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A bstract

The multiple changepoint model has been considered in a wide range of statistical 

modelling, as it increases the flexibility to simple statistical applications. The main 

purpose of the thesis enables the Bayesian inference from such models by using the 

idea of particle filters. Compared to the existed methodology such as RJMCMC 

of Green (1995), the attraction of our particle filter is its simplicity and efficiency.

We propose an on-line algorithm for exact filtering for a class of multiple change

point problems. This class of models satisfy an important conditional indepen

dence property. This algorithm enables simulation from the true joint posterior 

distribution of the number and position of the changepoints for a class of change

point models. The computational cost of this exact algorithm is quadratic in 

the number of observations. We further show how resampling ideas from particle 

filters can be used to reduce the computational cost to linear in the number of 

observations, at the expense of introducing small errors; and propose two new, 

optimum resampling algorithms for this problem. In practice, large computational 

savings can be obtained whilst introducing negligible error. We demonstrate how 

the resulting particle filter is practicable for segmentation of human GC content.

We then generalise our method to models where the conditional independence
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property does not hold. In particular we consider models with dependence of the 

parameters across neighbouring segments.

Examples of such models are those with unknown hyper-parameters, and piecewise 

polynomial regression models which assume continuity of the regression function. 

The particle filter we propose is based on a simple approximation to the filtering 

recursion. We show tha t the error introduced by the approximation can be small.

We demonstrate our method on the problem o f Bayesian curve fitting. The novelty 

of our model is tha t we fit a piecewise polynomial function and allow for both 

discontinuity and continuity at changepoints. This method is compared to existing 

Bayesian curve fitting method, and applied to the analysis of well-log data.
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Chapter 1

Introduction

1.1 R etrospect

Sampling-based Bayesian statistical methods have been very popular in the last 20 

years because of its simplicity in approximating the intractable integrals involved 

with the inferential problem, particularly in high dimensions. All these methods 

are based on the Monte Carlo integration, in which a set of samples x ^ , . . . ,  x ^  

are independently simulated from a target distribution of random variable X  with 

probability density function p(x). Then we can use these samples to approximate 

the expectation of any function h(-) of X ,  provided the expectation exists. That 

is if we want to calculate

( i . i )

we can approximate it by a sample mean

( 1.2)

1
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The approach is remarkably easy to use and gives an unbiased estimate with 

variance proportional to 1 /N  (i.e. vax(h(x))/ N ) .

In particular, if we take h(x) — I a {x ) where I a (x ) is an indicator function so tha t 

it takes value 1 if x £ A  and value 0 otherwise, then the probability Pr(a; E A) are 

approximated only by the proportion of samples in A:

Pr(x e A) =  E(JA(x)) »  ^  £  U(*w).
t=l

1.1.1 R ejection  sam pling

However, It is often the case that we are unable to simulate directly from the 

target density p(-). A sensible method to overcome the problem is to simulate 

from another density q(-) which is easy to simulate from, but then to only accept 

those samples with a probability paccept- This is the basic idea of rejection sampling 

(Hammersley and Handscomb, 1964).

To run the method, we only need to know the target density p(-) up to a normal

ising constant, and have to set an upper bound K  such that

p(x)/q(x) < K  for all x,

therefore the support of q(-) contains all the support ofp(-). The sampling proce

dure is done as follows:

A lg o rith m  1.1 Rejection sampling

S tep  1 Simulate x  from the proposal density q(x);

S tep  2 Calculate the accept probability as p aCcePt =  p(x)/ (Kq(x));
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S tep  3 Generate a random variable U uniformly from the interval [0,1];

S tep  4 I f  U < paccept accept x; otherwise repeat.

Then xs accepted by this algorithm are independent identically distributed (i.i.d) 

samples from the target distribution. Furthermore, the average acceptance prob

ability is 1 /K .

The efficiency of the rejection sampling is dependent on the upper bound K , and 

particularly the dimensions of the target distribution. The acceptance probability 

decreases exponentially as the dimension increases.

1.1.2 M arkov chain M onte Carlo

If we run the rejection sampling iteratively over an irreducible and aperiodic 

Markov chain whose equilibrium distribution is the target distribution, this is 

the intuitive idea behind Markov chain Monte Carlo (MCMC).

The main difficulty of MCMC is how to construct a suitable Markov chain to 

enable a simulation from the target distribution. A general algorithm which they 

call Metropolis-Hasting algorithm is proposed by Metropolis et al. (1953) and then 

generalised by Hasting (1970). The algorithm requires a transition kernel k(x ,x ')  

for the Markov chain, which is a proposal density function of x' for each given 

value of x. Thus at each iteration, a sample x' is drawn from the kernel k(x ,x ') ,  

and the new value x  in the chain is

x  = <
x' with probability paccept,

(1.3)
x  with probability 1 — paccept,
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where

. f k(x', x)p(x') 1 .
P a ccep t =  mm S 1 ,  7 /W \  f ' ( l - ^ )t k(x, x')p(x) J

The initial value of x can be chosen arbitrarily. Then Tierney (1994) has proved 

th a t the Markov chain obtained by the above algorithm is time-reversible and has 

an equilibrium distribution p(-).

The transition kernel can be chosen arbitrarily as well, in principle, so any choice 

should work. However, not all kernels are equally good with respect to the con

vergence property (or mixing property) of the algorithm. Common choices include 

fully conditional distribution (in Gibbs sampling) and random walk with normal in

crement (in random walk Metropolis algorithm). For a complete review of MCMC,

see Gilks et al. (1996); Robert and Casella (1999). Note tha t MCMC does not

provide independent draws from p(-); but Monte Carlo estimators such as (1.2) 

will still be consistent.

1.2 M otivation

The MCMC method has been very successful since the beginning of 1990s, because 

of its flexibility to a lot of statistical models. It is a popular approach to sample 

different complicated probability distributions. However, there are still some limi

tations of MCMC method in some situations. For example, it is inefficient for the 

recursive estimation problems. Hence, we introduce in the thesis another sampling 

method based on the importance sampling.
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1.2.1 Im portance sam pling

5

There might be another problems with d(p) as an estimator of d: although sam

pling from p(-) is possible, the estimator $(p) might have very high variance.

Instead, an importance sampling technique (see Geweke, 1989, for example) can be 

used to overcome the problem. We can choose another distribution of the random 

variable X  with density q(x), from which, the samples a^1), . . . ,  x ^  can be easily 

simulated. Thus, we can rewrite D as

$ =  [  h(x)^Y^-q(x)(Ix, (1.5)
J q{x)

and it can be approximated by

N

$(q) =  (1.6)
i= 1

where we define the (normalised) importance weight as

w<<)« ErS' f > w = 1- (L7)

Thus the importance sampling is basically choosing the samples concentrated on 

the area where there is greatest variation in the integrand so tha t each simulated

value contains greatest information. If we choose q(-) so as to make h{x)p(x)/ q{x)

nearly constant, the variance of ti(q) will be much lower than the variance of $(p).

Note tha t it is also possible to use unnormalised weights in the approximation such
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where the importance weight w® is

6

«»<*> =  (1 9) 
q(x®) 1 J

instead. However, in many applications, the target probability p(-) and the pro

posal density q(-) may be known only up to a normalising constant. This is always 

true when applying the importance sampling to the state space model and, par

ticularly in Bayesian statistics. Hence the use of normalised importance weights 

is more general.

1.2.2 Sequential M onte Carlo m ethod

Importance sampling has a wider scope than reducing the variance of Monte Carlo 

estimators. This thesis will concentrate on the importance sampling in the sequen

tial settings, which is also known as particle filters (Doucet et al., 2001; Liu, 2001).

The technique has been commonly used in time series model for some dynamic 

problems such as target tracking (Gordon et al., 1993), signal deconvolution (Liu 

and Chen, 1995), speech recognition (Godsill and Clapp, 2001), oil drilling (Fearn- 

head and Clifford, 2003) and stock pricing (Kitagawa, 1996), amongst others. In 

such cases, the new observation becomes available at each time, thus a real time 

inference or prediction is required. In other words, a sequence of distributions 

7rt , which is the posterior of the underlying states given the observations in the 

dynamic system, needs to be estimated at each time t. A typical example of irt is 

the position and speed of a target at time t in the target tracking problem.

The reason why the importance sampling can be used efficiently to estimate these 

posteriors is tha t the approximate samples from the distribution nt can be recycled 

by importance sampling to produce approximate samples from the distribution 

7rt+i, provided the two distributions share same supports. Even if the supports
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are different, we can augment the supports of 7rt to the supports of 7rt+i, and 

simulate the imputed samples to approximate 7rt+i (Kong et al., 1994). The biggest 

advantage of this sequential computing is tha t the importance weights at each time 

t do not need to be re-computed from the scratch. The dynamic updating produces 

a reduction on the computational cost.

The motivation of the thesis is to consider and develop particle filters for analysis 

of multiple changepoint problems. W ith particle filters, we aim to draw samples 

directly from the posterior distribution of changepoints.

The multiple changepoints model we use here consists of a sequence of change

points occurring at discrete positions. Both the number and positions of them 

are unknown. The MCMC method has been dominant in the Bayesian analysis 

of the changepoints models. If the number of changepoints is known, the method 

can be directly used for inference in the models (e.g. Stephens, 1994; Chib, 1996). 

If the number of changepoints is unknown, a common approach is the reversible 

jump Markov chain Monte Carlo (RJMCMC) method of Green (1995). However, 

RJMCMC can suffer from poor mixing, and hence a high CPU cost, unless effi

cient MCMC move can be designed. But this is generally very hard, particularly 

for the move between different models in RJMCMC (see Brooks et al., 2003, for 

guidelines on how to design these moves).

By contrast, the particle filtering approach to changepoints model is less obvious. 

An artificial time has to be given so that a pseudo sequence of the posterior 

distributions of changepoints can be fed into the particle filters as it were the 

target distributions arising in a dynamic problem. The particle filtering approach 

avoids the diagnosis of the convergence of Markov chains and hence the design of 

moves in the MCMC. It is also believed that the particle filter approach provides 

better estimates in terms of robustness and effectiveness.

Although we introduced the particle filter as an alternative to the MCMC method,
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the two are not tha t separated. Instead, we can even embed one algorithm into 

the other, to improve the performance of the algorithm.

1.3 O utline of th e thesis

The theme of this thesis is the construction of a direct simulation methodology 

based on the particle filters, and the application to the multiple changepoint prob

lems. The method is proposed to enable inference for the changepoint model to 

be made more efficiently. The outline of the subsequent chapters is as follows:

In Chapter 2, the basic structure of particle filter including sampling, resampling 

and smoothing is introduced. A very simple example which is known as the SIR 

filter or Bootstrap filter (Gordon et al., 1993) is given immediately to demonstrate 

how the particle filter works on the non-linear/non-Gaussian state space model. 

Motivated from the demonstrative example, a number of literature focusing on 

improving the performance of the particle filters are reviewed. The improvements 

cover all aspects of the particle filters (e.g. sampling, resampling and smoothing).

In Chapter 3, we describe the multiple changepoint problem through a state space 

model so tha t the on-line inference can be made. We adapt a point process of Barry 

and Hartigan (1993) to model the distribution of the positions of changepoints and 

the number of changepoints is automatically implied. The underlying states have 

a hierarchy with the changepoints and the associated parameters, which will make 

the particle filters introduced in Chapter 2 less accurate and efficient. So it is 

advantageous to marginalise the parameter state sequence as nuisance parameters 

and focus on the on-line inference of changepoints first. Two specific examples 

given by Chen and Liu (2000) and Chopin (2007) respectively are reviewed. The 

approach of Chen and Liu (2000) is a special case of Rao-Blackwellised particle 

filter when the state space model is linear/Gaussian conditional on the change-
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points.
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The innovative part of the thesis is Chapter 4. We propose an on-line algorithm 

for exact filtering of the multiple changepoint problems. This algorithm enables 

simulation from the true joint posterior distribution of the number and position of 

the changepoints for a class of changepoint models. The algorithm is constructed 

with in a particle filter framework, and we demonstrate how the resulting particle 

filter is practicable for segmentation of human GC content.

In Chapter 5, we extend the multiple changepoint model to allow for dependen

cies across segments and apply it to the curve fitting examples. We propose an 

algorithm for approximated filtering of the multiple changepoints model and a 

smoothing algorithm to detect both the positions and types of changepoints. We 

demonstrate the performance of our algorithm on both smooth and unsmooth 

curves, and compare the it with some MCMC method. Practically, we use the 

algorithm to analyse well log data from the oil industry. The results are presented 

there as well.

In the final chapter, we present some conclusions and point out some further 

research in this field.



C hapter 2

Particle filters

2.1 Introduction

Particle filters are sequential Monte Carlo methods based upon point mass (or 

“particle”) representation of probability densities, which are widely applied for 

on-line inference of state space models:

X,  =  f  {Xt. u Wt)

Yt =  g (X t,Vt).

Here W t and Vt are sequences of mutually independent random variables of known 

distribution. To enable the inferences of the underlying states X t to be made, the 

measurements Yt are taken at each discrete time t — 1 , 2 , . . . ,  n. The underlying 

states X t follow a Markov process. We denote the transition probabilities implied 

by (2.1) as p(xt+i\xt); and assume a prior distribution for the state at time 1, 

p(x  i).

If (2.1) are linear equations, and Wt and Vt have Gaussian distributions, the 

Kalman filter (Kalman and Bucy, 1961) can be used to calculate the posterior

10
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distribution of the states. If the assumptions fail to hold, some other sub-optimal 

algorithm needs to be used, like the particle filter.

The particle filter gives a Monte Carlo approximation to the distributions of inter

est. A set of comprehensive reviews of particle filters can be found in Liu and Chen 

(1998); Doucet et al. (2001); Arulampalam et al. (2002). The use of Monte Carlo 

methods in filtering can be traced back to the pioneering contribution of Hand- 

schin and Mayne (1969) and Handschin and Mayne (1970), in which the Monte 

Carlo methods are used only to estimate the mean and covariance of the posterior. 

Another earlier sequential Monte Carlo methods was proposed by West (1992) 

when filtering with the mixture probability densities. Alternatives to the particle 

filters include the extended Kalman Filter (Jazwinski, 1973; Anderson and Moore, 

1979), the Gaussian sum filter (Sorenson and Alspach, 1971) and the approximate 

grid-based methods (Bucy and Senne, 1971). See also West and Harrison (1997) 

for a complete review.

2.1.1 T he basis o f particle filters

The aim of the particle filter is to estimate recursively in time the posterior distri

bution of states p (x i:t|yi;t) (where x i:* := ( z i , . . . ,  x t) and y i;t := {yx, . . . ,  yt)), or 

the marginal distribution p(xt \yi:t) (also known as the filtering distribution), and 

consequently, some functions of the states, e.g. the expectations Ep(h(Xt)). We 

focus on the filtering distribution in this thesis.

At any time t, the marginal distribution p(xt |ym) is given by Bayes’ theorem

Although the recursions of posterior p(xt \y1:t) are easily obtained, solving them

(2 .2 )

p(xt \yi:t) J  p(yt \xt)p(xt \y1:t- l )d x t '
p(yt\xt)p(xt\yi:t-i) (2.3)
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is normally intractable, as it involves the evaluation of complex high-dimensional 

integrals in calculating f  p{yt\xt)p{xt\yi:t-i)dxt . The basic idea of particle filter is 

to use importance sampling sequentially to approximate the intractable integrals 

appearing in equations ( 2 . 2 )  and ( 2 . 3 ) .

The particle filter is based on the assumption tha t the probability density function 

is able to be approximated by a swarm of weighted particles. Given tha t there has 

been a discrete set of particles and associated weights at time t — 1,

for i = 1 , . . . ,  N,  the posterior distribution of x t- i  therefore can be approximated

by:

N

p(xt-i\y i:t-i)  = ^ 2 w l %\ 5 { x t- i  -  x ^ i) ,  (2.4)
i=l

where £(•) is the Dirac-Delta function. Substituting it into (2.2) and (2.3), the 

density function at next time t can be approximated as:

N

p(xt \yi:t-i) =  (2.5)
i=1 
N

p(xt \yi:t) OC ^ p ( y t \ x t ) p { x t \ x ^ \ ) wt-i- ( 2 * 6 )

i=1

One iteration of the particle filter produces an approximation of (2.6) by a set of 

weighted particles. One possible approach is to draw the particles x ^  from the 

transitional probability p(xt I x ^ ) ,  for i = 1 , . . . ,  N  and approximate (2.6) by these 

particles with weights

N

oc w f\p { y t \ x f )  and y > ((i> =  1. (2.7)
i=l

Thus the weights have been easily updated from the previous weights. So the 

calculation of p(xt\yi:t) is a completely sequential update.
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Similarly, if the joint posterior distribution p(^-i-.t-i\yi:t-i) is approximated by

N

P (X l: t- l |y i: t - l)  =
i ~  1

Due to the Markov property, we can still draw x[^ from p(xt \x[ll 1) and attach it 

to the particle X]*.^. Then the associated weight of the new particle x ^ ,  w[*\ is 

updated in the same way as (2.7).

2.1 .2  R esam pling in particle filters

The problem of the updating process is tha t the variance of the weights increases 

exponentially over time (Kong et al., 1994; Doucet, 1998), which means tha t after 

a few iterations, the distribution of importance weights becomes more and more 

skewed. As time increases, all but one particle has negligible weights. This is 

known as degeneracy. The algorithm, consequently, fails to give a good approxi

mation to the true posterior distributions.

Simply increasing the sample size can not solve the degeneracy problem. Instead, 

resampling can be used to reduce the effect of degeneracy. The key point of 

resampling is to eliminate the particles having small weights and concentrate on 

the particles which have large weights. Thus, only those particles with significant 

weights will be selected and propagated to the next time. A typical resampling 

method is the multinomial sampling (Gordon et al., 1993), in which all the particles 

produced at time t will be resampled according to their weight i.e.

Prfxf*" =  x P ) =  w f  i =  1, . . .  ,7V.

We can also select the particles deterministically so that each particle X , ' 1 has a
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Ni copies after resampling, where

N i=  N w

[•] stands for the integer part.

Resampling also bring some undesired effects: (i) it increase the variance of any 

estimator, so estimation should be done before the resampling (Liu and Chen, 

1998); (ii) resampling limits the use of parallel computing since all particles have to 

be combined together before resampling; (iii) if we focus on estimating p (x 1;i|y i:t) 

other than p(xt\y i:t), resampling can lead to sample impoverishment when the 

number of distinct values Xk for k «  t that are stored will be small.

2.1 .3  Sam pling im portance resam pling

The above procedure naturally leads to a very simple particle filter called sampling 

importance resampling (SIR) filter (Gordon et al., 1993). The algorithm has also 

been developed independently by Kitagawa (1996) and Isard and Blake (1996), 

where it is called Monte Carlo filter and Condensation algorithm, respectively.

The innovation of the SIR filter is that a resampling step is introduced at every 

time to overcome the degeneracy problem. At each time t, the particles will be 

resampled N  times by multinomial sampling and all selected particles will have 

equal weights, 1 /N  say. This swarm of particles is assumed to be an approximate 

sample from the true posterior at that time. According to (2.7), the weight at the 

next time before the resampling is

(2 .8)

We list the steps of SIR as follows:
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A lg o rith m  2.1 The SIR filter 

For t = 1

S am p lin g  For each x f \ ,  i f  t  = 1, draw xfi directly from p(xfi); i f  t  > 2, 

draw a new particle x ^  independently from pixtlx^lfi).

W eig h tin g  Assign each particle xf* a (normalised) weight which is calcu

lated as

U) .... p ( y M ' })
wt (2.9)

for i  =  l , . . . , N .

R esam p lin g  Resample the N  particles independently N  times, with replace

ment, according to the associated weights. Then assign the newly simulated

The term  “importance resampling” comes from the weighting stage where an em

pirical distribution tha t approximates the target distribution p(xt \yi:t) is generated 

by essentially using importance sampling approach.

The SIR filter is very convenient to use, as (i) it uses the transition probability

each particle as the weight, which is easily evaluated; and (iii) it uses multinomial 

sampling to select the particles.

But the cost to pay for the convenience is expensive: (i) the proposal density 

function ignores the information of the observations, which makes the filter in

efficient and sensitive to outliers; (ii) multinomial sampling can add substantial 

Monte Carlo variation to the algorithm, (iii) the resampling at each time may be 

unnecessary.

We now look at ideas suggested to address these problems. The first two problems

particles equal weights Denote them by x[lK

p(xt \xt- i )  as proposal density which is easily sampled; (ii) it uses the likelihood of
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are quite fundamental. They are related to two major aspects of particle filters: (i) 

how to sample the particles and (ii) how to resample these particles. Many ideas 

have been made to stress these two problem in the past 15 years, and these will 

be briefly reviewed later. The third problem can be overcome by doing resampling 

only if the weights become sufficiently skewed. We discuss this problem first.

2.1 .4  W hen  to  resam ple

A number of papers look at when to resample (Kong et al., 1994; Liu and Chen, 

1995, 1998). The idea is tha t the effect of resampling is greatest when the weights 

are highly skewed. This can be measured via effective sample size (ESS), which is 

originally used to measure the efficiency of importance sampling (Liu, 1996; Neal, 

1998). The ESS answers the question tha t is how large a simple random sample 

from a target distribution would be required to estimate the function of interest in 

the importance sampling. This is similar to the idea of auto-correlation time for 

MCMC method, which is used to measure the effective sample size of a sample of 

size N  generated from the Markov chain.

Liu (1996) has derived an analytical approximation result to the ESS at each time 

t in particle filters:

N
N ess =  T - T 7 ------------------7 - y  (2 - 1 0 )

1 + V&Zp(xt \ x t - i ) v  t)

where rt = p(xt \y1:t)/p(xt\xt-i)  and the V a r ^ i ^ ^ r * )  is the variance of wt with 

respect to the transition probability function. However, it is in general hard to 

obtain Varp(a;t|a;t_1)(rt), Kong et al. (1994) therefore suggested to use the sample 

variance of wt to approximate it so tha t (2.10) can be therefore reformulated as
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From (2.11), we know that the ESS is determined by the distribution of importance 

weights. So the ESS can be used to measure the degree of degeneracy in the particle 

filter. A small value of N ess indicates that distribution of weights is quite skewed, 

which is caused by a severe degeneracy. Liu and Chen (1995, 1998) use this idea to 

monitor the ESS, and resample when the value falls below a pre-fixed threshold, 

N t .

Note tha t the intuitive interpretation of ESS does not hold when resampling is used 

in the particle filters, as the particles after resampling are no longer independent. 

However, ESS still gives a natural condition for when to resample. An alternative 

Monte Carlo procedure for estimating an ESS is given by Carpenter et al. (1999).

2.2 Sam pling algorithm s

The SIR filter can be viewed as using importance sampling to approximate (2.6) 

with proposal distribution

N

P(xt \yi:t-l) «  (2-12)
i=1

Sa m p les are generated from this by (i) simulating particles with weight in 

the resampling stage; and (ii) propagation each resampled particle using p(xt \xt- i)  

in the sampling stage. However, the importance sampling approximation may 

be poor when p(xt \y1:t- i )  is quite different from p(xt \yi:t)- This case would be 

happened when the likelihood p(yt \xt) is very peaked or when there is little overlap 

between the likelihood p(yt \xt) and the prior approximation p{xt \y1:t- i ) . In such 

cases, particles near the very narrow likelihood peak will be given much bigger 

weights than any others so that only a small fraction of particles simulated from 

p(xt\yi:t-i) wiU be selected by the resampling. An alternative way of viewing this 

problem is tha t since the posterior very closely resembles the likelihood in both
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the shape and position, most support of the prior, from which we have simulated, 

plays a minor role in the support of the posterior, and the corresponding particles 

are relatively unimportant.

A more fundamental weakness of the SIR filter is tha t the empirical approximation 

of (2.12) has poor performance in the tails, so the target distribution can be only 

poorly approximated when there are outliers.

To overcome these problems, a number of variations to the SIR filter have been de

veloped to improve the filter’s performance on the sampling aspect, which include 

using other importance sampling proposal density (Liu and Chen, 1995; P itt and 

Shephard, 1999), using rejection sampling (Hurzeler and Kunsch, 1998) or using 

MCMC methods (Berzuini et al., 1997). For more separate reviews, see Liu and 

Chen (1998) and Doucet (1998).

2.2.1 Sequential im portance sam pling

Liu and Chen (1995) suggested to use importance sampling instead, which they 

call sequential importance sampling (SIS), so that the particle xf* is able to be 

easily generated from a proposal density function q(xt \x[%l 1, yt), so equation (2.6) 

becomes:

p(xt \yi:t) °c 2 ^ ----------- (0--a------ 9 ^ tF t-n 2 /ih  i2-1'*)
i=i Q\x t\x t-iiyt)

then the corresponding weight is

. t a  <214)

The SIS filter is given below:



CH APTER 2. PARTICLE FILTERS

A lg o rith m  2.2 The SIS filter
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In itia lisa tio n  Sample xf* ~  q.{xi\yi) for i = 1, . . .  ,1V at time t — 1, assigning 

weight w f  =  \yx)/ q ( x f  \yx) to i t

Im p o r ta n c e  sam pling  (a t t im e  t) Assume we have particles then

sample

x f  ~  l{x t \x{f \ , y t).

Assign xf* a new weight, according to (2.14)

E n d  Time goes to t +  1, and algorithm goes to importance sampling step.

Note th a t if we choose proposal density as

q {x t\x t \ ,y t )  = p (x t \x {f l i) ,  

the SIS filter becomes the SIR filter without resampling step. If we choose

q(xt\x tlu yt) = p {x t \xf_l ,y t), (2.15)

then (2.14) becomes

w t(t) oc w ^ p i y t l x ^ ) .  (2.16)

So given a value of x[%l v  the importance weights w® are the same no m atter 

what values of x ts are drawn from this proposal density function, which amounts 

to saying tha t variance of the importance weights conditional on the x ^ ,  i.e.

v a r ^ f ^ S i )  is equal to zero. For this reason, (2.15) is known as optimal proposal

density function (Arulampalam et al., 2002). However, calculating p{xt \x{f;ll ,y t) 

involves an integration over x t , which is typically impossible in most non-linear
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non-Gaussian cases. Alternative choices of the proposal density are available. See 

Liu and Chen (1998) and references therein for more details.

One fundamental problem with the SIS approach is tha t no resampling is used. 

The algorithm will inevitably suffer sample degeneracy. A remedy to this problem 

is using resampling when the ESS falls below a certain threshold.

2.2.2 A uxiliary  SIR  filter

P itt and Shephard (1999) also suggested to use importance sampling. Their work 

known as auxiliary SIR (ASIR) filter is motivated from the equation (2.6), which 

can be re-written as

N

P(Xt\yi:t) OC Y ^P (y t \Xt)P(Xt\Xf- l )Wt-l
i=1

i=i J P(yt\xt)P{xt \xl-i)dxt J

=  ^ p ( x M % y t ) p ( y M l\ ) w t l v  (2.17)
i=1

So the target distribution p(xt \yi-.t) is a mixture distribution with distributions 

p(xt \x[ll v yt), each assigned weights

X t - i  P ( y M - i ) w t - i  (2T8)

The ASIR filter aims to approximate this mixture density and use the approxima

tion as a proposal distribution in an importance sampling method.

A simple implementation of such an importance sampling approach would lead to 

an 0 ( N 2) algorithm. So P itt and Shephard (1999) aimed to calculate the joint 

posterior distribution of both the state x t and the indices i instead, for which 

the resulting importance sampling approach only has a computational complexity
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0 (N ) .  Thus we define

p{xt , i\yi:t) = yt)- (2.1.9)

The corresponding proposal density could be defined as

q(xu i\yi:t) = X t lM x t lx t -n  yt), (2.20)

where A ^  is an approximation to A ^ .  Thus the marginal posterior of the index

is

q(i\yi:t) = J  ̂ t l iq {x t\x t- i ,y t)dx t = A « ,  (2.21)

so we may choose the index i with respect to the weight A ^ ,  and then simulate

x t from the transition probability q(xt \x[ll 1,y t) given the index and the latest 

observation yt . Then each pair ( x ^ \ i ^ )  will be reweighted:

U)Wt  oc
P { x t \ i {j)\yi-.t) 

q { x t \ i {j)\yi-.t)

\ [ t ^ q ( x l j ) \x{̂ \ y t) 

wt-P p iV tlx t^P ixP  \x t-T )

^ t - P q ix t^ x t - P jy t )

The complete ASIR filter is given below:

A lg o rith m  2.3 ASIR filter

P re lim in a ry  a t  t im e  t -  1 N  weighted particles are generated;

(2 .22)

S election  Simulate from  {1 ,2 , . . . ,  N }  according to the weight A ^1; for j  =  

1
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P re d ic tio n  Simulate x f J) from q(xt \ x ^ \ y t) independently for j  =  1 , . . . ,  N;

F ilte r in g  Assign each pair (x[l a weight which is (2.22);

E n d  Time goes to t.

In the non-linear Gaussian state space model, the optimal proposal density, i.e. 

q(xt\x[l_ i \ y t )  = p { x t \x f^ l \ y t) and =  w ^\p {y t |z 2 i) ,  can be chosen, then 

(2.22) is a constant. If we consider p(yt \xt) to be log-concave, the q{xt \ x ^ l \  yt) 

can be approximated by the optimal density, so near-optimal results are obtained.

More generally, we can take q(xt \ x f ^ l \ y t) = p(xt \x[1̂ ) ,  and approximate =  

p(yt\p>t^)wt-i  where p® is a statistic of x t \ x f \  such as mean, mode, or a sample, 

then the new weight is

w ^ i )p{y t\x t))p(x(tj ) \x \ tT )

^t-lQiXt^Xt-Pyyt)

p ( y M 3)) ,9 9ox
( I C j))\ { Jp(yt\Ft )

Compared to the SIR and SIS filter, the ASIR filter can produce much less vari

able weights because there is a preliminary selection of the particles before the 

resampling step by using the predictive information p(yt \pt) at time t — 1 so tha t 

the new weight is dependent on where the particles are sampled from and there-
' ( j )fore potentially on the whole trajectory through w\_v  Note tha t the selection 

step is performing a similar function to resampling, but allowing the resampling 

probabilities to depend on yt . Thus no further resampling step is needed. The 

original ASIR filter did include a resampling step (Pitt and Shephard, 1999), but 

see Carpenter et al. (1999) for an example of how much this can make worse the 

performance of the filter.
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2.2.3 O ther sam pling algorithm s
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Hurzeler and Kunsch (1998) advocated the use of rejection sampling to draw the 

particles, which has the most attractive property tha t it produces independent 

samples. The basic idea of the method is to simulate x® from a proposal proba

bility q(xt \x[ll 1, y i :t) (normally taken to be the transition probability), then accept 

x® with probability
v (y t \x f )

P a c c e p t —  | ( i ) \  '
max^i) p(yt\xt )

If the max (i)p(yt\x®) is not available, an upper bound c of piyAxt) can be usedxt
instead. The likelihood still dominates the selection of particles. But this time, 

because the rejection sampling is used, it is impossible to know exactly how many 

particles have to be simulated to achieve the required accuracy.

Berzuini et al. (1997) proposed an MCMC method to simulate the particles from 

the optimal distribution p(xt \ x ^ 1,y t), which they call Metropolis-Hasting impor

tance resampling (MHIR). The particle is simulated within a single iteration of 

any Metropolis-Hastings algorithm (Metropolis et al., 1953; Hasting, 1970) having 

p(x t \x(tll 1,y t) as its equilibrium distribution, and accept it with a corresponding 

probability. See the reference for more details.

Like any MCMC method, the MHIR filter always needs a long burn-in and thinning 

period to make sure tha t the Markov chain will converge to the target distribution 

p(xt \x\ll 1, yt) . So the MHIR is, in general, less efficient than the SIR filter when 

the approximation (2.6) to the equilibrium distribution works quite well.

These two methods can be also embedded into the SIS filter and the ASIR filter.



CH APTER 2. PARTICLE FILTERS

2.3 R esam pling algorithm s

24

The SIR filter has given an initial impression of the effect of resampling step in 

evolving the state space model over time. It sampled the particles at each 

time according to the multinomial distribution of the importance weights s. 

However, as we have mentioned, one disadvantage of the resampling is tha t it 

introduces extra random variation to the estimator. Thus, other methods for 

resampling which introduce less variability have been introduced. Most variance 

reduction techniques in Monte Carlo integration (see Fishman, 1996, for a complete 

reference) can be applied in the context of particle filters. The main one is stratified 

sampling; though similar ideas are behind the residual sampling of Crisan and 

Lyons (1997); Liu and Chen (1998).

2.3.1 Stratified  sam pling

A low-variance resampling method is the stratified sampling proposed by Carpenter 

et al. (1999), which is based on the idea of stratification (Cochran, 1963). In the 

particle filters, assume we have N  particles at time t denoted by with weights 

wi'K Consider resampling a set of M  particles. The basic idea is to resample

particle x® N{ times, where

E{Ni) = Nw®,

and Ni takes the value Nw.(0 or Nwl + 1.

The specific stratified algorithm of sampling M  times from N  particles is given 

below. A demonstrative example of this algorithm is also given in Figure 2.1.

A lg o rith m  2.4 Stratified sampling

Given that there are N  particles with associated weights (a;^, 

Set U = U(0,1 ) /M ; i = 1;
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1 2 3 4 5 6 7 8 9 10

1 1
U

1/M

Output: 2 3 4 4 5 7 8  10

Figure 2.1: The diagram of the stratified sampling with M  =  8 and N  = 10. The 
10 particles are denoted by the rectangles with different lengths. Each length is 
proportional to the particle’s weight. Firstly a random variable U is uniformly 
simulated from U[0, j^\. M  points are also set in [0,1] by the algorithm, each a 
distance 1/M  apart. For the zth particle, the sum of the associated weights of pre
vious particles (i.e. x f \  . . . ,  x ^ )  is obtained as Q{ =  i wt ] ■ Simultaneously,
calculate the accumulated value U{ =  U + i /M .  When Ut lies in between and 
Qi, the particle x f  is kept. By this way, the number of times each particle x[l) 
is selected proportional to the weight on average. The selected particles are 
indicated by the green arrow.
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While i < N
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Set U =  U — w j0;

While U < 0 then

pick particle x f ;

U = U +  1/M ;

Set i — i + 1;

In the algorithm of Carpenter et al. (1999), the order of the particles were shuffled 

before the sampling so tha t the randomness of the result is increased. However, 

as the covariance structure of the A^s will be affected by the specific ordering of 

the particles, choosing an order in some situation will be advantageous. This will 

tu rn  out to be particularly useful in our changepoint problems.

2.3.2 R ejection  control

Most resampling methods produce a sample of over-correlated particles, which 

give a greater Monte Carlo variation. To overcome the problem, Liu et al. (1998) 

presented an idea of rejection control (RC) to combine the rejection sampling with 

the importance sampling in the state space model, by which independent particles 

are simulated at each time.

The method is to set a series of threshold value c*i, a 2, . • •, a s at some checking 

points ti, t2, . • • , t s, at each of which the particles , . . . ,  are drawn from the 

sampling distribution qts, with associated weights w\s \  , w[s ,̂ then the following

rejection procedure is:

A lg o rith m  2.5 Rejection control algorithm
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S te p  1 Compute the control threshold a s at time t s,

S tep  2 For i — 1 , . . . ,  N , accept particle with probability

rts = min j l ,  / a s|

S te p  3 I f  the j th  particle is accepted, renew its weight as

W ff =  C „roff/rff, 

where Cn is a normalising constant.

S tep  4 I f  the j th  particle is rejected, simulate a new particle from time t =  0 

and make sure it passes all the checking points at ti, £2, . . . ,  ts. Failure on 

passing at any checking time will result in a new simulation from the scratch.

In step 1, the values of the threshold a s has to be decided in advance. Although an 

arbitrary value can be chose, Liu et al. (1998) suggested a particular way to choose 

these. Step 2 uses the rejection sampling to select the particles. As the variability 

of weights increase over time, this step together with step 3 will potentially remove 

particles having low weights. The renewing of weights in step 3 ensures tha t the 

resampling is unbiased, that is

£(W tff) =  toff. (2.24)

This can be easily shown. If toff > a ,  then W(ff =  toff; otherwise,

£(W tff) =  rffa s  +  (1 -  r f f ) x 0 =  toff.

Finally, it is natural, in the case that some particles are deleted, to replenish the 

particles in step 4, and since the algorithm forces the regeneration of the particle 

from the beginning instead of the previous time, it guarantees to simulate the
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particles independently.
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A computational limitation of the RC is tha t the computing cost increase very 

rapidly (even exponentially) over time, due to the replenishment in step 4. This 

could cause the RC method to be very impractical to be implemented in many 

situations.

Liu et al. (2001) implemented a partial rejection control (PRC) method to ease the 

computation. By partial, they mean the resampling on a rejected particle at time 

t s only start from the previous check point £s_i instead of time t = 0. Obviously, 

the PRC doesn’t produce the independent samples due to the sampling procedure 

it uses.

2.3 .3  O ptim al resam pling

Most resampling methods in the particle filters produce multiple copies of the 

particles, according to the associated weights. A typical example of this is the 

multinomial sampling. However, for situations where (2.6) is a discrete distribution 

which can be calculated exactly, storing these multiple copies is a waste of memory 

because all the information in multiple copies of a particle can be carried by one 

particle where weight is equal to the sum of the weights of the copies of particles. 

Strictly for such models, (2.6) can be represented exactly by a set of weighted 

particles. However, resampling is needed as otherwise the number of particles 

needed will increase exponentially with time.

The optimal resampling (OR) proposed by Fearnhead and Clifford (2003) then 

only eliminates the particles that have very small weights and does not have any 

multiple copies of a particle. The OR algorithm is optimal in terms of minimising
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5

(a)

(b)

(c)

'5£

(d)

Figure 2.2: Demonstration of the RC and OR algorithm. The original distribution 
of the weights is given in the plot (a) with the red lines. Then in plot (b), a thresh
old a  (a horizontal dotted line) is decided either arbitrarily or deterministically. 
The weights greater than a  (blue lines) are kept. In plot (c), a resampling is ex
ecuted, picking some particles randomly, the rest particles are deleted (shown by 
the cross on the red lines). Plot (d) is a reweighting process, the selected particles 
are given weights equal to a. In the RC algorithm, new particles could then be 
simulated from time t = 1.
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the mean square error at each time t:

N

E -  w t{i)f  . (2-25)
,i=1

which measures the discrepancy between the new weights and the original weights. 

So the error brought from the resampling step is maximally reduced.

There are similarities between the OR and the RC. The steps of re-assigning the 

weights are almost the same. Suppose there is a threshold a t at time t. Each 

particles with weight has a new weight

/.x m axfiu^, a*} with probability A**
W ®  = { 1 1 * (2.26)

) otherwise

where =  min | l ,  / a t J . This is the reason why the OR algorithm generates 

unbiased weights. A demonstrative diagram of both the two algorithms has been 

given in Figure 2.2.

However, there are two slight differences between the OR and RC algorithms which 

are worth emphasizing. The first difference is the way to obtain the threshold a t . 

The threshold a t is uniquely determined by solving equation

N

y  m m {l,  w ^ / a t} = M, (2.27)
z=1

which ensures M  particles are resampled.

The second difference is the way to resample the particles. The particles with 

weights greater than the threshold cut will be kept. The rest of particles will be 

resampled by stratified sampling of Carpenter et al. (1999), having new weights 

equal either a t or zero.

The specific algorithm sampling M  particles from original N  particles is listed
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below:

A lg o rith m  2.6 Optimal resampling algorithm

S tep  1 Consider N  particles at time t before the resampling, which have 

normalised weights w ^ \  . . . ,  w[N\ ’ compute threshold a t from the equation 

(2.27).

S tep  2 I f  > a t then keep the weights of particles unchanged, i.e. = 

vjf*; otherwise, record the particles with weight w^  < a t . Suppose there are 

L such particles;

S te p  3 Resample these L particles by the stratified sampling of Carpenter 

et al. (1999), producing A  = M  +  L — N  particles withs weights equal to a t . 

The rest of particles are given zero weights.

The random sampling algorithm (RSA, Akashi and Kumamoto, 1977) also stores 

only one copy of the particles, but only one offspring can survive the resampling 

step no m atter how large the associated weight is. Then it leads to a skewness of 

the weights of the particles.

2.3 .4  M C M C  m ove

During the calculation of joint posterior distribution p (x i:t|y i:t), the resampling 

algorithms mentioned above can only partly solve the sample impoverishment. A 

more radical approach is to move each particle from its current position to a ran

domly picked position after resampling. The idea has been first explored by West 

(1993) through a so-called adaptive importance sampling, where the particles are 

resampled from a kernel density estimate (KDE). A similar method was proposed 

by Sutherland and Titterington (1994).
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An alternative method is the Rao-Blackwellisation (a.k.a marginalisation) of Liu 

and Chen (1998), in which part of the elements of the states are simulated from the 

fully conditional distributions, and later Fearnhead (1998) extended it by using a 

Markov chain to move the particles. Then Gilks and Berzuini (2001) generalised 

the two methods by embedding a generic MCMC moving step into the resampling 

stage within a unified particle filter framework. This is called resample-move 

algorithm.

In general, resample-move can only be applied if the particles store the whole path 

of the state, i.e. Xj*;J is a realisation of x 1:t. Then at resampling stage, we have:

A lg o rith m  2.7 Resample-move algorithm

S tep  1 Given particles for i = 1 , . . . ,  N  obtained at time t, resample 

them according to the associated weights w ® .

S te p  2 Each particle is moved from the current position to a new random

position via one or more iterations of a Markov chain with a transition kernel 

kt’):

Any MCMC method such as Gibbs sampling and Metropolis-Hastings can be used 

to design the kernel k*f\ Neither burn-in period nor ergodicity in the MCMC move 

is required for this method because each particle at time t already has approximate 

marginal distribution p{xt \yi-.t) before the moving.

Generally, the moving step gives an obvious improvement of particle degeneracy at 

the expense of heavy computation burden though the (fractional move, however, 

is available, see next chapter for more details).
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2.4 Sm oothing procedure
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In the filtering procedure, the conditional distribution of the underlying state Xt 

is only evaluated given the observations from y\ to yt . In some situations we may 

wish to calculate p(xt \yi:i), for I > t, as this will be more informative about x t . 

This distribution is generally referred to as a smoothing distribution. There are 

three smoothing situations:

(i) Fixed interval smoothing, where it is p(xt\yi:n) tha t needs to be calculated 

for t = 1 , . . . ,  n;

(ii) Fixed lag smoothing, where for some fixed value L > 0, it is p(xt \yi:t+L) tha t 

needs to be calculated for t  = 1, . . . ,  n;

(iii) Fixed point smoothing, where for a fixed value t, it is p ( x t \ y i :t + D )  tha t needs 

to be calculated with D > t increasing.

The focus of the thesis is only on fixed interval smoothing, and we use the term 

smoothing to refer to the fixed interval smoothing. There are various ways of 

implementing smoothing with particle filters to be reviewed here.

2.4.1 Sm ooth ing  by storing particle h istory

The easiest smoothing method within the particle filters involves storing each 

particle’s history. In the other words, we have to record which particles x ^ s  are 

produced from the particle x^}x at previous time and so on. x ^ \  is therefore 

called as the “ancestor” of the particles a ^ s  (see Figure 2.3). By this way we are 

actually calculating sequentially the joint posterior distribution of the underlying 

states p(xi:t|yi:t).

Hence at time t +  1, the component of the particle x ^  should be simulated from
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Figure 2.3: A diagram of particle filters running from time 1 to 7. There are 
10 dots at each time, which represent 10 particles with different weights. Each 
particle will give birth to new particles at next time. Only the particles selected 
by resampling algorithm will survive and are presented at each time. The arrows 
indicate the relationship between the particle and its off-springs. The same color 
means the particles have a common ancestor. The history of each particle can 
be seen very clearly in this way, and we can find that how quickly the number of 
distinct ancestors of particles reduces as we go back over time. For example at 
time 7, it is obvious that all the particles are generated by two distinct particles 
at time 1.
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the proposal density function
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2^1  ~  g(xt+i |x S ,y i :t+1), (2.28)

where x ^  denotes the ancestors of the x ^ .  The new particle is x ^ t+1 =  (a^+1} xf]). 

So the associated weight is updated as

,(i>  (iiPfa + ik l+ iM ^ + ik t* 1)

s ^ + ilx S .y ii t+ i)
(UWi K (2.29)

We can use any of filtering/resampling algorithm considered earlier. The only 

difference is what is stored as a particle.

The discrete realisations x^ns with associated weights s will be an approxima

tion to the joint posterior p (x i;n|y i:n). Thus the particles x ^ s  with those weights 

w $  will well approximate the smoothing distribution p(xt |y i:n)-

The problems with storing the history of states are (i) the number of distinct 

particles used to approximate the smoothing distribution p{xt \yhn) decreases as 

time goes (see Figure 2.3). This is a common problem of using resampling in the 

filtering process of calculating the joint posterior p (x1:n|y1:n); (ii) storing all the 

particles’ histories will be unrealistic when the data set is huge. For example, 

approximating p(xt |y i:n) requires n  times as much memory as the SIR filter does. 

Fix-lag smoothing sometimes can be used to relieve the burden, but is still unable 

to solve the problem completely.
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2.4 .2  Forward-backward sm ooth ing

36

A second approach is based on the following relationship (Kitagawa, 1987):

p {x t \yi:n) =  J  p (xu x t+i \y1:n)dx t+i 

=  J  P{xt+i\yi;n)p(xt \xt + u y i :n)6xt+i

= j  P{Xt+l\yi:n)p(Xt\Xt+l,yi:t)dxt+l 

[ ~( i M xt+ i\x t)p{xt \yi..t) ^
=  /  P ( X t + l \ y i : n )  ~(--------- 1------- T-------- d x t + 1

J  p ( x t + i \ y i : t )

-  <2”>

The calculation can be split in two steps. Firstly the filtering density p(xt \yiJ  can 

be approximated by the particle filter. The particles will be used to approximate 

the smoothing density, but the weights assigned to the particles are changed. If we 

denote the new weights by w^n, then there is a backward recursion tha t calculates 

the w^ns from the iut̂ s  and w [ ^ ns. This is the second step of the smoothing 

method. The particular recursion is the following (Doucet et al., 2000b):

w (i) _   )  (2 3 1 )

where w^n is the smoothed weight of the ith  particle at time t conditional on the 

whole data set. So the smoothing density p(xt \yi:n) is approximated by:

N

p (x ( | y i : n )  =  £ w $ 6 ( x t -  x f ) .
i —1

The same idea has also been proposed by Hurzeler and Kunsch (1998) by using 

the rejection sampling method, and Godsill et al. (2004) further extended the 

algorithm to calculate the joint posterior p(x i:n\yi:n) .

Similar to the first smoother, the second approach also requires to store all the
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history of the states, which costs a great memory storage 0 ( n N ), although using 

fixed lag smoothing can partly overcome the problem. Moreover, to calculate 

the smoothed weights involves an algorithm with quadratic computational cost 

0 ( n N 2), which will be computer prohibitive when data set is very large. However, 

it can partly overcome the problem of sample impoverishment.

2.4 .3  Tw o-filter sm ooth ing

The first two algorithms are completely dependent on the particles of the approx

imation to the filtering density. If the filtering process gives a poor approximation 

to tha t density function, the smoothing density can’t be accurately approximated 

as well. A new smoothing approach is needed.

Motivated by the forward-backward algorithm of Baum et al. (1970) on discrete 

time HMM, Kitagawa (1996) and Clapp and Godsill (1999) proposed a similar 

one on the general state space model. It actually runs two independent filter in 

parallel. One runs in a forward time direction to calculate the filtering distribution 

p ( x t \ y i :t), the other runs in a backward direction to calculate the joint likelihood 

p{yt+v.n\xt)• The required posterior distribution p{x t \yi:n) is a combination of the 

outputs of the two filters. For this reason, the algorithm is also known as two filter 

smoothing in the signal processing literature. It is derived as follows:

p{Xt  |y  l:n) =  P(Xt\yi : t ,yt+l:n)

=  p(Xt\yi:t)p(yt+l:n\yi:t,Xt)
~  P{yt+l:n\yi:t)

OC p{xt \yi:t)p(yt+l:n\xt). (2.32)

The approximation of filtering distribution p (x t \y1:t) by the particle filter has been 

well established. So the rest of question is how to calculate the joint likelihood 

P(yt+i:n\xt ) sequentially in a backward order. Fortunately, this can be done very
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easily by factorising the likelihood as follows:

P(yt:n\Xt) = j  p{yuyt+l:n,Xt+i\x t)dxt+1

=  p{yt\xt) Jp(yt+i:n\xt+i)p(xt+i\xt)dxt+i, (2.33)

and the likelihood therefore can be approximated by a sequential Monte Carlo

method with an initial particle approximation to p(yn\xn), which is known as

backward filter (Mayne, 1966).

That is, if at any time £, we substitute the particle approximation of the likelihood,

N

P{yt+l:n\Xt+l) = ' ^ W (?l15{xt+1- X (t l 1)
i=1

into (2.33) then the likelihood can be calculated recursively as

P(yt:n\Xt) = ^ ^ ( j / t l ^ J ^ t+ i P ^ t+ i l ^ t0 ), (2*34)
i=1

Usually, we are able to draw x[^ from a proposal density function q(xt \xt+n Vt), so 

the importance weight w® becomes

-M  -«) PiyM'^PiZthlx?) . V '.r.W  , foot)
» r K » i+ i — / - w r w — :— 1 L , w* L (2-35)

w  K i n  V*) i=i

Proper resampling algorithm is able to be used to reduce the skewness of the 

distributions of the weights. The following is the whole algorithm:

A lg o rith m  2.8 Backward filter

In it ia lisa tio n  A t time t = n, sample x $  from q{xn\yn) for  i = 1 , . . .  ,n;  

calculate the weight of each particle as
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F ilte r in g  I f  t < n — 1, sample from q(xt \xf{ll ,yt) and compute the 

associated weight according to (2.35).

R esam p lin g  Calculate the effective sample size N ess by (2.11), i f  N ess is 

less than a pre-fixed constant, then resample the particles.

These particles, together with the weighted particles s obtained in the

filtering process of calculating p{xt \yi:t), the smoothing distribution p(xt |y i:n) is

P(xt \yi:n) = ^ ™ {f ) ^ w l l} 1p(x[3)\x(tll 1)8{xt ~  X^ ) .
j =1 i=1

The method has again the quadratic computational cost 0 ( n N 2), as the forward- 

backward smoothing, but has overcome the sample impoverishment. One potential 

problem is tha t the integral over x t might not be finite as the likelihood p(yt,n\xt) 

is not a probability density function in terms of x t . If so, (2.33) is unable to 

be approximated by a swarm of particles (Briers et al., 2004). A solution to the 

problem is available in the reference.
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C hangepoints m odels

3.1 Introduction

Changepoints are used to add the flexibility to simple statistical model, as it 

allows different parts of data set to obey different probability rules. For instance, 

the data observed before a changepoint follows model A , while the data observed 

after th a t changepoint follows model B. Such a model is widely used in the fields 

of economical, biological and engineering science, for modelling the stock prices, 

DNA sequences and signals segmentation, amongst many other applications.

A set of specific examples of multiple changepoints models include Gaussian ob

servations with varying mean (Worsley, 1979) or variance (Chen and Gupta, 1997; 

Johnson et al., 2003); Poisson process with a piece-wise constant rate parameter 

(Raftery and Akman, 1986; Yang and Kuo, 2001; Ritov et al., 2002); changing 

linear regression models (Carlin et al., 1992; Lund and Reeves, 2002); and hidden 

Markov models with time-varying transition matrices (Braun and Muller, 1998).

The incorporation of changepoints makes the model inference much more difficult 

than a single model. Hinkley (1971) and Smith (1975) proposed a frequentist and

40
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a Baysian method respectively to infer the model. Primarily, this is a difficulty 

in inferring the number and positions of changepoints - if these were known then 

inference for the remaining parameters in the model is straightforward.

A relatively simpler model is based on assuming tha t the number of changepoints 

m  is fixed. However, in most situations, and throughout the thesis, m  is treated 

as a random variable which is unknown. The changepoints problem is therefore 

generically formulated via a likelihood

/ ( y i : n | m , r (m), e (TO+1)), (3 .1)

where =  ( r i , . . . , r m) is the positions of the changepoints occurring on an 

ordered sequence x\ < X2 < • • • < xn\ and 6 ^  =  ( # i , . . . ,  0m) is a vector of param

eters associated to each segment. The number of changepoints m  dominates the 

dimension of the model, and can be viewed as a model indicator. The other infer

ences are given based on it. Deciding the value m  involves some model selection 

techniques.

The thesis focuses on using Bayesian model selection techniques for the multiple 

changepoints model. The most common Bayesian approaches include: Bayes fac

tor (Kass and Raftery, 1995), Bayesian model averaging (Hoeting et al., 1999) 

and reversible jump Markov chain Monte Carlo (RJMCMC, Green, 1995) meth

ods. For alternative approach see Shao (1993) for the method for the changepoints 

model.

The difficulty involved with the Bayesian techniques is how to make the model 

choice by calculating the posterior distribution of the number of changepoints 

p (m \y1:n) which is

p(m \y1:n) oc / ( y 1:„jm)p(m), (3 .2 )
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where the likelihood function / ( y i :n|m) is an integration over all the parameters 

and possible values of the changepoints:

This quantity is known as evidence for the model. However, computing the evi

dence is essentially infeasible when there are too many combinations of the number 

and positions of changepoints. Hence, in the thesis, we propose an algorithm to 

infer the model without the integration of (3.3).

3.2 D istribution  of changepoints

Suppose there are n  observations which are denoted by 2/ i ,2/2j • • • iVn-, and a set 

of changepoints denoted by 0 < n  < r2 < • • • < rm < n, where the number of 

changepoints m  is unknown. We assume the changepoints only occur at discrete 

time, 1, . . . ,  n — 1.

Then we consider a prior distribution of the changepoints. A natural way is to 

model the distance between any two successive changepoints, i.e. the length of 

segment d = Ti — 7i_i, for i = 2 , . . .  m. In the thesis, we adapt the point process of 

Barry and Hartigan (1993) to model these distances, with a specified probability 

mass function g(d). Correspondingly, the distribution function of the distance d is 

defined as G(d) = ]Cs=i0(s )- For the first changepoint ti ,  because its position is 

independent of any other changepoints, we may assign it a different prior <7o(ti)-

The point process implies a joint prior distribution of the number and positions of 

the changepoints:

(3.4)
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A common choice for g(d) is a density function of negative binomial distribution, 

which is a negative binomial distribution:

d-k d = k , . . .  ,n,

and go(d) is usually of form

where p is the probability tha t a changepoint occurs, p is usually pre-fixed through

if p is unknown, a proper prior can be assigned to it, hence the posterior esti

mation of it is available (see for example Fearnhead, 2005). This is because the 

positions of changepoints are uniformly distributed on the interval, independent 

of p, conditional on the number of changepoints (Fearnhead, 2005).

which means th a t given the expectation is fixed, the variability of the lengths of 

segments are only dependent on the parameter k. Then k can be seen as a tuning 

factor, values of which the number of changepoints can be adjusted. Large values 

of k  can reduce the number of very short segments.

An alternative prior setting is the one of Green (1995). Firstly, they assign a prior 

p(m)  on the number of changepoints m, and then given a realisation of m, they 

define a conditional prior on the positions of changepoints, which is pm(ri|ri+1), 

the prior for the position of the «th changepoint, given the position of (i +  l) th  

changepoint, for % — 1 , . . . ,  m  — 1. Note that, this setting is basically equivalent to

the empirical analysis (see the example of the well log data in Chapter 5). Even

The expectation of d is k /p  and the variance is k ( l  — p)/p2. So the average length 

of all segments is determined by both k and p. Note that

v&i{d) = E{d)2/ k - E ( d ) ,
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the point process setting.
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3.3 C hangepoints via state space m odel

Throughout the thesis, we describe the changepoint problem by a state space 

model of form (2.1). But the underlying state X t consists of two components Ct 

and B t . Normally, Ct is a finite-value process which can be used to describe the 

changepoints; and B t is a vector of continuous variables, which are the segment- 

specified parameters of the likelihood model for observation Yt. Conditional on Ctl 

the parameter and observations satisfy:

where Ut and Vt are random noises. This is known as hierarchical state space 

model (HSSM). Ct locates in the highest hierarchy in such models, and therefore 

influences both the transition from B t- i to B t as well as the observation Yt . Figure 

3.1 gives the graphical representation of the dependence structure of a HSSM.

We denote Ct the time of the last changepoint prior to time t, then the process of 

Ct has following point process.

T h e o re m  3 .3.1  I f  the changepoints n , . . . ,  rm follow a point process with proba

bility mass function g{d), where d — Ti — 7V i for i =  2 , . . . ,  m, then the time of 

the most recent changepoint prior to time t follows a Markov chain with transition 

probability Pr((7f+i = i\Ct = j )  where

B t =  ft{Bt- u C u Ut) 

Yt = g t{Bu Vt).
(3.5)

Pr(C t+1 = i |C t =  i) = (3.6)

0 otherwise.



CHAPTER 3. CHANGEPOINTS MODELS 45

t+i

t+i

t+i

Figure 3.1: A state space model for changepoints problem. The underlying state 
consists of two components: the changepoint Ct and the parameter B t . Ct stands 
at the top hierarchy of the model and takes some discrete values in a finite space. 
So it can be seen as an indicator function. In contrast, B t and Yt is modelled can 
take a value in a continuous space. Conditional on a relationship between B t 
and Yt can be modelled.
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P ro o f: Because Ct is the last changepoint prior to time t, and can take values up 

to t -  1, the probability of Ct = i is 1 -  G(t -  1 -  i). So when Ct+1 = Ct = i , we 

have

P r ( C t+ 1  =  i \ C t  =  i )  =  Pp (f ‘+1 = . f
Pr(C( =  i )

l - G ( t  +  l - l - i )

1 -  G(f -  i )
1 — G(t — i — 1)'

Note that conditional on C t  =  i ,  C t + 1 can only take value i  and t, so we have

Pr(C't+1 =  t \ C t  =  i )  =  l - P r ( C t + 1 = i \ C t  =  i )

=  1 1 -  G ( t  -  i )

l - G { t - l - i )

G ( t  - i ) - G ( t - i -  1)
1 -  G { t  -  i  -  1) '

□

The most simple example of the changepoints model is as follows. If we have a 

constant parameter per segment such that

. S 4_! if C t =  C t - U  
B t  =  t  (3.7)

( i t  +  a t U t  otherwise,

and the observation satisfy

Y t  =  B t  +  St  V t , (3.8)

where /x̂ , cr* and S t are suitably chosen hyper parameters.
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Ct is normally a Markov process with transitional probability

Pv(Ct = j \C t. 1 = i ) =  { 1 P l i j  *’ (3 .9)
p i t j  = t - l .

This is a special case of choosing g(d) as a geometric distribution, which is equiv

alently taking k = 1 in the negative binomial distribution.

3.4 Particle filter approach

W ith the state space model, it is natural to use particle filters to infer it. However, 

the standard particle filters will be inefficient in the HSSM because of the high 

dimensional state space in which a large sample of particles are required to approx

imate the posterior distribution. A generic method to improve the efficiency of the 

particle filter is to combine it with the idea of Rao-Blackwellisation (Casella and 

Robert, 1996). This is known as Rao-Blackwellised particle filter (RBPF). The in

tuitive idea behind it is to reduce the dimension by marginalising out one sub-part 

of the state space. Please see Doucet (1998); Doucet et al. (2000a); Murphy and 

Russell (2001) for more examples.

In the changepoints problem, the partition of the state space model is natural, the 

changepoint Ct and the parameter B t such that

Pr(C t , Bt\yi:t) = Pi{Bt \Cu Yi-.t) Pr(C*|y1:t). (3.10)

We can update P r(C t|y i:t) by particle filtering first, and then Px{Bt \Cu y v.t) con

ditional on Ct. In particular, if Pr(Bt \Cu y i :t) has an analytical form, we only 

need to  sample from Pr(Ct \yi:t), so fewer particles are needed to reach the same 

accuracy.
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3.4.1 M ixture K alm an filter

A simplest example of HSSM is a conditional Gaussian linear state space model 

(CGLSSM) in which a :

where A(Ct), H (C t), R(Ct) and S(Ct) are known matrices conditional on Ct. Ut 

and Vt follow a multivariate normal distribution 7V(0,1). Ct is a Markov random 

variable with a finite set of values. We consider a general case below, but a special 

case is the probability structure described in the previous section.

A standard method to inference for the hidden state of CGLSSM is the mixture 

Kalman filter (MKF) proposed by Chen and Liu (2000). They advocated to infer 

the history of the Ct first, that is PrfCTilyi:*). It is obvious tha t conditional on the 

Ci;t, the posterior distribution of parameter B t can be calculated by the Kalman 

filter. As C\:t take a finite number of values, it is even possible to write down the 

posterior distribution of B t as a sum over all possible values of Ci:t. The problem 

of this is tha t the number of terms in the sum will increase exponentially with 

time. The idea of particle filter is to approximate this sum by one with a fixed 

number of term; each term correspond to a particle, i.e. a realisation of Cbf.

According to (3.10), the joint posterior of C\:t and B t can be factorised as

Because given the changepoint c i:t, (3.11) is a Gaussian linear state space model, 

the p(/?t |c i:t,yi:t) term  follows a normal distribution N (fit (ci:t), S t(c i:t)), where 

fJLt{ci:t) and Et (ci;t) can be recursively calculated by the Kalman filter if c 1:t is

Bt — A(Ct)Bt~ i +  R(Ct)Utl 

Yt = H{Ct)B t + S{Ct)Vu
(3.11)

(3.12)
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given:
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pt =  A i c f ^ i c f i M ^ r + R i c f m c f r ,

Qt =  H (cf)P tH (c f )T + S(ct(i))S(4i))T,

P*(c$) =  i(cS _ i) (3.13)

+PtH (c f )TQ i 1(yt -  

E<(c$) =  Pt ~ PtH ( c ^ f Q T lH(c f)P t;

The posterior distribution p(ci:t\yi:t) is able to be approximated recursively by a 

standard filtering as:

p ( C l : t | y i : t - l )  =  X ^ ( C* l C* - l ) ^ (- l ’ ( 3 *1 4 )
i = 1

p(ci:t|yi;t) oc (3-15)
i —1

Then the joint posterior is approximated as

P (C l:* ,A |y i:t)  OC 5 I p 0 8 t , , |cS ,y i:t)p (j/4 |C (’) )p(Ct’>|C t-l)U'̂ -)l
i ~  1

=  N  s ‘(cS ) )  p(»t|ct'))p(40 l«i-i)«'«-1;
i = l

(i)where the weight of each particle wt is:

W t] ocp(2/tI )p (c t° Ic ^ -i.)^ * -i; =  L (3-16)
i = 1

Chen and Liu (2000) adapted the SIS algorithm to obtain these particles, by which 

each particle is simulated from

«(*!<&,») =  9(ft|c21,/it -x(cg_1),Et- i ( c l l 1))>

for % =  1 , . . . ,  N. Then the importance weight of each particle w® is sequentially
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updated as

.,.(0 p(yt\c{i ))p(c‘i'}\cfl1) (j) _ " (j)
1 < j ( ' c < i ) l e ( i )  iu (cH> 1 E  (c(i) )) L , Wt ( 3 - 1 7 )

Finally, a standard resampling step can be used. The detail of the MKF is listed 

as below:

A lg o rith m  3.1 Mixture Kalman filter

A t certain time t, suppose we have particles j c ^ ,  ^ ^ ( c ^ ) ,  with

weights w ^ \s ,  for i = 1 , . . . ,  N:

S tep  1 Generate from q{ci:t\c^\, £*-1(0^ ) ) ;

S tep  2 Given c ^ ; update ^ ( c ^ )  and E*(c^) by the (3.13);

S te p  3 Update the new (normailised) weight as (3.17);

S tep  4 Resample {pLt (c ^ ),E * (c^ ))  with the probability proportional to the 

weights i f  the ESS defined as (2.11) is less than a threshold value.

An alternative option to MKF is using the optimal resampling method of Fearn

head and Clifford (2003). Every time, the optimal sampling version of the MKF 

produces R  descendants of each previous particle, each for a possible value of c f \  

so there is no need to use any proposal density function to sample . Hence the 

weights are simply of form (3.16). Consequently, resampling has to be implemented 

at each time to reduce the number of particles from R N  to N.

However, the optimal sampling method outperforms the MKF in two aspects: (i) 

it provides more accurate results in terms of both mean-square and absolute error; 

and (ii) it is much more efficient when the distribution of the weights are extremely 

skewed.
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3.4 .2  R ao-B lackw ellised  particle filter
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We consider a general state space model when both system and observation equa

tions are non-linear non-Gaussian. Even the conditional posterior probability 

p(Pt\ct,yi:t) or j?(A|ci;t, y 1;t) can not be analytically updated. Chopin (2007) then 

proposed a generic RBPF to infer this kind of model.

As before, the changepoints Ct in the model assumed to follow a Markov process 

with transitional probability defined as (3.6). The value of parameter B t is of 

form (3.7) with constant hyper parameters, i.e. fa = y,(Ji =  a for % =  1, . . .  ,n . 

This amounts to simulating a new value of B t independently from a N(fa crVt) 

distribution, if there is a new changepoint, denoted by £; otherwise, the previous 

value of B t_\ will still be used at time t.

The observations yt are driven by these two hidden states together, and a standard 

particle filter of Gordon et al. (1993) updates the posterior density of x t = {cu (3t),

the transition probability of the Markov process of the changepoints, i.e. p(ct \ct-i) .

However, the algorithm can have an extremely poor performance on this problem 

because the parameter (3t remains constant when there is no changepoint occurring 

at tha t time.

R ao-B lackw ellisation

Similar to the MKF, the standard RBPF gives the following approximation:

p(xt \yi:t), with a swarm of particles and their associated weights 

Accordingly, the particle xf* is simulated from p(xt \x(i l 1), which is equivalent to

( i )  / I ( i ) \The weight simply takes the likelihood: wt = p{yt\xt ).

N
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which amounts to drawing a changepoint c f1 from a transition density function 

p(ct\ct-i) first; given a value of c ^ \  the parameter f3^ is able to be sampled 

according to (3.7). Finally, assign each particle M a weight of form (3.16).

But a more convenient method proposed by Chopin (2007) is not using any pro

posal strategy. Instead, it produces all possible descendants (which is 2 in this 

case) of each previous particle with weight as follows:

(ctl> = t - u T  =  ?w ) , d M )« T \ p ( y t W ' :i)p(T\4 '-i) ',  

( 4 ,) =  4 ~ i> A(,) =  A - i )  > d ' ,2)«  wt-ip(yt\0 t-i)p(4‘)\ct-i)-

The weights are computed by (3.16). Note that p(yt\Pt^) ~  p (V t \$ )  because the 

parameter has consistent change with the changepoint. The algorithm produces 

2N  particles at each time, so a resampling scheme has to be implemented every 

time, not only to reduce the degeneracy effect, but also decrease the number of 

particles from 2TV to N. Chopin (2007) used the multinomial sampling so that 

all the particles after the resampling are equally weighted as 1 /N .  Resampling in 

this way is thought to have exactly the same computational cost of using optimal 

proposal density.

M C M C  m ove

We can further increase the diversity of the particles by moving them through a 

MCMC kernel with the idea of Gilks and Berzuini (2001). However, it seems gen

erally difficult to build a MCMC kernel whose equilibrium distribution is p(xt \yht). 

Even if we are able to do so, the computational cost of moving will be presumably 

0 ( t )•

Hence, Chopin (2007) proposed a fractional MCMC move on the parameter (3t
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only through a MCMC kernel with equilibrium distribution:

t
r)t)(P t)= p(P t \c{t \y i : t )K ir ( f3 t) J ]  P(Vk\Pk), (3.18)

k=c\  ̂+1

where ir(-) denotes the prior distribution of fts, i.e. N { ^ \  aVt). Note th a t the 

observations yks belong to a same segment, such tha t all (3ks are equal to j3t. There 

is no need to move ct due to tha t the ct is a discrete variable and takes on a finite 

number of values. Therefore, a great computational cost is reduced.

The move of the N  particles in the algorithm can be computationally intensive

with cost th a t is 0(ffT^=l{t — c^ )), so the author suggested to move only a portion 

of particles, contrary to a complete move by Gilks and Berzuini (2001). The reason 

for the fractional move, according to the author, is tha t the increase of the number 

of observations in a segment tends to decrease the degeneracy of the particles.

Thus a constant T  can be pre-determined, and a subset S  particles has been chosen 

such th a t

X > - T ) < : r .  (3.i9)
i e s

The s particles are selected randomly from the whole particles without replacement 

until (3.19) is satisfied. The computational cost of the algorithm is 0 (T ) .  The 

whole algorithm is presented as below, and more theoretical details of the algorithm 

can be found in Chopin (2002).

A lgorithm  3.2 RBPF with fractional move

Sam pling For each particle x [ ' \  =  (4-i> P t - 1 )> for  i = 1 , . . . ,  N , produce

x?A) =  ( t - U (i)),

J h 2) _  ( Ji) fid)%t \Tt—li A't—lb
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R ew eig h tin g  Assign weights to each particle x f l) and x f 2):
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w t ,1] =  p ( y t \ i {l)) v , 

u>t'2) =  K ^ I A - iX i - p ) ;

R esa m p lin g  Resample the 2N  particles according to the weights and
( i  2 )wt ' by multinomial sampling to obtain N  particles.

M oving  Select a subset of S  resampled particles satisfying (3.19), and move 

the particles through a Markov chain with equilibrium distribution (3.18). 

The transition kernel of the Markov chain is

E n d  t t +  1. Go to the sampling step.

C hoices o f  th e  tra n s it io n  kernel

There are several options for the transition kernel k[l\ /3 ^ \ - ) .  Gibbs sampling 

is the easiest one, but only available when the fully conditional distributions are 

able to be analytically obtained. Unfortunately, most of time series models do 

not provide the closed form of the conditional distribution, and Chopin (2007) 

considered a generic Metropolis-Hasting update instead such tha t

(0 _  . £ »  with probability min ( l ,
PC =

1 \(3^ otherwise,

where q(-1*) is the proposal distribution, and ~  ^  simple choice of

g(-|-) is a Gaussian random walk with mean and variance j 2t t . The £ t is an
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empirical estimation from the simulated value of (3t :

and 7  is a tuning parameter to adjust the step of the jump.

Another proposal distribution suggested by Chopin (2007) is the so-called Langevin 

proposal strategy, in the case of which, the proposal distribution is

B ack w ard  sm o o th in g

We usually assume in the changepoint model that the data across the segments 

are independent of each other. So the observations after a changepoint r  don’t 

contain any information of the changepoints prior to tha t changepoint, i.e.

p(yi:n |changepoint at r)  =  p{yi:T\changepoint at r)p(yT+i:n\changepoint at r)

Conditional on the changepoint at r:

where V log 77̂  is the gradient function of log 77̂ ,  and

which is a product of —j 2 and the Hessian matrix of log r/l;l) at point . Both of 

the two proposals have almost equal performances on the time series model.

p(xT\yi:n) OC p(Xr\yi:T)p(xT+i\Xr)

= p(Xr\yi:r)p(CT+l = t \ct ) (3.20)
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The last equality comes because the parameters in segments are independent of 

each other. Hence, there is no further calculation of the smoothing distribution 

p(xt \y1:n) for any t.

Note th a t if we take a geometric distribution for the length of segment, then the 

transitional probability is constant, i.e. p{rk+1 =  r|r*) = p  for all values of r ,  and 

thus p(xT\yi:n) oc p(xT\yi:T).

The algorithm starts at time n, at which N  particles x $  are sampled from p(xn |yi:n) 

straightforwardly. x $  will give where the most recent changepoint is and what 

the parameter (3$ is in the segment. Given Cn\ the last changepoint prior to it to

gether with the corresponding parameter f3 w can be simulated from pix (Ty (o).Cn Cn x.Cn

The backward recursion will go on until time t = 0 is reached. The algorithm has a 

computational cost of 0(n )  while the traditional smoothing algorithm (Kitagawa, 

1996; Godsill et ah, 2004) have a computational cost of 0 ( n 2).

A lg o rith m  3.3  Backward smoothing with geometric distribution of segment length 

Set k =  n;

While k > 0

(i) Sample x® from p{xk\yi:k) for i =  1 , . . . ,  M;

(ii) k c® for i = 1 , . . . ,  M ;

The algorithm easily generates to other distribution of segment length: all that 

changes is the distribution from which x ^  is simulated in step (i).



C hapter 4

O n-line inference for m ultiple  

changepoint problem s

4.1 Introduction

Changepoint models are commonly used to model heterogeneity of data (usually 

over time). Given a set of observations collected over time, these models introduce 

a (potentially random) number of changepoints which split the data into a set 

of disjoint segments. It is then assumed that the data arise from a single model 

within each segment, but with different models across the segments. Examples 

of changepoint problems include Poisson processes with changing intensity (Ri- 

tov et ah, 2002), changing linear regressions (Lund and Reeves, 2002), Gaussian 

models with changing variance (Johnson et ah, 2003) and Markov models with 

time-varying transition matrices (Braun and Muller, 1998). These models have 

been applied to problems in a range of areas, including engineering, physical and 

biological sciences and finance.

We consider Bayesian inference for changepoint models where the number of 

changepoints is unknown. The most common approach to such inference for these

57
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models is the use of Markov chain Monte Carlo (MCMC; see for example Chib, 

1998; Stephens, 1994), and reversible jump MCMC (Green, 1995). However, for 

many changepoint models (for example the models in Green, 1995; Punskaya et ah,

2002) it is possible to simulate independent realisations directly from the poste

rior distribution. This idea was used for DNA segmentation by Liu and Lawrence 

(1999), and has been proposed more generally by Fearnhead (2006) and Fearnhead 

(2005). The idea for direct simulation is based on exact methods for calculating 

posterior means (Barry and Hartigan, 1992). The advantages of direct simulation 

methods over MCMC and reversible jump MCMC are tha t (i) there is no need 

to diagnose whether the MCMC algorithm has converged; and (ii) as the draws 

from the posterior distribution are independent it is straightforward to quantify 

uncertainty in estimates of features of the posterior distributions based on them. 

For examples of the potential difficulties with MCMC caused by (i), compare the 

inferences obtained for the Coal-mining disaster data analysed in Green (1995) 

with those based on the direct simulation method of Fearnhead (2006).

In this chapter we extend the direct simulation algorithms to on-line problems; 

where the data  is obtained incrementally over time, and new inferences are required 

each time an observation is made. The use of on-line algorithms has also been 

suggested for static problems (e.g. Chopin, 2002; Del Moral et al., 2006).

The computational cost of our exact on-line algorithm increases linearly over time, 

however the on-line version of direct simulation is similar to particle filter algo

rithms, and we consider using resampling algorithms taken from particle filters to 

reduce the computational cost of our direct simulation algorithm (at the expense 

of introducing error). We propose two simple extensions of existing resampling 

algorithms th a t are particularly well-suited to changepoint models. One is a stra t

ified extension of the rejection-control approach of Liu et al. (1998), which can 

limit the maximum amount of error introduced by each resampling step. In sim

ulation studies we find this stratified version can reduce the error of the resulting
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algorithm by about one third as compared to the non-stratified version.

The resulting on-line algorithm can be viewed as a Rao-Blackwellised version of the 

Particle Filter algorithm of Chopin (2007): we have integrated out the parameters 

associated with each segment. Note that this is an extremely efficient version 

of Rao-Blackwellisation. For example, consider analysing n data points. Our 

algorithm with n  particles will give exact inference and thus will always outperform 

the algorithm of Chopin (2007) regardless of the number of particles used in that 

particle filter. Note however, that the filter of Chopin (2007) can be used more 

widely, as it does not require tha t the parameters within each segment can be 

integrated out.

We apply our on-line algorithm to the problem of segmentation of DNA on the 

basis of C+G  content. This is an example of an application which can involve 

large data  sets, and one of the primary aims of our analysis is to test whether it 

is practicable to perform Bayesian analysis of such data using the on-line direct 

simulation algorithm.

The outline of the chapter is as follows. We introduce the class of changepoint 

models we consider in Section 4.2. In Section 4.3 we introduce the on-line direct 

simulation algorithm, and approximate versions of it that utilise various resampling 

ideas. We test these approximate algorithms, and compare different resampling 

algorithms, on simulated data in Section 4.4 before applying our algorithm to the 

analysis of the C+G structure of human DNA data (Section 4.5). The chpater 

concludes with a discussion.

4.2 M odels and N otations

Assume we have data y i;n =  fei, y2, • • •, V n ) -  We consider changepoint models for 

the data with the following conditional independence property: given the position
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of a changepoint, the data before tha t changepoint is independent of the data 

after the changepoint. These models can be described in terms of the following 

hierarchical structure.

Firstly we model the changepoint positions via a Markov process. This Markov 

process is determined by a set of transition probabilities,

p(next changepoint at £|changepoint at s). (4.1)

For this chapter we make the simplification that these transition probabilities 

depend only on the distance between the two changepoints. Extending our work 

to the general case, where the distribution of the length of a segment could depend 

on the time at which it starts, is straightforward . Specifically we let g(-) be the 

probability mass function for the distance between two successive changepoints 

(equivalently the length of segments); so tha t (4.1) is g(t — s). We further let 

G(l) = Y^!i=\9^) the distribution function of this distance, and assume that 

g(-) is the probability mass function for the position of the first changepoint.

Note th a t any such model implies a prior distribution on the number of change

points. For example if a geometric distribution is used for #(•), then our model 

implies tha t there is a fixed probability of a changepoint at any time-point, inde

pendent of other changepoints. Hence this model implies a binomial distribution 

for the number of changepoints.

Now we condition on m  changepoints at times Ti, T2, . . . ,  rm. We let To =  0 and 

rm+1 =  n, so our changepoints define m  +  1 segments, with segment i consisting 

of observations y T.+i:Ti+1 for i = 0 , . . . ,  m. We allow a set of p  possible models 

for the data from each segment, labeled {1, 2 , . . . , p} ,  and assume an arbitrary 

prior distribution for models, common across segments, with the model in a given 

segment being independent of the models in all other segments.
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For a segment k consisting of observations y s+i;£ and model qk we will have a 

set of unknown parameters, (3k say. We have a prior distribution, n((3k) for (3k 

(which may depend on qk), but assume that the parameters for this segment are

independent of the parameters in other segments. Finally we define

P ( s , t, qk) =  p(ys+i:f |s +  1 : t is a segment with model q) (4.2)

=  J p ( y 8+i:t\Pk, model qk)n{(3k)dPk,

and assume th a t these probabilities can be calculated for all s < t and qk. This 

requires either conjugate priors for (3k, or the use of numerical integration. Nu

merical integration is often computationally feasible in practice if the dimension of 

the part of (3k tha t cannot be integrated analytically is low (see Fearnhead, 2006, 

for an example).

For concreteness we describe a specific example of this model which we will use 

in Section 4.4 (see also Punskaya et al., 2002; Fearnhead, 2005). Here we model 

the data  as piecewise linear regressions. So within a segment we have a linear 

regression model of unknown order. For a given model order qk, we have

Ys+ht — H  kPk +  £ (4-3)

where is a (t -  s) x qk matrix of basis functions, (3k is a vector of qk regression 

parameters and e is a vector of iid Gaussian noise with mean 0 and variance cr|.

We assume conjugate priors. The variance of the Gaussian noise has an inverse 

gamma distribution with parameters v /2  and y / 2 , and the components of the re

gression vector have independent Gaussian priors. The prior for the j/'th component 

is Gaussian with mean 0 and variance o\b2.

The likelihood function of y 5+i:t conditional on a model qk is obtained by integrat
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ing out the regression parameters (3k and variance al :

P (s , t ,q k) = w-(‘-o)/2 ( " I M t i y ________ (j Y n ________ r((t -  s +  v)/2)

where:

M* =  (HTHt +  D * 1) - 1,

P fc =  (It  -  

l l y | | p t  =  y T P , y ,

Moreover, D& =  diag(£f, . . . ,  ^ fc) and ^  is a (t — s) x (t — s) identity matrix. See 

Appendix A for full calculation.

4.3 On-line Inference

We consider on-line inference for the multiple changepoint model of Section 4.2. 

We assume tha t observations accrue over time, so tha t yt is the observation at time 

t. At each time-step, our aim is to calculate the posterior distributions of interest 

based on all the observations to date. To do this efficiently requires updating 

our posterior distributions at the previous time-step to take account of the new 

observation. Note tha t on-line algorithms can be used to analyse batch data by 

introducing an artificial time for each observation.

We focus on on-line inference of the position of the changepoints. Under the 

modeling assumptions of Section 4.2, inference for the parameters conditional on 

knowing the number and position of the changepoints is straightforward. We first 

describe an exact on-line algorithm, which is an on-line version of the direct simula

tion method of Fearnhead (2005). The computational cost of this exact algorithm 

increases over time, so we then present an approximate on-line algorithm, which
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uses resampling ideas from particle filters, and which has constant computational 

cost over time.

4.3.1 E xact on-line Inference

We introduce a state at time t, Ct , which is defined to be the time of the most 

recent change-point prior to t (with Ct — 0 if there have been no change-points 

before time t). Initially we focus on calculating the posterior distribution for Ct 

given the observation y 1:t. We then describe how, if these distributions are stored 

for all i, it is straightforward to simulate from the joint posterior distribution of 

the position of all changepoints prior to the current time.

F ilterin g  R ecursions

The state Ct can take values in 0 , 1, . . . ,  t — 1, and Ci, C2 ,. • •, Ct , . . .  is a Markov 

chain. Conditional on Ct = j ,  either Ct+\ =  i ,  which corresponds to no change

point at time t, or Ct+1 =  t, if there is a changepoint at time t. The transition 

probabilities for this Markov chain can thus be calculated as:

where G(-) is the distribution function of distance between two successive change 

points.

Now, standard filtering recursions give

p ( C t+i —  j \C t  — — < (4.5)

0 otherwise,
\

p(Ct+i =  j|y i:i+ i) <xp(yt+i\Ct+i = j,yi:t)p{Ct+i = i |y i : t ) .
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and

t- i
p{Ct + 1 -  j \ y i :t) -  Y ,P ( C t+i = j\C t = i)p{Ct =

i=0

Thus, if we let — p(yt+i\Ct+i = i,y i:t) , and substitute in the transition 

probabilities (4.5), we obtain

( r  -i \ i A + N A li-i)P (c t = i f  j < t ,
P(C(+1 =  j|y i:t+ l) OC s ,

wL  E ‘=o ( A N E - G )p(Ct =  if i  = L

If we define P (s , t, qk) as in (4.3) then we get for j  < t

(j) _  p{y(j+l):(t+l)\Ct+l = j )
<+1 P(y(i+l):t|Ct+l =  j )

T , g k= l  P U ’ t  +  ,  >

E ’ ’

while if j  =  t then the weight is ^ ( ^   ̂ Qk)p(Qk)-

In most situations, such as for the linear regression models described in Section 

2 , the incremental weights w ^ i  can be calculated efficiently, as each P{j, t, qk) 

depends on a set of summary statistics of the observations yj+i :t, which can be 

updated recursively. Efficient calculation of the incremental weights is pos

sible by storing these summary statistics for each set of values for the time of 

the last changepoint, j , and the model for the current segment, qk. These can be 

updated to give the summary statistics required for each P(j, t +  1, qk). Thus the 

computational cost of calculating each is fixed, and does not increase with



C H A P T E R  4 .  O N - L I N E  A L G O R I T H M  

Sim ulating C hangepoints
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If we store the filtering densities p(Ct \y1:t) for all t =  1, . . .  ,n,  then it straight

forward to simulate from the joint posterior distribution of the position of all 

changepoints prior to time n, using the idea of Chopin (2007). The smoothing 

distribution, according to Section 3.4.2 is:

p(Ct \yi:n) OC p(Ct \yi:t)p(next changepoint occurs in t  +  1 , . . . ,  n\Ct),

where r  is the first changepoint after time t. To simulate one realisation from this 

joint density:

(1) Set to — n, and k = 0

(2) Simulate t k+i from the density p(Ctk\yi:tk)p{Ctk+1 = tk\Ctk), and set k = 

k +  1.

(3) If t k > 0 return to (2); otherwise output the set of simulated changepoints, 

t k - i 5 t k- 2, - - - Hi-

A simple extension of this algorithm which enables a large sample of realisations 

of sets of changepoints to be simulated efficiently is described in Fearnhead (2006).

M A P  estim ation

We can obtain an on-line Viterbi algorithm for calculating the maximum a poste

riori (MAP) estimate of the positions of the changepoints and the model orders for 

each segment as follows. We define M j  to be the event tha t given a changepoint 

at time j , the MAP choice of changepoints and model occurs prior to time j .  For 

t = 1, . . . ,  n, j  = 0 , . . . ,  t -  1 and qk = 1,. •. ,p,

Pt{j, Qk) = p ( C t  = j, model qk, M j ,  y ^ ), and
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p M A P  =  p(Changepoint at £,
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We obtain the following equations

Pt(j, Qk) = (1 -  G{t -  j  -  1 ))P (j, t, q)p(qk)PjMAF, and 

PtMAP =  max{Pt (j, qk)g(t -  j ) / ( l  -  G(t - j  -  1)}. (4.7)

At time t, the MAP estimates of Ct and the current model order are given respec

tively by the values of j  and qk which maximise Pt (j,q). Given a MAP estimate 

of Q , Ct we can theN calculate the MAP estimates of the changepoint prior to 

Ct and the model order of tha t segment by the values of j  and qk th a t maximise 

the right-hand side of (4.7). This procedure can be repeated to find the MAP 

estimates of all changepoint positions and model orders.

4.3 .2  A pproxim ate Inference

The computational and memory costs of the recursions for exact inference pre

sented in Section 4.3.1 both increase with time. The computational cost of both 

the filtering recursion and MAP recursion at time t is proportional to t , the number 

of possible values of Ct. While the memory cost of storing all filtering densities up 

to time t, necessary to simulate from the joint posterior of all changepoints prior 

to t, increases quadratically with t. For large data sets, these computational and 

memory costs may become prohibitive.

A similar problem of increasing computational cost occurs in the analysis of some 

hidden Markov models -  though generally computational cost increases exponen

tially with time (Chen and Liu, 2000). Particle filters have been successfully 

applied to these problems (Fearnhead and Clifford, 2003) by using a resampling
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step to limit the computational cost at each time-step. Here we show how similar 

resampling ideas can be applied to the on-line inference of the changepoint models 

we are considering. We present a variation on the optimal resampling method of 

Fearnhead and Clifford (2003) which is specifically designed for changepoint mod

els, and show theoretically why this is an optimal resampling algorithm in this 

case. We also present an extension of the rejection control approach of Liu et al. 

(1998) which is suitable for the analysis of batch data, and for which it is possible 

to control the amount of error introduced at each resampling step.

C ontrolling C om pntational Cost

Out first approach is to control the average (and maximum) computational cost for 

analysing each new observation. At time t our exact algorithm stores the complete 

posterior distribution of the time of the last changepoint p(Ct = ct |y i :t), for ct =  

0 , 1 , . . .  ,£ — 1. We can approximate this by a discrete distribution with fewer, 

A, support points. This approximate distribution can be described by the set of 

support points, c ^ \  . . . ,  ĉ N\  henceforth called particles, and the probability mass 

associated with each of these particles, rc(1), . . . ,  w^N\  which we call weights. (The 

particles and their weights will depend on f; we have suppressed this dependence 

to simplify notation.)

We impose a maximum number of particles to be stored at any one time, A, such 

tha t whenever we have A  particles we immediately perform resampling to reduce 

the number of particles to M  < A. The average computational cost per iteration 

will thus be proportional to (M  + A + 1) / 2 , and the maximum computational cost 

per iteration proportional to A.

Assume th a t at the current time point we have A  particles; and wish to reduce 

these to M  particles. We propose the following stratified version of the optimal 

resampling algorithm of Fearnhead and Clifford (2003), which we call Stratified



CHAPTER 4. ON-LINE ALGORITHM

Optimal Resampling (SOR).
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In it ia lis a tio n  Assume we currently have a set of ordered particles c^  < c ^  < 

• • • < c<*>, with associated weights . . . ,  w^N\  which sum to unity.

(S O R 1 ) Calculate a  the unique solution to X4I 1 m in{l, w ®/ a }  = M;

(S O R 2 ) For i —  1, . . . ,  N  if > a  then keep particle c® with weight 

Assume tha t A  particles are kept.

(S O R 3) Use the stratified resampling algorithm of Carpenter et al. (1999) to 

resample M  — A  times from the ordered set of the remaining N  — A  particles 

(without shuffling). Each resampled particle is assigned a weight a.

The stratified resampling algorithm used in step SOR3 is given in Appendix B. An 

example of this algorithm is given in Figure 4.1. The use of stratified resampling 

in step SOR3 means tha t at most one copy of each particle is kept, as the expected 

number of times a particle with weight w is resampled is w / a  < 1 (note there is 

no advantage in having multiple copies of particles, see Fearnhead and Clifford,

2003). The only difference between this SOR algorithm and the original algorithm 

of Fearnhead and Clifford (2003) is tha t particles are ordered before resampling in 

step SOR3.

As shown in Fearnhead and Clifford (2003), if we denote by 1UW the (random) 

weight of a particle after resampling (so = w {i\  a, or 0 depending on whether 

the respective particle is kept, resampled or not resampled), then SOR is optimal 

over all resampling algorithms tha t satisfy E(VU(i)) =  w® in terms of minimising 

the mean square error: E (X ^i(V F (i) -  w(i))2). By ordering the particles in step 

SOR3 we obtain the further property:

T h e o re m  4.3.1 Consider a set of N  particles, < c(2) < . . .  < R N) with 

weights . . . ,  . Let W® be the (random) weight of particle c ^  after re-
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( a )

(b)

(c)

1 2 3 4 7

t t

1 2 3 4 7

t t
t ?

Figure 4.1: Example of the stratified resampling algorithm as used in SOR or SRC. 
(a) Example set of particles. Each box represents a particle, labelled with its value 
(the time of the most recent changepoint), and whose width is proportional to its 
weight. Particle 5 has weight 0.3; particle 6 has weight 0.25; particles 2-4 and 
7 each have weight 0.1; and particle 1 has weight 0.05. (b) Stratified resampling 
within SOR to resample 5 particles. In this case a  =  0.15 and particles 5 and 6 
are kept without resampling. The remaining particles are ordered as shown, with 
3 to be resampled. A uniform random variable, U, on [0, a] is simulated, and 3 
arrows are produced at positions U, U +  a, and U T  2a. The particles which are 
pointed to by the arrows are resampled and are each assigned a weight a. (c) 
Stratified resampling within SOR with a  =  0.2. Again particles 5 and 6 are kept 
without resampling, and the remaining particles are ordered. We again simulate 
[/, a uniform random variable on [0, a], and place arrows at U ,U  + a, U +  2a an so 
on. In this case the number of arrows needed, and hence the number of particles 
resampled, will depend on U. We show two possible set of arrows for this example, 
the top set produces 3 resampled particles, and the bottom set 2. Each resampled 
particle is assigned a weight a.
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sampling. Define the maximum Kolmogorov Smirnov Distance for a resampling 

algorithm as

where the first maximisation is over realisations of W (1), . . . ,  W^N) with positive 

probability. Then the SOR algorithm above satisfies mKSD < a (where a  is defined 

as in SOR1). Furthermore (i) for a resampling algorithm to have mKSD < a  then

optimal resampling algorithm of Fearnhead and Clifford (2003), and the rejection 

control algorithm of Liu et al. (1998).

Kolmogorov Smirnov distance is a natural metric for the distributions of 1-dimensional 

random variables. By using (4.8) as a measure of error of a resampling algorithm, 

we are considering the bound on Kolmogorov Smirnov distance tha t a resampling 

algorithm can introduce. The theorem gives a simple interpretation of the a  cal

culated in step SOR1; in terms of an upper bound on the Kolmogorov Smirnov 

distance between the original and resampled weights.

We define a resampling algorithm to be unbiased if E( WW) =  for all i. (This 

is related to the properly weighted condition of Liu et al., 2001). The optimal 

resampling algorithm of Fearnhead and Clifford (2003) and rejection control are 

currently the only other unbiased resampling algorithm which satisfy the condition 

(i) of Theorem 4.3.1. (Note tha t rejection control will not produce a fixed number 

of particles after resampling; though implementing rejection control with a thresh

old of a  will produce on average N  resampling particles, and further tha t while 

E ( W W) =  w ^ \  the resampled weights do not necessarily sum to 1.) So results (i) 

and (ii) of Theorem 4.3.1 show that our SOR algorithm is optimal over all existing 

unbiased resampling algorithms in terms of minimising mKSD.

mKSD = max (4.8)

all particles with > a  must be propagated without resampling;and (ii) the 

mKSD for the SOR algorithm above is less than or equal to the mKSD of the

P ro o f: See Appendix C. □
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A more natural comparison of resampling algorithms would be in terms of expected 

Kolmogorov Smirnov distance. The difference between the SOR algorithm and 

the other two algorithms in (i) is the stratification with the resampling step -  this 

is specifically introduced to minimise the Kolmogorov Smirnov distance between 

the weighted particles before and after resampling. Intuition suggests, and we 

conjecture, th a t SOR performs better in terms of minimising expected Kolmogorov 

Smirnov distance than either of the two algorithms in (i).

We have presented the SOR algorithm in terms of the general case of resampling 

M  particles from N  current particles. For on-line inference, where there is a fixed 

amount of time to analyse each observation, it is natural to choose N  to be the 

largest number of particles tha t enable an observation to be analysed in less than 

this amount of time; and to set M  = N  — 1. In this case there is no difference 

between SOR and the existing optimal resampling algorithm. In practice, it may 

be better to choose N  — M  > 1 (see Section 4.4) as this enables the particles to 

be removed to be jointly chosen in a stratified manner.

C ontrolling R esam pling Error

An alternative to basing resampling on the average and maximum number of 

particles to be kept at each time step, is to choose the amount of resampling to 

control the size of error tha t is introduced at each time step. Such an approach 

is most suitable for using on-line algorithms to analyse batch data. For real-time 

data, the frequency of observations will place an upper bound on the CPU time, 

and hence the number of particles, tha t can be used to process each observation. 

By controlling the resampling error, rather than the number of particles, we cannot 

ensure tha t the number of particles always stays below this error.

The idea behind controlling the resampling error is given by the interpretation of a  

for SOR tha t comes from Theorem 4.3.1. The value of a  defines the maximum error
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(as defined by Kolmogorov Smirnov distance) that is introduced by the resampling 

error. So rather than specifying the number of resampled particles which in turn 

defines a , and hence the amount of error we introduce, we can instead specify a  

which will then define the number of resampled particles.

Our method for controlling the resampling error is to use a stratified version of 

rejection control (Liu et al., 1998), rather than adapt the SOR algorithm. For a 

pre-specified value of a , our stratified rejection control (SRC) algorithm is:

In itia lisation  Assume we currently have a set of ordered particles < c ^  <

• • • < ĉ N\  with associated weights . . . ,  w^N\  which sum to unity.

(S R C 1) For i =  1 , . . . ,  TV if > a  then keep particle c® with weight 

Assume tha t A  particles are kept.

(S R C 2) Use the stratified resampling algorithm of Carpenter et al. (1999) to 

resample from the ordered set of the remaining N  — A  particles (without 

shuffling). The expected number of times particle cW is resampled is /a .  

Each resampled particle is assigned a weight a.

Again the use of stratified resampling in (SRC2) means tha t at most one copy of 

each particle is kept. Note tha t the sum of the particles’ weights after resampling 

will not necessarily sum to 1 (though they lie between 1 — a  and 1 +  a), and should 

be normalised to produce a probability distribution.

The difference between SRC and rejection control (Liu et al., 1998) is tha t par

ticles are ordered and stratified resampling is used in step SRC2, as opposed to 

independent resampling of each particles. (See Figure 4.1 for an example of this 

step.) The use of stratified resampling means tha t the maximum error of the 

unnormalised weights introduced by SRC, as measured by Kolmogorov Smirnov 

distance, is <a (this can be proved in an identical manner to Theorem 4.3.1). Fur

thermore, the error of the normalised weights can be shown to be bounded above
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b y a / ( l - a )  =  a  +  o(a) (see Appendix D).
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Note th a t our implementation of SRC is different to tha t of standard rejection 

control. We resample if and only if the smallest weight of a current particle is 

less than  a , whereas Liu et al. (1998) recommend monitoring the variance of the 

weights, and to resample when this variance goes above some threshold. Further

more, our Theorem 4.3.1 gives a natural interpretation of a , the parameter tha t 

governs the amount of resampling we do.

4.4 N um erical Exam ples

We tested our algorithm on three simulated examples: the Blocks and Heavi- 

sine examples from Donoho and Johnstone (1994) and a piecewise auto-regressive 

model. Each of the three data-sets are analysed under a piecewise regression 

model. For the Blocks and Heavisine examples we model the data as realisations 

from a piecewise polynomial regression with design matrix for a segment consisting 

of observations at times s, s +  1 , . . . ,  t as

/

Hfc =

1 x.

1 x s+i x s+1

\

\  i  x t  A  J

where x s — s / t l  and t i  is the number of data points. For the piecewise auto

regressive model we have a design matrices of the form

^ y3_i ys- 2 y3- 3 ^

m  =
y s V s - i  y s- 2

\  y t  v t ~ i y t - 2  J
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In each case we perform model choice within each segment, choosing between 

model orders 1, 2 and 3. We allow for different variances of the measurement error 

within each segment, although for the Blocks and Heavisine examples we simulated 

data with a common error variance across segments. Further details of the model, 

and calculations required for calculating the P (s, t, qk)s is given in Section 4.2 (See 

also Punskaya et al., 2002; Fearnhead, 2005).

Our focus here is on the performance of different possible resampling algorithms. 

The Blocks data  set (see Figure 4.2) is a particularly simple data set to analyse, 

and all reasonable resampling algorithms will give almost identical results. We 

show the results here to demonstrate how the SRC algorithm naturally adapts the 

number of particles tha t are kept. The Blocks data set has a number of obvious 

changepoints, and when each of these are encountered the number of particles tha t 

are needed to be kept is reduced to close to 1.

For the Heavisine example (see Figure 4.2) we compared the accuracy of various 

resampling algorithms: stratified rejection control (SRC), rejection control (RC), 

stratified optimal resampling (SOR), and optimal resampling (OR). We considered 

two values of a  for SRC and RC; and for a meaningful comparison, fixed the mean 

number of particles in OR and SOR to the mean number of particles kept by SRC 

for each of these two values. If we set the number of resampled particles (M) to 

be one less than the number of particles prior to resampling (TV), then OR and 

SOR are identical. We tested both N  = M  +  1 and TV =  M  +  5.

Our comparison is based on the Kolmogorov Smirnov distance (KSD) between the 

true filtering distribution of the most recent changepoint, p(Ct \yi:t) (calculated 

using the on-line algorithm with no resampling), and its approximation based on 

the various resampling algorithms, for each t. Results are given in Table 4.1. The 

results show tha t the mean KSD error is reduced by one third by using SRC rather 

than  RC. Both of these methods perform better than the resampling algorithms 

th a t use a fixed number of particles (for the same average number of particles),
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Heavisine Data
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Figure 4.2: The Blocks data set (left-hand column) and Heavisine data set 
(right-hand column) together with results of analysis by the SRC algorithm with 
a  =  10-6 : data and inferred signal (top): marginal probability of changepoints 
(middle); and numbers of particles kept (bottom).
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Autoregressive Data

o

in

0 100 150 20050

Number of Particles

O

O
o

o

o
CM

O
2001501000 50

Stratified Rejection Control

o
co
d

o

o
d

oo
0 50 100 150 200

Particle Filters of Chopin(2006)

o

d

d

o
oo

50 100 1500 200

Figure 4.3: Results of analysing the AR data set using SRC with a  =  1CT6, and 
the particle filter of Chopin (2007) with 50,000 particles: data (top left), marginal 
probabilities of changepoint for SRC (top right) and particle filter of Chopin (2007) 
(bottom right), and number of particles kept using SRC (bottom left). The true 
AR model to the four segments have model orders 1,1,2,  and 3 respectively. The 
corresponding parameters are (3k — 0.4; (3k — —0.6; (3k = (—1-3, —0.36,0.25) and 
(3k = (-1 .1 , -0 .24) with error variances 1.22, 0.72, 1.32 and 0.92 respectively.
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SRC RC SOR OR
Heavisine 1.3 xlO-2 2.0xl0~2 4 .2xl0~2 6 .4x l0~2

AR 1 .3x l0 -6 2 .2 x l0 -6 2 .2 x l0 -4 3.5xl0~4

Table 4.1: Mean Kolmogorov Smirnov Distance in P(Ct \yi-t) averaged over t for the 
Heavisine and AR models and the four resampling algorithms. Stratified Rejection 
Control (SRC) and Rejection Control (RC) were implemented with a  =  1CT6; 
these algorithms used an average number of 43 and 70 particles for the Heavisine 
and AR models respectively. Optimal Resampling (OR) was implemented with 
N  =  M  +  1 =  49 and TV =  M  +  1 =  90; Stratified Optimal Resampling (SOR) 
used jV =  M  +  5 =  51 and iV =  M  +  5 =  92 (chosen so tha t the average 
number of particles is the same for all algorithms for each data set). Results based 
on 50 replications of each algorithm for one version of each data set. The true 
distribution, P{Ct\yi-.t)i was calculated using the exact on-line algorithm.

showing the advantage of allowing the number of particles used to adapt to the 

filtering density being approximated. Of the two algorithms considered which use 

a fixed number of particles, we see an improvement of using SOR where we remove 

5 particles at each resampling step over OR (or equivalently SOR) where 1 particle 

is removed at each resampling step. By removing many particles in one step, SOR 

is able to jointly choose the particles to remove in a stratified way so as to reduce 

the error introduced. (Note OR where we remove 5 particles at each resampling 

step has worse results than the OR results shown in Table 4.1.)

Note th a t while all resampling algorithms introduce small errors at each resampling 

step, it is possible for these errors to accumulate. The reason for this, appears to 

be th a t the evidence for a changepoint at a given time t can change substantially as 

more data is collected. If the evidence is small (and hence the filtering probability 

of a changepoint at t is less than a) at a resampling step, this can lead to the 

corresponding particle being removed. Such a particle can not be “resurrected” as 

future observations are made, even if they carry strong evidence for a changepoint 

at t. However stratified resampling should ensure that a particle corresponding to 

a changepoint close to t is kept, and thus the error in estimating the position of 

the changepoints will still be small.
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We repeated this analysis for a piecewise AR model. The results of the SRC 

analysis with a = 1 x 10 6 given in Figure 4.3, and results of the accuracy of each 

resampling method given in Table 4.1. We observe similar results to the Heavisine 

example in terms of the relative performance of the resampling algorithms. In this 

case SRC again outperforms RC by about a third. The difference in performance 

between SRC and RC as compared to SOR and OR is quite substantial in this 

case, because towards the end of the time series it is forced to use too few particles 

to adequately approximate the filtering densities. This again demonstrates the 

potential gains to be obtained by allowing the number of particles used to change 

over time and to adapt to the filtering distribution that is being approximated.

We also ran the particle filter of Chopin (2007). This filter does not integrate 

out the parameters associated with each segment, so each particle consists of a 

time for the last changepoint together with a value of the parameters for the 

current segment. The filter uses MCMC to update the parameters of a subset of 

particles at each iteration. We ran the filter with 50,000 particles, using a Gibbs 

sampler update on the parameters of 1/3 of the particles at each iteration. This 

took over an order of magnitude longer to run than the SRC algorithm, and even is 

substantially more time-consuming to implement than the exact on-line algorithm.

The results for the estimate of the marginal probabilities of the changepoints is 

shown in Figure 4.3. The filter of Chopin (2007) suffers from a loss of diversity 

in the particles -  with many positions being assigned zero probability of being 

a changepoint, when in fact there is a non-negligible probability as can be seen 

from the output of the SRC filter. To give a quantitative comparison of the 

two methods we calculated the mean absolute error between the estimates of the 

marginal probabilities of the changepoints shown in Figure 4.3 with those based 

on the exact particle filter algorithm. These were 0.010 and 0.002 for the filter of 

Chopin (2007) and the SRC filter respectively.
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4.5 D N A  Segm entation
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In recent years there has been an explosion in the amount of data describing the 

genetic make-up of different organisms; for example the complete DNA sequence 

of one human genome is now known as a result of the Human Genome project. 

There is interest in learning about the genomic features of different organisms, and 

learning how these features may have evolved and how they correlate with each 

other and with biological processes.

We consider the problem of understanding the structure of C+G content within 

the genome. A common model for the C+G content of the human genome is tha t 

there are large, of the order of 300 kilobases (kb), regions of roughly homogeneous 

C +G  content, called Isochores (see Bernardi, 2000, for background). Furthermore 

C +G  content is known to correlate with various features of the genome, such as 

high recombination rates and gene density (Hardison et al., 2003).

Currently, the most common method for segmenting an organism’s genome into re

gions of different C+G content is implemented in the computer program IsoFinder 

(Oliver et al., 2004). This is based on a recursive segmentation procedure, which 

initially classifies a large genomic region as consisting of a single Isochore (region 

of common C+G content). It then considers in turn each possible position for 

adding a changepoint, and splitting the data into two Isochores. For each possible 

position, a t-statistic is calculated for testing whether the mean C+G content is 

different in the two putative Isochores. For each changepoint, a p-value is calcu

lated for its value of the ^-statistic using a bootstrap procedure, and if the smallest 

p-value is less than some predefined threshold, then the corresponding changepoint 

is added. This procedure is repeated, with at each step each current Isochore being 

tested for whether it can be split into two Isochores. See Oliver et al. (2004) for 

more details, and Oliver et al. (2002) for examples of the use of IsoFinder.
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We consider a Bayesian approach to segmenting a genomic region into Isochores. 

The potential advantages of a Bayesian approach include (i) quantifying and aver- 

aging over the uncertainty in the number and positions of the Isochores; (ii) jointly 

estimating all Isochore positions (which Braun et al., 2000, show to be more accu

rate than  segmentation procedures); and (iii) the large amount of data available for 

each organism makes it straightforward to construct sensible prior distributions. 

For related examples of the use of Bayesian methods for analysing other aspects 

of Genomic structure see Salmenkivi et al. (2002); Boys and Henderson (2004).

One of the computational challenges of such an analysis is the large amount of data 

tha t needs to be analysed (for example human chromosomes consist of around 

100 million bases). We simplify this burden by first summarising our data by 

the number of DNA sites which are C or G within consecutive windows (each 

window being of the order of a few kb in width), an approach which also has the 

advantage of averaging our the very local high variation in C+G content caused 

for example by CpG islands and Alu elements. We then hope tha t our on-line 

changepoint algorithm will be able to efficiently analyse the resulting data, and 

one of the main aims of the study we present here is to test whether such an 

approach is computationally practicable for analysing the large amount of genomic 

data currently available.

The model we use is based on the following simple model for the data y 1:n, which 

is similar to the implicit model assumed by IsoFinder. Two data sets are shown 

in Figure 4.4 and 4.5. The t th  data point, yu represents the number of DNA bases 

which are either C or G within the tth  window. If this window lies within the fth 

Isochore then we assume

Vt — E i T  ai£ti

where /x* is the mean C+G content of each window within the zth Isochore, of 

is the error variance within the xth Isochore, and £f is some independent error. 

We assume that et has a Gaussian distribution and we assume standard conjugate
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priors (see Section 4.2) for the ^qs and cqs, with the prior parameters chosen from 

an initial analysis of C+G data with a moving median filter. For each model we 

assumed a geometric distribution for the length of each Isochore.

Results of our analysis using SRC with a  =  10-6 are shown in Figure 4.4 and 4.5. 

Our main focus is on the computational practicability of a Bayesian analysis of 

such data, and our method took 1 and 6 seconds respectively on a desktop PC 

(with AMD Athlon XP processor) to analyse these data sets.

This application does not need to be analysed by an on-line algorithm, such as the 

one we used. However Fearnhead (2006) showed that the version of our algorithm 

without resampling can be more efficient for analysing changepoint models than 

some commonly used MCMC algorithms. Furthermore, by using resampling we 

have been able to vastly reduce the computational and storage cost of analysing 

the data. For example our implementation with resampling uses an average of 

117 particles at each time step on the data from human chromosome 1; whereas 

without resampling the algorithm would require an average of over 3,500 particles 

for each time-step.

Whilst it is difficult to construct a quantitative evaluation of how good the resulting 

segmentation is, we are encouraged tha t our method finds the classical H3 and L2 

isochores in the MHC regions (at positions 1.9Mb to 2.5Mb and 2.5Mb to 3.0Mb 

respectively; see Oliver et ah, 2001).

4.6 D iscussions

We have considered a class of changepoint models, which have a specific conditional 

independence structure (see Section 4.2), and shown how the direct simulation al

gorithm of Fearnhead (2005) can be implemented on-line. Such an algorithm can 

be viewed as an exact particle filter, and resampling ideas taken from particle
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1000 2000 3000

Positions(kb)

Figure 4.4: Analysis of 3.6 Mb of data from the MHC region. The data consist 
of number of C+G nucleotides in 3kb windows. We show 20 realisations from the 
joint posterior distribution of the segmentation.



P
er

ce
nt

ag
e 

of 
C

+G

CHAPTER 4. ON-LINE ALGORITHM 83

10000 20000 30000

Positions(kb)

Figure 4.5: Analysis of 35Mb of data from human chromosome 1. The red line is 
the posterior mean GC content.
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filters can be used to reduce the computational complexity of the direct simula

tion algorithm (at the cost of introducing error). We have presented two simple 

extensions of existing resampling algorithms, which are particularly well suited to 

changepoint problems (or any problems where the underlying state of interest is 

1-dimensional).

In simulation studies, our new resampling algorithms decreased the error of the 

resulting particle filter by up to one third, compared to particle filters using the ex

isting resampling approaches. We have shown that the new resampling algorithms 

satisfy a minimax optimality criteria on the error, as measured by Kolmogorov 

Smirnov distance, introduce by resampling. Furthermore this result gives a nat

ural interpretation of the threshold that needs to be specified in the stratified 

rejection control algorithm which will aid its implementation in practice.

There is great flexibility with implementing resampling algorithms within particle 

filters which we have not explored. For example Liu and Chen (1998) discuss the 

frequency with which resampling should occur, and Liu et al. (1998) suggest us

ing rejection control only when the variance of the particle filter weights exceeds 

some threshold. Whilst we have not fully investigated these issues, the results 

from Section 4.4 suggests that the advantages of using stratification within opti

mal resampling or rejection control will increase as the frequency of resampling 

decreases (or equivalently the amount of particles resampled increases at each 

resampling step). Note tha t when we allow for different models within each seg

ment, we could resample over the joint space of changepoint positions and model 

orders. First resampling based on changepoint position, and then on model order 

for each changepoint position, would enable this to be done whilst still keeping the 

stratification of particles by changepoint position.

We considered using our on-line algorithm to analyse the structure of C+G con

tent in the human genome. Our main aim was to show that a Bayesian analysis is 

computationally feasible even for the large data-sets currently available. In prac
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tice we were able to analyse around 35Mb of human data in around 6 seconds 

of computing time; and this together with the linear computational cost of our 

algorithm shows tha t such a Bayesian analysis will scale to analysing data from 

complete genomes.

The model we implemented was based on the simple implicit model behind exist

ing segmentation procedures. Visual inspection of the data by eye suggests such 

models are over-simplistic, though we obtained reasonable segmentations. Mod

elling the variation in C+G content of the human genome is a challenging problem, 

but we note the flexibility in models allowed within the conditions we require to 

implement our on-line approach. Various extensions tha t are possible are allowing 

the C+G  content to vary linearly within each segment; allowing GC content to 

depend on other features of the Isochore; modelling the autocorrelation in the data 

(see Fearnhead, 2006); general models for segment lengths; different measurement 

errors (for example Laplacian errors as used in 0  Ruanaidh and Fitzgerald, 1996, 

for a related problem); and allowing for a mixture distribution for the segment 

means (as suggested by Bernardi, 2000).

4.7  A ppendix

A: C alcu lation  o f likelihood P{s, t, qk) for qkth  order linear 

m odel

Given the linear regression model of (4.3) with the conjugate priors as follows:

pk ~  NVN(0,  cjiDfc), 4  ~  IG (y j2 , 7 / 2),
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where 0 denotes a vector of Os and D fc =  diag{8\ , . . . ,  6* ), we have

P ( s , t , q k)

/  /  P{ys+i:t, Pk, o’*, model qk)ir((3k)Tr{a2k)d(3kdal
J  cr? JQhT 2k Jpk

1 f  ( y s + l : t  -  K A ) T ( y s + l : t  -  H fcA 0 T

(•\/27r a)qk\ Dfel1/2
e x p j - ^ D / a }  x

(7 /2  r /2 
T W 2)

(<r 2)2 1e 2a 2d/?fcdcr2/c*

If we denote

(H pifc +  Dj"1)-1 , 

(I* -  H fcM ,H j) ,  

yTPty,
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then the integration of (3k is then

f  1 (ys+i=t -  H * f tf (y a+1:t -  H
L v ^ a eXP\  2%--------------------- ^

I V 2M T E N  6XP {  “  2^ ^ D ‘ 1A  }  dPk
\  t - s + q k

I (3k XV^TTCT

exp ((ys+i:t -  H fc/?fc)T(ys+i;t -  H fc/3fc) +  0 1 1 ) 0 (3k) |  d/3k

f  /  1 \Jpk \V2tt(jJ
eXP { ~ 2 o 2  +  D k l )Pk ~  y^+l:iH  kPk -  l y s+l:t +  yJ+l-.tYs+l:

=  ( v ^ a )  e x p { _ i | {yt-i-*ys+1:t~ y + ‘HfcMfcH‘ ys+1:t)}  X

J  exp { —  (4T -  (MtH jy s+1;t)T)M^1(A -  M kUTkys+1:t)

= (v t)  lM‘llexp{-2i(yr+I:tP̂ +1:t)}’
(  1 X SU J I ! f Hy^ H F

=  t e )  |Mfc,2expr ^ r
continue to integrate out 0^, we obtain

t - s ( 1 (+/9.W2

I , . ( + ) '
t i s f  'P m  L r  { - + + M  < ^ - ' * 4

1 y ~ s y y p 2 r ( ( t  -  s +  0 / 2 )

V W  ((llys+i:*llpt +  7 ) / 2)(t_‘+")/2 r y / 2 )

Finally, we have

Qk)

=  p ( y s + i : t \ s  +  l ’- t , M t  =  0 )

= I M . h 1 ( 7 +  r ( ( f  -  ,  +  0 / 2 )
Dfcl)  ( ||y«+i:t||pk + 7 )<t“ s+I')'/2 r y / 2 )
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Further more, we obtain the posterior distribution of /3k and cr2 which are

Pk ~  M V N (M kH_lys+1:Ua2kM k),

B: S tratified  R esam pling A lgorithm

We describe the stratified resampling algorithm of Carpenter et al. (1999) in terms 

of the SOR and SRC algorithms. Assume we currently have a set of N  ordered 

particles c^  < c ^  < ••• < ĉ N\  with associated weights . . . ,  w^N\  which 

sum to unity. For the SOR algorithm define a  as in step (SOR1); and for SRC 

we assume that the value of a  is given. Resampling of M  particles proceeds as 

follows:

(A) Simulate u a realisation of a uniform random variable on [0, a]. Set i =  1.

(B) If w® > a  then propagate particle c® with weight else let u =  u — w W; 

if u <  0 then resample particle and assign a weight a ,  and set u =  u +  a.

(C) Let i = i 4-1; if i < N  then return to (B).

C: P ro o f o f T heorem  4.3.1

Theorem 4.3.1 considers the error of a resampling algorithm as measured by:

For SOR, if w® > a  then W ®  = w® with probability 1. As such we can consider 

the mKSD solely for the subset of particles which have w® < a. Assume we have 

N'  such particles, and relabel these particles cO < c(2> < . . .  < c ^ A

mKSD =  max -  W {i)
- - i
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The only randomness in the SOR algorithm is the simulation of u in step (A) of 

the algorithm detailed in Appendix A. Now for a given value of u

= a
j =i

y :  + a — u j  / a (4.9)

where [x] is the integer part of x. Thus for all u and i

^ 2  wij) ~ W {j)
3 = 1

< a,

so mKSD <  a.

For result (i) it suffices to note that if the probability of resampling particle is 

strictly less than  1; then mKSD> w ^ \

For result (ii) it is sufficient to note tha t both the optimal resampling algorithm 

of Fearnhead and Clifford (2003) (where particles are shuffled prior to stratified 

resampling) and rejection control (where each particle with weight less then a  is 

resampled independently of all others) give positive probability to all realisation of 

weights W^l\ W ^ 2\  . . . ,  W ^ ) tha t our SOR algorithm does. It trivially follows that 

the mKSD for these algorithms will be greater than tha t of our SOR algorithm.

D: Error bound for SRC

Consider N  particles, ordered so that c^  < c^  < . . .  < A N\  We denote the 

weight of these particles prior to resampling by w the unnormalised weights 

after resampling by W (i), and the normalised weights after resampling by W (i). 

We let u denote the realisation of the Uniform [0, a] random variable used in the 

stratified resampling algorithm. Finally we let

=  j 2  (wU) ~~w i j )) •

3 = 1
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The sum of the resampling weights depends on the number of particles resampled 

in stage SRC2. There exists a constant, /?, satisfying 0 < (4 < a  such that

N

i =1

1 +  a  — (3 u < (3, 

1 — (3. u >  (3

Fix u and (3. From (4.9) it can be shown that u — a  <  £ 0  <  u for all i. We 

consider in turn  the situation u < (3 and u > (3, corresponding to the two possible 

values of the sums of the unnormalised weights after resampling.

Firstly, assume u < (3. Then we have

-  w u))
3 = 1 3=1

1

<

I T  ol — {3 

1
I T  a — (3

£ 0  T {a — (3) y U)
3=1

max l u + ( a ,  — (3) y ^  w ^ \  a  — u — (a — (3) y ^  w L)

3=1 3= 1

where the two terms we are maximising over correspond to the largest positive and 

negative values of e{i). Now, as u < (3 and 0 < T,]=iw{j) < b  both these terms 

are bounded above by a. Thus we have mKSD < a  in this case.

Now if u > (3, by a similar argument we obtain

5 3  (w{j) -  W ij))
3= 1

< — max I u — (3 y ^  , a  — u 
-  I - (3

a
— (3 £  , a  — u + (3 5 ]  > <  ——

j = i  3=1 J ^ P)

The last inequality uses the fact tha t u < (3 and 0 < < 1- Finally as

(3 < a  we can obtain tha t mKSD < a /{ I  — a).



C hapter 5

Efficient Bayesian A nalysis of 

M ultip le Changepoint M odels 

w ith  D ependence across Segm ents

5.1 Introduction

The most fundamental assumption of the multiple changepoint model we have con

sidered in the early chapter (see also Punskaya et ah, 2002) is tha t the observations 

across segments are conditional independent of each other given the changepoint 

position. This limits the scope and applicability of the method we developed. 

Thus in this chapter, we intend to extend the model by taking into account the 

dependence across segments, and in particular the Markov dependence across seg

ments. The key idea of our method is tha t the dependence between neighbouring 

segments will be through a single set of parameters, tJj. If we known the value of 'ip 

for the new segment, then we have independence of the observation in the segment 

from earlier observations. Thus by approximating the filtering distribution by 

we can use the ideas from Chapter 4 to obtain an efficient algorithm for analysing

91
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such changepoint models.

92

The filtering algorithm will calculate the posterior distribution of the most recent 

changepoint together with the segment model prior to time t, for t =  1 , . . . ,  n. The 

posterior estimation of parameters, conditional on each realisation of changepoints, 

are also obtained. Given on these outputs, it is possible to calculate the smoothing 

distribution of changepoints backwards in time.

The computational cost of the exact filtering is 0 ( n 2). But we can introduce 

the resampling idea of Chapter 4 to reduce it to 0(n) .  The complexity of the 

smoothing algorithm depends on the number of changepoints. As this increases 

linearly with the number of observations, the computational cost of the smoothing 

algorithm is roughly linear with n.

We apply our model to a specific curve fitting problem which is among the most 

widely discussed problems of regression techniques. It usually aims to estimate an 

assumed functional relationship between a response and some explanatory vari

ables given the noisy measurement, and to predict the response for new values of 

the co-variates.

Parametric methodologies aim to model the function. The first example of the 

approach is polynomial regression of Anderson (1962) (see also Guttman, 1967; 

Harger and Antle, 1968; Brooks, 1972; Halpern, 1973, for examples). But this 

methodology is quite limited due to its global nature, tha t is, a higher order 

polynomial is needed to approximate the whole data and the performance is poor in 

estimating wiggly curves. Moreover, individual observations will affect the distant 

parts of the curve in unexpected way, resulting a very non-robust estimation.

More modern approaches are the non-parametric methodologies such as smoothing 

splines (Wahba, 1990; Hastie and Tibshirani, 1990; Green and Silverman, 1994) 

and kernel smoother (Muller and Stadtmuller, 1987; Fan and Gijbel, 1995). These
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methodologies involve a selection of the number and positions of the changepoints 

(a.k.a knots in non-parametric literature) tha t determine the segments. Selecting 

these changepoints has to be very careful because the small number of change

points reduces the degree of freedom of the fitted curve and the large number of 

changepoints produces over-fitting. For more detailed discussion see Hansen and 

Kooperberg (2002). Adaptive techniques can be embedded to enable an auto

matic selection of changepoints. Typical frequentist examples include the work of 

Wahba (1975); Smith (1982); Friedman and Silverman (1989); Friedman (1991); 

Stone et al. (1997) and Zhou and Shen (2001).

Bayesian selection techniques are also available. The most common ideas use RJM- 

CMC. Smith and Kohn (1996) firstly use the methodology to select the number 

of changepoints for an additive model. A more general methodology is to calcu

late the posterior distribution of the number and positions of changepoints by the 

RJMCMC (e.g. Denison et al., 1998; DiMatteo et al., 2001). Then we will obtain a 

rich class of positions of the changepoints, from which a single collection of change

points can be picked according to its posterior probability and can be used for the 

spline smoothing. Other RJMCMC would calculate a higher dimensional posterior 

including both the changepoints and parameters, at the expense of introducing a 

serious additional computational burden (Mallick, 1998; Punskaya et al., 2002).

Our approach is to model the function by a piecewise polynomial, which consists of 

a sequence of low order polynomials defined within different segments. The nov

elty of our model is tha t we have defined two types of changepoints which related 

to whether the underlying signals is (i) continuous or (ii) discontinuous at each 

changepoint. This generalises the earlier models. For example, the model of Deni

son et al. (1998) is such a model with all changepoints continuous while the model 

of Punskaya et al. (2002) is such a model with all changepoints discontinuous.

The chapter is constructed as follows. In Section 5.2, we introduce a generic 

hierarchical model. The changepoints model we considered is a specific case of it.
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In Section 5.3, the online algorithm used to calculate the posterior distribution 

of the positions of the changepoints is given. The posterior estimation of local 

parameters are also calculated. Then smoothing distribution of the changepoints 

is obtained in Section 5.4, given the realisations of changepoints and parameters. 

Two smoothing algorithms are used. A block sampling for the parameters has 

been introduced in Section 5.5. The resulting algorithm has been evaluated in 

several aspects in Section 5.6, and has been tested on a few simulated data in 

Section 5.7. Finally, we implement the algorithm a real data set in Section 5.8. 

This is a well log data with 4050 observations and around 30 changepoints. Both 

piecewise constant and piecewise quadratic models are used. The chapter ends up 

with a discussion.

5.2 C hangepoint m odel

We consider the following hierarchical model for observations y\,n =  (g/i,. . . ,  2/n)-

Firstly, we model the changepoints within a framework we have discussed in Chap

ter 3, i.e. a point process with a propability mass function g(d) is considered, where 

d is the distance between two successive changepoints. Note tha t this setting is 

exactly the same as we used in Chapter 4. In the specific applications considered 

in this chapter, we take g(d) as a probability mass function of a geometric distribu

tion for the changepoints, i.e. g(d) =  p ( l - p ) ^ 1. Though alternative distributions 

have been suggested by (Fearnhead, 2006).

The changepoints split the data into m  +  1 segments. For each segment k consist

ing of observations ys+nt? we associate a model Adk and a vector of parameters 

9k. The model is drawn from a finite set of possible models labeled 1, 2, . . .  ,p, 

and we assume a prior distribution for the model of a segment and tha t there is 

independence of the choice of model across different segments.
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We split the parameter into two components 0k =  (?/;*., <pk), with the tfjk component 

being allowed to depend on features of the previous segment and the <pk component 

just depending on the 'ipk value and model of the current segment. Thus for 

segment k = 1 , . . . ,  m, we will have that the conditional probability of the model 

and parameters for the segment can be factorised as

P ( M k)pMk{^k\^k-U<f>k-Un,Tk-i )pMk{((>Mk)-

For the first segment we assume a prior for 4>q. In particular we will consider 

a family of prior distributions p((f>k\CsMk) f a  k =  1, . . .  , m with </>0 being drawn 

from p(<fio\(oMi) f°r some known value Ca/Wi- Note that the (SMks denoting hyper

parameters in the interval beginning at s and associated with model M.k-

Finally we have a likelihood model for the observations within a segment. Given 

the kth  segment, and with model M k and parameter (<pk, ^jt), we have a likelihood 

model

PMk(ys+l:t \ tpk,M-  (5 -1)

We assume tha t conditional on the changepoints, segment models and parameters, 

th a t the observations within each segment are independent of each other.

We also make some assumptions about the priors for <pk and ipk. In particular we as

sume th a t for all values of (sMk and A4k that the joint prior pMk('lPk\(sMk)PMk {fikl̂ fc) 

is conjugate for the likelihood of the observations within a segment. Thus, we de

fine the marginal likelihood function similar to that in Chapter 4:

P ( s , t , M k X s M k)

= P (y s+m|model M k: parameter (sMk)

J  J  PMk(y8+l:t\$k,<t>k)PM(̂k\CsMk)PMk{<f>k\̂k)d<f>k<tyk
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Under our assumption of conjugate priors, we have that these marginal likelihoods 

can be calculated analytically for all values of (aM .

The way we modelled the data can be only approximately inferred. The key idea 

is to update the prior distribution of ipk segment by segment, from k =  0 to m. 

That is we use the posterior distribution of ipk_i as the prior distribution of ipk if 

there is a dependence across these two segments.

Illustration

Figure 5.1 and 5.2 give two specific cases that we have to consider the dependence 

structure in the multiple changepoints model. If the observations across the two 

segments are independent of each other, a curve (e.g. the red lines in the plots) in 

the second segment can be fitted based only on the observations in the segment. 

This is the examples in Chapter 4. However, if we require a connection at the 

changepoint between the curves in each segment, we have to take the dependence 

between the observations into account.

We fit the curve per segment, say we have y =  ak +  bkx  for k = 1,2 in Figure 5.1. 

bk in each segment, which is the slope of the curve is independent of each other, so 

we have pk =  bk, and we assume bks are i.i.d under a prior distribution Fb. If we 

use a similar prior distribution for aks, it is likely to generate a red curve in Figure 

5.1. To make sure the curves in each segment are connected at the changepoint, 

we assign an informative prior to <22 so that it contains the information from the 

first segment. To achieve this, the posterior distribution of the hyper-parameters 

of ai can be used as the prior distribution of the hyper-parameters of a2. Hence 

we have ^2 — &2-

We now give some quadratic regression examples of our generic dependent change

points models. The last of these models will form the basis of the application of
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Figure 5.1: An example of a dependent changepoint and an independent change
point. The vertical dotted line indicates the position of changepoint.

Figure 5.2: An example of a continuous changepoint and a discontinuous change
point. The vertical dotted line indicates the position of changepoint
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our method in Sections 5.7.
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E xam ple 1: P iecew ise Quadratic R egression (PQ R )

We consider filtering a piecewise quadratic regression (PQR) model to bi-variate 

data (Xi,y{) for i — 1 , . . . ,  n, with the data ordered so tha t x\ < X2 < • • • < x n. 

The PQR model we are considering is based on an assumption that the data across 

the changepoints are independent of each other. These changepoints are so-called 

discontinuous changepoints (see Figure 5.2 for example). Note in this example that 

there is no model choice in each segment. So if the observations y s+i-.t are in the 

fcth segment, we specify the model of (5.1) by a 2nd order polynomial regression 

function with parameter 9k = {Pki al):

y a+i:t =  K kPk +  £fc, (5.3)

where the design matrix H& is of form

H fc =

(

1 2-S+2 %s+1 (^s+2 ^s+l)

y  1  Xf Xs+ \ (Xt  X g - j - i )  J

£k is a vector of noise tha t are independently drawn from a JV(0, al) distribution, 

and p k = {Pm,  Pki,  f a )  is a vector-valued regression parameter.

Unlike Chapter 4 in which the variance of the noise in each segment (i.e. al) is 

independent of each other, we assume a common variance to the noises, a across 

all the segments. However, to hit the above framework, we introduce a^ to denote 

its value in the kth  segment, hence

al  =  cr2, for A; =  1, . . .  , 777.. (5.4)
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Note hat the ak in the kth. segment is dependent on o'k_1 in the previous segment 

(since they are actually equal); and (3k is dependent only on the value of o\. Hence, 

using the notation above, we have ij;k =  (f)k =  Pk-

We use the following priors for the variance ak and the regression parameter j3k, 

for the sake of conjugacy:

~  IG{ykj 2,7fc/2),

(j>k\^k ~  MVN(0, ipkD fc),

where I G  denotes the inverse Gamma distribution and M V N  denotes the multi

variate normal distribution. =  diag{5lk, <̂ fe, dffc) is a diagonal matrix. W ith the 

notations above, we have (SMk — the value of which should be identical

in each segment.

Note th a t the regression model we considered in Chapter 4 is basically equivalent 

to PQR, except for allowing a choice on the model order in each segment. Hence 

we can drop M k in the marginal likelihood of (5.2) and calculate it analytically 

with the above prior settings by (4.4). See Appendix A in Chapter 4 for details.

E xam ple 2: C ontinuous PQ R

We can also allow for the dependence across segments, by assuming continuity 

of the underlying function across the changepoints, (see Denison et al., 1998; Di- 

Matteo et al., 2001, for examples). These changepoints are called continuous 

changepoints. See Figure 5.2 for an example.

As the data are dependent across segments, we have to model the data in a whole 

batch perspective such that

y i:n — H/? + e, (5.5)
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where H  is an n  x  (2m  +  3) design matrix. If we define k G {0, . . . ,  m}  and 

I G {1,2} then the ith  row and j t h  column element of the matrix is defined as

Hij — <

1 if j  = 1;

(Xi xTfc_|_i Y if j  =  2k +  / +  1, and Tk < i <  Tk+i

{xTk+1 -  x Tk+1)1 if j  =  2k +  / +  1, and rk+1 > i

0 otherwise .

(5.6)

Note th a t the value of k denotes the segment corresponding to column j ,  and I 

denotes whether the column suits to the linear or quadratic component. The entry 

then dependent on whether the i th  observations lies in the kth  segment, is after 

the kth  segment or is before the ith segment.

The regression parameter is

(3 — ( A ) 0 ,  A n >  A ) 2 ,  A l ?  012 , • • • J (3ml 1 (3m2) T • (5.7)

For segment k, we let ak and Ao denote the variance of e in (5.5) and the value of 

the regression function at the start of the segment, respectively. Ao is determined 

by Afc-i)o, • • •, (3{k-1)2 via a linear predictor:

A o  —  ( 3 { k - 1)0 +  ( 3 { k - l ) l ( X T k  +  l  ~~ X T k- i  +  l )  +  ( 3 { k - l ) 2 ( X T k  +  l  —  X T k - i  + 1) •

The idea is th a t the dependence between neighbouring segments is only through 

these two parameters. Thus we have 'tpk — (Ao,*7!)- Finally our conjugate priors

are

4  ~  / G ( f , f ) ,
^k = \

PkoWl ~  N(iJ,k, a 2krg),

<j>k\ipk ~  MVN(dj&lD'f.)
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where D fc =  diag(5\k,5lk). Similarly, we denote CsMk — (/be, 7*5 J'fc, 7fc)> and this is 

the posterior estimation from (A: -  l) th  segment.

Again, we do not have model choices in each segment. Thus the a n a l y t i c a l  form 

of (5.2) is:

where

P (s ,t ,  C )

P(yS+l:i|A, ^k)P0k)p(o-lWkd(Tl

=  7T- ^ / 2 , |   x[M fc iy _________ 7 ^ 2
| D 'fc| J  ( \ \ y s + i : t \ \ p k + ' f k ) (-t - s+Uk)/2

7 ( ( t - s  +  i/fc) / 2)
- ~ W 2 )  "  ’ (5'8)

Vj Vj pki  j  s +  1, . . . , t,

A o  ~  N ( 0 , a l r i l ) ,

and the forms of M*, P k and D fc change correspondingly. See Appendix A for the 

justification of reparameterisation.

E xam ple 3: C ontinuous/D iscontinuous PQ R

For the final example, we consider a model combining Example 1 and 2. We do 

this by introducing two models for each segment. These models correspond to 

whether the changepoint at the beginning of the segment is continuous or not. 

The A  and A  and their priors are defined as for Example 2.
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5.3 Forward filtering
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We now introduce an online algorithm for the hierarchical model of Section 5 .2 . 

It borrows the idea of particle filters to approximate the posterior distributions 

of interest, such as the position of changepoints rfe, the corresponding model A4k, 

and the associated function parameter Ok-

5.3.1 F ilterin g  recursion

Firstly, we have to introduce an artificial time t to enable the online inference on 

the model. So at each time t, we have a new data yt observed. Then we denote Ct 

the most recent changepoint prior to time t and M t the model being used in the 

segment between in Ct and t. The corresponding regression parameters at time t 

are denoted as Ot =  i'&t, $*)•

Given the process of the changepoints we discussed in Section 5.2, the Ct follow a 

Markov process with the transitional probability of (4.5). Our aim is to recursively 

calculate the filtering distributions p(Ct , M*, ym).

W hen there is no new  changepoint

If Ct+i =  Ct, tha t means there is no new changepoint and the model still applies 

to observation yt+i- Suppose the last changepoint before time t  is = s (s <  t), 

so we have

Cs+1 - • • • =  Ct+1 =  5,

M s+1 =  • • ■ =  M t + i  =  M ,

T s+i =  • • • =  %+i = ip,
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Ck̂ s M^=M
0k= 0

s s+1 t-1 t

Figure 5.3: A demonstration of Ct, M t and Qt and their values (shown in the 
rectange)

The key idea to our approach is that p(il>\yi:TkNk — s, Aik — A i)  can be approxi

mated by a member of our conjugate prior family for ijj that is

Particularly, we define (sm  to be the value of hyper-parameter so that we have the 

approximation:

Now we can use a standard recursive formula for the filtering distribution at time 

t  +  1:

p(Ct+i = 5, M t+1 = M\yi:t+i) k

p ( y t + i|yi;t> C t + u  M t+i)p(Ct+i\Ct =  s)p(Mt+i)p{Ct = s ,M t =

(5.10)

7 r ( ^ | C s m ) f o r  s o m e  CsM-

pW yi:Tk, rk = 5, M k = M )  «  T^WCm )- (5.9)

See Figure 5.3 for a illustration. For our model, we can not calculate jp(2/t+i |yi:t? Ct+i? M^t+i)
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exactly. However, under our approximation (5.9) we can approximate this by a 

weight That is

p ( y t + i|yi:t, C t + i  =  s, M t+1 =  M )  

-  P(yi=*+il^+i =  M<+i =  
p { y i : t \ C t + i =  s, M t + 1 =  M )

_  J  p{y i:t+i\Ct+i =  s,M m  =  .M,'0)p('0lA4 =  M , r k = s , y hTk)dip 
5 p(yi:t\Ct+i =  5,M m  =  =  A t , r fc -  s , y 1:7Jd?/;

P (s, t +  1, At, CsTw)  (S,7W) /r -,-i\

“  P(3,t,M ,<sM ) ' '~ Wt+1 ’ ■ ' }

As with the calculation of it has a computational complexity of 0 ( t  -  s).

However, it is possible to calculate the recursively. This recursive computing

only has a computational cost of 0(1) with sequential updated £. Appendix B gives 

details how the calculation is implemented on our specific curve fitting examples.

W hen th ere is a new  changepoint

We now consider calculating p(C*+i — t, Mt+i — M-lyi-.t+i) which comes to a new 

changepoint at time t. We denote the parameter in the new segment 9 (̂ p̂ cf))

and the parameter in the old segment 9' — {'ip',</>)• However, ip is determined 

by the model as well as the information in the previous segment, the previous 

parameter 0', the previous changepoint Ct = s' and model M t = M ! . Thus we 

obtain

PM(ip\Ct+i=t,Mt+1 = M,yi:t)

PS y^y^P A 'lW C s'X '.s 'i M',ys'+l:t)p(s' i - ^ ' \ Tk = «,yi=0, (5-12)
s' M!
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where

Pm W C s'M', s', M \  ys'+1:t)

J (j)' J ij)1

*K{(t)'W)p{ys>+1:tW)di)'d<i>', (5.13)

and

p(sf,M ' \ r k = t, y 1:t) oc p(Ct =  s \ M t = M '\y i , t)p(Ct+i =  t\Ct = s ') .(5.14)

We approximate (5.12) by tt̂ C m ), for some £sm • (There are many possibilities 

for this approximation; our approach is to calculate Cm  yia a method of moments 

procedure - see below).

Using our approximation, we set

p(Ct+i = t, M t+1 =  A^|yi:t+i) 

a  p(yt+i\Ct+i =  t , Mt+i = M )p{M t+i = M )

x (E  E ^ 1 = t \ ^  = = s>>Mt = )
\  s '  m '  '

f» =  -M)

x =  « |a  =  s')p(Ct = s ' ,M t = M ' | y 1 : t )  J (5.15)
\  s '  m '  '

where

w

We now give details for calculating Cm  f°r our ^ examples.
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E xam ple 1: P Q R
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As 4) = i/j', (5.12) simplifies to

H p W & '’S'>ys'+lJKS'lTfc =*.yi:t),
s'

We choose (sm ' to match the first and second moments of ip*1 =  a~2 (i.e E('0-1) 

and E('0-2)) between (5.12) and n(p\Cs')- In this particular case, the (sm ' can be 

calculated explicitly since it is the parameters of an inverse Gamma distribution 

(such th a t E ^ -1) =  v / l ) .

E xam ple 2: C ontinuous PQ R

Here ip =  {al,(3ko) and ( sMk = { ^ k N k ^ k ^ k )  where /jLk, rjk, vk and 7fc are hyper

parameters for j3ko and o\. The update of v and 7  are as in Example 1. So we 

concentrate on the update of ji and r f  for the intercept /Ao- According to (5.12), 

we have the following equation:

P(Aco|yi:0 Q +l =  t)

= =  s ' ,y s,+1:t)p(Ct = s' \Tk =  t ,  y 1;(),
s'

where the p{(3ko\(s', Ct =  s ',y a'+i:t) follows a normal distribution with mean and 

variance calculated from a distribution p{(3k\Cs'iCt =  s^yv+nt) tha t is a multi

variate normal distribution of ftk- i  =  P(k-i)i> 1)2)• Using /Ao — hs'Ac-i

where h s, =  (1, (xt -  av+i), {xt ~  x s>+1)2), we then have

Hk = E(/3fco) =  5 3 h a/E (/0fc_i |s > (5 /|rfc =  t , y i:t)
Sf

r g  =  v 3 x { 0 ko) / E { a 2) =  ' } 2 ( h . s ^ s i { P k- i ) b rs, ) p ( s ' \ T k =  t , y 1:t)/'E,(cr2)

s'

where E(cr-2) =  va/ l s •



CHAPTER 5. DEPENDENT CHANGEPOINT MODELS

E xam ple 3: C ontinuous/d iscontinuous PQ R
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For this example, we only need to adapt the different calculations of f SM for 

different types of changepoints. At the continuous changepoint, M t =  1, we have 

the same calculation as Example 2 . For discontinuous changepoints, M t =  2, we 

calculate the v and 7  as for Example 1. The value of \i and rj2 are only dependent 

on these two parameters.

5.3.2 F ilterin g  w ith  resam pling

Storing p(Ct , M t \yi-.t) at any time t actually involves a storage of pt different values 

of (Ct , Mt) which we call particles, with associated probability. On top of the 

linear increase of the memory storage, the computing cost increase quadratically. 

To reduce this, the resampling idea introduce in Chapter 4 can be used so that 

we approximate p(Ct ,M t \y i:t) by a set of K  -C pt particles and their associated 

probabilities. This can reduce the computing cost to be 0(t) .  In the examples that 

will be tested in Section 5.7, we make an extension of the SRC method developed 

in Chapter 4. The specific algorithm is following:

A lg o rith m  5.1  In itia lisa tio n  At a certain time t, we have n particles (Ct = 

s, M t =  M )  for i = 1, . . . ,n  which are indexed in an ascending order of 

positions of change points. For those who have same positions we index 

them in an ascending order of m  (so first discontinuous then continuous). 

The particles are associated with weights  ̂ = p{Ct = s, Mt =  A 4|yi:t)- 

Choosing a threshold, a  = 10-6 say, we have:

(SR C 1) For i = l , . . . , n  if  w[s,M) > a  then keep particle (Ct =  s ,M t = M )  with 

weight . Assume that A  particles are kept.

(S R C 2 ) Use the stratified resampling algorithm of Carpenter et al. (1999) to re

sample from the ordered set of the remaining N  A  particles (without shuf-



CHAPTER 5. DEPENDENT CHANGEPOINT MODELS 108

fling). The marginal probability of resampling particle (Ct = s, Mt =  M )  is 

w[sM)/a .  Each resampled particle is assigned a weight a.

5.4 Backward sm oothing

The filtering procedure produces the distribution of p(Ct , M t \yi:t). Often our in

terest is in the joint distribution of all changepoints and models. Simulating from 

this joint distribution is possible by constructing a recursive backward procedure 

to simulate the marginal distribution of p(Ct, Mt \if, Ct+i — t ,M t+i =  AT, y i;n) 

from t — n — 1 to 1, and AT =  1, . . .  ,p.

We conditional on Ct+i and M t+i due to the dependence structure of the observa

tions, and the reason we have to conditional on if is because it is common to all 

segments such tha t

p{Cti M t \if, Ct+i — T AT+1 — A4 , yi:n) p(&t> Ct+i = t , = AA , ynt),

given a fixed value of if. We can simulate if according to the changepoints and 

segment model, as well as the previous value of if in the segment. Thus for the 

marginal distribution, we have

p(Ct = S, Mt =  M \ l f : 11 M  , yl:n) 

oc p(Ct = s, M t =  M ,i f \ t ,  AT,yi:t)

=  p(Ct = s ,M t = M\yv.t)p{Ct+i =  t\Ct = s)p(Mt+i =  AT)

x p W y i: t iC t = s ,M t = M ) .  (5-17)

The first part of the product has already been calculated and stored during the 

filtering procedure, the p(Ct+1 = t\Ct — s) and p(AT+i — Ad ) are already known, 

so we only need to calculate the posterior distribution of if, which is equivalently
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to measure how good the simulated value of ip is under the current model. The 

smoothing algorithm is detailed as the following:

A lg o rith m  5.2 Simulating from smoothing distribution backwardly 

Initialise: t <— n;

Simulate Cn and Mn from p{Cn, Mn|y1:n);

Simulate ip from

P W y i : n ,  C n  =  S , M n =  M )  OC 'n{lp\C,s M ) p { y  s + l : n W \

Let ip' <— ip;

Let t Cn;

While t  > 0

•  calculate p(ip'\ym, Cu Mt) oc 7r(^%Mt)

•  simulate Ct and Mt from the distribution proportional to

p(C t , Mt \yi:t)p(Ct+1\Ct)p('ip, \Cu M t, y i:t);

•  simulate ip from

p (V # ', Ct, Mt, yi,t) OC ?r(V'|Cc<M,)p(ya+i:*IV')pW'l^, Yct+i:t)\

•  Let ip1 ip;

E x am p le  1 : P Q R

For the discontinuous PQR in which ip = o , the smoothing procedure is fairly

simple. Let (a =  (y8, ys), we only need to simulate ^  once at time n ’ and calculate
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the density of ip at each time t, which is

(5.18)

where

v's = Vs + t - s ,

i s  =  I s  +  I 112 -

E xam ple 2: C ontinuous PQ R

The smoothing becomes much more complicated in the continuous PQR case, 

as we have ip =  (cr2, (Pko)k=o,...,m-i)- The (Pko)k=o,...,m-i are intercepts in each 

segment except for the last one, and when simulating backwardly, each of them 

is dependent on the value of previous simulation. The last intercept j3mo can be 

simulated independently.

Specifically speaking, the a2 can still be simulated once at time n, as it is a common 

parameter to all segments. The calculation of the density is the same as Example 1. 

Also, {3m0 can be simulated directly according to the posterior mean and variance 

calculated during the filtering procedure. That is

p ( P m o k 2) ~  N  ((M 'hL - l  (VTrn -  ^»))ll +  V s ,  ^ V s )  ,

where

h r m _ l  —  ( 1 )  ( ^ m  ^ r m _ l + l ) ?  { X Tm X Tm- l + l )  ) )

M '  =  ( h ^ _ 1h Tm. 1 + D - 1) - 1 ,

D  =  d i a g ( v 2 , 6 l S l ) ,
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and (M )n denotes the first row and the first column of the matrix 1VL

Then we can simulate P kQ conditional on the value of P(k+\ )o which has already 

been drawn from its segment. However, to simulate (Pko)k=o,.. . ,m~h  we need a 

conditional sampling methods suggested by Rue and Held (2005). This is actually 

calculating the conditional mean and variance of p k subjecting to H kp k =  P(k+1)0 

by following formula,

f t  =  f l - Q H l ( n kQ H l ) - \ H kj l - f 3 {k+l)0)t 

Q" =  Q - Q H l ( H kQ K l ) - 1H kQ,

where the j l  and Q  are the original mean and variance of p k , which are

M =  MfcHjt yTfc+i:rfe+1,

Q  =  cr2 M fc,

respectively. Based on the j l* and Q *, the P k can be simulated, and we simply 

take the first element of it as the estimated intercept. W ith the simulated P k0, the 

density of p k0 can be calculated that is

P i P k ~  N{V*,Q1- 

C ontinuous/d iscontinuous PQ R

Again, we have to simulate both the positions (Ct) and types {Mt) of changepoints, 

and the smoothing algorithm developed in Example 1 and 2 should be properly 

used according to the value of Mt. The most distinctive part of the algorithm is 

tha t the simulation of intercept (P ko)k=o,. . . ,m-i  under each model is different. If 

the changepoint is discontinuous, the intercept is drawn from normal distribut

ing with mean and variance already calculated during the filtering procedure. If
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the changepoint is continuous, the intercept is drawn from a conditional normal 

distribution as discussed in Example 2 .

5.5 Param eter estim ation

All the parameters have already been estimated concurrently with the filtering pro

cedure, as we have discussed in Section 5.3. A better approach is to estimate these 

parameters in a batch perspective given all the positions and types of changepoints 

are simulated. W ith appropriate conjugate priors such as those we specified in our 

examples, an analytical solution to the posterior estimation is available, but can 

be quite computing expensive, particularly in Example 2 and 3. Alternatively, we 

can approximate the estimation by some numerical methods.

5.6 Evaluation of m ethodology

Our methodology only provides approximate inference of the model due to the 

following two reasons: (i) the assumption of conditional independence in approxi

mating the marginal likelihood p (y t+ i \ y i : t ,  Ct+i  =  M t+i =  Mi) and; (ii) the use 

of resampling scheme in approximating the posterior distribution p{C^Mt\yi-.t)- 

We focus on the model in Example 3.

Hence we diagnose the methodology in the two aspects. Firstly, we measure the 

discrepancy between the exact and the approximated model by root mean square 

errors (RMSE). We hope the value is negligible. Secondly, we evaluate the overall 

performance of our methodology by looking at the importance weights, which is 

the ratio of the marginal likelihoods based on the true model and the approximated 

model.
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5.6.1 A ccuracy
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We want to measure the difference between the exact model and our approximated 

model by calculating the respective posterior distributions. However, it is impos

sible to obtain the distribution of the exact multiple change point model within 

the particle filter framwork, due to the exponentially large number of combination 

of changepoints and segment models. Thus we just consider a single change point 

model with n  observations, where the exact algorithm is to calculate the posterior 

distribution simply by Bayes theorem, i.e

P{C\yi-.n) OC p{yi-.n\C = j)p{C = j)

oc p(yi:n\C = j)  since p(C = j)  = 

= ^ 2  p(yi:n | C = j, M )p (M ) ,
M

n
(5.19)

M  is the indicator variable which specifies the type of change point. For the whole 

batch of signals, a linear regression model like (5.3) also exists. In the case of the 

change point is continuous type (M =  0), H  is a n  by 5 matrix like

H  =

H ,  H ;

(5.20)

/

where H i, H 2 and H 3 are of forms

/  1 0 0 

1 X 2 - X l  {X2 -  X i ) 2
Hx =

 ̂ 1 X T X \  (X T X \ ) J
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1 XT+1 — X\  ( x T+i — X i ) 2

and

Ho =

y  1 x T+1 -  X i  ( x T+1 -  X X) 2 J
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H a =

0 0 

%t+2  ^ r + l  (*^r+2 *^T+l)

y  Xfi ^ r+ 1  (%n *^r+l) J

In the case of th a t the change point is discontinuous type (i.e. M  = 1), H  is a n 

by 6 m atrix of the form

H  =
^ H i 0 i

y 0 H 2 j

where H i and H 2 are of forms

H i =

1 0 0

1 x2 - x i  (x2 -  Xx)2

y  1  X T ~  X \  (X T ~  X i ) 2 j

H ,

1 0 0

1  3 ? r + 2  X T-\-i ( x t -\-2 ^ r + l )

y  1  X n X r -\-i (X n  3Jr - | _ i )  J

Since there is only one change point, the weight defined by (5.11) can be calculated



CHAPTER 5. DEPENDENT CHANGEPOINT MODELS

exactly by (4.4) with H defined here.
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We can adapt the output of our methodology to the case of a single changepoint 

by calculating p(Cn = s\Cs =  0, y i;n) instead of p{Cn\yi:n). This conditional 

probability is

p(Cn = s\Cs =  0 ,y i :n) oc p{Cn = s\yhn)p{Cs = 0\y1:n),

where both terms on the right hand side are calculated by our filtering algorithm 

as p(Cs =  0 |y i:n) =  p(Cs =  0 |y i:a) under our geometric distribution.

We simulate 200 signals from the Heavisine function (see Donoho and Johnstone 

(1994) and the Appendix C) plus normal noises. We split the data into three parts 

so th a t each part has a single change point. The lengths of the data set are 100 

(top),70 (middle) and 100 (bottom) respectively. There are overlaps for these data 

sets. Figure 5.5 demonstrates the re-constructed curves from the 3 different data 

sets (right panels) as well as the difference between them (left panels). To give a 

comprehensive comparison, we also put the true curve and the differences between 

the true and fitted curves in this figure.

Figure 5.4 gives the marginal posterior distribution of change points (left panels) 

and its joint distribution of being discontinuous (right panels) Respectively. Each 

plot has two outputs produced by the two algorithms. Corresponding to Figure 

5 .5 , the two plots at the bottom give almost identical distributions which due to 

the positions and types of changepoints being obvious from the data. However, 

the results generated on the basis of the first two data sets are worth more a t

tention. The two distributions in each plot are at first sight quite different. But 

the results are still satisfactory. Firstly, they have shown where the true change 

points are with relative probabilities. Secondly, they have given the types of change 

points correctly with very small probabilities of being continuous change points. 

Thirdly, the rough positions and the types of change points found by both exact
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Figure 5.4: The plots on the left show the two different marginal posterior distribu
tion of the position of change point,i.e. p(C |y i:n) (The approximated distribution 
is actually p{Cn\Cs = 0, y i:n)). The plots on the right show the two different joint 
posterior distribution, i.e. p (C ,M |yi:n)- (Red line: Approximated distribution; 
Blue line: Exact distribution)
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Figure 5.5: Left panels: The three lines in each plot are true curve (green solid line), 
fitted curves by approximated algorithm (red dash line) and by exact algorithm 
(blue dash line), respectively. All the curves are produced by averaging across 100 
independent realisations. Right panels: The three lines in each plot are differences 
between every two curves over time. The red line is that between approximately 
fitted and true curves. The blue line is that between exactly fitted and true curves. 
The green line is that between approximately fitted and exactly fitted curves.
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RMSE Data Set 1 Data Set 2 Data Set 3
True & Appr 0.5841401 0.7313837 0.4033361
True & Exact 0.6741613 0.7322288 0.4074075
Appr & Exact 0.2790919 0.0878510 0.0313473

Table 5.1: The Root Mean Square Error between every two lines out of the true 
line, the line produced by approximate algorithm and the line produced by exact 
algorithm. D ata Set 1, 2 and 3 correspond to the top left, top right and bottom 
left plots of Figure 5.5

and approximated algorithm are almost identical.

According to the real curve, there is a sharp change in both the first and third 

data sets. All the curves fit the data very well (even better than the true curve 

itself) and each pair of fitted curves in the plot are almost identical, especially 

for the third plot where there is an obvious break. It is also not surprising that 

the first two plots show the relatively bigger discrepancy of each pair of curves 

since the change point is not obvious. The left plots tell us the differences between 

every two curves. The green line records the discrepancy between the two curves 

produced by approximated and exact algorithm at each time. It is around 0 at 

most time, and is smaller than the difference with the true curve: suggesting that 

the approximation error is small compared to the uncertainty m the data. This 

shows the differences in between the positions and types of changepoints have a 

noticeable effect on the influence of the underlying curve.

We can quantify the difference between the performances of algorithms by calcu

lating the root mean square errors (RMSE) between curves. The RMSEs between 

the exact line and the true line, according to Table 5.1, are almost the same as 

those between the true line and approximated line. Furthermore, there is no evi

dence tha t the exact algorithm does better at fitting the curves: in fact RMSE is 

lower for the approximate algorithm m all cases.
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5.6.2 Im portance w eights
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We measure the discrepancy between the approximated and the true model with 

respect to the importance weights, to see the effect brought from the approximation 

on the whole data set, not only limited to the single changepoint model.

The importance weight is a ratio between the true joint probability and the ap

proximated one, which is of form:

p ^ ( C , M |y 1:n)
,mport “  ^ ( C , M | y 1;„ ) ’ (5'21)

where C denotes all the changepoints positions and M  denotes the corresponding 

model types. The idea is that we can simulate sets of (C, M) (which is a natural 

output of our filtering and smoothing algorithm) from the pappr(C, M |y i;n) and 

evaluate this proposal probability directly. Further, we can calculate the true 

joint probability for a set of realisation of (C,M).  Thus ptrue(C, M |y i;n) can be 

calculated in a batch way as:

ptn* (C  M |y 1;n) cc p(y1;n|C, M )p(C)p(M ),

where p (y i;„ |C ,M ) is tractable as we have a linear model (5.5) and conjugate 

priors.

Obviously, the calculation is involved with a huge matrix if the data is quite large, 

and this is the reason we can only check the importance weight on a small amount 

of data, 500 say. Evidence that pappr(C, M |y i:n) «  ptrue(C, M |y 1:n) would be that 

the result importance weight will be approximately constant. This would further 

suggest th a t if the ratio between the two models is required then our algorithm 

would give a good approximate distribution.

Figure 5.6 and 5.7 show importance weights for 1000 simulation of (5.21) under for



C H APTER 5. DEPENDENT CHANGEPOINT MODELS 120

CO

CM

O
0 200 400 600 800 1000

Simulations

o

o
T

0 100 200 300 400 500

Index

lO
CM

o
CM

in
o

800 1000600400200

Simulations

o

o

cni

400 500300200100

Figure 5.6: The importance weights from 1000 replicates of simulations and the 
fitted curves, each of which is an average of 1000 realisations, chosen from the sim
ulation results by the importance weights we calculated. Upper. The importance 
weights and fitted curve of the Heavisine data. Bottom. The importance weights 
and fitted curve of the Blocks data
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simulation results by the importance weights we calculated. Upper right. The 
importance weights and fitted curve of the Bumps data. Bottom. The importance 
weights and fitted curve of the Doppler data.
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Example Heavisine Blocks Bumps Doppler
ESS 633 621 387 372

Table 5.2. The effective sample size (ESS) of each data set based on the 1000 
simulation in Figure 5.6 and 5.7.

each of the distribution as well as an average of the fitted curves that are selected 

from the 1000 realisations according to the importance weights. Note that the 

performance varies with data sets. This can be easily seen from the ESS of the 

importance sampling given in Table 5.2. With the data sets which have more 

changepoints, and more uncertainty about changepoints (e.g. Bumps and Doppler 

data), the importance sampling has a smaller ESS value ( which are 387 and 372, 

respectively). Note that the ESS used on those data sets for 1000 realisations is 

still impressive for what is a very high dimension problem.

5.7 Sim ulation studies

We tested our filtering and smoothing algorithm, with our model of Example 

3, on a variety of simulated data sets. These data sets include both smooth 

and unsmooth functions, by which the key feature of our algorithm will be fully 

explored. Most of the focus here is on the Bayesian analysis with the model of 

Example 3.

For simplicity, we specify the same hyper-parameters for all the data we will test, 

although more sensible choices should be the empirical estimations. These hyper 

parameters are listed below:

(i) The segments follow a geometric distribution with parameter p 0.004,

(ii) The segment model has a Bernoulli distribution with parameter equal to 0.5;

(iii) The a2 follows an inverse Gamma prior with v  =  10“3 and 7  =  10-3 ;
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(iv) Given the a , the regression parameter (3k follow a multivariate normal prior 

with mean 0 and D fc =  diag( 104,106,108).

Note th a t the types of changepoints are influenced by the prior distribution of 

(3kos. So we can not use improper priors for f3k0.

W ith these prior settings, we simulate for each data set 1000 replicates of the 

changepoints and segment models, and hence the regression parameters, based on 

which, a curve can be fitted. The final curve is an average of the 1000 simulations. 

All the results are obtained in a few seconds on a desktop PC with an AMD 

XP 1700Hz CPU. This is much faster than some iterative methodology such as 

MCMC. The efficiency comes from two aspects: (i) the SRC resampling scheme 

and; (ii) the sequential computing process for the weights w[s,M  ̂ (see Appendix B 

for the calculation).

To monitor our results, we look at the mean square errors (MSE) of the models 

generated by our algorithm, given by

MSe M A ^ - / ^ ) ) 2, (5.22)

where /(•) is a piecewise quadratic regression model. With these values, we un

dertake comparisons of our methodology (denoted as CPF) with some others, the 

full list being:

A1 The partial Bayesian approach of Denison et al. (1998) (DMS) implemented 

with a hybrid sampler. By partial, we mean that changepoints are estimated 

with a RJMCMC methodology while the regression parameters are estimated 

by a least square estimation;

A2 The fully Bayesian approach of DiMatteo et al. (2001), which is known as 

Bayesian adaptive regression splines (BARS). They use a particular con

jugate prior on the regression parameter called the unit-information prior
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(Kass and Wasserman, 1995) so that the RJMCMC can be used to infer the

changepoints as well as parameters.

A3 The online algorithm of Chapter 4 (denoted as DPF), in which all change

points are thought to be discontinuous.

Note th a t for A l and A2 , we use a Poisson distribution with mean equal to 5 to 

model the number of changepoints, and use the same prior as ours for cr2 , tha t is 

^ =  10-3 and 7  =  10-3. However, for A3 that is the online algorithm of Chapter 

4, we have to use an very informative prior for the cr2 to make sure the curve can 

be fitted.

5.7.1 Sm ooth  curves

We begin with two smooth functions which only contain continuous changepoints:

(a) h{x) =  x  +  2exp(-16rr2) x e  [—2, 2],

(b) h(x) = sin(2rc) +  2exp(-16:r2) x  G [-2,2].

The data has been analysed by Denison et al. (1998), and to ease the comparison 

with the their results , we only simulate 200 data for each function in [0 , 1], as 

they did. We take the values Xt on a uniform grid with n = 200 points, i.e. 

x t = ( t -  l ) / ( n - 1). However, x t can be also randomly located on the interval [0,1]. 

The larger data set can be used without any difficulty though. The zero-mean 

distributed noises s have variances equal to u 2 =  0.4 and cr — 0.3 respectively 

so th a t the signal to noise ratio is 3.

Although the tested curves are continuous everywhere, we allow for a model choice 

in our algorithm. The prior probability of being each type of changepoints is 0.5. 

The algorithm will choose a proper type according to the data itself. Figure 

5.8 shows the posterior distribution of both the types and the positions of the
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Figure 5.8: Left plots: The marginal posterior distribution of positions and types 
of changepoints p{Ct-, red lines represent the discontinuous changepoints
and green lines represent the continuous changepoints. Right plots: The true 
curves (blue lines) and the fitted curves (red lines)
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Example DMS BARS DPF CPF
(a) 0.0097 0.0071 0.0150 0.0121
(b) 0.0087 0.0039 0.0131 0.0090

Table 5.3: Mean square error of each methodology on the smooth curves in Figure 
5.8. The MSE of DPF is calculated based on (a)v =  6250, 7  — 1000 (so that 
E(cr2) =  0.42); and (b) v =  11111,7 =  1000 (so that E (a2) =  0.32)

changepoints, as well as the fitted curves. All the changepoints are found to be 

continuous and the fitted curves are as smooth as the true ones.

We calculate the MSE by (5.22) for our methodology as well as three other method

ologies (i)-(iii) that we mentioned before. The results is displayed in Table 5.3. 

BARS has the best performance followed by DMS according to the MSE. However, 

we have advantage on efficiency. The DPF has the worst performance although a 

very informative prior is given. This is because all the changepoints are modelled 

as discontinuous with DPF.

5.7.2 U n sm ooth  curves

The unsmooth curves we used to test the performance of our algorithm on the wig- 

gly examples come from four typical simulated signals (Heavisine, Blocks, Bumps 

and Doppler) in Donoho and Johnstone (1994). The underlying functions (without 

the standard noise e) of them are given in the appendix. We simulate n = 2048 

points for each sample, and set the noise variance to be a2 =  1. Again we take 

values x t a fixed uniform design on the interval [0 ,1] such that x t =  {t— 1) / ( n — 1).

We first focus on the Heavisine data set only because of its typicality. The perfor

mances of our algorithm on all the other data sets will be presented afterward.

According to Donoho and Johnstone (1994), the Heavisine plus white noise is of 

form consists of three Sine curves with different intercepts. The three curves are 

connected at two real change points, 0.3 and 0.72 in the interval (0,1). But there
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Figure 5.9: Heavisine curve. Upper: The marginal posterior distribution of po
sitions and types of changepoints, p(Cu M t |y i :n). Red lines represent the discon
tinuous changepoints while green lines represent continuous ones. Middle: the 
simulated data and the fitted curve. Bottom: the true curve.
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Figure 5.10: The variance of noise, a2 (red line), and its 95% confidence interval
(blue lines) over time.
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Figure 5.11: Blocks curve: Upper: The marginal posterior distribution of positions 
and types of changepoints, p(Ct, Mt \y1:n). Red lines represent the discontinuous 
changepoints while green lines represent continuous ones. Middle: the simulated 
data and the fitted curve. The bottom plot is the true curve.
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Figure 5.12: The variance of noise, a2 (red line), and its 95% confidence interval
(blue lines) over time.
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Figure 5.13: Bumps curve: Upper: The marginal posterior distribution of positions 
and types of changepoints, p(Ct,M t |y i:n). Red lines represent the discontinuous 
changepoints while green lines represent continuous ones. Middle: the simulated 
data and the fitted curve. Bottom: the true curve.
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Figure 5.14: The variance of noise, cr2 (red line) , and its 95% confidence interval
(blue lines) over time.
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Figure 5.15: Doppler curve: Upper: The marginal posterior distribution of posi
tions and types of changepoints, |y i:n). Red lines represent the discon
tinuous changepoints while green lines represent continuous ones. Middle: the 
simulated data and the fitted curve. Bottom: the true curve.
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Figure 5.16: The variance of noise, a2 (red line), and its 95% confidence interval
(blue lines) over time.
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should be some more changepoints in between the changepoints 0 and 1 if we use 

quadratic regression function. This is because the complete Sine curve is impos

sible to be fitted by one quadratic line. These kind of changepoints should be 

continuous as the curves are required to be connected smoothly at those change

points. Looking at the plots in Figure 5.9, we can find the all the changepoints 

accurately especially the continuous changepoint in the middle which is not very 

obvious though.

We fit the Blocks data set by using a piecewise quadratic model although a piece- 

wise constant model is also available in which there is no model choice at each 

segment, i.e. the prior probability of being discontinuous changepoints are 1. Fig

ure 5.11 shows the results of the quadratic model. The discontinuous changepoints 

are evidently detected with a probability being 1.

The Bumps data set in Figure 5.13 is a bit harder, as they are involved with much 

more changepoints. However, the performance of our algorithm is still surprisingly 

good.

The Doppler data is the most difficult one to be analysed. Unlike the previous 

examples, there are no evident changepoints in terms of its formula. The change

points are detected for fitting purpose only. The data points located in the begin

ning area is very hard to be fitted. An informative prior for a2 generally results in 

a flatter curve. On top of changing this prior, we can also increase the transitional 

probability at the expense of increasing computational cost for the estimation of 

regression parameters. Many more changepoints are found with the change of the 

transitional probability, and hence the fitted curve will become as wiggly as the 

true curve.

We also examine the variance of the noise, <r2, by calculating the mean and 95% 

confidence interval of a2. Figures 5.10-5.16 present the evolving process of a2 for 

t =  1 , . . . ,  2048. All but the Bumps data set have a good performance th a t the
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of converges to the true value of a 2, which is 1. The Bumps data returns a value 

approximately equal to 1.5, because it does fit the peaks in the data set well.

The MSE of these four results are also listed in Table 5.4, together with other three 

methodologies. In general, the BARS outperforms the other three methodologies 

on relatively smooth function (e.g. the Heavisine and the Doppler) in terms of 

MSE. However, BARS is the most time-consuming methodology followed by the 

DMS, and BARS is not good at analysing the data with too many discontinuous 

changepoints (e.g. the Blocks and the Bumps). DPF and CPF are almost the 

same on both the efficiency and accuracy. The advantage of the CPF is tha t no 

informative prior is needed.

For the Heavisine and Blocks data sets, the CPF has a big improvement on MSE, 

compared to the DMS. However, for the Bumps and the Doppler data sets, the 

continuous function assumed by DMS model is a better choice. This might because 

th a t (i) in Bumps example, the estimation a2 is incorrect; and (ii) in Doppler 

example, the transitional probability is not properly chosen. W ithout these two 

problems, the result of our methodology is surprisingly better, as tha t can be seen 

from the Heavisine and Blocks example.

Further we check the performance of our algorithm on Example 1 by choosing the 

prior probability of being discontinuous changepoints as 1. The MSEs calculated 

on these four data sets are 0.025, 0.018, 0.305 and 0.194 respectively. The perfor

mances are only slightly worse than the DPF case except for the Blocks data where 

the advantage of DPF is its ability of fit a piecewise constant model. Otherwise 

the results suggest our method does well at inferring cr2.

A more detailed comparison will be presented in the next section.
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Figure 5.17: We have compared 4 methodologies on the Heavisine data set. Top 
left: the methodology of Denison et al. (1998); Top right: methodology of DiMat- 
teo et al. (2001); Bottom left: Methodology of Chapter 4; Bottom right: M ethod
ology of our algorithm. The blue dash line is the true curve and the red line is the 
fitted curve. The circles in the bottom  plots indicate the slight difference of those 
two curves.
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Example DMS BARS DPF CPF
Heavisine 0.033 0.015 0.022 0.017
Blocks 0.170 0.285 0.010 0.019
Bumps 0.167 0.251 0.294 0.286
Doppler 0.135 0.081 0.188 0.194

Table 5.4: Mean square error of each methodology on the unsmooth functions in 
Figure 5.9-5.15. The MSE of DPF is calculated base on v = 1000 and 7  =  1000 
(so th a t E(cr2) =  1

5.7 .3  Further com parison

Examining our algorithm only the MSE is not complete. As the selling-point of our 

algorithm is its ability to adapt both the sharp jumps and gradual change in the 

curves, we compare the result of our algorithm with the other algorithm (i)-(iii) 

on the Heavisine data by plotting these fitted curves. The result of comparison is 

presented in Figure 5.17.

From these plots, it can be seen very clearly tha t the methodologies of Denison 

et al. (1998) and DiMatteo et al. (2001) are unable to deal with the sharp changes. 

Both two fitted curves are smooth everywhere. This is because tha t the model of 

piecewise polynomials they were using is basically a special case of our model, with 

all changepoints continuous. Another disadvantage of such kind of models is tha t 

the dependence across the segments are likely to produce much more changepoints. 

For example, Denison et al. (1998) found on average 17 changepoints while our 

methodology only found 7 changepoints on average, which suggests an over-fitting 

with their methodology.

In contrast, the methodology developed in the previous chapter is unable to keep 

the smoothness of the curve. As it supposes all the observation across segments are 

independent of each other, the model they were using is basically another extreme 

case of our model, i.e. the model with all changepoints discontinuous. This is also 

the case of Punskaya et al. (2002). Obviously, our model reconciles these two kinds 

of models by adding a model choice step in each segment.
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Figure 5.18: Plot of well-log data.

5.8 W ell-log data

A typical example of changepoints detection problem is the well-log data consid

ered in Chapter 5 of the book by 0  Ruanaidh and Fitzgerald (1996). This is 

a geophysical data containing measurement of nuclear magnetic response at 4050 

time points. The data, which is plotted in the Figure 5.18, is collected from around 

the drill head when drilling for oil, and contains the information about the rock 

structure th a t is being drilled through. In particular it contains the information 

about the boundaries between rock strata. When drilling for oil, it is im portant to 

be able to detect these boundaries, in order to adjust the drilling pressure for the 

new rock type. These readjustment could prevent blow-outs: sudden uncontrolled 

flows of drilling fluid, oil or water, up the borehole, which are caused when the 

pressure exerted by fluids in the rocks exceeds the pressure in the borehole.
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5.8.1 H istorical m ethod olog ies
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A number of techniques, based on a step function tha t is used to model the un

derlying states, have been well established. The changepoints in the step function 

relate to the rock stra ta  boundaries, and are assumed to follow a Markov process 

with a transitional probability p. O Ruanaidh and Fitzgerald (1996) firstly anal

ysed the data  by using a Gibbs sampler, based upon the following conditions: (i) 

the outlier points are removed by hand before the data were analysed; (ii) the 

number of changepoints is fixed to 13 in the data; and (iii) the distribution of 

observations is modelled as Laplacian.

Fearnhead (1998) pointed out tha t a normal distribution is more appropriated to 

the observations. W ith such a model, Fearnhead and Clifford (2003) developed 

an on-line algorithm to the data through the Mixture Kalman filters (see also 

Section 3.4.1), in which the decision about both the outliers and the number 

of changepoints can be dealt with automatically. The computational cost of the 

algorithm is roughly linear to the data. An MCMC version of the on-line algorithm 

is the Gibbs sampler in Chapter 6 of Cappe et al. (2005).

Starting from a similar model (where there is no function for outliers), the forward- 

backward algorithm of Fearnhead (2005) can produce an exact inference for the 

model. The outliers are removed by hand before the data analysis (O Ruanaidh 

and Fitzgerald, 1996). But the single step function model of Fearnhead and Clifford 

(2003) is inappropriate here as it requires too many changepoints to fit the data.

5.8 .2  M od el and prior

The step function only gives a very rough estimation to the underlying states, and 

it is not accurate sometimes, as the rock style usually changes in a smooth way. 

Thus, adjusting the drilling pressure very suddenly at some time is dangerous,



CHAPTER 5. DEPENDENT CHANGEPOINT MODELS 137

which can easily cause the blow-outs. By contrast, we consider the piecewise 

quadratic regression model of Example 3 so tha t a much more detailed underlying 

curve can be provided: if a discontinuous changepoint is detected, it means a 

change of the rock structure; if a continuous changepoint is detected, a smooth 

adjustment of the pressure should be made within the structure.

The major outlier points are removed from the data before they were analysed. 

Then the rest of 3952 data points are assumed to follow an informative prior with 

ji = 115000 and v  =  10000. For the sake of computational simplicity, we suggest 

to rescale the data to follow a standard normal distribution such tha t

^ neu; =  X -  115000 
10000

The time between two changepoints is assumed to follow a geometric distribution 

with expectation 1/p, so the X t follows a Markov process with transitional proba

bility p. Visual inspection shows tha t there are roughly 16 changes in a sequence 

of about 4000 observations, so the average of the incremental distribution is about 

250, suggesting tha t a suitable value of the transitional probability P (X t+i\X t) is 

p =  1/250.

Fearnhead and Clifford (2003) suggested £ follows a iV(0, a2) distribution, where 

a  is set to 0.25 (= 2500/10000).

However, we assign an inverse Gamma distribution to a2 with v =  2 and 7  =  

2 ; and a multivariate normal distribution to (3 with mean vector equal to zero 

and variance matrix of form a2 x diag(42, 1002, 10002), as their prior distributions 

respectively. The two types of the changepoint have an equal prior probability, i.e. 

p(M i) =  p(M 2) =  0.5.

All priors but th a t of /3k0 are uninformative, because the (3k0 affects the decision of 

the types of changepoints. According to the settings in the previous methodologies,
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Pko ~  iV(0 , 0.252), we choose S0 =  1/0.25 =  4.
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5.8 .3  R esu lts

We simulate 1000 realisations of the positions of changepoints and the underlying 

states for each model. The filtering and smoothing algorithm is realised by a C++ 

code with an R  interface. The block sampling part for the regression parameters, 

and hence the calculation of the fitted curve are done in a complete R  environment. 

It only took 7 minutes for the filtering and smoothing algorithm to run over the 

data.

The result obtained from a piecewise quadratic model is given in Figure 5.19. The 

marginal posterior distribution of the positions of the changepoints is calculated 

empirically, and the underlying signal indicated by the red curve is an average 

of the 1000 realisations of the fitted curves. The 17 major clusters are evidently 

segmented by the 16 discontinuous changepoints. The continuous changepoints 

are scattered in between these discontinuous changepoints, to reflect the gradual 

change of the rock style. Note th a t the number of changepionts also depends on 

the prior of (3ko-

The common parameter a 2 is updated by the Kalman filter at each time. The 

observations are long enough to give a very narrow range of a. The posterior 

distribution is shown in Figure 5.20. The mode of a is 0.232 which is close to the 

empirical estimation of Fearnhead and Clifford (2003).

5.9 D iscussions

We have extended the model considered in Chapter 4, allowing for the dependence 

of the observations across segments. As a specific application , we have considered
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Figure 5.20: The posterior distribution of a in piecewise quadratic model.
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a piecewise polynomial model for curve fitting. The novelty of our methodology is 

its ability to handle both continuous and discontinuous changepoints.

The param eter estimation could be concurrent with the filtering procedure. How

ever, a better estimation based on the block sampling is available at the expense 

of greater computational cost.

Unlike th a t in Chapter 4, this changepoint model can be only inferred approxi

mately even without the resampling steps, due to the dependence structure of the 

observations. Hence we have focused on the error brought by the approximation. 

Firstly we have difference between the approximated model and true model on a 

single changepoint case. Then for the multiple changepoints case, we have drawn 

the plots of importance weights over simulations. The results from this two as

pects have shown tha t our approximation is sensible. We have not checked the 

effect of the resampling algorithm, as it has been fully explored in Chapter 4. The 

theoretical result developed there will be similar in the two dimensional case.

We have tested our methodology on both the smooth and unsmooth curves, and 

compared the results with three other well established methodologies in terms of 

mean square error. On some data sets (e.g. the Heavisine and the Blocks), we 

have obtained surprisingly small MSE. In general, our MSEs are more or less the 

same as the others.

Finally, we have applied our methodology to the well log data. While previous 

analyses on such data mainly use a step function model we adapt a quadratic 

regression model. A more detailed result has been given with our methodology. 

However, within the framework of the changepoint model, more general observa

tion equation can be used to describe the data in which the likelihood function 

P(s,£ , (, M )  might be intractable. Thus a numerical method is needed to obtain 

it.
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Compared to the RJMCMC, our methodology does have an advantage on com

puting time due to the innovative resampling algorithm. All examples mentioned 

in the chapter can be analysed in a few minutes. Compared to the previous on

line algorithm, we have a more powerful smoothing procedure, with which we can 

start from a very diffuse prior while the previous ones need an informative one. 

However, the performance of our method is partly dependent on the data size. For 

example, if the data is small, we may not have enough observations to  gaurantee 

the convergence of a2.

5.10 A ppendix

A: R eparam terisation  w hen  calcu lating th e  P(s, (sm ) in E x

am ple 2

In Example 2, the marginal likelihood P (s , t, (sm ) can be easily calculated analyt

ically by reparameterising f3k as

AcO — PkQ ~  pk,

Pkj  =  Pkj,  for j  =  1 .

Thus

f a - M V N & a 2 D k), 

where D fc =  diag(r)2, S f, . . . ,  Consequently, we define yt such tha t

y S+l:t =  Ys+l-.t -  Pk  =  +  £ •

W ith the reparamterisations, the marginal likelihood P(s, t, (um ) can be calculated 

in the same way as it is calculated in Example 1.
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B: Sequentia l calcu lation  o f

We rewrite w fh  as

p(ys+i:t|Ct+i)
L *  I(3k f (ys+l:t+l \Pk,  (J2)TT{(5k)Tl{(J2)d(3k(I(J2 

L 2 f(3k f (ya+i: t\Pk ,  cr2)7r(pk) n ( a 2) d p kd a 2 

J a 2 f p k f{y t+i \Pk,  cr2) f { y s+i:t\f3ki a 2)7r(pk)7r(a2) d p kd( j2 

JU Ip k f (ya+\: t\Pk ,  <J2)7r(Pk)lv((T2)dPkd<72

For the sake of simplicity, we ignore the subscript t and t +  1 here. Integrating out 

Pk first, we have

f ( y t+1\Pk,a 2)7r(Pk\ys+1:t)n (a2\ys+1:t)dpkdcr:

•v/ ( 2 tt(j )p |E |1/2
exp ^ - ^ ( P k -  P)t E 1(pk - f i ) ^ d p k

exP { ~ 2^2 [(2/i+i “  H p k )T (y t+i  -  H pk) +  (Pk ~  m)TE 1(Pk -  p ) ] |  dpk

exp [ P l ( H t H  +  E~l )Pk -  2 p l ( T I Ty t+ l  +  S “V ) +  Vt+i ~  P ^ P ]  |  d f t

Denoting

M  =  (H r H  +  S _1)_1,

N  =  ( H T y t+i  +  S - 1 / / ) ,

l l ymi r  =  v h  +  -  n t m n ,
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the integration can be reduced to

exp < —   > x
V 2 ^  |E |1/2 2tj2

L  i v k j  |Mrl/2exP { - ^  -  MN1TM"^ - MN]}'̂
1 IMI1/2 /  ||2/ml|2\

e x P  1 ------------------------------ - ( 5 - 2 3 )V2^  IS]1/2 K 1 2<j2

then the posterior mean and variance of (5k are (i = M N  and a 2r f  =  a 2M  respec

tively. Combined with (5.23), we continue to integrate out a 2 as below:

r  1 expj2 \/2 it<7 [ 2cr2 J V{y/2) \<j 2

1  ( t ' / 2 ) i / / 2  [  e x p  f _ l l ^ + i I I 2  +  T f f - 2  I  d ( j 2
^ V { v / 2 ) J ^  ' 2

1 (7 / 2 )^ 2 r((z/ +  l ) /2 )
\ / 27r ((||yt+i||2 +  7 ) /2 )(t,+1)/2 r (i/ /2 ) ’

(5.24)

again the posterior parameters are i> =  v +  1 and 7  =  7 +  | |^ +i ||2 respectively. 

Finally, we have

re(0 1 (y)^ 2 r((i/ +  l ) / 2) |M |1/2

A ( l l ? / m l l 2 +  7 ) (l/+1)/2 r( i//2 ) |S |V 2 -
(5.25)

Correspondingly, the posterior parameters of beta and sigma can be updated as

M ( =  ( H f H i  +  S - 1, ) - 1 ,

N( = (Hfy. + E pft),

INI2 = +  NfM,Ntl

fit+i — M tN t,

^ t+ i — M t,

vt+i = vt +  1,

7t+i =  7t+lbt l | 2-
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C: Form ulas for th e  sm ooth  functions

Heavisine:

h(x) =  4  s i n ( 4 7 r a : )  —  s g n ( x  —  0 . 3 )  —  s g n ( 0 . 7 2  —  x);

Blocks:

h{x) = Y ^ h kK (x  -  x k);

where

m

x k 

hk

Bumps:

h(x) =  ^ 2  hkK {{x -  x k) /w k);

where

K(t)  =  (1 +  l i l4) - 1; 

x k =  ( 0 . 1 , 0 . 1 3 , 0 . 1 5 , 0 . 2 3 , 0 . 2 5 , 0 . 4 , 0 . 4 4 , 0 . 6 5 , 0 . 7 6 , 0 . 7 8 , 0 . 8 1 ) ;  

hh =  ( 4 , 5 , 3 , 4 , 5 , 4 . 2 , 2 . 1 , 4 . 3 , 3 . 1 , 2 . 1 , 4 . 2 ) ;

w k =  ( 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 0 6 , 0 . 0 1 , 0 . 0 1 , 0 . 0 3 , 0 . 0 1 , 0 . 0 1 , 0 . 0 0 5 , 0 . 0 0 8 , 0 . 0 0 5 ) ;  

Doppler:

=  (1 +  sgn(t))/2;

=  (0.1,0.13,0.15,0.23,0.25,0.4,0.44,0.65,0.76,0.78,0.81); 

=  (4, - 5 ,3 ,  -4 ,5 ,  -4 .2 ,2 .1 ,4 .3 , -3 .1 ,2 .1 , -4 .2 );

h(x) = (x(l — x ))0'5 sin(27r(l +  t ) / ( x  +  e)), e =  0.05.
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C onclusion

The thesis has developed direct simulation methods for the multiple changepoint 

problems. The methods are based on the idea of particle filters, and our main 

contributions are in the following four areas.

Firstly, we have proposed an exact on-line algorithm to infer the changepoint 

model. That is to construct an exact filtering recursion for the changepoints over 

the time. The computational cost is quadratic in the number of observations. 

Once the filtering recursions have been solved, the direct simulations from the 

joint distribution of the changepoints is straightforward;

Secondly, we have introduced resampling ideas from particle filter to reduce the 

computational cost. We have extended two resampling methods on the basis of 

optimal resampling of Fearnhead and Clifford (2003) and rejection control of Liu 

et al. (1998), to involve stratified sampling. The importance of the resampling 

is th a t it provides an algorithm tha t scales linearly with the amount of data, at 

the expense of introducing small errors. The computing saving is important for 

application to large data sets such as the problem of inferring human GC content 

th a t we considered. Our new stratified rejection control algorithm allows the 

particle filter to automatically choose the number of particles required at each

145
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time-step, and this can lead to large reductions in error over methods with a 

fixed number of particles at each step. Both the two new resampling algorithms 

substantially outperform standard resampling algorithms on examples we consider. 

The approximation error brought by the two resampling algorithms can also be 

bounded in terms of Kolmogorov-Smirnov distance.

Thirdly, we have extended the on-line algorithm to make it applicable for the 

changepoint models with Markov dependence structure. However, unlike the ear

lier case, we can not obtain the exact filtering distribution due to the dependence, 

so an approximation method is used. We further have shown empirically that 

the approximation error is small by checking a single changepoint case and the 

importance weights based on a piecewise polynomial model.

Finally, we have applied our model to the specific curve fitting problem in which 

the underlying curve is normally subjected to the continuity at some changepoints. 

A piecewise polynomial model is considered. Compared with alternative models, 

the main advantage of our model is tha t it allows for both discontinuous and 

continuous changepoints. Our algorithm also has the advantage in terms of the 

computing speed as there is a magnitude of saving on the computational cost 

compared to the traditional RJMCMC method.
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