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Abstract: In this article the problem of event-triggered (ET) state estimation for autonomous navigation of 

an aerial vehicle is investigated numerically. The aerial vehicle is considered as a general example of a 

nonlinear non-Gaussian system for state estimation under process and measurement noise. The motivation 

behind the problem is the conditions that the aerial vehicles are facing in extreme and hazardous 

environments due to constant exposure of the sensors and actuators to the high frequency process and 

measurement noises. Here we consider autonomous operation of a quadcopter for mapping of a radioactive 

environment, where the quadcopter may subject to radiations and non-Gaussian noises. Autonomous 

operation of the aerial vehicle with a limited available energy and for a longer period of time, demands an 

efficient management of the energy sources. Therefore, in this study we take the first step towards this goal 

by studying an event triggering strategy in which the data measured by the sensors is transmitted to the 

processing unit only if certain events happen. The sensor employed for navigation purpose is the inertial 

measurement unit, including accelerometers and gyroscopes, used to estimate the quadcopter states only 

when their measurements are informative. An event-triggered particle filtering (PF) state estimation 

technique is adopted for this application. The choice of particle filter as state-estimator is inevitable not 

only because of nonlinear and non-Gaussian nature of the system, but also because of non-Gaussianity of 

the conditional distribution of the posteriori probability density function resulting from the event triggering. 

In the proposed method, it is proved that particles are weighted differently in the case of event triggering 

and no triggering. The numerical results for robust nonlinear attitude stabilization of the quadcopter in the 

presence of event-triggered particle filter state estimation confirm the efficiency of the proposed method. 
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1. INTRODUCTION 

The quadcopters are increasingly used in various applications, 

particularly for search and rescue, surveillance and exploration 

under extreme conditions such as fire, earthquake, flood, and 

radiation conditions [2]. Of specific importance is nuclear 

decommissioning in which robotics and autonomous systems 

have opened their ways in such applications recently. For 

example, in [3, 4] the problem of dynamic modelling and 

parameter estimation of a hydraulically actuated seven degree 

of freedom manipulator for nuclear decommissioning 

applications is investigated. Although the developed 

mechanistic model is useful to predict the dynamic behaviour 

of the robot, optimisation techniques such as the one proposed 

in [14, 15] are used to tune the parameters of the developed 

gray-box model. The proposed approach relies on the so-called 

multi-objectivisation and resulted in a significant 

improvement in calibration of the hydraulic robotic arm [3, 4]. 

Alternatively, the use of quadcopter for can be used directly 

for radiation mapping of the nuclear environment [5, 6], or it 

is useful to improve the situational awareness of the robotic 

manipulator working in the same environment [7]. The main 

advantage of using quadcopter in the nuclear environment is 

its ability to accurately manoeuvre in a complex industrial 

setting and navigate deeply inside an unknown hazardous 

environment. To achieve this performance, finding the exact 

position and orientation of the quadcopter is crucial while it is 

equipped with navigation sensors, which are able to 

communicate with the central computing unit. The remote 

computing machine is usually able to facilitate calculations 

relating to the navigation problem of the vehicle. Such systems 

are referred to as cyber-physical systems in which the sampled 

measurements are transferred to a digital processor via 

wired/wireless communication networks. Although in such 

applications, the central processing unit is well equipped, 

sensors have limited energy resources, which should be saved 

as far as possible for autonomous operation of the vehicle. 

Moreover, there are restrictions in the communication 

channels, limiting the amount of data transferred by the 

sensors. To overcome this problem, an event based sampling 

strategies have attracted extensive attentions during the past 

two decades. The basic idea behind such a strategy is that the 

data is transmitted from sensors to the central processing units 

only if certain events are happening [1].  



 

 

    

 

The problem of state (attitude and position) estimation in a 

quadcopter UAV has been investigated in several valuable 

research works [5]. For example, [2] presents an Extended 

Kalman Filter (EKF) based quadrotor state estimation in which 

the data coming from the sensors is noisy and intermittent. The 

EKF filter provides the estimated information for the missing 

timestamps. An optimal Kalman Filter (OKF) has been used in 

[8] to estimate the system state vector of a small quadcopter 

with internal disturbances including the white Gaussian and 

measurement noises. However, the problem of event triggered 

state estimation has not been investigated so far for control and 

navigation problem of the quadcopters. 

Although in an event triggered state estimation problem the 

sensors measuring the outputs of the system at every sampling 

instant, the measured data are only sent to the estimator when 

a certain event happens. In this framework, once the 

measurements are received by the estimator, it updates the 

estimated states and when it is not received, the estimator 

selects a predefined value [1].  

Generally speaking, the quadcopter operating in the nuclear 

environment may be a nonlinear non-Gaussian system, and 

due to the non-Gaussianity of the conditional (posteriori) 

distribution as a result of event triggering, it is possible to 

apply the event triggered particle filtering (PF) similar to [1] 

for the quadcopter system proposed in this paper. The main 

feature of the proposed method is that, in the case of event 

triggering and no triggering, that particles are weighted 

differently. After this introduction, the paper is organized as 

follows. The system and measurement models of the 

quadcopter are presented in section 2. Section 3 provides 

information about the event triggered particle filtering 

approach. Simulation results are provided in section 4, and the 

paper is concluded in section 5.   

2. QUADCOPTER MATHEMATICAL MODEL 

2.1 System model 

A quadrotor includes four rotors that generate propeller forces. 

The propellers are in cross-shaped frame as illustrated in Fig. 

1. Variations on the forces and moments by proper adjustment 

of the rotors speeds produces the attitude changes in the 

quadrotor. The quadrotor attitude dynamics can be written in 

the following form [6]: 

 

Fig. 1. Schematic of quadrotor with coordinate axes.  
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where,  ,  ,   are Euler angles which are respectively 

known as roll (rotation around x -axis), pitch (rotation around 

y -axis) and yaw (rotation around z -axis). The inertia 

parameters around three axes are represented with 
xxI , 

yyI and 

zzI , and  1u , 2u  and 3u  are roll, pitch and yaw moments 

acting on the quadrotor system in the body frame respectively. 

Moreover, rI  is the inertia of the propellers and 
r  describes 

the relative speed of the propeller. Also, the parameters  , 


  and   are roll, pitch and yaw process noises which are 

zero mean non-Gaussian random processes with known 

probability density functions and variances of 2


 , 2


  and 2

  

respectively. 

Now, by changing the variables of the model presented in (1) 

in the standard state-space form 

1x  , 2x  ,  (2) 

3x  , 4x  ,  (3) 

5x  , 6x  , (4) 

the following compact nonlinear model of the system will be 

achieved 
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where, 
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It is worth mentioning that, 
6x  is the state vector with an 

initial value (0)x , which is generally non-Gaussian with 

known probability distribution and mean value vector 0µ , and 

covariance matrix 0P , 
3u  is the input vector, and 

6 3 3  f  is the nonlinear system function. 

Furthermore, 
6ω  is the process noise vector which is a 

zero mean non-Gaussian random process with known 

probability density function and the covariance matrix 

 2 2 2 2 2 2, , , , ,diag     
     Q . After discretizing the 

model of equation (7), the following general discrete nonlinear 

model is obtained 

 1 , ,k k k k k  x f x u ω
        (8) 

where the parameters are the discretized version of the one 

introduced in the continuous model in (7).  

2.2 Measurement model 

 The employed sensors in this paper are inertial sensors 

including gyroscopes and accelerometer. Three orthogonally 

aligned gyroscopes, sensing the angular rate of rotation about 

the three axes and are corrupted with the measurement noises. 

The gyroscope measurement model can be written as [10] 

,m w w w
  

         (9)
 

where, 
 

T

x y zw w w   w
 
is a 3 1  angular velocity in the 

body frame B  defined relative to the world frame Ε , and w  
is zero mean 3 1  measurement noise vector with known 

probability density function and covariance matrix 
wQ .     

3. EVENT TRIGGERED BASED PARTICLE FILTERING 

In this section, a summary of the event-triggered method 

proposed in [1] is presented to establish the theoretical 

framework required to apply the technique to the quadcopter 

system presented in section 2.  

3.1 Triggering condition 

In order to schedule the data sent by the sensors, a triggering 

index k , is introduced. Here 0k   means no measurement 

is transferred to the estimator and 1k    defines the 

transmission of measurements from sensors to the estimator.  

The event-triggering strategy is presented as 

 0    ,

1             

k k l k

k
otherwise
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where  .  is the triggering probability function which 

determines the information available to the estimator at the no-

event instants ( 0k  ), and 
k  is also considered as a random 

variable with a uniform distribution over  0 1 . Besides, 

k ly  is the measurement vector sent by the sensors at time the 

instant k l  which is the last information received by the 

estimator. The triggering condition here is defined by the 

probability of no-event given ky  and k ly  are known as   

 
   Pr 0 , ,k k k l k k l   y y y y

       (11) 

where  .  is the probability kernel with corresponding 

probability density function  .p  and is a function of ky  

and k ly , generally speaking. Different functions can be 

defined for  . :  0 1n  . For example, considering a 

stochastic send-on-delta with a Gaussian kernel we will have 

     
1

, exp ,
2

T

k k l k k l k k l   
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where Y  is a non-singular positive definite weighting matrix 

that determines the shape of the Gaussian kernel. The 

measurement information received by the estimator is denoted 

as 

  1
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k k
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Accordingly, the measurement history, which is a combination 

of a set of point-valued measurement is given by 

 1 2 1: , ,..., ,k k kI У У У У
       (14) 

3.2 Event-triggered Based Particle Filtering  

The MMSE estimate is the mean of kx  given all combined 

(set and point valued) information obtained from the event- 

triggered scheme, that is, the measurement history kI  as  

   ˆ nk k k k k kE p d  x x I x x I x
        (15) 

Since the quadcopter system may be a highly nonlinear and 

non-Gaussian system in general, it is impossible to obtain an 

analytical solution for ˆ kx  
similar to KF or EKF methods. That 

is due to the fact that the Gaussian assumption does not hold 

anymore. To overcome this problem, we employ particle filter, 

in which the probability density function of  k kp x I  is 

approximated in real-time using the importance sampling with 

a set of particles generated using system dynamics. According 

to the Sequential Importance Sampling with Resampling 

(SISR) method ([11], [12], and [13]), the particles are 

resampled using their corresponding weights obtained through 



 

 

    

 

measurement probability density function such that more 

important ones are selected amongst others.  

The posteriori probability density function,  k kp x I is giving 

the available hybrid information in two different cases of no 

triggering ( 0k  ) and triggering condition ( 1k  ): 

No Triggering when 0k  : 

   10,k k k k kp p   x I x I
  (16) 

 which gives [1]: 
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is the weight corresponding to 

the ith particle and 
i

k

x is the ith generated new particle using 

the system model, and 1

i

k



x  is the ith  resampled particle at the 

time instance 1k  . Also, N  is the number of generated 

particles. 

 After weight normalization we will have 
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where  10 ,i

k k kp  

 x I  is approximated by  .  as  

   10 , , ˆi i

k k k k kp   

 x I y y
        (19) 

 ˆ i i

k k

 y g x  is the output predicted by the ith particle of the 

estimator. 

Triggering when 1k  : 

   1,k k k k kp p x I x y I         (20) 

In this case,  k kp x I  is approximated with an equation 

similar to (15) with 
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 . The normalized 

weights are then computed as 
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It is worth mentioning that in both cases the normalized 

weights 
*, 1, 2,...,i i N  , are then employed for importance 

resampling (IR) in the particle filter algorithm. 

 

4. SIMULATION RESULTS 

In this section, the simulation results using MATLAB software 

for the event-triggered tracking of the quadcopter system is 

presented. Here the quadcopter is stabilized using a nonlinear 

robust sliding mode control technique presented in [5, 6].  

Physical parameters of the quadcopter which is an AR Drone 

Parrot 2.0 are measured [4, 5] and considered as 
27.72 10xxI    kg m2, 27.64 10yyI    kg m2, 0.1031zzI   

kg m2, 
51.8 10rI    kg m2 and m=2.5 kg.  

Figure 3 (a)-(c) illustrates the estimated and real values of the 

quadcopter roll, pitch and yaw angles when the triggering 

weighting matrix is selected as 
3 3I Y , where 

3 3I 
 is a3 3

identity matrix. Variation of the triggering index k  is also 

depicted in Fig. 2. Here, the number of particles selected for 

calculations is 1000N  . Furthermore, a Gaussian send-on-

delta event trigger condition with different weighting matrices,

Y , is considered. The weighting matrix determines the 

sensitivity to the triggering error and affects the 

communication rate. The estimation results are compared 

through root mean square error (RMSE) criterion when 

different triggering rates are considered. In Table 1, RMSE and 

percentage of reduction in the communication rate for different 

weighting matrices are summarized. As can be seen from table 

for the system considered here, with 83.86% reduction in the 

communication rate, it is still possible to have a good 

estimation of the system states with the level of accuracy 

comparable to 3.2% reduction in the communication rate.  

  

Table 1. Comparing RMSE and communication rate 

reduction for different weighting matrices 

Weighting 

Matrix ( Y ) 

RMSE Communication 

 Rate Reduction  

(percentage) 

3 31000I Y  53.7488 10  3.2119% 

3 3200I Y  55.4712 10  26.6255% 

3 3 100I Y  57.3402 10  53.2729% 

3 3 50I Y  59.6105 10  83.8603% 

3 3 10I Y  41.0112 10  99% 

 



 

 

    

 

 

Fig. 2. Triggering index for 
3 3I Y . 

 

 

 

(a) roll angle ( ) 

 

(b) pitch angle ( ) 

 

(c) yaw angle ( ) 

Fig. 3. Estimated versus the real values of the quadcopter 

Euler angles for 
3 3I Y .  

5. CONCLUSIONS 

In this paper, the problem of event-triggered (ET) state 

estimation (navigation) for a quadcopter UAV is studied. Here 

the model of the quadcopter is modelled as a general nonlinear 

non-Gaussian system on which particle filter is used for state-

estimation. The sensors employed for navigation and tracking 

control problem of the quadcopter are inertial measurement 

sensors, including accelerometers and gyroscopes which are 

transmitting the data to the estimator only in the occasions 

when the measurements are informative. The developed event 

triggered particle filtering (PF) method proposed in [1] has 

been employed for state estimation problem of the nonlinear 

quadcopter system. In the proposed method, the particles are 

weighted differently in the case of event triggering and no 

triggering, as proved in [1]. The simulation results 

demonstrates the efficiency of the proposed method for the 

quadcopter system to be used in extreme environments, 

especially for nuclear decommissioning applications. 
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