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Abstract

The multiple changepoint model has been considered in a wide range of statistical
modelling, as it increases the flexibility to simple statistical applications. The main
purpose of the thesis enables the Bayesian inference from such models by using the
idea of particle filters. Compared to the existed methodology such as RIMCMC

of Green (1995), the attraction of our particle filter is its simplicity and efficiency.

We propose an on-line algorithm for exact filtering for a class of multiple change-
point problems. This class of models satisfy an important conditional indepen-
dence property. This algorithm enables simulation from the true joint posterior
distribution of the number and position of the changepoints for a class of change-
point models. The computational cost of this exact algorithm is quadratic in
the number of observations. We further show how resampling ideas from particle
filters can be used to reduce the computational cost to linear in the number of
observations, at the expense of introducing small errors; and propose two new,
optimum resampling algorithms for this problem. In practice, large computational
savings can be obtained whilst introducing negligible error. We demonstrate how

the resulting particle filter is practicable for segmentation of human GC content.

We then generalise our method to models where the conditional independence



property does not hold. In particular we consider models with dependence of the

parameters across neighbouring segments.

Examples of such models are those with unknown hyper-parameters, and piecewise
polynomial regression models which assume continuity of the regression function.
The particle filter we propose is based on a simple approximation to the filtering

recursion. We show that the error introduced by the approximation can be small.

We demonstrate our method on the problem of Bayesian curve fitting. The novelty
of our model is that we fit a piecewise polynomial function and allow for both
discontinuity and continuity at changepoints. This method is compared to existing

Bayesian curve fitting method, and applied to the analysis of well-log data.
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Chapter 1

Introduction

1.1 Retrospect

Sampling-based Bayesian statistical methods have been very popular in the last 20
years because of its simplicity in approximating the intractable integrals involved
with the inferential problem, particularly in high dimensions. All these methods
are based on the Monte Carlo integration, in which a set of samples z), ..., z(V)
are independently simulated from a target distribution of random variable X with
probability density function p(z). Then we can use these samples to approximate
the expectation of any function hA(-) of X, provided the expectation exists. That

is if we want to calculate
9= [ ha)pla)de = By(h(x)), w1
we can approximate it by a sample mean

Bp) = 3 > h(a®) (12)
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The approach is remarkably easy to use and gives an unbiased estimate with

variance proportional to 1/N (i.e. var(h(z))/N).

In particular, if we take h(z) = I4(z) where I4(z) is an indicator function so that
it takes value 1if z € A and value 0 otherwise, then the probability Pr(z € A) are

approximated only by the proportion of samples in A:

1 & ,
Pr(z € A) = E(Ia(z)) ~ ZIA(.T@).

1.1.1 Rejection sampling

However, It is often the case that we are unable to simulate directly from the
target density p(-). A sensible method to overcome the problem is to simulate
from another density g(-) which is easy to simulate from, but then to only accept
those samples with a probability peceepe- This is the basic idea of rejection sampling

(Hammersley and Handscomb, 1964).

To run the method, we only need to know the target density p(-) up to a normal-

ising constant, and have to set an upper bound K such that
p(z)/q(z) < K  forall z,

therefore the support of g(+) contains all the support of p(-). The sampling proce-

dure is done as follows:

Algorithm 1.1 Rejection sampling
Step 1 Simulate # from the proposal density q(z);

Step 2 Calculate the accept probability as Paceept = P(Z)/(Kq(E));
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Step 3 Generate a random variable U uniformly from the interval [0,1];

Step 4 If U < paccept accept T; otherwise repeat.

Then Zs accepted by this algorithm are independent identically distributed (i.i.d)
samples from the target distribution. Furthermore, the average acceptance prob-

ability is 1/K.

The efficiency of the rejection sampling is dependent on the upper bound K, and
particularly the dimensions of the target distribution. The acceptance probability

decreases exponentially as the dimension increases.

1.1.2 Markov chain Monte Carlo

If we run the rejection sampling iteratively over an irreducible and aperiodic
Markov chain whose equilibrium distribution is the target distribution, this is

the intuitive idea behind Markov chain Monte Carlo (MCMC).

The main difficulty of MCMC is how to construct a suitable Markov chain to
enable a simulation from the target distribution. A general algorithm which they
call Metropolis-Hasting algorithm is proposed by Metropolis et al. (1953) and then
generalised by Hasting (1970). The algorithm requires a transition kernel k(z, z’)
for the Markov chain, which is a proposal density function of z’ for each given
value of z. Thus at each iteration, a sample z’ is drawn from the kernel k(z, z'),

and the new value Z in the chain is

z'  with probability Paccept; (1.3)

SH
Il

z with probability 1 — Paccept,
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where

o)

(@, 2)p(@) (14)

Paccept = min {]-

The initial value of z can be chosen arbitrarily. Then Tierney (1994) has proved
that the Markov chain obtained by the above algorithm is time-reversible and has

an equilibrium distribution p(-).

The transition kernel can be chosen arbitrarily as well, in principle, so any choice
should work. However, not all kernels are equally good with respect to the con-
vergence property (or mixing property) of the algorithm. Common choices include
fully conditional distribution (in Gibbs sampling) and random walk with normal in-
crement (in random walk Metropolis algorithm). For a complete review of MCMC,
see Gilks et al. (1996); Robert and Casella (1999). Note that MCMC does not
provide independent draws from p(-); but Monte Carlo estimators such as (1.2)

will still be consistent.

1.2 Motivation

The MCMC method has been very successful since the beginning of 1990s, because
of its flexibility to a lot of statistical models. It is a popular approach to sample
different complicated probability distributions. However, there are still some limi-
tations of MCMC method in some situations. For example, it is inefficient for the

recursive estimation problems. Hence, we introduce in the thesis another sampling

method based on the importance sampling.
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1.2.1 Importance sampling

There might be another problems with 9(p) as an estimator of ¥: although sam-

pling from p(-) is possible, the estimator J(p) might have very high variance.

Instead, an importance sampling technique (see Geweke, 1989, for example) can be
used to overcome the problem. We can choose another distribution of the random
variable X with density ¢(z), from which, the samples z9, ..., (™) can be easily

simulated. Thus, we can rewrite ¢ as

= a:zLx):cw
ﬁ—/ﬁ(%@ﬁ<m, (15)

and it can be approximated by
N . 3
Hg) = Y wh(z?), (1.6)
i=1

where we define the (normalised) importance weight w® as

. N
w p(z®) Zw(i) -1 (1.7)
g(z9)’ o '

Thus the importance sampling is basically choosing the samples concentrated on
the area where there is greatest variation in the integrand so that each simulated
value contains greatest information. If we choose ¢(-) so as to make h(z)p(z)/q(x)

nearly constant, the variance of 9(q) will be much lower than the variance of d(p).

Note that it is also possible to use unnormalised weights in the approximation such

that

N
3a) = 3 30 0Ok, (18)
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where the importance weight @® is

(1)
~(i) _ p(z'™)
WY = ——= 1.9
nES) )
instead. However, in many applications, the target probability p(-) and the pro-
posal density q(-) may be known only up to a normalising constant. This is always
true when applying the importance sampling to the state space model and, par-
ticularly in Bayesian statistics. Hence the use of normalised importance weights

is more general.

1.2.2 Sequential Monte Carlo method

Importance sampling has a wider scope than reducing the variance of Monte Carlo
estimators. This thesis will concentrate on the importance sampling in the sequen-

tial settings, which is also known as particle filters (Doucet et al., 2001; Liu, 2001).

The technique has been commonly used in time series model for some dynamic
problems such as target tracking (Gordon et al., 1993), signal deconvolution (Liu
and Chen, 1995), speech recognition (Godsill and Clapp, 2001), oil drilling (Fearn-
head and Clifford, 2003) and stock pricing (Kitagawa, 1996), amongst others. In
such cases, the new observation becomes available at each time, thus a real time
inference or prediction is required. In other words, a sequence of distributions
s, which is the posterior of the underlying states given the observations in the
dynamic system, needs to be estimated at each time ¢. A typical example of m; is

the position and speed of a target at time ¢ in the target tracking problem.

The reason why the importance sampling can be used efficiently to estimate these
posteriors is that the approximate samples from the distribution 7; can be recycled
by importance sampling to produce approximate samples from the distribution

Ts41, provided the two distributions share same supports. Even if the supports
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are different, we can augment the supports of m; to the supports of 7., and
. simulate the imputed samples to approximate 7,1 (Kong et al., 1994). The biggest
advantage of this sequential computing is that the importance weights at each time
t do not need to be re-computed from the scratch. The dynamic updating produces

a reduction on the computational cost.

The motivation of the thesis is to consider and develop particle filters for analysis
of multiple changepoint problems. With particle filters, we aim to draw samples

directly from the posterior distribution of changepoints.

The multiple changepoints model we use here consists of a sequence of change-
points occurring at discrete positions. Both the number and positions of them
are unknown. The MCMC method has been dominant in the Bayesian analysis
of the changepoints models. If the number of changepoints is known, the method
can be directly used for inference in the models (e.g. Stephens, 1994; Chib, 1996).
If the number of changepoints is unknown, a common approach is the reversible
jump Markov chain Monte Carlo (RJIMCMC) method of Green (1995). However,
RIJMCMC can suffer from poor mixing, and hence a high CPU cost, unless effi-
cient MCMC move can be designed. But this is generally very hard, particularly
for the move between different models in RIMCMC (see Brooks et al., 2003, for

guidelines on how to design these moves).

By contrast, the particle filtering approach to changepoints model is less obvious.
An artificial time has to be given so that a pseudo sequence of the posterior
distributions of changepoints can be fed into the particle filters as it were the
target distributions arising in a dynamic problem. The particle filtering approach
avoids the diagnosis of the convergence of Markov chains and hence the design of
moves in the MCMC. It is also believed that the particle filter approach provides

better estimates in terms of robustness and effectiveness.

Although we introduced the particle filter as an alternative to the MCMC method,
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the two are not that separated. Instead, we can even embed one algorithm into

the other, to improve the performance of the algorithm.

1.3 Outline of the thesis

The theme of this thesis is the construction of a direct simulation methodology
based on the particle filters, and the application to the multiple changepoint prob-
lems. The method is proposed to enable inference for the changepoint model to

be made more efficiently. The outline of the subsequent chapters is as follows:

In Chapter 2, the basic structure of particle filter including sampling, resampling
and smoothing is introduced. A very simple example which is known as the SIR
filter or Bootstrap filter (Gordon et al., 1993) is given immediately to demonstrate
how the particle filter works on the non-linear/non-Gaussian state space model.
Motivated from the demonstrative example, a number of literature focusing on
improving the performance of the particle filters are reviewed. The improvements

cover all aspects of the particle filters (e.g. sampling, resampling and smoothing).

In Chapter 3, we describe the multiple changepoint problem through a state space
model so that the on-line inference can be made. We adapt a point process of Barry
and Hartigan (1993) to model the distribution of the positions of changepoints and
the number of changepoints is automatically implied. The underlying states have
a hierarchy with the changepoints and the associated parameters, which will make
the particle filters introduced in Chapter 2 less accurate and efficient. So it is
advantageous to marginalise the parameter state sequence as nuisance parameters
and focus on the on-line inference of changepoints first. Two specific examples
given by Chen and Liu (2000) and Chopin (2007) respectively are reviewed. The
approach of Chen and Liu (2000) is a special case of Rao-Blackwellised particle

filter when the state space model is linear/Gaussian conditional on the change-
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points.

The innovative part of the thesis is Chapter 4. We propose an on-line algorithm
for exact filtering of the multiple changepoint problems. This algorithm enables
simulation from the true joint posterior distribution of the number and position of
the changepoints for a class of changepoint models. The algorithm is constructed
with in a particle filter framework, and we demonstrate how the resulting particle

filter is practicable for segmentation of human GC content.

In Chapter 5, we extend the multiple changepoint model to allow for dependen-
cies across segments and apply it to the curve fitting examples. We propose an
algorithm for approximated filtering of the multiple changepoints model and a
smoothing algorithm to detect both the positions and types of changepoints. We
demonstrate the performance of our algorithm on both smooth and unsmooth
curves, and compare the it with some MCMC method. Practically, we use the
algorithm to analyse well log data from the oil industry. The results are presented

there as well.

In the final chapter, we present some conclusions and point out some further

research in this field.



Chapter 2

Particle filters

2.1 Introduction

Particle filters are sequential Monte Carlo methods based upon point mass (or
“particle”) representation of probability densities, which are widely applied for
on-line inference of state space models:

Xy = f(Xt—l,VVt) (2 1)

}-/n;/ = g (Xt) ‘/t)
Here W, and V; are sequences of mutually independent random variables of known
distribution. To enable the inferences of the underlying states X; to be made, the
measurements Y; are taken at each discrete time ¢t = 1,2,...,n. The underlying
states X; follow a Markov process. We denote the transition probabilities implied

by (2.1) as p(zs41]z:); and assume a prior distribution for the state at time 1,

p($1)~

If (2.1) are linear equations, and W; and V; have Gaussian distributions, the

Kalman filter (Kalman and Bucy, 1961) can be used to calculate the posterior

10
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distribution of the states. If the assumptions fail to hold, some other sub-optimal

algorithm needs to be used, like the particle filter.

The particle filter gives a Monte Carlo approximation to the distributions of inter-
est. A set of comprehensive reviews of particle filters can be found in Liu and Chen
(1998); Doucet et al. (2001); Arulampalam et al. (2002). The use of Monte Carlo
methods in filtering can be traced back to the pioneering contribution of Hand-
schin and Mayne (1969) and Handschin and Mayne (1970), in which the Monte
Carlo methods are used only to estimate the mean and covariance of the posterior.
Another earlier sequential Monte Carlo methods was proposed by West (1992)
when filtering with the mixture probability densities. Alternatives to the particle
filters include the extended Kalman Filter (Jazwinski, 1973; Anderson and Moore,
1979), the Gaussian sum filter (Sorenson and Alspach, 1971) and the approximate
grid-based methods (Bucy and Senne, 1971). See also West and Harrison (1997)

for a complete review.

2.1.1 The basis of particle filters

The aim of the particle filter is to estimate recursively in time the posterior distri-
bution of states p(X1.|y1.) (where x1.4 := (21,...,2¢) and y1.¢ := (y1,..., %)), or
the marginal distribution p(z;|y1.) (also known as the filtering distribution), and
consequently, some functions of the states, e.g. the expectations E,(h(X;)). We

focus on the filtering distribution in this thesis.

At any time ¢, the marginal distribution p(z:|y1.;) is given by Bayes’ theorem

p(zelyre-1) = / p(@e|Te—1)P(Te-1]y1:6-1)dTs-1, (2.2)

_ p(ytlmt)p(-rtb’l:t—l)
pladyie) = [ p(yelze)p(zelyre—1)dz, (2:3)

Although the recursions of posterior p(z:|y1+) are easily obtained, solving them
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is normally intractable, as it involves the evaluation of complex high-dimensional
integrals in calculating [ p(y:|z:)p(z:|y1.c—1)dz;. The basic idea of particle filter is
to use importance sampling sequentially to approximate the intractable integrals

appearing in equations (2.2) and (2.3).

The particle filter is based on the assumption that the probability density function
is able to be approximated by a swarm of weighted particles. Given that there has

been a discrete set of particles and associated weights (a:ﬁ?l, wt(i_)l) at time t — 1,

fori=1,..., N, the posterior distribution of z;_; therefore can be approximated
by:
N . 3
P(@e1]y12-1) = Zw,§2_)15($t—1 - $§21), (2.4)
i=1

where 6(-) is the Dirac-Delta function. Substituting it into (2.2) and (2.3), the

density function at next time ¢ can be approximated as:

N
Palyin) = Y plzelai)wd, (2.5)

i=1
N

D(Tely1e) o Zp(ytlxt)p(xtlxrg?l)wéi—)l' (2.6)

i=1

One iteration of the particle filter produces an approximation of (2.6) by a set of
weighted particles. One possible approach is to draw the particles xéi) from the
transitional probability p(mt|x§i_)1), fori=1,..., N and approximate (2.6) by these

particles with weights
3 N .
w x wt(z_)lp(ytlxgz)) - and Zw;) = 1. (2.7)
i=1

Thus the weights have been easily updated from the previous weights. So the

calculation of p(z:|y1.) is a completely sequential update.
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Similarly, if the joint posterior distribution p(x1.4—1|y1.—1) is approximated by
N . .
ﬁ(X1:t~1|}’1:t—1) = Zwt@l&(-rl:t—l - $¥3;_1)
i=1

Due to the Markov property, we can still draw z from p(xtlscgi_)l) and attach it
to the particle xﬁi_l. Then the associated weight of the new particle xgzl, wﬁi) , s

updated in the same way as (2.7).

2.1.2 Resampling in particle filters

The problem of the updating process is that the variance of the weights increases
exponentially over time (Kong et al., 1994; Doucet, 1998), which means that after
a few iterations, the distribution of importance weights becomes more and more
skewed. As time increases, all but one particle has negligible weights. This is
known as degeneracy. The algorithm, consequently, fails to give a good approxi-

mation to the true posterior distributions.

Simply increasing the sample size can not solve the degeneracy problem. Instead,
resampling can be used to reduce the effect of degeneracy. The key point of
resampling is to eliminate the particles having small weights and concentrate on
the particles which have large weights. Thus, only those particles with significant
weights will be selected and propagated to the next time. A typical resampling
method is the multinomial sampling (Gordon et al., 1993), in which all the particles

produced at time ¢ will be resampled according to their weight wéi), ie.

Pr(zf" = mgi)) = wt(i) i=1,...,N.

We can also select the particles deterministically so that each particle 2 has a
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N; copies after resampling, where

['] stands for the integer part.

Resampling also bring some undesired effects: (i) it increase the variance of any
estimator, so estimation should be done before the resampling (Liu and Chen,
1998); (ii) resampling limits the use of parallel computing since all particles have to
be combined together before resampling; (iii) if we focus on estimating p(x1.t|y1:)
other than p(z:|y1.), resampling can lead to sample impoverishment when the

number of distinct values z, for k << ¢ that are stored will be small.

2.1.3 Sampling importance resampling

The above procedure naturally leads to a very simple particle filter called sampling
importance resampling (SIR) filter (Gordon et al., 1993). The algorithm has also
been developed independently by Kitagawa (1996) and Isard and Blake (1996),

where it is called Monte Carlo filter and Condensation algorithm, respectively.

The innovation of the SIR filter is that a resampling step is introduced at every
time to overcome the degeneracy problem. At each time ¢, the particles will be
resampled N times by multinomial sampling and all selected particles will have
equal weights, 1/N say. This swarm of particles is assumed to be an approximate
sample from the true posterior at that time. According to (2.7), the weight at the
next time before the resampling is

i 1 . .
wéﬁl X jv‘p(yt+1|33§21) 0<p(3/t+1'a71(:21)- (2.8)

We list the steps of SIR as follows:
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Algorithm 2.1 The SIR filter

Fort=1,...,n

Sampling For each m§i_)1, ift =1, draw :ngi) directly from p(z1); if t > 2,

draw a new particle 5:?’ independently from p(xtlwgl).

Weighting Assign each particle 33,5“ a (normalised) weight which is calcu-

lated as

~ (i)
(@) Py %)
wt = —~ T y (29)
SN p(y]2)

fori=1,...,N.

Resampling Resample the N particles independently N times, with replace-
ment, according to the associated weights. Then assign the newly simulated
particles equal weights ]lv Denote them by :cgi).
The term “importance resampling” comes from the weighting stage where an em-
pirical distribution that approximates the target distribution p(z;|y;.;) is generated

by essentially using importance sampling approach.

The SIR filter is very convenient to use, as (i) it uses the transition probability
p(z¢|z;_1) as proposal density which is easily sampled; (ii) it uses the likelihood of
each particle as the weight, which is easily evaluated; and (iii) it uses multinomial

sampling to select the particles.

But the cost to pay for the convenience is expensive: (i) the proposal density
function ignores the information of the observations, which makes the filter in-
efficient and sensitive to outliers; (ii) multinomial sampling can add substantial

Monte Carlo variation to the algorithm. (iii) the resampling at each time may be

unnecessary.

We now look at ideas suggested to address these problems. The first two problems
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are quite fundamental. They are related to two major aspects of particle filters: (i)
how to sample the particles and (ii) how to resample these particles. Many ideas
have been made to stress these two problem in the past 15 years, and these will
be briefly reviewed later. The third problem can be overcome by doing resampling

only if the weights become sufficiently skewed. We discuss this problem first.

2.1.4 When to resample

A number of papers look at when to resample (Kong et al., 1994; Liu and Chen,
1995, 1998). The idea is that the effect of resampling is greatest when the weights
are highly skewed. This can be measured via effective sample size (ESS), which is
originally used to measure the efficiency of importance sampling (Liu, 1996; Neal,
1998). The ESS answers the question that is how large a simple random sample
from a target distribution would be required to estimate the function of interest in
the importance sampling. This is similar to the idea of auto-correlation time for
MCMC method, which is used to measure the effective sample size of a sample of

size N generated from the Markov chain.

Liu (1996) has derived an analytical approximation result to the ESS at each time

t in particle filters:

N
1+ Varyg,jz,_1)(7e)’

Negs = (2.10)

where 7, = p(x¢|y1.)/P(z4|Ts-1) and the Vary(g,jz,_,)(7:) is the variance of w; with
respect to the transition probability function. However, it is in general hard to
obtain Varp(z|e,_.)(Tt), Kong et al. (1994) therefore suggested to use the sample

variance of w; to approximate it so that (2.10) can be therefore reformulated as

Negs = ———- (2.11)
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From (2.11), we know that the ESS is determined by the distribution of importance
weights. So the ESS can be used to measure the degree of degeneracy in the particle
filter. A small value of N, indicates that distribution of weights is quite skewed,
which is caused by a severe degeneracy. Liu and Chen (1995, 1998) use this idea to
monitor the ESS, and resample when the value falls below a pre-fixed threshold,

Nr.

Note that the intuitive interpretation of ESS does not hold when resampling is used
in the particle filters, as the particles after resampling are no longer independent.
However, ESS still gives a natural condition for when to resample. An alternative

Monte Carlo procedure for estimating an ESS is given by Carpenter et al. (1999).

2.2 Sampling algorithms

The SIR filter can be viewed as using importance sampling to approximate (2.6)

with proposal distribution

D(e]y1:6-1) Zwt 1P $t|$t 1 (2.12)

(1)

(i)l with weight w,”, in

Samples are generated from this by (i) simulating particles Z;”
the resampling stage; and (ii) propagation each resampled particle using p(z¢|z:—1)
in the sampling stage. However, the importance sampling approximation may
be poor when p(z|y1:_1) is quite different from p(z:|y1.:). This case would be
happened when the likelihood p(y:|z:) is very peaked or when there is little overlap
between the likelihood p(y:|x:) and the prior approximation p(x¢|y1:4-1). In such
cases, particles near the very narrow likelihood peak will be given much bigger
weights than any others so that only a small fraction of particles simulated from

p(x|y12—1) will be selected by the resampling. An alternative way of viewing this

problem is that since the posterior very closely resembles the likelihood in both
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the shape and position, most support of the prior, from which we have simulated,
plays a minor role in the support of the posterior, and the corresponding particles

are relatively unimportant.

A more fundamental weakness of the SIR filter is that the empirical approximation
of (2.12) has poor performance in the tails, so the target distribution can be only

poorly approximated when there are outliers.

To overcome these problems, a number of variations to the SIR filter have been de-
veloped to improve the filter’s performance on the sampling aspect, which include
using other importance sampling proposal density (Liu and Chen, 1995; Pitt and
Shephard, 1999), using rejection sampling (Hurzeler and Kunsch, 1998) or using
MCMC methods (Berzuini et al., 1997). For more separate reviews, see Liu and

Chen (1998) and Doucet (1998).

2.2.1 Sequential importance sampling

Liu and Chen (1995) suggested to use importance sampling instead, which they
call sequential importance sampling (SIS), so that the particle xii) is able to be
easily generated from a proposal density function q(xt|93§i_)1, y:), S0 equation (2.6)

becomes:

(@)

N 0)
R P(ye|ze)p(e| 7,21 Jwe ‘
p(%b’u) 68 Z ( tl : (3 1 : IQ(xt|x§21ayt)7 (213)

i=1 q(ze| 21, Yt)

then the corresponding weight is
(3) (@)1, :
; ; T z,’ |z,
wgz) ocwgz_)lp(yﬂ +)p(;” |z, 1). (2.14)

g(@P12?, ve)

The SIS filter is given below:
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Algorithm 2.2 The SIS filter

Initialisation Sample xgi) ~ q(z1|y1) fori =1,...,N at time t = 1, assigning
weight " = p(z?|y1) /a(@?[y1) to it.
Importance sampling (at time t) Assume we have particles (mgi_)l, wﬁ)l), then

sample
o) ~ x|z}, 32).

Assign :vgi) a new weight, according to (2.14)

End Time goes to t + 1, and algorithm goes to importance sampling step.

Note that if we choose proposal density as
alzdeds, v) = plalzy),
the SIS filter becomes the SIR filter without resampling step. If we choose
Q($t|$§?1’ Y) = p(mtlx?_)l, ) (2.15)

then (2.14) becomes

! oc wip(uel ). (2.16)

w}’
So given a value of xt(?l, the importance weights wfi) are the same no matter
what values of z;s are drawn from this proposal density function, which amounts
to saying that variance of the importance weights conditional on the x§"_)1, ie.
var(w |x§21) is equal to zero. For this reason, (2.15) is known as optimal proposal

density function (Arulampalam et al., 2002). However, calculating p(z|z, ve)

involves an integration over z;, which is typically impossible in most non-linear
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non-Gaussian cases. Alternative choices of the proposal density are available. See

Liu and Chen (1998) and references therein for more details.

One fundamental problem with the SIS approach is that no resampling is used.
The algorithm will inevitably suffer sample degeneracy. A remedy to this problem

is using resampling when the ESS falls below a certain threshold.

2.2.2 Auxiliary SIR filter

Pitt and Shephard (1999) also suggested to use importance sampling. Their work
known as auziliary SIR (ASIR) filter is motivated from the equation (2.6), which

can be re-written as

N
P(Tely1e) o Z p(ytimt)p(m’t'zgl—)l)wta—)l

i=1

M plydla)p(az®,) (i) (3)
= Z @ / P(yelwe)p(@e|e,” )dwwe
o J p(yilze)p(ze] 22 )doy
N

= > p@des, vp(ulz® w?,. (2.17)
=1

So the target distribution p(z:|y1:) is a mixture distribution with distributions

p(xtla:f_)l, y:), each assigned weights
A o p(yﬂmﬁl)wt(i_)l (2.18)

The ASIR filter aims to approximate this mixture density and use the approxima-

tion as a proposal distribution in an importance sampling method.

A simple implementation of such an importance sampling approach would lead to
an O(N?) algorithm. So Pitt and Shephard (1999) aimed to calculate the joint
posterior distribution of both the state z; and the indices ¢ instead, for which

the resulting importance sampling approach only has a computational complexity
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O(N). Thus we define

ﬁ(xta il.')’l:t) = Aﬁ?lp(:vt\xi?pyt)- (2-19)

The corresponding proposal density could be defined as

Q(mt, ilyl:t) = 5\7&?161(%'35?—)1, yt)’ (2~20)

where /A\iz_)1 is an approximation to /\§i_>1. Thus the marginal posterior of the index

is
) = S\(i) @ dz, = ;\(i) 2.21
Q(ZIYLt) t—1Q($t|33t—1ayt) Tt t—19 ( . )

so we may choose the index ¢ with respect to the weight )\t 1, and then simulate

x; from the transition probability q(:vt|xtz_1,yt) given the index and the latest

observation y;. Then each pair (xﬁj ), iU )) will be reweighted:

) p(x?), |Y1 t)
Wy —————
Q(ﬂft ) |Y1 t)

() (J
)\(1’) ( J)| tll),y)

@ G
/\15“) ( J)‘ 15—1 ?'!/t)
1Y )
_ wip(wlep(a|2))
- 39 #,.(G9) ' (2'22)
A1 q(zy |$t )

The complete ASIR filter is given below:

Algorithm 2.3 ASIR filter

Preliminary at time ¢t — 1 N weighted particles (xy_)l,wt( )1) are generated;

/\(.7)

Selection Simulate i) from {1,2,..., N} according to the weight Ay, for j =

1,...,N;
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e

Prediction Simulate 2t from q(a;tlacﬁﬁ)), y:) independently for j=1,... N;

Filtering Assign each pair ( (@) z'(j)) a weight wl which s (2.22);

End Time goes to t.

In the non-linear Gaussian state space model, the optimal proposal density, i.e.

i@ i
($t|xt 1)ayt) = p($t|$g—]1)7yt) and )\Ez 1= wt( )1p(yt|$§—)1)7 can be chosen, then

(2.22) is a constant. If we consider p(y|z;) to be log-concave, the q(wtlxﬁ?),yt)

can be approximated by the optimal density, so near-optimal results are obtained.

More generally, we can take q(xtlxgi_(jl)), Y) = (xtl:vt 1 )) and approximate )\t 1=

@) s

(yt\u )wt , Where p;”’ is a statistic of a:tla:tl_l such as mean, mode, or a sample,

then the new weight is

G _ wgzl p(ye |$t )p(mt
Wy

/\1(5)1‘](%])'551: 1 7%)

3(3)
p(yel ™)

J)lx(l(” )

Compared to the SIR and SIS filter, the ASIR filter can produce much less vari-
able weights because there is a preliminary selection of the particles before the
resampling step by using the predictive information p(y|u:) at time ¢t — 1 so that
the new weight is dependent on where the particles are sampled from and there-
fore potentially on the whole trajectory through wt 1 Note that the selection
step is performing a similar function to resampling, but allowing the resampling
probabilities to depend on y;. Thus no further resampling step is needed. The
original ASIR filter did include a resampling step (Pitt and Shephard, 1999), but

see Carpenter et al. (1999) for an example of how much this can make worse the

performance of the filter.
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2.2.3 Other sampling algorithms

Hurzeler and Kunsch (1998) advocated the use of rejection sampling to draw the
particles, which has the most attractive property that it produces independent
samples. The basic idea of the method is to simulate a:gi) from a proposal proba-
bility q(xt|x§i_)1, V1) (normally taken to be the transition probability), then accept

2 with probability
@
p(ys|z:”)

max, @ plye|zt)

DPaccept =

If the max_u p(yt|x§i> ) is not available, an upper bound ¢ of p(y;|z;) can be used
instead. The likelihood still dominates the selection of particles. But this time,
because the rejection sampling is used, it is impossible to know exactly how many

particles have to be simulated to achieve the required accuracy.

Berzuini et al. (1997) proposed an MCMC method to simulate the particles from
the optimal distribution p(wtlxgh y), which they call Metropolis-Hasting impor-
tance resampling (MHIR). The particle xf) is simulated within a single iteration of
any Metropolis-Hastings algorithm (Metropolis et al., 1953; Hasting, 1970) having
p(wtlmf_)l,yt) as its equilibrium distribution, and accept it with a corresponding

probability. See the reference for more details.

Like any MCMC method, the MHIR filter always needs a long burn-in and thinning
period to make sure that the Markov chain will converge to the target distribution
p(ze|z?,, y,). So the MHIR is, in general, less efficient than the SIR filter when

the approximation (2.6) to the equilibrium distribution works quite well.

These two methods can be also embedded into the SIS filter and the ASIR filter.
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2.3 Resampling algorithms

The SIR filter has given an initial impression of the effect of resampling step in
evolving the state space model over time. It sampled the particles xgi)s at each
time according to the multinomial distribution of the importance weights wt(i)s.
However, as we have mentioned, one disadvantage of the resampling is that it
introduces extra random variation to the estimator. Thus, other methods for
resampling which introduce less variability have been introduced. Most variance
reduction techniques in Monte Carlo integration (see Fishman, 1996, for a complete
reference) can be applied in the context of particle filters. The main one is stratified

sampling; though similar ideas are behind the residual sampling of Crisan and

Lyons (1997); Liu and Chen (1998).

2.3.1 Stratified sampling

A low-variance resampling method is the stratified sampling proposed by Carpenter
et al. (1999), which is based on the idea of stratification (Cochran, 1963). In the
particle filters, assume we have N particles at time ¢ denoted by xﬁi) with weights
wt(i)., Consider resampling a set of M particles. The basic idea is to resample
particle xﬁi) N; times, where

E(N;) = Nu}?,
0] or [No®] +1
and N; takes the value |[Nw;’| or [Nw;’| + 1.

The specific stratified algorithm of sampling M times from N particles is given

below. A demonstrative example of this algorithm is also given in Figure 2.1.

Algorithm 2.4 Stratified sampling
Given that there are N particles with associated weights (:c,gi), wt(i));

Set U = U(0,1)/M; i =1;
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While 1 < N

SetU=U —w®;
While U < 0 then

pick particle :z,gi) ;

U=U+1/M;

Seti=1+1;

In the algorithm of Carpenter et al. (1999), the order of the particles were shuffled
before the sampling so that the randomness of the result is increased. However,
as the covariance structure of the N;s will be affected by the specific ordering of
the particles, choosing an order in some situation will be advantageous. This will

turn out to be particularly useful in our changepoint problems.

2.3.2 Rejection control

Most resampling methods produce a sample of over-correlated particles, which
give a greater Monte Carlo variation. To overcome the problem, Liu et al. (1998)
presented an idea of rejection control (RC) to combine the rejection sampling with
the importance sampling in the state space model, by which independent particles

are simulated at each time.

The method is to set a series of threshold value aj,as,...,as at some checking
: N
points ¢y, ts, . . ., ts, at each of which the particles xij’, - ,a:gs ) are drawn from the
. . 1 N .
sampling distribution g;,, with associated weights wt(s), ey w,gs ), then the following

rejection procedure is:

Algorithm 2.5 Rejection control algorithm
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Step 1 Compute the control threshold o, at time t,

Step 2 Fori=1,..., N, accept particle xg) with probability
rt(? = min {1, 'wt(f)/as}
Step 3 If the jth particle is accepted, renew its weight as
W = Cow/r?,

where Cy, is a normalising constant.

Step 4 If the jth particle is rejected, simulate a new particle from timet =0
and make sure it passes all the checking points at t1,ts,...,t,. Failure on

passing at any checking time will result in a new simulation from the scratch.

In step 1, the values of the threshold a;, has to be decided in advance. Although an
arbitrary value can be chose, Liu et al. (1998) suggested a particular way to choose
these. Step 2 uses the rejection sampling to select the particles. As the variability
of weights increase over time, this step together with step 3 will potentially remove
particles having low weights. The renewing of weights in step 3 ensures that the

resampling is unbiased, that is
EW) = w). (2.24)
This can be easily shown. If wt(? > a; then Wt(:) = wg); otherwise,
(&)

EWD) =rPag+ (1 —r) x 0=w.

Finally, it is natural, in the case that some particles are deleted, to replenish the
particles in step 4, and since the algorithm forces the regeneration of the particle

from the beginning instead of the previous time, it guarantees to simulate the



CHAPTER 2. PARTICLE FILTERS 28

particles independently.

A computational limitation of the RC is that the computing cost increase very
rapidly (even exponentially) over time, due to the replenishment in step 4. This
could cause the RC method to be very impractical to be implemented in many

situations.

Liu et al. (2001) implemented a partial rejection control (PRC) method to ease the
computation. By partial, they mean the resampling on a rejected particle at time
ts only start from the previous check point t;_; instead of time ¢ = 0. Obviously,
the PRC doesn’t produce the independent samples due to the sampling procedure

it uses.

2.3.3 Optimal resampling

Most resampling methods in the particle filters produce multiple copies of the
particles, according to the associated weights. A typical example of this is the
multinomial sampling. However, for situations where (2.6) is a discrete distribution
which can be calculated exactly, storing these multiple copies is a waste of memory
because all the information in multiple copies of a particle can be carried by one
particle where weight is equal to the sum of the weights of the copies of particles.
Strictly for such models, (2.6) can be represented exactly by a set of weighted

particles. However, resampling is needed as otherwise the number of particles

needed will increase exponentially with time.

The optimal resampling (OR) proposed by Fearnhead and Clifford (2003) then
only eliminates the particles that have very small weights and does not have any

multiple copies of a particle. The OR algorithm is optimal in terms of minimising
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the mean square error at each time t:

N
E (Z(wt(i) _ m(i))Q) , (2.25)

i=1

which measures the discrepancy between the new weights and the original weights.

So the error brought from the resampling step is maximally reduced.

There are similarities between the OR and the RC. The steps of re-assigning the
weights are almost the same. Suppose there is a threshold oy at time t. Each
particles xﬁi) with weight wt(i) has a new weight

ma,x{wt(i), o} with probability "

W = (2.26)
0 otherwise

where rﬁi) = min {1, wéi) / at}. This is the reason why the OR algorithm generates
unbiased weights. A demonstrative diagram of both the two algorithms has been

given in Figure 2.2.

However, there are two slight differences between the OR and RC algorithms which
are worth emphasizing. The first difference is the way to obtain the threshold a;.

The threshold oy is uniquely determined by solving equation
N .
Zmin{l, wi foy} = M, (2.27)
i=1

which ensures M particles are resampled.

The second difference is the way to resample the particles. The particles with
weights greater than the threshold o; will be kept. The rest of particles will be
resampled by stratified sampling of Carpenter et al. (1999), having new weights

equal either oy or zero.

The specific algorithm sampling M particles from original N particles is listed
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below:

Algorithm 2.6 Optimal resampling algorithm

Step 1 Consider N particles at time t before the resampling, which have

normalised weights wt(l), .. .,wt(N); compute threshold oy from the equation

(2.27).

Step 2 If wgi) > a then keep the weights of particles unchanged, i.e. Wt(i) =
wt(i); otherwise, record the particles with weight w' < oy. Suppose there are

L such particles;

Step 3 Resample these L particles by the stratified sampling of Carpenter
et al. (1999), producing A = M + L — N particles withs weights equal to c.

The rest of particles are given zero weights.

The random sampling algorithm (RSA, Akashi and Kumamoto, 1977) also stores
only one copy of the particles, but only one offspring can survive the resampling
step no matter how large the associated weight is. Then it leads to a skewness of

the weights of the particles.

2.3.4 MCMC move

During the calculation of joint posterior distribution p(X1:4]y1:), the resampling
algorithms mentioned above can only partly solve the sample impoverishment. A
more radical approach is to move each particle from its current position to a ran-
domly picked position after resampling. The idea has been first explored by West
(1993) through a so-called adaptive importance sampling, where the particles are

resampled from a kernel density estimate (KDE). A similar method was proposed

by Sutherland and Titterington (1994).
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An alternative method is the Rao-Blackwellisation (a.k.a marginalisation) of Liu
and Chen (1998), in which part of the elements of the states are simulated from the
fully conditional distributions, and later Fearnhead (1998) extended it by using a
Markov chain to move the particles. Then Gilks and Berzuini (2001) generalised
the two methods by embedding a generic MCMC moving step into the resampling
stage within a unified particle filter framework. This is called resample-move

algorithm.

In general, resample-move can only be applied if the particles store the whole path

of the state, i.e. ng)t is a realisation of x;.;. Then at resampling stage, we have:

Algorithm 2.7 Resample-move algorithm

Step 1 Given particles xﬁ”t fori=1,..., N obtained at time t, resample

them according to the associated weights wii).

Step 2 Fach particle x§’)t is moved from the current position to a new random
position via one or more iterations of a Markov chain with a transition kernel
k,fi):

X~ kD (x{), )

Any MCMC method such as Gibbs sampling and Metropolis-Hastings can be used
to design the kernel kt(i) . Neither burn-in period nor ergodicity in the MCMC move
is required for this method because each particle at time ¢ already has approximate

marginal distribution p(z:| y1:) before the moving.

Generally, the moving step gives an obvious improvement of particle degeneracy at
the expense of heavy computation burden though the (fractional move, however,

is available, see next chapter for more details).
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2.4 Smoothing procedure

In the filtering procedure, the conditional distribution of the underlying state z;
is only evaluated given the observations from y; to ;. In some situations we may
wish to calculate p(z;|y1.), for | > ¢, as this will be more informative about z;.
This distribution is generally referred to as a smoothing distribution. There are

three smoothing situations:

(i) Fized interval smoothing, where it is p(z;]y1.n) that needs to be calculated

fort=1,...,n;

(il) Fized lag smoothing, where for some fixed value L > 0, it is p(z4|y1..+ 1) that

needs to be calculated for t =1,...,n;

(iii) Fized point smoothing, where for a fixed value t, it is p(z;|y1.4+p) that needs

to be calculated with D > ¢ increasing.

The focus of the thesis is only on fixed interval smoothing, and we use the term
smoothing to refer to the fixed interval smoothing. There are various ways of

implementing smoothing with particle filters to be reviewed here.

2.4.1 Smoothing by storing particle history

The easiest smoothing method within the particle filters involves storing each

particle’s history. In the other words, we have to record which particles xii)s are

produced from the particle a:ij_)l at previous time and so on. xﬁj_)l is therefore
called as the “ancestor” of the particles xf)s (see Figure 2.3). By this way we are

actually calculating sequentially the joint posterior distribution of the underl