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Abstract—Multi-tenancy is used for efficient resource utiliza-
tion when cloud resources are shared across multiple customers.
In cloud applications, the data layer is often the prime candidate
for multi-tenancy, and usually comprises a combination of differ-
ent cloud storage solutions such as relational and non-relational
databases, and blob storage. Each of these storage types is
different, requiring its own partitioning schemes to ensure tenant
isolation and scalability. Current multi-tenant data architectures
are implemented mainly through manual coding techniques that
tend to be time consuming and error prone. As an alternative,
we propose a domain-specific modeling language, CadaML, that
provides concepts and notations to model a multi-tenant data
architecture in an abstract way. CadaML also provides tools
to validate the data architecture and automatically produce
application code to implement said architecture.

Index Terms—Domain-Specific modeling, Cloud Computing,
Multi-tenancy, Software Evolution, Code Generation

I. INTRODUCTION

Multi-tenancy is an architectural pattern where a single
instance of an application and its associated data stores serve
multiple tenants [1]. In this context, a tenant is a group of users
that belongs to an organization who has access with specific
privileges to an application [2]. Multi-tenancy is commonly
adopted in cloud environments as it enables efficient resource
utilization, and leads to lower operation and maintenance costs
through consolidation [3].

Introducing multi-tenancy affects development and evolu-
tion overheads at all layers of the application structure, and
the data layer is no exception. Multi-tenancy at the data
layer requires a data architecture to ensure isolation of tenant
data and requests, on top of the ability to scale. The data
architecture typically also needs to be extensible to support
tenant-specific customizations.

A further complication in the case of multi-tenant cloud
applications is the tendency to store data in different storage
types [4]–[6], i.e., relational and non-relational databases, and
blob storage. These are conceptually diverse, with each having
its own partitioning and extensibility approaches to support
multi-tenancy. Thus, building a data architecture that maxi-
mizes resource sharing with the optimal degree of isolation
requires developers to address multi-tenancy challenges and
to find a balance between several architectural trade-offs.

Domain-Specific Languages (DSLs) have been long pro-
posed to address multi-tenancy concerns, specifically to gener-
ate and/or maintain cloud implementations. DSLs are concise,
simple and expressive languages that aim to address prob-
lems of a specific domain through high level and abstract

notions [7]. There have been some successful approaches to
describe deployment configurations, provisioning and manage-
ment of cloud services (e.g., [8]–[11]), but multi-tenancy at
the data layer has not yet been appropriately addressed. For
example, CloudDSL [10] allows the specification of deploy-
ment information for a data layer on different cloud storage
services, but the actual data architecture and multi-tenancy
management patterns are not supported. Other model-based
techniques [12], [13] capture multi-tenancy patterns in the data
layer as a part of the application structure, but offer no support
for implementation of the expressed multi-tenancy model.

In this paper, we propose CadaML: a modeling language
for the design and implementation of cloud application data
architectures. CadaML is specifically designed to support
multi-tenant data architectures on different cloud storage types.
It provides graphical and automated support to build a data
architecture as a model, validate the model, and generate the
appropriate source code including various ways of managing
multi-tenancy.

The paper is the first to propose a domain-specific modeling
language for building multi-tenant data architectures of cloud
applications. CadaML is graphical and does not require any
syntax to be learned. It includes validation rules to ensure
reliable model-to-code transformation.

The rest of the paper is organized as follows. Section II
describes the problem domain and gives an overview of
different cloud data storage solutions with their partitioning
approaches. Section III explains the meta-model design of
CadaML, while Section IV details its implementation details.
We compare against related work in Section V, and finally
draw conclusions and outlines future work in Section VI.

II. PROBLEM DESCRIPTION

When developing a multi-tenant application, one of the
highest priorities is to design a configurable and scalable data
architecture that maximizes resource sharing across tenants,
and one that is also efficient and cost-effective to implement
and maintain [14], [15]. However, cloud applications have a
variety of data storage requirements and are often served best
by a combination of multiple data storage options [4], [5],
[16]. These storage options differ in storing and organizing
data. Moreover, each storage option has its own partitioning
and extensibility approaches to support multi-tenancy.



A. Data Store Types

In this paper, we focus on the Platform-as-a-Service (PaaS)
provisioning level of cloud computing as the one most com-
mon with developers [17]. We now describe PaaS storage
types, and illustrate the differences in storing and organizing
data with each type.
• Relational databases are appropriate for structured data

with a well-defined schema. Data is organized in tables
of rows and columns, with a primary key identifying each
row. Relationships are strongly defined in the data model.
• Non-relational databases (also called NoSQL) mainly

support key-value store models, and are suitable for
flexible data schemas. A partition key determines the
partition in which data will be stored, and a row key
identifies data within each partition.
• Blob/Object storage is ideal for completely unstructured

data such as documents, media files, or binary data. Data
is stored in buckets as a blob, where a key uniquely
identifies each blob (i.e., object or item) within a bucket.

B. Data Architecture Partitioning Schemes

A partitioning scheme is crucial to ensure isolation of tenant
data, and scalability of the solution when sharing application
code and data across all tenants. Each cloud storage type
has its own partitioning techniques. In this subsection, we
summarize these techniques after analyzing academic and
industrial literature, as well as cloud provider guidance.

In general, relational databases can be partitioned using:
(i) Separate databases: each tenant is served by a dedicated
database; (ii) Shared database, separate tables: all tenants are
hosted by a single database with separate tables per tenant
(with a tenant identifier in the table name, or a separate schema
can be used for each tenant); or (iii) Shared database, shared
tables: all tenants share tables in a single database, with a
tenant identifier is used to associate their records in each table.

Non-relational databases can be partitioned in one of two
ways: separate tables or shared tables. In the former, each
tenant’s data is stored in tenant-specific tables with a tenant
identifier as part of table names. In the latter, all tenant data
is stored in shared tables and a tenant identifier is included in
partition keys to associate rows with a tenant.

Separate and shared buckets are the main partitioning
techniques for blob storage. In separate buckets, all blobs
belonging to a specific tenant are stored in a single bucket
where a tenant identifier is included in the bucket name. In
contrast, shared buckets stores all tenant data in the same
buckets, but includes tenant identifiers in the blob names.

Given these varying partitioning schemes, manually imple-
menting a multi-tenant data architecture can be highly time-
consuming and error-prone especially for architectures utiliz-
ing more than one storage type. Recent research has aimed
to generate multi-tenant cloud applications from high-level
models in order to hide cloud-specific implementation details,
cf. [8], [9], [12], [13], [18]. However, existing approaches tend
to focus less on managing multi-tenancy in the data layer, and
instead focus on other aspects such as enabling configurable

Figure 1. The implementation process of the manual approach and CadaML.

application functionality, capturing different functional and
quality-of-service tenant requirements, etc.

III. DESIGN

To address the limitations of previous work, we present
CadaML to design a multi-tenant data architecture, and gen-
erate source code that is suitable for different cloud storage
types that are required.

A. Objectives

Through this work we aim to achieve the following:
• Describe an abstract multi-tenant data architecture.
• Generate data layer code to implement multi-tenancy over

different storage types.
• Reduce the development effort during the implementation

of a multi-tenant cloud data architecture.

B. Overview

A multi-tenant data architecture design varies depending on
the type of storage, and it even differs from its implementation.
Typically, the data architecture is implemented manually by
following guidance and patterns from cloud providers. A tra-
ditional manual implementation process covers the following
five steps as illustrated in Figure 1a:

(i) data layer requirements are gathered and captured in a
requirement specification document;

(ii) the requirements are analyzed into models, schemes and
business rules;

(iii) a data architecture is designed using database model-
ing tools, e.g., Database Deployment Manager, Database
Workbench, and ER/Studio;

(iv) developers implement a data access layer from the data
architecture model; and

(v) developers systematically discover and debug errors in
the code.

In this manual approach, whenever the data layer requirements
change, developers have to go through all these steps and mod-
ify the existing code. This process is usually time-consuming
and error prone.

To ease the development process of multi-tenant data archi-
tectures, we propose CadaML that allows to describe a data



architecture in an abstract level by hiding the implementation
details of different cloud storage types. As shown in Figure 1b,
a data layer implementation workflow using CadaML involves
the following four steps:

(i) First, as in the manual approach, data layer requirements
are captured;

(ii) The requirements are analyzed and a data architecture
model is designed using the graphical editor of CadaML;

(iii) The model is validated for constraints and validation rules
imposed by CadaML; and

(iv) The data access layer source code is produced from the
model.

In this scenario, changes in the requirements can be directly
reflected in the model, thus, code is generated from the model.

Compared to the manual approach, CadaML automates
the data access layer implementation by generating source
code from the data architecture model. In addition, CadaML
eliminates testing and evaluation phase through the validation
tool that handles errors at the model level before generating
any artefact from the model.

C. The Meta-model

Modeling languages are defined in a meta-model that de-
scribes language elements and relationships among them [7].
The concepts and notations of CadaML should correspond to
terminology that cloud data layer architects and developers
are familiar with. Thus, the meta-model has been created by
thoroughly analyzing common storage types characteristics of
different cloud providers (namely, Alibaba Cloud, Amazon
Web Services (AWS), Google Cloud Platform, and Microsoft
Azure), features of existing modeling languages (e.g., [12],
[13]) that support cloud application development, and pecu-
liarities of cloud data storage partitioning techniques that were
described in academic and industrial papers (e.g., [12]–[14]).

Figure 2 presents the concepts of the CadaML meta-model
and the interrelations therein. The main element of the meta-
model is DatabaseDiagram that represents a diagram in a
graphical editor where a developer designs a data architecture.
A diagram may include NoSQL Database, SQL Database and
Object Storage. NoSQL Database represents non-relational
databases with its partitioning schemes, and it consists of
tables (i.e., instances of NoSQL table) and their interrelations.
A NoSQL table is a collection of properties, where a property
is a fundamental data element with name and data type.
A NoSQL table must have a partition key and a row key
with their data types (i.e., STRING or NUMERIC), where
partition key values can be automatically generated by the
application by setting partitionKeyAutoGenerated parameter to
true. The relationships among tables are represented by NoSQL
reference, where source table and target table parameters refer
to multiplicity of relationships (i.e., ZERO, ONE, and MANY)
between tables.

Relational databases are expressed by SQL database. SQL-
Partition of a relation database is classified according to par-
titioning schemes that were described in Section II-B. A SQL

database is composed of tables and their relationships that are
represented by SQL table and SQL reference, respectively. A
SQL table consists of fields, and each field has name, data type
and isPrimaryKey parameters where the last parameter defines
whether the field is a primary key. In addition, autoGen-
eratePrimaryKey parameter allows to automatically generate
primary key values of a table by the application. The source
and target parameters of SQL reference refer to tables in a
relationship, and reference key indicates to a foreign key in a
target table. Where multiplicity between tables are expressed
by source table and target table parameters.

Object Storage is associated with Blob storage type. In blob
storage, data is stored in buckets. A developer can specify
partition of a bucket to one of the described in Section II-B
partitioning schemes. Object represents a blob that is persisted
in a bucket. An object is a set of attributes, where each
attribute has name, data type and isKey parameters. The
isKey parameter determines whether an attribute is a key that
will be associated with the object. A key for a blob can be
automatically generated by setting autoGenerateKey parameter
of an object to true. An object can be in relationships with
other objects which are expressed by object reference. The
source and target parameters refer to blobs in a relationship,
while multiplicity between blobs are expressed by source
object and target object parameters.

D. Multi-tenancy Management

Multi-tenancy is supported by capturing data segmentation
patterns of different data storage solutions in the meta-model.
Hence, developers can specify a desired partitioning scheme
for each storage type while modeling a data architecture.
Partitioning schemes are defined at bucket level for blob
storage, and database instance level for relational and non-
relational databases. Based on defined schemes, CadaML
produces corresponding implementation of the data access
layer. For example, in a shared bucket tenant isolation is
implemented by appending the tenant identifier to the blob
key when uploading and retrieving blobs.

The described meta-model offers benefits above existing
work, which mostly capture cloud services for defining provi-
sioning and deployment configurations of application compo-
nents. A few meta-models includes multi-tenancy patterns for
relational databases but do not comprise concepts to model
a cloud data architecture. In contrast, CadaML allows to
explicitly model a data architecture for different cloud storage
types with partitioning schemes, in line with current best
practices in this space, e.g., [19].

IV. IMPLEMENTATION

We decided to implement CadaML as a graphical modeling
language because of the following benefits. First, visual repre-
sentation of a data architecture makes designing database ele-
ments and relationships among them more convenient. Second,
it is easier to find and correct errors in a graphical model [20].
Finally, visualization of a model allows non-developers to get



Figure 2. The meta-model

an overview of a data architecture and intuitively develop an
understanding of the data layer design.

The implementation was done in Java using a total of 18,757
lines of code. This is broken down to 14,709 for the imple-
mentation of the meta-model, 83 for adjusting the graphical
editor, 299 for validation, and 3,666 for code generation. More
concretely, the meta-model was created using the Emfatic
syntax [21], and annotated using EuGENia [22] which is then
transformed into a concrete Graphical Modeling Framework
editor in the Eclipse IDE.

A. Validation Rules and Constraints

A key advantage of CadaML is that the model is validated
before generating other artefacts from it. Constraints and
validation rules are enforced at the level of the model that
can handle many kinds of errors. For example, names of
storage type elements (e.g., tables, fields in a table, buck-
ets, objects within a bucket) in data architecture must be
unique valid identifiers. As another example, non-relational
tables must have both partition and row keys, while relational
tables must have primary keys. In CadaML, validation rules
and constraints are defined in Epsilon Validation Language
(EVL) [22]. Most of the constraints are written based on
characteristics of cloud storage types and principles of the
Java programming language.

B. Code Generation

In order to increase developer productivity and code relia-
bility, CadaML includes a code generator that automatically
transforms a model created by a developer to executable Java
code for AWS. The code generator is written in Epsilon
Generation Language [22], and it produces 1) data models,
2) storage context classes, 3) Java interfaces, and 4) cloud

specific classes for each storage type. All code that is specific
to a storage type is located in different packages. In addition,
the generated code decouples the data access logic from other
layers of the application. This separation provides ease of code
maintenance, and allows to independently scale the data layer.

Blobs, relational and non-relational tables are each trans-
formed into a data model, a Java class with appropriate getters
and setters. For relational and non-relational tables, data mod-
els are annotated using Java Persistence API and DynamoDB
Java Annotations, respectively. The annotations are used to
map object fields to actual attribute names in database tables.
A storage context class contains storage related fields, such
as provider name, storage credentials, region, and replication
to initialize a storage connection. In the meantime, a Java
interface contains generic method signatures that are further
implemented by provider-specific classes.

Blob storage interface contains methods to initialize storage,
create a bucket, upload a blob, retrieve a single blob, retrieve a
list of blobs and delete a blob. While, the relational database
interface includes insert, select, update and delete methods.
Finally, non-relational database interface has methods to create
a table, save an item in a table, retrieve an item, and delete
an item from a table. It is worth noting that cloud provider
specific classes implement methods in a generic way that work
on different data models.

V. RELATED WORK

An XML-based modeling language [23] is provided by
Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) to define application components and their
relationships. Similarly, CloudML-SINTEF [24] is proposed
as a standalone DSL to express deployment specification of



application components. In both approaches, the data layer
of an application can be described as a separate component
with database properties. Another XML-based modeling lan-
guage, CloudML-UFPE [25], allows the description of the
data layer in terms of cloud resources and services with their
requirements. Using StratusML [26], a developer can specify
a storage group that will be used to persist application’s
data and describe different data partitioning strategies. Similar
approaches are adopted by Holmes [27] and Blueprint [28].
Multi-tenancy at the data layer in terms of quality require-
ments has been captured by leveraging Orthogonal Variability
Modeling Language [13]. In [12], feature modeling is used to
express data segmentation schemes for each functional part of
an application that interacts with the data layer. Tenants select
partitioning options, and a configuration information is gener-
ated based on the selected options. A modelling language is
proposed in [29] to handle non-functional requirements across
multiple providers, but not to handle data layer evolution.

These modeling languages automate the software provi-
sioning and migration by generating deployment specification
models. However, none of them allows the capture of multi-
tenancy patterns in the data layer, nor produce the data access
code from the model (only data definition scripts, in the case
of CloudML-SINTEF).

Although most real-world cloud applications use a com-
bination of different cloud storage types, current works are
geared mainly towards only partitioning relational databases;
e.g., [30], [31]. Employing different cloud storage types, and
accordingly dealing with their conceptual differences and
partitioning implementation peculiarities, is something that is
not addressed in the state of the art [32].

VI. CONCLUSION

Introducing multi-tenancy at the data layer makes for a
relatively laborious and error-prone development process. To
overcome this, we present a domain-specific modeling lan-
guage CadaML that provides support to create an abstract
data architecture model, as well as automated model-to-text
transformation to interpret the model and generate appropriate
source code for different cloud data storage types. Along with
its model validation support, CadaML relieves developers from
the need to create their own multi-tenant-safe implementation
and the details of managing different storage types, and instead
allows them to focus on their abstract data architecture model.
CadaML is a graphical language so no syntax needs to
be learned. For future work, we will evaluate CadaML by
applying it on the data layer of real cloud applications. We
will compare it against manual implementation methods in
terms of development overhead and code reliability.
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