0 1 1  0 0 0.0596 0 -0.0517

; b 2 = ; b 3 =
-0.0009 0 0  0 . 1 2 0 1 0 -0.1105

and

0 0.8952 -0.8818
; g 2 = ; g 3 —

0 0.8288 -0.8162
G i —

In order to simulate the real conditions more accurately, every actuator response 

is individually modelled allowing for the n, m  and I parameters to vary for better 

model fit.

It should be noted here tha t the lowest and highest ventilation rates are not 

used during the identification process since in the former case the air flow in the 

installation was not high enough and the temperature response is not very clear 

and in the la tter the ventilation rate is not steady (probably because the low level 

controller th a t controls the ventilation rate does not respond well in this area). The 

model fit in each case (for the whole period of 150h) is presented in Figure 7.5.

7.4 .2 .3  C ontrol and sim ulation  results

For the present simulation, the control and prediction horizons are chosen Np = 10 

and N c = 3 respectively, while the weighting matrices are Q =  diag [1 1] and

R  =  diag [1 1]. The boundary values and the rate-of-change constraints for the
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Figure 7.5: Actual (dotted lines) and estimated (solid lines) of the average tem­
perature of Group I (top figure) and Group II (bottom figure).

Table 7.4: Input and rate-of-change bounds
Signal Lower value Upper Value

Ui 1 0 0 0 2500
A ui -350 350
U2 15 27

A u2 -3 1

control inputs are derived by the acquired data and are presented in Table 7.4.

The system is subsequently simulated with the surrounding temperature hav­

ing the same values as it had during the data acquisition. Clearly, any other choice 

of the disturbance tem perature can be chosen, but care should be taken so that a 

realistic disturbance signal is selected (e.g. it should have a realistic rate-of-change 

and the necessary cyclic component between day and night-tim e) The resulting 

outputs along with the surrounding temperature are presented in Figure 7.6. It 

should be noted here tha t the results plotted in Figure 7.6 reflect the actual average 

tem perature for each Group as it results from simulating every actuator separately 

and averaging their outputs and not from direct application of the estimated group 

models (this is only used to form the controller predictions). The simulated aver-
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Figure 7.6: Average temperature of Group I (dotted line), Group II (dashed line), 
Group III (solid line) and the surrounding temperature (dash-dotted line).

ages of all Groups are kept near the target temperature of 23°C, despite the high 

variation (7°C) of the surrounding temperature. For completeness, the controlled 

variables are depicted in Figure 7.7.

Although the average temperatures are close to the target, it is equally im­

portant to follow the temperature at every point inside the installation. In this 

regard, the mean and maximum absolute errors from the target temperature are 

depicted in Figure 7.8. From this, it can be observed tha t despite the considerable 

variation of the surrounding temperature, the tem perature inside the installation 

is maintained within 1°C at all times with an average deviation of 0.11°C. Even 

when there is a rapid decrease in the surrounding temperature of about 2°C in 

less than an hour at about the 55th hour (due to the opening of a large door of 

the room in which the installation is located) the simulated results show that the 

average error from the set-point is about 0.5°C.

For comparative purposes, the controller of Wang and Young (2006) is also 

applied to the system. Although the overall results seem to be similar to the ones 

using the controller presented here and are omitted here for brevity, there is a
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Figure 7.7: System Inputs. Ventilation rate (top figure); Inlet tem perature (bot­
tom figure)

difference in the handling of the manipulated variables. To highlight this difference, 

Figure 7.9 presents the rate-of-change for the inlet tem perature variable. It is 

clear tha t, the controller presented in this chapter tha t accounts for the estimated 

disturbance model results in a smoother control signal. However, it is not clear 

whether there is going to be a difference in practical terms since the requested 

control input is not necessarily the same as the applied one (by observation of the 

step response data, the controlled variables don’t have their exact nominal values 

which is probably due to the controllers responsible for driving the heater and 

the fan of the installation). Still, as already mentioned before, it is preferable to 

use the proposed controller tha t takes advantage of the modelled disturbance and 

produces smoother control signals.

7.5 C onclusion

This chapter presented a procedure for disturbance handling in the considered 

NMSS/MPC framework. Two approaches were considered, namely augmenting
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Figure 7.8: Mean (top figure) and maximum (bottom figure) absolute error from 
the target tem perature for all the actuators in the installation.
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Figure 7.9: The rate-of-change of the inlet temperature for the controller of Wang 
and Young (2006) (top figure) and the proposed controller tha t explicitly accounts 
for the disturbance model (Section 7.2.2) (bottom figure).
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the state vector with measurements of the disturbance signal and an alternative 

th a t evaluates the disturbance model directly into the prediction equations. In 

both methods, the state vector consists only of directly measurable variables, thus 

eliminating the need of a state reconstuctor. Although both solutions are already 

available in the literature, they are presented to extend the functionality of the 

NMSS/M PC controller of Wang and Young (2006). In general, the approaches 

presented here can use the added functionality of the NMSS/MPC structures pre­

sented in this thesis in cases were a measured modelled disturbance signal is avail­

able.

Furthermore, a simulation case study is considered were the complete estima­

tion and control procedure is presented. The simulation is based on data that were 

collected from an actual temperature control installation and the environmental 

tem perature is considered as a disturbance signal. The procedure to identify the 

variables to be controlled is presented and simulations show tha t the proposed 

technique results in an acceptable closed loop response. Finally, comparison with 

the controller of Wang and Young (2006) that does not account for the disturbance 

model shows th a t the controller presented in this chapter produces smoother con­

trol signals.



C hapter 8 

M P C  for State D ependent 

Param eter M odels

8.1 In troduction

This chapter considers constraint handling techniques to the non-linear class of 

State Dependent Param eter (SDP) models. The SDP methodology introduced by 

Young (1969) (see also Young et ah, 2001, and references therein) are state space 

models whose parameters depend on elements of the state vector. In the NMSS 

framework, this effectively means that the system parameters are functions of 

previous measurements of the input or output variables. There are close parallels 

of SDP systems with Time Variable Parameter (TVP) systems. However, in TVP 

systems the system parameters vary slowly while the state dependency of the 

param eters in SDP systems can lead to rapid changes in the system dynamics. 

This allows for SDP models to describe non-linear processes tha t can include 

chaotic systems and systems that have previously been modelled using a bilinear 

approach (Dunoyer et ah, 1997).

W ithin the SDP literature, some methods have been presented for estimation of 

such models (Akesson and Toivonen, 2006; Toivonen, 2003; Toivonen et ah, 2007; 

Young et ah, 2001) tha t consist of a variety of approaches to the identification

132
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problem. Furthermore, the linear-like structure of SDP systems allows for them to 

be considered at each sampling instant as frozen linear, instances of the non-linear 

system. Following this approach, PIP control methodologies have been studied 

(Kontoroupis et al., 2003; Taylor, 2005) and applied to practical systems (Stables 

and Taylor, 2006; Taylor et ah, 2006a). Based on such a PIP controlled SDP 

system, Section 8.2 evaluates the Reference Governor (RG) approach presented in 

Chapter 3 to deal with constraints in SDP control system design.

Next, Sections 8.3 and 8.4 present two approaches tha t directly apply MPC 

to the SDP system. As already stated before, there are close parallels of SDP 

systems with TVP systems. However, in TVP systems the system parameters 

vary slowly (see Guo and Rugh, 1995; Hunt and Johansen, 1997; Shamma and 

Xiong, 1999; Stilwell and Rugh, 2002, for some examples of dealing with stability 

of TV P systems) while the parameter state dependency in SDP systems can lead to 

rapid changes in the system dynamics. Since stability results of TVP systems are 

based on the slow param eter variation, they cannot be used in analysing stability 

for SDP models. Earlier work of Kouvaritakis et al. (1999) has addressed the issue 

of stability of MPC controlled non-linear systems by linearising at every sampling 

instant. Although this approach is eventually based on a piecewise linear model 

(as in the case of SDP systems), their analysis requires a control trajectory for the 

initial non-linear system which is not the way the non-linearity is dealt with here.

The piecewise linear nature of SDP systems allows for concepts of linear con­

trol theory to be applied (in contrast to the approach of Kouvaritakis et al. (1999) 

where the linearised model is an approximation of the actual system). For exam­

ple, Kontoroupis et al. (2003) have considered a frozen system, solving the Linear 

Q uadratic (LQ) problem at each sampling instant, while Taylor (2005) paramet­

rically defines the state feedback control law for closed loop pole placement. Since 

MPC involves solving a Quadratic Program (QP) at every sampling instant, the 

former approach is adopted in the present chapter.
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However, by not taking into account the evolution of the system in the pre­

dictions, essentially introduces model mismatch and error in the predictions that 

can be considerable depending on the degree of non-linearity. In this regard, 

Sections 8.3.2 and 8.4.2 present alterations to the initial algorithm to take into 

account the non-linearity. The underlying idea is to use the trail of the control 

trajectory (i.e. the predicted control moves that were not applied to the system) 

at the previous sampling instant as an initial condition to estimate an initial tra­

jectory for the system and use it to calculate an optimising control sequence. This 

sequence can again be used to update the system trajectory and a new optimal 

control sequence can be calculated. This procedure can iteratively be used until 

the optimising control sequence (or the system trajectory) converges. The draw­

back of this procedure is tha t it is computationally more demanding than the one 

th a t does not take into account the non-linearity, and requires the convergence of 

the optimising control law and the system output.

The techniques presented in Sections 8.3 and 8.4 are shown to be stable under 

assumptions very similar to the ones already used in linear MPC. The improvement 

in-the predictions by recursive solution of the QP as presented in Sections 8.3.2 

and 8.4.2 along with the stability results of Sections 8.3.3 and 8.4.3 are the major 

contributions of this chapter.

8.2 T he R eference Governor approach

This section presents the RG technique introduced in Chapter 3 for the case where 

the system is non-linear and described in SDP form. As in Chapter 3 a pre— 

stabilising PIP  controller is required that gives the closed loop system i t ’s desired 

properties in the absence of constraints. Then, the RG accounts for system con­

straints by changing the reference signal trajectory. More information on the RG 

approach to non-linear systems can be found in Bemporad (1998a) with a detailed 

analysis of i t ’s properties (still with a different parametrisation of the degrees of
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freedom as previously discussed in Chapter 3).

The general SDP system can be described by the following difference equation 

th a t is clearly in the form of (2.1) with the system parameters changing at each 

sampling instant:

n  m

Vk ^   ̂ T ^   ̂ î{yPi,k)' ,̂k—i (^-^)
i = l  i= 1

where Xi,k and can be functions of previous values of the input or output. For 

simplicity in the notation, in the following a,i(xi,k) and bi(ijji>k) are referred to as 

ai)k and bitk respectively.

The above, can be described by the following piecewise linear state space form:

Xjfe+i =  A fcx fc +  b kuk +  d rk (8.2a)

yk + 1 =  cxfc+i (8.2b)

where the state vector is given by (3.2) and A k and b*. are the system matrices that 

are dependent on some state variables and change at each sampling instant1. The 

system m atrix and vectors are the same as in (3.3) but with varying parameters 

where necessary.

Subsequently, a SD P/PIP  controller is designed for the system. Various ap­

proaches to  this exist, a review of which can be found in Kontoroupis et al. (2003) 

and a more detailed study of the SDP pole placement technique in Taylor (2005). 

In any case, a frozen system is considered at each sampling instant and the de­

sired control design technique is applied. The state feedback controller in every 

case takes the form:

uk = - k fcx fc (8.3)

d e p e n d in g  on the form of (8.1) one of A k and b k may not be varying, bu t in the general 
case described here, both  change a t every sampling instant.
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where the state gain vector k/~ is varying to account for the system non-linearity. 

After application of the above control law, the varying system (8.2) takes the 

form of (3.5) with constant system matrices. More specifically, since the vector 

changes at each sampling instant to achieve the closed loop performance objectives, 

the A =  A k — bfck/,. matrix is now constant and defined by the closed loop pole 

positions.

The problem formulation within the MPC framework is identical to the one 

presented in Section 3.2 and is omitted here for brevity. The only difference lies 

in the varying nature of k fc that results in K i and K 2 of (3.9) to be varying. The 

new reference signal tha t is then applied to the system is derived by (3.6) after 

solving the optimisation problem (3.12) at every sampling instant.

8.3 M P C  w ith  an explicit integral—of—error sta te

Since SDP systems have been extensively studied in the NMSS framework, one 

straightforward and well studied model description is the one already presented 

for PIP  control in Section 3.1, MPC control in Section 4.2 and SD P/PIP  control 

in Section 8.2. In this regard, the system description with an explicit integral-of- 

error state presented in Section 8.2 is used to form an MPC controller for SDP 

systems.

8.3.1 T h e  basic a lgo rithm

As in Chapter 4, the controller can be derived by numerical solution of the opti­

misation problem (4.12) at every sampling instant. To formulate the prediction 

equations, the procedure similar to the one described in Section 4.2 is followed. In 

this regard the future state, the future reference and future input vectors are de­

fined as in (4.7a), (4.9) and (4.13) respectively. Assuming a frozen model (i.e. the 

use of the same model throughout the prediction horizon), the prediction equations
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at each sampling instant can be written as:

X  =  F fcx fc +  (4>fc +  4>1/c) U  +  H rfcS (8.4)

in which Ffc, <I>fc, and H r  ̂ are varying versions of F, and H r of (4.14)

th a t account for the change of the SDP system at every sampling instant.

In a similar manner to Section 4.2, the optimisation problem can take the 

m atrix form of (4.16).

8.3.2 Im prov ing  th e  p red ic tions

From the above, it is clear tha t the accuracy of the state predictions depends on 

the non-linearity of the system and the distance from the set-point since only the 

present frozen system is considered (this is made clear later with some simulation 

examples). Although the system still moves to the predicted state at the following 

sampling instant, the predictions for more than one step ahead into the future 

are bound to some error due to the change in the system matrices. Especially in 

cases where long horizons are used, although the control action tha t is computed 

at some sampling instant is optimal at that time, it may not even be feasible at 

the next one even in the absence of disturbances. It is therefore not optimal in the 

sense th a t it does not take into account the inherent non-linearity of the system.

In this regard, a methodology is presented where the prediction accuracy is 

drastically improved (when the proposed algorithm converges). The underlying 

idea is tha t starting from an initial control sequence, an estimate of the predictions 

can be found tha t can then be used to estimate the evolution of the system. The 

same procedure can be iteratively evaluated until the optimal control sequence 

(and hence the predicted system output) converges2. The predicted states are in 

this case much closer (identical in the case of no model mismatch and the absence

2As suggested later, the  convergence of the proposed algorithm  is not guaranteed and the 
claims m ade refer to  the cases when the algorithm  has converged.
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of disturbances) to the actual ones. The resulting control law can therefore be 

considered optimal not only for the frozen system, but also for the actual non­

linear system.

Defining as A k+i\k and b k+i\k the estimates of A k+i and h k+i from measure­

ments at the k-th  sampling instant and application of a feasible control trajectory 

{ u k \ k ,  u k + i \ k ,  ■ • • ,  u k + N c - i \ k ]  i the matrices in the prediction equation (8.4) can be 

written as:

Ft, =

1,0
k
2,0

ryNpfi

Hr,fc

d 0 0 • 0
Z2/d d 0 • 0
Z^d Zfd d • 0 (8.5a)

Ẑ P,1d zfp,2d zfp,3d ••• d

b fc 0 0 o ••■ 0

Z2/ b fc b/c+i|/c 0 o •• • 0

Zj^b* Ok+i\k bfc+i|fc ; $ i ,k = 0 •• • 0

Zfc+lllbfc rvNc+lfi* 
k f̂c+l|fc rrNc-\-l,Ncy. 0 • 0

Zfp,1bfc ryNp, 2-1 r/Np,Nc-t• zfc bNe-i\k _ 0 ••• 0
(8.5b)
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where

3

i

Wj. — b k+i_ i\k -f '^ 2  Z' k b k + N c + l - l \ k

It is straightforward to identify an iterative procedure to calculate Z]f and 

W^.. Starting from Z ] f  =  Ak and W ^ c+1 =  bk+Nc\k the following iterations can 

be followed:

The control signal is again derived by numerical solution of the optimisation 

problem (4.12) at every sampling instant, but the matrices used in the prediction 

equation (8.4) are the ones defined by (8.5). Furthermore, the procedure is re­

peated until the future control signal trajectory converges and then the first one is 

applied to the plant, while the rest is discarded according to the receding horizon 

control strategy. To improve the speed of the computations, the trail of the control 

signal can be used as a starting point for the search of the new optimised control 

sequence.

The approach is summarised in the next Algorithm.

A lgorithm  8.3.1.

1 . Solve the optimisation problem (4.12) using the current measurement of the 

state to calculate a control sequence {uft)Uk+1 , . • • ,Uk+Nc- l i ­

fe k + j — i | f c
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2. Use the calculated control sequence {uk,u k+i , . .. ,u k+kkc_i} to obtain an es­

timate of the evolution of the system matrices {A fc, A*.+1, . . . ,  A ^+^j and 

{bfc, bfc+i,. . . ,  b fc+7Vp} where uk+i = uk+Nc„x for i = N CJ. . . ,  Np -  1.

3. Solve the optimisation problem (4.12) using the matrices defined in (8.5) and 

calculate a new control sequence.

4 . I f  the new control sequence calculated in the previous step is the same as the 

one calculated before, exit the algorithm and apply the first element to the 

system. Else GOTO step 2.

8.3.3 S tab ility  analysis

This section follows the procedure used in MPC of linear systems (Appendix C) 

to obtain stability results for the present MPC control scheme of non-linear SDP 

models. In this regard, the following assumptions are made:

A ssum ption  8.3.1. For each sampling instant k, there exists a solution U  to the 

optimisation problem (4.12).

A ssum ption  8.3.2. For each sampling instant k+1, the control sequence calcu­

lated at sampling instance k is feasible when appended with i t ’s last value (i.e. 

V{k  +  l) =  { V { k ) ^ ~ \ u k+Nc. i }).

where refers to the ith  till j th  elements of U.

A ssum ption  8.3.3. The resulting control law leads to future state that satisfies:

x k + N p + l Q X k - h N p + l  T  U U k _ i_ jy c _ i  X £ _ | _ 2 Q x / c + 1  ^ u k  —  ^

The following proposition presents a stability analysis for the SDP/M PC con­

trol scheme presented above when the predictions are calculated using Algorithm 8.3.1. 

It should be noted here tha t convergence of Algorithm 8.3.1 is necessary for the 

following proposition to hold.
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P ro p o s itio n  8 .3 .1 . Subject to Assumptions 8 .3 .1 , 8 .3 . 2  and 8 .3 . 3  the closed loop 

model predictive control system based on a system with an explicit integral-of-error 

state is asymptotically stable.

Proof. The analysis is based on Lyapounov stability theory and is very similar to 

the stability proof of Theorem C.2.1. The differences are highlighted below.

In this case, the sequence

is considered as feasible at the k + 1 sampling instance (Assumption 8.3.2). Based 

on (8.6), equation (C.3) becomes:

AM -  ^ ( x ^ u j V ^ )  -  V(x.k,u-*k̂ )

< V (xfc+1, U|A.+ 1 _* ) -  V (x k, u*fc_ )

that, along with the fact the V  is positive definite, completes the proposition. □

R e m a rk  8.3.1. From Proposition 8.3.1 it follows the the proposed controller is 

asymptotically stabilising. However, Assumption 8.3.3 is not very straightforward 

to guarantee, especially because of the presence of the integral-of-error state. In 

order to avoid such a requirement for asymptotic stability to be proved, the next 

section presents an alternative formulation of the problem that uses assumptions 

identical to the case of M PC of linear systems (although convergence of Algo­

rithm 8.3.1 is still assumed).

( 8 .6 )

—  X f c + A r p + i l / c + lQ X f c + iV p + i l f c + l  +  r u k + N c - l \ k  X k + l \ k Q X k + l \ k  r u k \ k

From Assumption 8.3.3 it follows:

(̂xjfe+ijujfc+j )̂ -  y(xfc,u ^ ) )  < 0
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8.4 M P C  Form ulation using an increm ent in the  

control action

This section presents a formulation of the SDP/M PC problem based on a system 

description th a t parametrises the control signal using i t ’s increments. This problem 

formulation allows for asymptotic stability to be proved based on assumptions 

identical to the case of MPC of linear systems. The analysis tha t follows still 

assumes convergence of the predictions in the same manner as in Algorithm 8.3.1.

8.4.1 T h e  basic a lgo rithm

To avoid Assumption 8.3.3 at the stability proposition of the SDP/M PC scheme, 

the system could be described as in Wang and Young (2006), based on differences in 

the output and the control action. However, a system of tha t form is in general not 

possible to be derived from (8.1). Motivated by Maciejowski (2002, Section 2.6), 

the control signal is parametrised in terms of the control increment as follows:

Uk — u k- i  +  A u k  

Uk+i =  U k - 1 +  Arifc +  A u k + i

i

Uk+i = Uk-1 +  A^fc+j 
j =o

Using the above parametrisation for the control signal, the state prediction equa­

tions (8.4) can be described in terms of the control increment analytically as follows
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(assuming the frozen system { A fc , b fc} ) :

x /c+i|fc =  A k^k +  b k (uk-i +  An*.]*.) +  dr/,+i (8.7a)

x fc+2 |/c =  A / j X / c + x i f c  +  b / ,  (uk_i +  A u k\k +  A u k+i\k) +  d r /,+ 2  (8.7b)

x fc+7vp|/c =  A/,x/,+/Vp_i|/- +  b k (uk- 1 +  Aiijfc|/j. +  . . .  +  Ait/fc+/vc-i|/fc) +  d rk+Np (8.7c)

By recursive application of (8.7) (i.e. substituting (8.7a) to (8.7b) and so on), the 

general form of an z-step ahead prediction of the state vector can be presented as:

i— 1 i—1 i—l—l i—1 i—l—l
x /c+ i|fc  — A/jX/j -f- ^   ̂A^b/jtZ/j—i -(- E E A i b  fcA'U/c+/|/c d" E E  A Jkb kr k+i+1

j = 0  Z = 0  J = 0  1 = 0  j = 0

in which A u k+i\k is the predicted increment in the control signal and A u k+i\k =  0 

for i >  N c.

The controller can subsequently be derived as in Wang and Young (2006) by 

numerical solution of the optimisation problem defined by the cost function (6.2) 

and the constraints (4.12b). Defining the future state, the future output and future 

control increment vectors as in (4.7) and the future reference trajectory vector as 

in (4.9), the prediction equations can be summarised in:

X =  FfcX/, +  + ^ 3 ,fcAU +  H/,S

Y  =  CX

(8.8a)

(8.8b)
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in which

b f c

1

0 0

A f c b f c  +  b f c A / c b / j  +  b f c b f c 0

N c - l
E A l h k
i = 0  
Nc

E A l h k
i = 0

CO ?r II

& 
£

Nc-  2
E Albfc
i = 0

N c - l

E Aib*
i = 0

b fc

A & b * .

Np- 1

E A * b *
i = 0

Np- 1

E A H b k
i = 0

Np-  2
E N kb k
i = 0

Np- N c

■ E A j J . b * ;
i = 0

And C is a block diagonal matrix with the vector c on i t ’s diagonal. The relation­

ship between the future control increment and the future control signal vectors 

can subsequently be defined as:

U = CsUk-i  C4AU

where:

1
i—

H
1 1

I—
I

0 0
1

1 1 1 • • •  0
c 3 = II0

1
h—

i
1

1 1 • • •  1

The optimisation problem can subsequently be written in matrix form as:

I  minau J =  (S — Y )r Q (S — Y ) +  A U r R A U  

I s.t. M A U  < N

where the m atrix 1VX and vector N  define the constraints on the input, it s incre-
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ments and the output as follows:

145

M

- C 4 —H  + ^3Uk-1

C4 U — CsUk-l

~f-Nc - A U
; n  =

Inc A U

- C $ 3lfc —Y  + CFfcXfc + C $ 2 ,fcWfc_i + CHrS

c $ 3,k Y  -  CFfcXfc -  C $ 2 ,fc^-i -  CHrS

8.4.2 Im prov ing  th e  pred ic tions

In the same principle as in Section 8.3.2, the predictions can be improved by taking 

into account the evolution of the system. In this regard, the predictions are still 

based on (8.8) with the matrices Fk and Hr as in (8.5a) while $ 2,/e and $ 3  ̂ are 

defined as:

$ 2 , k —

‘ w p ' w t 1 0 0

...
?s-

 
JO

; ^ 3 , / c  —

... 
ĴO W f . 0

W^’1 W^’1 w fp’2 • 1

(8 .10)

in which
i - 1

w ‘j' =  b t+i_,|t + 5 2  V n - n  *
i = j

An iterative procedure to calculate can subsequently be defined by the fol­

lowing equation:

W ‘+1J = Afc-HlfcWj.’-' +  b(e+;|fc 

W ‘ J + 1  = W ’J -  ZiJ'bt+j_i|fe
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where W fc’ =  b^. The control action is again derived by numerical optimisation 

of (8.9) using the matrices of (8.5a) and (8.10) in the prediction equations (8.8). 

A summary of the above can take the form of Algorithm 8.3.1s and is omitted here 

for brevity.

8.4.3 S tab ility  analysis

Stability of the presented algorithm follows in a very similar way as in Section 6.1.1. 

However, for completeness and to demonstrate that the assumptions take a similar 

form as in the linear case for this class of non-linear systems when the improved 

predictions of Section 8.4.2 are used (and Algorithm 8.3.1 has converged), the 

analysis is repeated.

P ro p o s itio n  8.4.1. Subject to Assumptions C.2.1 and C.2.2 and convergence 

of Algorithm 8.3.1 the closed loop model predictive control SDP system based on 

a model that is described with increments in the control signal is asymptotically 

stable.

Proof. The cost function (6.2) is chosen as a candidate Lyapounov function. From 

this point on, the analysis is the same as that of Theorem 6.1.1. However, there 

is still the issue of feasibility sample k +  1 of the control increment at sample k 

appended with 0. This is a direct result of the convergence of Algorithm 8.3.1, 

which completes the analysis. Cl

R e m a rk  8.4.1. Sections 8.3.2 and 8 .4 . 2  presented techniques to improve the pre­

diction equations that both require knowledge of the evolution of the prediction 

matrices. As results from Algorithm 8.3.1, this requires the loop that comprises of 

Steps 2-4 to have converged to a solution for the future control signal (or control 

increment). This part of the algorithm has no guarantee of convergence and can 

be restrictive in practical applications. It still needs to be considered regarding i t ’s

3Since the decision variables are the control increment and the control action itself, Algo­
rithm  8.3.1 can be adapted  for this case by changing u  to A u.
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speed (number of iterations needed) and i t ’s convergence properties. However, for 

the analysis of the present chapter it is regarded that the algorithm has converged 

to a solution.

8.5 Simulation Examples

This section presents two simulation examples for the constraint handling ap­

proaches within the SDP framework that were described in the previous sections. 

Section 8.5.1 briefly presents the design process of an SD P/PIP  controller for pole 

placement th a t does not account for system constraints and it is then shown that 

the introduction of a RG maintains the designed properties of the closed loop sys­

tem in the presence of constraints. Next, Section 8.5.2 evaluates the SDP/M PC 

techniques of Sections 8.3 and 8.4 for a non-linear SDP system and their differences 

are highlighted.

8.5.1 S D P /P IP  contro l and  R eference M anagem ent

Consider the bilinear system described by the difference equation:

tha t is of the general form (8.1) with ai}k = -0 .7  and b i yk  = V k - 2 - Choosing the 

state vector to be:

V k  =  0 . 7 y & _ i  +  y k - 2 U k - \ (8 .11)

xfc = (8 .12)

the system (8.11) can be described by the state space form (8.2) where the state 

matrices and vectors are given by:
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As discussed in Section 8.2, for SD P/PIP  control, the control action has the 

state feedback form of (8.3). In this example, the pole placement approach de­

scribed in Kontoroupis et al. (2003) and Taylor (2005) is considered and is briefly 

described in the following. The design objective is for the closed loop system to 

have a response of one with a characteristic polynomial of the form:

D (z  *) =  1 -f d\Z 1 + d2z 2 (8.13)

Analytical calculation of the closed loop characteristic polynomial using the control 

action (8.3) and comparison to (8.13) results to the following feedback gain vector:

kt. = 0.7—cfc  1-f-rfi -f-d2
V k - 1 Vk- l

In order to highlight the differences between a closed loop system with and without 

a RG, a deadbeat response (i.e. di = d2 =  0) is chosen as the desired response for 

the closed loop system. In the absence of constraints the close loop response to a 

step change in the reference signal from 1 unit to 2 units is depicted in Figure 8.1 

(with initial conditions (yo,Uo,zo) =  (1,0.3,0)).

Next, an input constraint of 0.5 units (i.e. \uk\ < 0.5) is imposed to the con­

trolled input. The system response for the same reference step is shown in Fig­

ure 8.2 for both the system with (a prediction horizon of Np = 3 is used in this 

example) and without reference management. It should be noted that to avoid 

integral windup the incremental form of the SD P/PIP  controller is evaluated as 

described by (3.13). From Figure 8.2 it could be argued tha t in the absence of the 

RG the closed loop system has a faster rise time, makes more use of the available 

control signal and therefore resembles more to the deadbeat response. However, 

it presents an overshoot tha t is clearly not desired when a system is designed to 

have a deadbeat response. In the presence of the RG at every sampling instant, 

the system has a deadbeat response to the reference presented to it.



Chapter 8: MPC for State Dependent Parameter Models 149

2 " n — -----------------------------------------

1.8  -

w
|  1.6 -

a>T3
!< 1-4 -a<

1.2  -

i --------------------- L

0 . 8  1 1 1 1 1------------------
0 5 10 15 20 25 30

Sample

Figure 8.1: Response of the closed loop SD P/PIP  control system without con­
straints. Reference (thin line) and system output (thick line).

8.5.2 S D P /M P C  contro l

Consider the following non-linear SDP system described by the difference equation:

yk = 0.7y/c—i +  Uk-2 Uk-i

tha t is of the form (8.1) with ahk = -0 .7  and b1>k = uk- 2. The above system can 

be described by the state space form (8.2), where the state vector is as in (8.12) 

and the system matrices are given by:

- - - ■
0.7 0 ^k—l 0 -

A  = ; b  k = d = ; c = 1 0
-0 .7 1 'U‘k—1 1

For the MPC controller presented in Section 8.3, the weightings are chosen to be 

Q =  [ § o°i ] and ^  =  1; prediction and control horizons are set to Np =  10 and 

N c = 8 respectively and the initial condition of the system is (yo, wo, w~i, zo) — 

(1,0.547,0.547,0). Figure 8.3 presents the closed loop response of the MPC system
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Figure 8.2: Response of the SD P/PIP  scheme with RG (thick solid line) and 
without RG (dotted line) in the presence of constraints. The actual reference 
signal is shown (thin solid line) and the one tha t is given to the system (thin 
dash-dotted line) in the case where the RG is used.

to a reference step from 1 unit to 2 units. Furthermore, the control signal is 

constrained to have amplitude less than 1 unit (i.e. <  1) and the rate-of-

change to have amplitude less than 0.2 units/sample (i.e. \Auk\ <  0.2). It should 

be noted tha t the Algorithm 8.3.1 that makes use of the improved predictions of 

Section 8.3.2 is used for this simulation.

It is clear from Figure 8.3 that a well-behaved stable closed-loop system results 

from the application of the proposed control system. However, as already men­

tioned in Remark 8.3.1, the Assumption 8.3.3 is not straightforward to satisfy. To 

visualise this, Figure 8.4 presents the value of the cost function during the previous 

simulation. It is evident that the value of the considered Lyapounov function is 

not monotonically decreasing despite the resulting stable closed loop system. This 

is the result of Assumption 8.3.3 not being satisfied as already stated.

To avoid this, the parametrisation of Section 8.4 is adopted and the result is
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Figure 8.3: Closed loop response for the SDP/M PC control scheme based on 
a system description with an explicit integral-of-error state in the presence of 
constraints. The constraint levels are shown as dashed lines.

Cost value
140

120

100

40

Sample

Figure 8.4: The value of the cost function for the SDP/M PC controller presented 
in Section 8.3 with the improved predictions of Section 8.3.2.
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Figure 8.5: Closed loop simulation for the SDP/M PC controller with an incre­
ment in the control action without the improved predictions of Section 8.4.2. The 
constraint limits are shown as dashed lines.

presented below. In this case, the constraints are \uk\ < 0.82 units and \Auk\ < 

0.15 units/sam ple, while the weightings are chosen to be Q =  0.1 and R  — 1 and 

the prediction and control horizons are set to Np = 10 and N c — 8 respectively. The 

closed loop response for the MPC controller without the correction of Section 8.4.2 

is presented in Figure 8.5. As already mentioned, the predictions at each sampling 

instant do not follow the actual output of the system. This is depicted in the 

upper subplot of Figure 8.6 where the trail of the predictions is shown for every 

sampling instant. It can be observed that there is a considerable difference between 

the predictions of two consecutive sampling instants, even in this case where no 

disturbances are present. This is due to the evolution of the system (i.e. the 

variation of the vector) within the prediction horizon tha t is not taken into 

account in the prediction equations in this case.

The improved predictions of Section 8.4.2 are subsequently used (as described 

by Algorithm 8.3.1) and the system is simulated again. The closed loop response is
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Figure 8.6: O utput prediction trail for the SDP/M PC controllers without (top 
figure) and with (bottom figure) the improvement in the predictions introduced in 
Section 8.4.2.

very similar to the one depicted in Figure 8.5 and is therefore omitted for brevity. 

However, as shown at the bottom subplot of Figure 8.6 the predictions are prac­

tically indistinguishable from one another visually verifying the fact that Algo­

rithm  8.3.1 has converged. Furthermore, the value of the cost function (that is 

used as a Lyapounov function in the stability analysis) is presented in Figure 8.7 

where it is evident that is monotonically decreasing, resulting in an asymptotically 

stable closed loop system.

8.6 C oncluding remarks

This chapter presented two approaches to constraint handling for non-linear sys­

tems described within the SDP framework. The first is a direct application of 

the RG tha t was initially presented in Chapter 3 and was adopted here to deal 

with the varying nature of the SDP models. In this case, a stabilising controller
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Figure 8.7: The value of the cost function for the SD P/M PC controller with 
an increment in the control action presented in Section 8.4 with the improved 
predictions of Section 8.4.2.

(that also gives the closed loop system i t ’s desired properties in the absence of 

constraints) is necessary and the RG is a high level predictive controller that deals 

with system constraints. It was shown that the introduction of the RG results 

in a closed loop system response closer to the desired one (i.e. the one with the 

stabilising controller in the absence of constraints).

The second approach is a direct application of MPC. In this regard, two dif­

ferent control structures were presented, namely, the form presented in Chapter 4 

(adapted to account for the varying nature of SDP systems) and an alternative 

one th a t the control signal is parametrised in terms of i t ’s increment. For both, 

a technique tha t improves the prediction of the system evolution was presented 

tha t makes use of the evolution of the system parameters (that depends on the 

optimising control sequence). Based on the improved predictions and assuming 

convergence of the predicted system evolution, conditions for stability of the closed
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loop system were presented, tha t along with a control technique that inherently 

accounts for system constraints in the design phase in the SDP framework, is the 

main contribution of this chapter.

Finally, simulation examples were presented to support the claims of the present 

chapter and highlight the differences between the proposed structures. Further­

more, it is suggested tha t the structure with the control increment as a decision 

variable poses more advantages when considering MPC control of SDP systems.



C hapter 9

C onclusion

This thesis has developed a methodology for dealing with constraints in the Non- 

Minimal State Space (NMSS). Model Predictive Control (MPC) techniques were 

used and combined with research into NMSS control models, particularly relating 

to earlier research carried out at Lancaster University into Proportional-Integral- 

Plus (PIP) control. A summary of the methodological results is presented in 

Section 9.1, while Section 9.2 gives directions for future research arising from the 

results in this thesis.

9.1 Sum m ary of results

This section summarises the results of the thesis, which can be broadly divided 

into four different areas, namely: supervisory control; structural aspects; tuning; 

and control of non-linear systems.

9.1.1 C o n s tra in t handling  w ith  superv iso ry  contro l

Constraint handling was the main focus of the present work. Since there has been 

no attem pt for an inherent handling of constraints using NMSS methods before, 

the first approach focused on a conventional supervisory MPC control scheme, 

namely the Reference Governor (RG). In this approach, a high level controller
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th a t accounts for constraints is utilised on top of an already controlled system. 

The RG predicts the system evolution and alters the reference signal to avoid 

constraint violation.

In this thesis, the approach was applied to both linear (Chapter 3) and non­

linear (Chapter 8) NMSS systems. In both cases it was shown tha t the system 

with the RG results in a closed-loop response tha t is closer to the desired response 

(i.e. the response for which the initial controller was designed for) in the pres­

ence of constraints. Therefore, it is suggested tha t in cases where a controller is 

already available, the addition of a RG can result in constraint satisfaction in an 

optimal manner (related to the cost function of the RG), whilst still preserving the 

properties of the low level controller when operating away from the constraints.

9.1.2 T he im p o rtan ce  of s tru c tu re

The effect of the structure of the NMSS/MPC controller was considered at length 

in this thesis, following up the initial research by Wang and Young (2006). In 

Chapter 4 a controller based on a different NMSS system description to the one 

of Wang and Young (2006) was introduced. This ‘integral of error’ NMSS/MPC 

structure allows for the use of tuning techniques already developed for PIP control. 

Furthermore, it was shown (Chapter 5) that the new structure offers more flexi­

bility and design freedom (resulting from the introduction of the integral-of-error 

state) when dealing with demanding performance objectives.

A third NMSS/MPC structure, again motivated by PIP control, was subse- 

qently introduced, namely the Forward Path NMSS/MPC controller (Chapter 6). 

In this case an internal model is used to form part of the state vector (the elements 

related to the past system outputs). The new approach contrasts with internal 

model MPC control methods already presented in the literature tha t estimate the 

whole state vector. A simulation study comparing Forward Path  and the ‘Feed­

back’ (Wang and Young, 2006) NMSS/MPC structures yields similar conclusions
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to those previously obtained for the equivalent forms of PIP control. More specif- 

ically, the Forward Path  structure is shown to be more robust when it comes to 

uncertainty in the numerator parameters, while uncertainty in the denominator 

results in the closed loop poles to be closer to the desired ones. However, the 

research also shows th a t the Feedback structure is most appropriate when dealing 

with unstable or marginally stable plants, since this form is more likely to yield 

stable responses. In general, the results for the Forward Path MPC controller 

mirror those for the Forward Path PIP controller.

Finally, additional NMSS/MPC control structures were considered when a 

model of a measured disturbance is available. Two different problem formula­

tions were considered, i.e. one that extends the state vector and one that directly 

accounts for the disturbance measurements in the prediction equations. It was 

concluded tha t they both result in similar closed loop performance. The method 

tha t directly accounts for disturbance measurements was subsequently considered 

in a case study relating to a temperature control installation. Here it was shown in 

simulation to yield improved performance when compared to the NMSS/MPC con­

troller of Wang and Young (2006) (which does not account for the disturbances).

Overall, the thesis concludes that the controller structure and problem formu­

lation affect the performance of NMSS/MPC controllers. Care should be taken 

when choosing the appropriate control approach since they present different weak­

nesses and strengths. The most appropriate control structure should be chosen on 

a case by case basis, depending on the particular problem considered.

9.1.3 T uning  of M P C  controllers

One of the contributions of this thesis is the development of an optimal tuning 

technique for MPC controllers based on goal attainment. Although a similar ap­

proach has previously been presented for PID and PIP control system design, 

Chapter 5 develops the approach for MPC systems. The methodology is shown
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to allow for trade-off between various objectives while the controller still accounts 

for system constraints. Since the tuning is performed off-line, the introduction of 

an optimisation problem (and therefore an increase in complexity) does not affect 

the practical applicability of the resulting controller. As mentioned above, it is 

further dem onstrated tha t the NMSS/MPC control structure presented in Chap­

ter 4 provides the designer with more tuning freedom (than the approach of Wang 

and Young (2006)) when using the proposed method.

9.1.4 N M S S /M P C  contro l of N o n -lin ea r system s

Finally, the thesis considered constrained control of State Dependent Parameter 

(SDP) models, a class of non-linear models with wide applicability to control prob­

lems. Research on NMSS-based control of SDP systems is still at an early stage 

and many issues are pending. The research in this thesis focused on constraint 

handling and stability.

The RG approach was initially considered for this class of non-linear systems, 

yielding similar conclusions as for the linear case in Chapter 3. Two different for­

mulations of the MPC problem were subsequently considered, i.e. when the control 

action was directly utilised or parametrised using i t ’s increments. For both prob­

lem formulations, a novel method to improve the predictions was proposed. In 

contrast to existing techniques in SDP-PIP control, the system was not consid­

ered frozen but rather the predicted future control action was used to predict the 

evolution of the system. The evolving system was used iteratively to obtain more 

accurate predictions of the system output and state. Based on these accurate 

predictions both control systems are shown to be asymptotically stable based on 

assumptions very similar to the case of linear systems.

The stability analysis (yet under the strong assumption tha t that the prediction 

of the system evolution has converged), represents the first stability result for 

control of SDP systems in this context. To the author’s knowledge, it is the first
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method th a t accounts for system constraints whilst defining a framework under 

which stable solutions can be achieved.

9.2 D irection s for future research

Suggested directions for further research are summarised below.

9.2.1 C o n tro l s tru c tu re

The importance of the control structure was highlighted at various places in the 

body of this thesis. However, in most cases only simulation results have been used 

to support the claims made. A theoretical justification has not yet been developed. 

More specifically, the Forward Path MPC controller resembles the Forward Path 

PIP controller and relative advantages and disadvantages are very similar in both 

cases. Clearly there must be an underlying theoretical reason for this, applicable 

to both MPC and PIP  control.

The NMSS/MPC controller based on an integral-of-error state and the dis­

turbance handling techniques developed in this thesis are more justified, in the 

sense tha t the difference lies in the system description or the parametrisation of 

the optimisation problem. However, consideration of further examples would be 

desirable and may lead to a deeper understanding of the different structures.

9.2.2 S D P /M P C  contro l

As discussed above, research into SDP control systems is at an early stage. There­

fore, there are various directions that could be followed outside the scope of the 

present thesis (e.g. relating to SD P/PIP  control). However, some specific issues 

relating to the present research are listed below.

•  The convergence of the algorithm that improves the predictions needs to be 

considered. There may be cases were a multiplicity in the solution may cause
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the algorithm not to converge to a unique solution. It is therefore suggested 

th a t conditions under which the algorithm is covergent are sought.

• The time it takes for the improved solutions to be calculated has been as­

sumed to be less than the sampling time. This may not always be the case 

and more detailed research on this issue should be carried out.

• Recent results on SD P/PIP  control considered partial and exact linearisa­

tion by feedback of the SDP system. It would be interesting to consider 

this approach in the context of MPC systems and to combine it with the 

improvement in the predictions that has been presented here.

•  There are various issues within the SD P/PIP  research that should also be 

considered in the case of SDP/M PC control. For example, ill-conditioned 

cases (e.g. when the system becomes uncontrollable) have not been consid­

ered here. In addition, a duality in the solution can cause the algorithm 

tha t improves the prediction not to converge. Additional examples of badly 

behaved systems can be found in the references given in the main body of 

the thesis. Therefore it is suggested that more simulation examples could 

provide some insight towards this direction.

9.2.3 N M S S /M P C  contro l app lications

This thesis is based on new theoretical and methodological developments, sup­

ported by simulation rather than experimental results (with the exception of the 

modelling results in Chapter 7). It is therefore desirable in future work for the 

conclusions to be validated by application to real systems. A practical compari­

son of the different structures presented here can highlight the conclusions of this 

thesis or even expose issues that are not apparent from the simulations.

Finally, Chapter 5 considered tuning of MPC controllers. To the author’s 

knowledge, this technique has not yet been applied in practical applications even



Chapter 9: Conclusion 162

for the cases of PID and PIP controllers tha t are present in the literature. The 

results presented here should therefore be validated by practical examples to help 

gain a better understanding of the technique.
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N otation

A .l  A cronym s

CLP Closed Loop Paradigm

dof. Degrees of Freedom

EA Evolutionary Algorithm

GA Genetic Algorithm

GPC Generalised Predictive Controller

KKT Karush-Kuhn-Tucker

LQ Linear Quadratic

MCS Monte Carlo Simulation

MFD Matrix Fraction Description

MIMO Multi Input Multi Output

MPC Model Predictive Control

NMSS Non-Minimal State Space

PI Proportional-Integral

PID Proportional-Integral-Derivative

PIP Proportional-Integral-Plus

QP Quadratic Program
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RG

RHC

RIV

SDP

SISO

SRIV

TVP

YIC

A .2

q

v

z - 1

s

A

Yk

W k

Vk

Xfc

Zfc

A  

A  k 

B  

B k

Reference Governor

Receding Horizon Control

Refined Instrumental Variable

State Dependent Parameter

Single Input Single Output

Simplified Refined Instrumental Variable

Time Variable Parameter

Young Identification Criterion

N  om enclat ur e

Number of system inputs 

Number of system outputs 

Backward shift operator 

Laplace variable 

Difference operator

Input vector at kth  sampling instant

O utput vector at kth. sampling instant

Reference vector at &th sampling instant

Perturbed reference vector at fcth sampling instant (RG

scheme)

Disturbance vector at kth  sampling instant 

State vector at kth  sampling instant 

Integral-of-error state at Mh sampling instant 

System state matrix

System state matrix at kth  sampling instant 

System input matrix

System input matrix at kth  sampling instant
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D System reference level matrix

C System output matrix

ai(Xi,k) SDP output parameters at kth. sampling instant

SDP input parameters at kth  sampling instant

Np Prediction Horizon

N c Control Horizon

Q, R Weighting matrices

X Vector of predicted states

U Vector of predicted control signals

U, U Vectors of constraints on future control signals

A U  Vector of predicted control increments

AU, A U  Vectors of constraints on future control increments

Y  Vector of predicted outputs

Y, Y  Vectors of constraints on future output signals

S Vector of future reference signals

u, u Lower and upper bounds for the control vector

Au, A u  Lower and upper bounds for the control vector rate-of-change

y ,  y  Lower and upper bounds for the output vector

p  Parameter vector

p  Estimated parameter vector

P *  Covariance matrix

E%, Coefficient of determination



Appendix B

C onvex sets and functions

In this appendix, some preliminaries and definitions are presented that are used 

in Section 2.2. A very useful property of sets and functions is convexity. Convex 

functions over convex sets lead to convex optimisation problems that are much 

easier to solve than general non-convex ones (Fletcher, 1981). Furthermore, al­

though the results presented in the following hold for general optimisation prob­

lems, it is shown tha t the optimisation problem that will need to be solved in 

the rest of this thesis is in fact convex with some interesting properties. It has 

also been suggested (Maciejowski, 2002, and references therein) that by exploiting 

these properties more efficient algorithms can be used, a brief description of two 

of which is made in Sections 2.2.3 and 2.2.4.

B .l  C onvex Sets

D efinition B.1.1 (Convex set (Goodwin et al., 2005)). A set C C is convex 

i f  the line segment joining any two points of the set also belongs to the set, i.e. for 

every x i ,x 2 6 C it follows that x 0 G C, where x e = (1 -  0)xi +  0x2 and 6 G [0,1].

It is easy to show, by direct application of Definition B.1.1 that the following sets 

are convex.
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•  Hyperplane. C = {x  : pTx =  a} , where p is a nonzero vector in 3ftn and a  

a scalar.

•  Polyhedral set. C = {x  : A x  < b}, where A is an m  x n  matrix and b a 

vector of size m  x 1.

They are both very im portant in the MPC framework since they can represent lin­

ear constraints on system parameters and will be used extensively in the following.

The next two theorems provide convexity results on combinations of convex 

sets, while Lemma B.1.4 delivers a result that will later be used to prove convexity 

of the MPC optimisation problem.

Theorem  B.1.2  (Convexity of linear combinations of sets (Luenberger, 1969)). 

I f  C\ and C2 are convex sets then:

• The set aC\ =  {x  : x  =  axi, Xi G C\} is convex.

•  The set C\ -f C2 =  {x : x =  x 2 +  x1} x 2 G C\ and x 2 G C2} is convex.

Theorem  B .1 .3  (Convexity of intersection of sets (Fletcher, 1981)). I f  Ci, i =  

1 , 2 , . . . ,  m  are convex sets then their intersection C = HUi ^  z5 a ŝo a convex seI

Lem m a B.1.4. The intersection of a number of hyperplanes and polyhedral sets 

is convex.

Proof. The proof is a direct result of Theorem B.1.3 and the fact that both the

hyperplane and the polyhedral sets are convex. Cl

B .2  C onvex Functions

Next, various types of convexity of functions are defined.

Definition B .2.1 (Various types of Convexity of functions (Goodwin et al.,

2005)). Let f  : C —> 3ft, where C is a nonempty set in 9?n .
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•  f  is convex on the convex set C if

/ (0 Xl +  (1 -  6>)x2) <  9 f i x , )  +  (1 -  0 ) /(x 2) 

for each x i , x 2 G C and for each 6 G (0,1).

The function f  is strictly convex on C if  the above inequality is true as a 

strict inequality for each distinct Xl, x 2 G C and for each 9 G (0,1).

•  f  is quasiconvex on the convex set C if

f ( 9 x i +  (1 -  0)x2) < max { / (x i ) ,  / ( x 2)} 

for each x 1; x 2 G C and 0 G (0,1).

The function f  is strictly quasiconvex on C if  the above inequality is true as 

a strict inequality for each x i , x 2 G C with f ( x i) ^  / ( x 2).

• a differentiable on C function f  is pseudoconvex on C i/V x i,x 2 G C

V /(x i ) (x 2 -  xi) > 0 =» f  (x2) > / (x i )

or alternatively

f  (x2) < / (x i )  => V /(x ! ) (x 2 -  X j )  < 0

The function f  is strictly pseudoconvex on C if f ( x i) >  / ( x 2) on the first 

condition or equivalently / ( x 2) < / ( x i) on t/ie second condition.

Note tha t from definition a convex function is both quasiconvex and (under dif­

ferentiability) pseudoconvex.

The following are two convex functions on tha t will be used later:

• L in ea r function , /(x )  =  p Tx, where p is a vector in 3£n.
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• Q u a d ra tic  fu nction , /(x )  =  x TH x, where H  is a positive definite matrix, 

i.e. H  >- 0 in 9?nxn.

They are both very im portant in the MPC framework since their combination 

constitutes the cost function. In the following, a theorem for convexity of sum 

of functions is given and Lemma B.2.3 delivers a result tha t will later be used to 

show th a t the MPC problem is convex.

T h e o re m  B .2 .2  (Convexity of sum of functions (Fletcher, 1981)). I f  f i(x),  i = 

1,2 are convex functions on a convex set C, and cti > 0 then a i/i(x )

is also a convex function on C.

L em m a B .2 .3 . The sum of a linear and a quadratic function is convex on

Proof. The proof is a direct result of Theorem B.2.2 and the fact that both the 

linear and quadratic functions are convex on □



A ppendix  C 

Stab ility  analysis

This appendix presents stability results for the general MPC control problem. 

There are various approaches to assess stability of MPC, a review of which is 

performed in Mayne et al. (2000). Most of them require a terminal cost or a 

terminal constraint, while Limon et al. (2006) have recently presented a suboptimal 

controller the makes the use of a terminal constraint obsolete (still using a terminal 

cost though). In the same direction, the dual mode MPC controller (Michalska 

and Mayne, 1993) requires the state to lie within a terminal set and not vanish to 

zero at the end of the prediction horizon.

C .l Optimisation problem

Let the control action be the solution to the following optimisation problem.

Np Nc - 1

min y > r +, fcQ xfc+, fc +  ^k+i\k^u k+i\k (C.la)
ufc.-.ufc+wc-! ^  i=0

subject to: <

u < u k+i < u , i =  0 , . . . ,  N c -  1

A u < A uk+i < Au , 2  =  0, . . . ,  iVc — 1 (C.lb)

y  < y k+i < y =
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where x k+i\k is the z-step ahead predicted value of a variable x  conditional on sam­

ple k] u k+i\k is the control vector at sample k + i conditional on sample k\ A u^i* ., 

i — 0 , 1 , . . . ,  N c — 1 is the control increment vector at sample k +  i conditional on 

sample /c; N p and N c are the prediction and control horizons respectively; the no­

tation : and 7 represents vectors consisting of the minimum and maximum allowed 

values of a vector; and < refers to element wise inequalities. Finally, Q and R  are 

p x p and q x q weighting matrices chosen by the designer.

C.2 L yapounov stability

In this analysis, a terminal constraint is used and it is clear tha t it does not differ 

from normal stability analysis for other MPC control schemes (e.g. Mayne et al., 

2000), but is still presented here for completeness. In this regard Lyapounov’s 

theorem (see Section 2.4) is evaluated to prove stability of the origin (it is evi­

dent tha t with the appropriate coordinate transformation, any equilibrium can be 

moved to the origin) under the following assumptions:

A ssu m p tio n  C .2 .1 . An additional constraint is introduced to the constrained 

optimisation problem (C .l). Namely the predicted state after Np samples is required 

to be to zero (i.e. x k+Np = 0) when the optimised control sequence has been applied 

to the system.

A ssu m p tio n  C .2 .2. The constrained optimisation problem (C .l) is feasible at 

every sampling instant (with the additional terminal constraint introduced in As­

sumption C.2.1).

The above assumptions are sufficient to prove stability for the described control 

scheme. This is summarised in the following Theorem.

T h e o re m  C .2 .1 . Under the Assumptions C.2.1 and C.2.2 the Model Predictive 

Control scheme that is derived by solving the constrained optimisation problem 

(C .l) is asymptotically stable.
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Proof. The minimum of the finite horizon cost function (C .la) is chosen as a 

candidate Lyapounov function:

n p  N c - 1

~  X k + i \ k Q X k + i \ k  +  U / c + i | A ; - ^ U f c + i |A ;  ( ^ - 2 )

i = 1 i — 0

where u j ^  =  {u*+1|fc, u*+2|A;, . . .  u*+7Vc_1|A;} is the optimising sequence of the op­

timisation problem (C .l) at sampling instant k and the subscript |*. is introduced 

to make explicit reference to the sampling instant tha t each prediction sequence 

refers to. It is easily seen that V ( x ,  u) is positive definite and V(x,u)  =  0 only if 

(x, u) =  (0,0).

In the same manner, the value of the candidate Lyapounov function at the next 

sampling instant is:

N p + 1  N c

^(Xfc+l, U|£+i—J  =  ^   ̂ ^   ̂Ufc+j|/i;+l^Ufc+i|/i:+l
i = 2  i — 1

A feasible solution (not necessarily optimal) to the optimisation problem (4.12) 

at sampling instant fc+l is the solution at the previous sampling instant (namely k) 

appended by a zero vector (i.e. U|a.+i_> =  u*+2^ , . •. u*+Arc_l!fc, o |) .  Since

this solution is not necessarily optimal, the following inequality holds:

(X A;+1, Ujfc+l—►) <  V ^ X fc+ l, U|fc+ i_»)

where V  is a suboptimal value of the cost:

N p + l  N c

V ^ X fe+ i, U|fc+ 1_ .̂) =  X^+ i |fc+1Q Xfc+ i|fc+i +  Ufc+ j|fc+ iR U fc+ i|fc+ l  

i = 2  i = l

It can now be shown tha t V (x, u) is decreasing by calculating the difference at
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sampling instant k and k +  1, i.e.

AV(fc +  l) =  7 ( x w ,u|w J - y ( x fc, u ^ )

< V(xk+uu[k+1_+)-V(xk,u-*k->)

Since the same control signal is applied to the model, the predictions at future 

sampling instants are identical (i.e. x k+i\k+i = x fc+i|fc, for * =  2 , ,  Np). Therefore, 

the difference can now be written as:

A V (k  +  1) <  x.l+Np+1\k+iQxk+Np+i\k+i -  xJ+llfcQ xfc+i|fc -  u^ R uJ |fc (C.3) 

And from Assumption C.2.1 it follows

A V ( k  -f 1) < - x l +llkQ x k+1[k ~  U fc^Ru^

< 0

That leads to the conclusion that K(xfc+1, u*fc+1_J < V ( x ki u*^), and according 

to Lyapounov’s Theorem (Section 2.4) the system is asymptotically stable, which 

completes the proof. d

R em ark C .2 .1 . The introduction of Assumption C.2.1 forces the system to have 

settled at the end of the prediction horizon. Although this makes the proof of stabil­

ity straightforward, it is possible to cause problems when solving the optimisation 

problem (C.l). Especially in cases of large disturbances, the optimisation problem 

may become infeasible because of this additional equality constraint.
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