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The CAPTAIN Toolbox is a collection of MATLAB functions for non-stationary time 
series analysis, forecasting and control (Taylor et al., 2007, 2018). The toolbox consists of 
three modules, organised into three folders (or directories) as follows: 

• TVPMOD: Time Variable Parameter (TVP) MODels. For the identification of 
unobserved components models, with a particular focus on state-dependent and time-
variable parameter models (includes the popular dynamic harmonic regression model). 

• RIVSID: Refined Instrumental Variable (RIV) System Identification algorithms. 
For optimal recursive and en bloc RIV estimation of multiple-input, continuous- and 
discrete-time Transfer Function models. 

• TDCONT: True Digital CONTrol (TDC). For multivariable, non-minimal state space 
control, including pole assignment and linear quadratic optimal control design, and 
with backward shift and delta-operator options. 

The toolbox is useful for system identification, signal extraction, interpolation, forecasting, 
data-based mechanistic modelling and control of a wide range of stochastic systems. 

1.1  Documentation 

The following provide information about the toolbox: 

• The Getting Started Guide provides installation instructions, terms of use and an 
overview of the underlying methods, citing wide ranging research by Peter Young 
and colleagues. It is available from the CAPTAIN download web page. 

• Guide to RIVSID: Refined Instrumental Variable System Identification (Pedregal et 
al., 2024) is a legacy handbook for RIVSID but needs updating. The algorithms 
and models for RIVSID are more fully described by the extensive work of Peter 
Young (e.g. Young, 1984, 2011), including the latest research papers. Key concepts 
and algorithms for RIVSID are also reviewed in Chapter 8 of Taylor et al. (2013). 

• The present document, Guide to TVPMOD: Time Variable Parameter Models, is 
the handbook for TVPMOD. It provides a tutorial introduction to unobserved 
components models, including relevant function calls and other code. 

• The TDCONT module links directly to the book published by Wiley on True 
Digital Control: Statistical Modelling and Non–Minimal State Space Design 
(Taylor et al., 2013). The demos in TDCONT reproduce figures from this book.  

CHAPTER 1 
INTRODUCTION 
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1.2  Getting Started 

For installation instructions, terms of use and overview of each module, please see the 
Getting Started Guide available from the toolbox download page. 

Since CAPTAIN is largely a Command Line toolbox, it is assumed that the reader is 
already familiar with basic MATLAB usage, such as loading data and plotting graphs. 

To obtain a full list of functions for the TVPMOD module, type help tvpmod in the 
Command Window, replacing ‘tvpmod’ if necessary with the name of the folder 
(directory) chosen when you first installed the toolbox. 

>> help tvpmod 
  Captain Toolbox (tvpmod module) 
  Time Variable Parameter Models 
 
  Unobserved Components Models. 
    dhr       - Dynamic Harmonic Regression analysis. 
    dhropt    - DHR hyper-parameter estimation. 
    irwsm     - Integrated Random Walk smoothing and decimation. 
    irwsmopt  - IRWSM hyper-parameter estimation. 
    univ      - Trend with Auto-Regression component. 
    univopt   - Trend with AR hyper-parameter estimation. 
    ... 
 

Each function includes help information obtained in the usual manner e.g. help irwsm. 
Default input arguments are shown in parenthesis while (*) implies no default (hence a 
user input argument is always required for this variable). Some functions include more 
information, readable using e.g. type irwsm or edit irwsm. 

To open the Command Line demos for the TVPMOD module, 

>> tvpdemo 

A list of Command Line demonstration scripts is shown in the MATLAB Command 
Window. These are standard scripts (M–files) that can be run by entering their name (e.g. 
dardemo) or opened in the MATLAB editor (e.g. edit dardemo). They generally use the 
Command Window for input and output, as well as generating graphs in separate figure 
windows, so make sure these are visible. 

Note that, because of updates over time to MATLAB and CAPTAIN, you may obtain 
different numerical results compared to the examples below. However, if the results are 
very different, or if the code yields an error message, please inform the authors. 



 

3 

 

 

 

 

 

 

This chapter introduces one of the main methodological tools in CAPTAIN, namely the State 
Space (SS) model. Indeed, most of the models in the toolbox, though not all, are 
implemented in such a SS form. Originating from the state-variable method of describing 
differential equations, the SS approach has subsequently been developed for modelling by 
researchers in many different scientific disciplines and is, perhaps, the most natural and 
convenient approach for use with computers. It is a general and flexible tool that 
encompasses numerous time series models. 

In fact, a number of models uniquely available in CAPTAIN are inherently based on such 
state space methods and, therefore, always require a SS formulation. This includes the 
entire category of Time Variable Parameter (TVP) models considered in Chapter 4. There 
are other practical situations in which it is particularly convenient, though not essential, to 
also use a SS model, e.g. when there are missing values in the time series or when 
interpolation, forecasting and backcasting operations are required. Finally, in certain cases, 
the SS form simply offers a solution that is identical to other, sometimes better known, 
conventional approaches. 

For these reasons, whenever a SS form is necessary or convenient, CAPTAIN uses it, while 
in a few exceptional cases, it is avoided because other superior approaches are available. 
For example, the instrumental variable method for the estimation of fixed parameter 
Transfer Function (TF) models (in the SYSID module of CAPTAIN) replaces the state 
space- based Maximum Likelihood (ML) approach by default, unless the latter is 
specifically chosen. However, such issues are usually transparent to the user, since 
CAPTAIN chooses the optimal modelling strategy internally. 

The present chapter provides an introduction to SS methods and may, therefore, be 
regarded as the broad theoretical basis for the special cases discussed subsequently. In this 
regard, a number of standard topics are briefly covered, typical of many publications and 

CHAPTER 2 

STATE SPACE MODELS 
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textbooks in this field. However, several aspects are novel and exclusive to CAPTAIN and 
these are highlighted in the text where appropriate. 

Almost all of the modelling functions in CAPTAIN might be quoted in this chapter because 
they are particular cases of the general SS framework! However, to help the reader digest 
the general principles, we will restrict the present discussion to the simplest possible 
models, leaving the more advanced cases for subsequent chapters. In this regard, the key 
modelling functions covered below are irwsm and irwsmopt, while fcast, reconst, acf and 
histon are also introduced for data preparation and diagnostics. Together, these tools are 
useful for exploratory analysis or in situations where the a priori knowledge about the 
system is minimal, as will be seen in the later worked examples. 

2.1  The State Space framework 

A SS system is composed of two sets of equations, namely: (i) the so called State 
Equations (represented as a single equation in vector-matrix form below), that reflect all 
the dynamic behaviour of the system by relating the current value of the states to their past 
values, together with any deterministic and stochastic inputs; and (ii) the Observation 
Equation that defines how these state variables are related to the observed data. Although 
there are a number of different SS formulations possible, the one favoured in CAPTAIN is: 

  (2.1) 

where  is the stochastic observed variable;  is an n dimensional stochastic state 
vector;  is an k dimensional vector of system disturbances; and  is a vector of zero 
mean white noise variables (measurement noise).  are, respectively, the nxn, 
nxk, and 1xn non-stochastic system matrices. 

The following assumptions apply to this system: 

• ~iid ; ~iid ; . 

• The initial stochastic state  is independent of  and  for every t. 

• The system matrices  are known (or have been previously 
estimated in some way) whereas the initial conditions for the states and their 
covariance matrix (  and   respectively) are unknown. 

The main reason for this formulation is that, under these straightforward conditions, the 
associated recursive algorithms employed to estimate the state vector from measured data 
provide the optimal solution, in the sense that such estimators minimise the Mean Square 
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Error (see e.g. Young, 1984; or Harvey, 1989). In CAPTAIN, these recursive algorithms are 
the Kalman Filter (KF; Kalman, 1960) and Fixed Interval Smoothing (Bryson and Ho, 
1969), as discussed in Section 2.2 below. 

Numerous results may be found in the literature for various relaxations of the above 
conditions (see e.g. Durbin and Koopman, 2001). One particularly straightforward and 
useful case is when the gaussianity assumptions on the perturbations are dropped. In this 
case, the state estimates provided by the KF/FIS are still optimal in the sense that they 
minimise the mean square error within the class of all linear estimators. 

The Generalised Random Walk model 

The following Generalised Random Walk (GRW) model, which is one of the simplest SS 
models based on (2.1), is used extensively in CAPTAIN, 

                  (2.2) 

Here,  are constant parameters;  is a smoothed signal component consisting 
of the first state ; and  is a second state variable (generally known as the ‘slope’); 
while are zero mean, serially uncorrelated white noise variables with constant 
block diagonal covariance matrix , as stated in the general formulation above. 

This model subsumes a number of special cases that have received specific names in the 
literature. The main ones are the Random Walk (RW: ; ; ); 
Smoothed Random Walk ( ; ; ); the Integrated Random Walk 
(IRW: ; ); the Local Linear Trend (LLT: ); and the 
Damped Trend ( ; ).  

When any one of these options is combined with additive noise in an observation equation, 
the resulting time series model might be called a ‘GRW plus noise’ model. One such case 
is the ‘RW plus noise’ model, ideal for the estimation of a time varying mean. Here, the SS 
representation takes the following form: 

  (2.3) 

The state equation may instead be written as  where L is the backward-shift 
operator. Substituting in the observation equation, we obtain the so called reduced form of 
the model, i.e. a random walk model with added observational noise as shown below, 
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  (2.4) 

Similarly, the ‘IRW plus noise’ model, useful for extracting smooth trends to non-
stationary time series, may be developed as follows, 

  (2.5) 

Here, the two state equations that may instead be written as, 

  (2.6) 

In this case, substituting the second state equation into the first, and then into the 
observation equation, we obtain the reduced form, 

  (2.7) 

This IRW model with observational noise will be utilised in Example 2.1 below. First, 
however, an algorithm for the estimation of the states is required. 

2.2  State Estimation 

Given the model (2.1), in which all the system matrices are known, the estimation problem 
becomes one of finding the optimal distribution of the state vector, conditional to all the 
data in a sample. In the case of Gaussian disturbances, the distribution is completely 
characterised by the first and second order moments, i.e. the mean and variance, and most 
algorithms that perform this operation concentrate on the estimation of these two moments. 
Such tools include the Kalman Filter (KF, Kalman, 1960, Kalman and Bucy, 1961) and 
Fixed Interval Smoothing (FIS, e.g. Bryson and Ho, 1969) algorithms stated below. 
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1. Forward Pass Filtering Equations 

 Prediction: 

        

 Correction:            (2.8) 

  

2. Backward Pass Smoothing Equations 

  (2.9) 

with . Note that the FIS algorithm is in the form of a backward recursion operating 
from the end of the sample set to the beginning. The main difference between the KF and 
FIS algorithms (2.8)-(2.9) utilised in CAPTAIN, and more conventional filtering/smoothing 
algorithms found in some other toolboxes, are the  Noise Variance Ratio (NVR) 
matrix  and the  matrix  defined below, 

 ;       (2.10) 

Here,  is the error covariance matrix associated with the state estimates . In most of 
the models implemented in CAPTAIN, the NVR matrix  is diagonal. 

Forward Pass Filtering 

For a data set of T samples, the KF algorithm (2.8) runs forward and returns a ‘filtered’ 
estimate of the state vector and its covariance matrix (  and , respectively) at every 
sample t, based on the time series data up to sample t. These estimates are computed in two 
steps. In the first instance, the one step ahead forecast for the mean value of the state vector 
and its covariance matrix (  and , respectively) are obtained from the prediction 
equations, using the model alone. Secondly, these estimates are updated by means of the 
correction equations, as each new data sample becomes available. 

One interesting feature of the KF worth mentioning at this juncture, is that the state 
estimates (obtained using the first equation of each set of prediction and correction 
equations) depend on the previous state estimates, its covariance matrix and the data. By 
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contrast, the current estimate of the covariance matrix itself, does not depend on either the 
state estimates or the data, but only on the model and the previous estimate of the 
covariance matrix. Another noteworthy point, is that significant saving in computational 
effort are obtained in CAPTAIN by the realisation that repeated operations are involved in 
the calculation of the required estimates, especially in the correction equations. 

There are two intermediate variables calculated by the KF that are of particular importance 
(as will become clear in the following section 2.3), namely: 

  (2.11) 

The first term above is the innovations sequence, or the one-step-ahead forecasting errors 
of the model, while the second is the variance of these innovations, where the latter are 
equal to the variance of the one-step-ahead forecasts. Both variables are scalar, so that the 
matrix inversions required in the KF correction equations are actually very simple in 
computational terms. The normalised innovations are used in many diagnostic tests, since, 
recalling the original formulation of the SS model (2.1), they should be iid  in a 
correctly specified model. 

When missing data are encountered within the data set, the correction equations are 
redundant and missing samples are effectively interpolated by using the filtered estimates. 
In the same manner, forecasts may be produced by artificially adding ‘missing’ data at the 
end of the series. In this case, the values of  and  outside the sample span are now the 
true multiple-steps-ahead forecasting errors and associated variance respectively, and may 
be used for computation of the confidence intervals. 

Fixed interval smoothing 

The FIS algorithm in (2.9) normally runs backwards after the filtering step and yields a 
‘smoothed’ estimate of the state vector and its covariance matrix based, at every sample t, 
on all T samples of the data. This means that, as more information is used in the FIS 
algorithm with respect to the KF estimates, its Mean Square Error cannot be greater. When 
missing data are encountered, an interpolation is generated based on the data at both sides 
of the gap. Finally, if the missing observations are at the beginning of the sample, the FIS 
algorithm generates backcasts of the time series. 

The FIS algorithm (2.9) is utilised by many software packages and is the default 
so called ‘Q-algorithm’ in CAPTAIN. However, an additional FIS algorithm is also available 
as an option in the toolbox. It should be used in special cases when numerical problems 
arise with certain models. Essentially, if a solution fails to converge, the appropriate input 

T
ttttt

ttttt

f

yv

HPH

xH

1|

1|

ˆ1ˆ
ˆˆ

-

-

+=

-=

( )2,0 sN

tv̂ tf̂



 

9 

argument can be changed to select this alternative ‘P-algorithm’, obtained by replacing the 
first equation in (2.9) by, 

  (2.12) 

Here, the new estimates of the state vector are based on the filtered ones, while in (2.9) it is 
calculated recursively from the previous estimate of the state vector. Furthermore, (2.12) 
does not require inversion of the F matrix. Both algorithms are discussed in detail by 
previous publications (see e.g. Young, 1984; Harvey, 1989; Ng and Young, 1990). 

Example 2.1  Estimation of a trend for the air passenger series 

The simple IRW plus noise model (2.7) has long been used for smoothing time series in 
the economics literature. It is equivalent to the well-known Hodrick-Prescott filter (HP; 
Hodrick and Prescott, 1997). This filter has been used by many researchers in the area of 
empirical business cycles, and the similarities between both filters was highlighted long 
ago (recently reviewed by Young and Pedregal, 1996). 

Many researchers use fixed values of the smoothing constant depending on the frequency 
rate of the data. In CAPTAIN, however, the relationship between the smoothing constant 
(the NVR in this context) and the cut-off frequency properties of the low-pass filter is 
made explicit, and is easily generalisable to any type of model in SS form. The advantage 
is that the user may choose the NVR according to their particular needs and the properties 
of the data, it is not fixed by any prior conceptions. For example, given the RW family of 
models defined by (cf. (2.6) and (2.7)), 

  (2.13) 

the cut-off frequency for 50% of spectral power is given by, 

  (2.14) 

with  (Young and Pedregal, 1996). 

In this case,  in equation (2.10) is the scalar state noise variance . For an IRW filter 
(i.e. ), Table 2.1 shows the relationship between the NVR and the associated cut-off 
period, first in samples, then with its equivalence in years depending on the frequency 
sampling of the signal. 
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NVR Period (time samples) Years (quarterly series) Years (monthly series) 
10 2.86 0.71 0.24 
1 6.01 1.51 0.51 

0.1 11.02 2.76 0.92 
0.01 19.78 4.95 1.65 
0.001 35.28 8.82 2.94 

1/1600 39.69 9.92 3.31 
0.0001 62.81 15.71 5.23 

Table 2.1 Relationship between the NVR parameter and the associated bandwidth of the IRW filter, 
i.e. the minimum period of cycles included in the filtered series. 

Table 2.1 suggests that for a NVR value of 0.001, the smoothed signal would contain all 
the information of the original signal from a period of 35.28 samples up to infinity. All 
periods below that value are filtered out. 

Put another way, if a signal has to be estimated such that it contains all the information of 
the original series for approximately 5 years and above, a NVR of 0.01 would be the option 
for a quarterly series, while 0.0001 should be chosen for a monthly series. 

To illustrate these points, consider again the well-known air passenger series introduced in 
Chapter 1 (Box and Jenkins, 1970, 1976). Figure 2.1 illustrates these data, together with 
two possible trends obtained from different NVR values (0.1 and 0.0001). This graph may 
be obtained in CAPTAIN by entering the following MATLAB® code, 

>> load air.dat 
>> t1 = irwsm(air, 1, 0.1); 
>> t2 = irwsm(air, 1, 0.0001); 
>> t = (1949 : 1/12 : 1961-1/12)'; 
>> plot(t, [air t1 t2]); 

 
Figure 2.1  Air passenger data (thin trace) and IRW trends with 

NVR = 0.1 (thick solid) and NVR = 0.0001 (dashed). 

1950 1952 1954 1956 1958 1960

200

300

400

500

600

Th
ou

sa
nd

 P
as

se
ng

er
s

Months



 

11 

Which one of these trends is the best? Although this is clearly a subjective matter, we may 
still say something about Figure 2.1, based on a general idea of what we mean by a trend. 
In particular, with the higher NVR of 0.1, the smoothed signal follows the data too closely 
to be regarded as a ‘trend’ in the normal sense, since it includes cyclic behaviour with a 
period of less than one year, i.e. it is really a combination of a trend and a seasonal 
component, something that in principle is undesirable. By contrast, with NVR = 0.0001, 
the smoothed signal does not appear to combine the trend and seasonal component in this 
manner, and so is more ‘correct’ in a signal decomposition sense. 

In statistical terms, a more suitable approach would be to model the whole series with an 
Unobserved Components (UC) model, rather than attempt to extract the trend alone. Of 
course, this is also the main approach utilised in CAPTAIN and is described in Chapter 3. 
Nonetheless, CAPTAIN does offer the opportunity to just estimate a trend in this simple, 
exploratory context, using objective criteria for NVR optimisation, as discussed below. 

2.3  (Hyper-) Parameter Estimation 

The recursive KF and FIS algorithms above both require knowledge of all the system 
matrices . In this regard, depending on the particular structure of the model 
chosen, there will be a number of elements either known prior to the analysis or fixed by 
the user. For example, if a RW model is specified, then clearly  and  in the 
SS model (2.2). However, in most cases, some unknown elements or hyper-parameters 
will remain unspecified and must be estimated separately. Typically, these include the 
NVR matrix . In the following discussion, we will summarise all these hyper-
parameters, whatever variables they may represent, in the vector . 

The hyper-parameter estimation problem is completely different to the state estimation 
problem and, in a certain sense, entirely independent of it. This fact is clearly seen in the 
range of methods available in the literature, some of which do not use the SS form at all! 
The most common methods include: Maximum Likelihood (ML) in the time domain 
(Schweppe 1965; Harvey, 1989); ML in the frequency domain based on a Fourier 
transform (Harvey, 1989; pages 191-204); alternative approaches in the frequency domain 
(Ng and Young, 1990; Young et al., 1999); combinations of all the previous methods 
(Young and Pedregal, 1999); Bayesian approaches (West and Harrison, 1989); and 
estimation methods based on the reduced ARIMA form (Hillmer and Tiao, 1982; Hillmer 
et al., 1983; Maravall and Gómez, 1998). 

A selection of the most useful methods are implemented in CAPTAIN and listed below. 
Each method is associated with one of more different model-types in the toolbox. In some 
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cases, several methods are available for the same type of model, with the one considered 
optimal as the default option (refer to the on-line help for each particular function). 

• Time domain ML estimation for UC, TVP and State Dependent Parameter (SDP) 
models (Chapters 3, 4 and 5). This is the most widespread estimation method in the 
SS context, mainly because of its strong theoretical basis and because it is the most 
well known approach in many other areas of statistics. For this reason, it is 
discussed in detail below. See also Examples 2.2 and 2.4 below. 

• Minimisation of the multiple-steps-ahead forecasting errors, also discussed below. 
This heuristic method is very useful when other methods do not provide a 
satisfactory answer to the problem, or when the objective of the research is strongly 
based on the forecasting performance of model. See also Examples 2.2 and 2.3 
below. 

• Frequency domain estimation, based on the spectral properties of the model (Young 
et al., 1999). The parameters are estimated so that the logarithm of the model 
spectrum fits the logarithm of the empirical pseudo-spectrum (either an AR-
spectrum or periodogram) in a least squares sense. A full description of this 
algorithm can be found in Chapter 3. 

• Sequential Spectral Decomposition, reserved for a certain class of unobserved 
components models, i.e. Trend plus Auto-Regression (AR) also discussed in 
Chapter 3. This approach consists of decomposing the original series into quasi-
orthogonal components, taking advantage of the exceptional spectral properties of 
the smoothing algorithms mentioned above. The overall non-linear problem is 
decomposed into several linear or quasi-linear steps, each solved in fully recursive 
terms. This yields a simple solution, with some loss of optimality from the ML 
viewpoint, but has proven to be very successful in practise. As a final step, filtering 
and smoothing are repeated using the whole SS formulation based on the analysis 
completed in the previous steps. 

• Instrumental variable estimation of transfer function models in discrete and 
continuous time, as primarily implemented in the RIVSID module of CAPTAIN. 

One interesting issue is that the complexity (or richness) of reality ensures that no single 
estimation method outperforms the rest in all possible situations - all of them have their 
own advantages and disadvantages. Therefore, the researcher's experience and knowledge 
is essential in selecting the best option for each application. 
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Because some of the methods mentioned above have been developed for specific models, 
their description is conveniently postponed to future chapters. In the present chapter, 
however, two general methods that are not intrinsically linked to particular models are 
reviewed, namely ML and the minimisation of the multiple-steps-ahead forecasting errors. 

Maximum Likelihood 

Assuming that all the disturbances in the SS form are normally distributed, the required 
Log-likelihood function can be computed using Kalman Filtering via ‘prediction error 
decomposition’ (Schweppe 1965; Harvey, 1989). The appropriate function for the general 
SS model in equation (2.1) is, therefore, 

  (2.15) 

where T is the number of observations, while  and  are the innovations and their 
variance respectively (see equation (2.11)), computed directly from the KF algorithm. 

A number of issues must be taken into account when maximising (2.15); see e.g. Harvey, 
(1989) and Koopman et al. (2000). In the first place, the gradient and hessian necessary to 
find the optimum by numerical procedures can be evaluated either analytically or 
numerically, while the standard errors of the estimates may be found by means of the 
hessian, as is usual in the literature. Secondly, in the present context, it is usual to 
maximise the so called concentrated likelihood. This is because it is always possible to 
concentrate out one of the variances in  or , reducing by one the number of 
parameters to estimate. In CAPTAIN,  is always the concentrated out variance, as shown 
by the definition of the diagonal NVR matrix  introduced in the previous subsection. 

Thirdly, in dynamic models, there always exists a problem of defining the initial 
conditions, i.e. the initial values of the state vector and its covariance matrix that are 
assumed unknown (  and , respectively). Once more, there are a number of solutions 
available. One is to define the diffuse priors, e.g. zero values for the initial state vector and 
big values for the diagonal elements of its covariance matrix, implying that there is little 
confidence in an arbitrary initialisation. In general, such an initialisation may affect the 
computation of the likelihood function, since the sum operators run over the whole sample. 

An alternative solution is to start the summation in (2.15) from one observation past the 
length of the state vector (i.e. n+1), or from some other point where the KF algorithm has 
effectively converged. The effect of the initial conditions decreases as the length of the 
series increases, except for some very specific non-stationary models for which such 
effects never disappear (Casals et al., 2000). Another, more theoretical, solution to the 
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initial condition problem, is to incorporate the distribution of the initial conditions into the 
likelihood function itself, which yields the exact likelihood function, independent of such 
conditions and useful for short length time series (see e.g. De Jong, 1988, 1991; Casals et 
al., 2000). In CAPTAIN, the simplest diffuse priors option is chosen by default, although the 
user may always intervene and specify  and  directly. 

Finally, a consideration common to all the estimation procedures in CAPTAIN, is that it is 
common to estimate the scores (certain transformations of the hyper-parameters) rather 
than the hyper-parameters themselves. Such parameters are then constrained to a certain 
domain in order to avoid nonsensical results. Two typical examples are that the NVR 
values should always be positive, while the  parameters in SRW models should always 
lie between zero and one inclusive. In this regard, the NVR and  scores used in CAPTAIN 

are listed in Table 2.2. 

Score Parameter Score Range Parameter Range 

    

    

Table 2.2  Hyper-parameters and scores in CAPTAIN. 

In this way, the searching algorithm for ML looks for an unconstrained value of the scores 
from minus infinity to infinity, and it is transformed into a valid value of the corresponding 
hyper-parameters. The disadvantage when the scores are estimated rather than the 
parameter themselves is that the distribution of the scores is normal, according to theory, 
while the distribution of the parameters is, in general, not known. However, confidence 
intervals may always be reconstructed by applying the same transformation to the 
confidence interval of the scores. 

Limitations of ML 

There is no doubt that ML has theoretical and practical advantages. Its optimal properties 
are well-known and it is a widely applicable method for SS models. Indeed, the objective 
function (2.15) is applicable to any model written in SS form. The only requirement is that 
the user has to determine the appropriate form of the system matrices necessary to specify 
the model in SS terms. However, since CAPTAIN uses SS models as standard, this is not a 
problem in the present context. 

Despite the advantages of ML on theoretical grounds, it does have some disadvantages, 
hence other methods are also implemented in CAPTAIN for specific types of model. In 
particular, in its normal form, ML is heavily dependent on the length of the series and the 
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dimension of the model, since the recursive algorithms must be used to compute the Log-
likelihood function at each iteration in the numerical optimisation. Furthermore, problems 
are sometimes encountered when the theoretical hypothesis on which the model is based 
does not hold in practice. An instructive example is the case of transfer function models 
when the input signal is a deterministic variable (such as steps, impulses, ramps, etc.). For 
this particular problem, however, the RIVSID module of CAPTAIN offers instrumental 
variable methods instead, which outperform ML and are never worse in other standard 
situations (Young, 1984). 

Also, it is well-known (e.g. Young et al., 1999) that in certain UC models, the likelihood 
surface can be quite flat around its optimum, making the practical optimisation problem 
very inefficient at best and impossible in some cases. This is one important reason why 
these models usually have to be constrained when estimated by ML (we will come back to 
this issue in Chapter 3: see the examples therein). By contrast, for example, estimation 
methods in the frequency domain are free from these difficulties. In this regard, the 
approach implemented in CAPTAIN for UC models, optimises the hyper-parameters so that 
the logarithm of model spectrum fits the logarithm of the empirical spectrum in a least 
squares sense. This method has proven to allow for very much higher dimensional models 
than ML and computation times are greatly reduced, yielding solutions that are even better 
in likelihood terms than the constrained versions of the same model estimated by ML. 

It should be clear from the discussion above that the solution achieved by the time and 
frequency domain methods are not necessarily equal, because each estimation method 
gives more emphasis to different aspects of the time series. Since the ML criterion is 
defined as an explicit, time domain function of the normalised one-step-ahead prediction 
errors (2.15), it would be expected that the hyper-parameters estimated in this way would 
provide good one-step-ahead forecasts. Indeed, provided all the theoretical assumptions 
that support ML methods are correct for a particular data set, it can be expected that the 
forecasts will be good for more than one-step-ahead as well. By contrast, estimation in the 
frequency domain is primarily concerned with ensuring that the spectral properties of the 
estimated components match the empirical spectrum of the data. In general, this tends to 
generate a solution which, in terms of the variance of the innovations, lies somewhere 
between that obtained by the ideal of unconstrained ML optimisation, which is difficult to 
consistently achieve in practice, and the constrained ML optimisation mentioned above. 

Another situation where ML often does not always provide a sensible solution is when a 
smooth signal (or trend) is removed from a time series. In this case, ML tends to produce a 
signal that is too close to the original data, making the whole procedure invalid, as shown 
by Example 2.2 below. For such situations CAPTAIN, offers other estimation methods, like 
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the minimisation of the multiple-steps-ahead forecasting errors discussed in the next 
subsection. 

Given the pros and cons of each method, it is possible to improve overall model estimation 
by combining methods for different components of the model, i.e. to use the most 
appropriate method for each component. This is the approach suggested for SDP models 
for which, when necessary, frequency objective functions and ML are used together. SDP 
modelling is a very general procedure for the identification of non-linear relationships of 
many kinds. In this approach, an iterative procedure known as back-fitting is used. Here, 
parts of the model are estimated conditional on fixed values of the rest of parameters. In 
each iteration, the most appropriate estimation method can be used, either in the frequency 
domain or ML in the time domain. 

Minimisation of the multiple-steps-ahead forecasting errors 

The log-likelihood function (2.15) is dependent on the one-step-ahead forecasting errors, 
i.e. , a natural outcome of the KF solution. However, the multiple-step-
ahead forecasting errors can also be computed by simply repeating the KF prediction 
equations, say h times, without applying the correction equations. The associated 
forecasting errors are then as follows, 

  (2.16) 

This equation computes the forecasting errors at each t with all the information available 
up to t-h. Given these errors, one interesting option for hyper-parameter estimation is to 
minimise the sum of the squares of the h-step ahead errors, i.e. 

   (2.17) 

This approach is a natural heuristic extension to ML and may be applied when the latter 
does not provide a sensible solution to certain problems. 

2.4  Worked examples 

The following examples illustrate the basic functionality of hyper-parameter estimation in 
CAPTAIN, and show how the toolbox may be utilised for the preliminary analysis, 
smoothing and simple forecasting of non stationary time series. 
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Example 2.2  Hyper-parameter estimation for the air passenger series 

Following directly from Example 2.1 above, consider again IRW smoothing of the air 
passenger series. 

For some initial conditions, ML estimation does not yield useful results for this data set. 
This is because the theoretical properties assumed about the IRW model are not fulfilled by 
these particular data. In effect, the model (2.5) assumes that the perturbations about the 
trend are uncorrelated white noise, while it is clear here that the innovations are not at all 
white noise, indeed they are strongly periodic (see Figure 2.1). As a consequence, if the 
model is defined as an IRW model alone, then ML estimation can sometimes yield an 
unacceptable solution e.g. returning a very high NVR and a ‘smoothed’ signal that is 
almost identical to the original series. 

However, irwsmopt uses an initial frequency domain estimation step, in order to obtain 
improved initial conditions for the subsequent ML estimation. For the present example, 
this approach yields satisfactory results, as indicated by the output shown below. 

>> load air.dat 
>> nvr = irwsmopt(air, 1, 'ml'); 
 
FREQUENCY DOMAIN INITIAL CONDITION ESTIMATION 
METHOD: FREQUENCY DOMAIN. AR-SPECTRUM(24) 
OPTIMISER: LSQNONLIN 
0.016 seconds. 
  PER.    RW       NVR        Score    S.E.    Alpha    Score    S.E.  
   0.00   1.0    5.1196e-03  -2.2908   0.100   1.0000       -       -  
Frequency Domain Objective Function: 2875.485 
 
METHOD: MAXIMUM LIKELIHOOD 
OPTIMISER: FMINSEARCH 
Date: 24-Jun-2017 / Time: 21:19 
0.219 seconds. 
  PER.    RW       NVR       Score    S.E.    Alpha    Score    S.E.  
   0.00   1.0    4.990e-06  -5.3019      -    1.0000       -       -  
Likelihood: -750.466 
 

Since irwsmopt is designed for straightforward smoothing applications, there are no user 
settings associated with the frequency domain initialisation step, and MATLAB® may 
sometimes return warnings about finding a local minimum. If required, dhropt may be 
used instead of irwsmopt to specify the initial conditions and/or adjust the model used for 
this initial spectral analysis (see later Chapter 3). However, for the present example, 
subsequent ML estimation to determine the final NVR proceeds without problem. 
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For information, Table 2.3 summarises the displayed tabular output from irwsmopt, while 
the header and footer above also confirm the optimisation method, the core MATLAB® 
function being utilised, the time taken to complete the optimisation and the Likelihood. 
Other hyper-parameter optimisation routines in CAPTAIN, including dhropt, dlropt, 
daropt, darxopt, dtfopt and univopt follow a similar convention. Note that the MATLAB® 
optimisation function (fminsearch in the example above) is automatically selected by 
CAPTAIN, depending on the optimisation method chosen and the presence other MATLAB® 
toolboxes installed on the users system, although this default can be overwritten (refer to 
the toolbox function help information). 

Column 
Header 

Meaning 

PER Period for periodic components (0 for trends). 
RW Type of Time Varying Parameter within the GRW model family 

(0-RW; 1-IRW). 
NVR Estimated NVR. 
Score Estimated score value from which the hyper-parameter is computed 

(only one NVR in the case above). 
S.E. Approximate standard error of the score. 

Alpha Estimated  parameter in SRW models. 

Table 2.3  Tabular outputs from CAPTAIN hyper-parameter estimation functions. 

Returning to the present example, an alternative to ML is to minimise the 12 steps ahead 
forecasting errors, as shown below. In general, the number of samples in a year, or the 
number of samples in any sort of cycle in the data, should be utilised in such optimisation. 

>> nvr = irwsmopt(air, 1, 'f12'); 
 
METHOD: SUM OF SQUARES OF 12-STEPS-AHEAD FORECAST ERRORS 
OPTIMISER: FMINSEARCH 
0.672 seconds. 
  PER.    RW       NVR        Score    S.E.    Alpha    Score    S.E.  
   0.00   1.0    5.5777e-04  -3.2535      -    1.0000       -       -  
Sum of Squares of 12-Steps-Ahead Forecast Errors: 268133.0759 
 
>> tr = irwsm(air, 1, nvr); 
>> t = (1949 : 1/12 : 1961-1/12)'; 
>> plot(t, [air tr]) 

For brevity, the frequency domain initialisation results are omitted from the output shown 
above (and in later examples). The NVR obtained in this case is 0.000558, with an 
associated cut-off period of 3.4 years (Table 2.1), returning the trend illustrated by 
Figure 2.2. Finally, it is straightforward to generate forecasts of the trend by adding nan 
values (MATLAB® Not-A-Number variables) to the end of the data, either by using standard 
commands or the CAPTAIN function fcast, as shown below. 

a
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Figure 2.2 Air passenger data and trend chosen by minimising the 12-steps-ahead forecasting errors. 

 
Figure 2.3 Air passenger data, trend and trend forecasts for the last year of data. 

>> nvr = irwsmopt(air(1 : 132), 1, 'f12'); 
>> tr = irwsm(fcast(air, [133 144]), 1, nvr); 
>> plot(t, [air tr]); 
>> hold on 
>> plot([t(132) t(132)], [0 650]) 
 

For illustrative purposes, the analysis above does not use the final year of the air passenger 
series, just the first 132 samples. Instead, the trend is forecasted for this year and compared 
with the original series, as illustrated in Figure 2.3, where the vertical line shows the 
forecasting horizon. It should be stressed that data to the right of the forecasting horizon 
are not used in the analysis, neither for estimating the NVR nor for smoothing the time 
series. Nonetheless, even with this simple IRW model, the forecasted trend is sensible, 
showing the long term behaviour of the series continuing in the correct direction. 

Example 2.3  Interpolation and variance intervention for steel consumption in the UK 

In order to illustrate the variance intervention and missing data handling capabilities of 
CAPTAIN, the quarterly steel consumption in the UK, measured in thousands of metric tons, 
is analysed from the last quarter of 1953 until the end of 1992. Variance intervention is 
useful when there are rapid or violent changes, or even discontinuities, in a series. Here, 
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the estimate of  in the prediction equation (2.8) is ‘reset’ to a large value, implying a 
lack of confidence in the estimates at that sample. 

In order to plot the steel consumption with a correct time axis, as in Figure 2.4 below, enter 
the following MATLAB® commands: 

>> load steel.dat 
>> t = (1953.75 : 0.25 : 1992.75)'; 
>> plot(t, steel) 
 

 
Figure 2.4 UK steel consumption from 1953Q4 to 1992Q4. 

The anomalous large consumption figures in the first and second quarters of 1980 (referred 
to subsequently as 1980Q1 and 1980Q2) were due to strikes in the sector. Furthermore, 
two apparent falls in the mean level of steel consumption can be observed in 1975Q2 and 
1980Q1. One way of handling these problems at the simple exploratory level is to smooth 
the series, assuming missing data (again, MATLAB® Not-A-Number values) for the strikes 
and setting variance intervention points at 1975Q2 and 1980Q1, as shown below. 

>> y = fcast(steel, [106 107]); 
>> nvr = irwsmopt(y, 1, 'f12', [87 106], [], 2); 
 
METHOD: SUM OF SQUARES OF 12-STEPS-AHEAD FORECAST ERRORS 
OPTIMISER: LSQNONLIN 
0.516 seconds. 
2 missing values 
  PER.    RW       NVR       Score    S.E.    Alpha    Score    S.E.  
   0.00   1.0    6.390e-05  -4.1945      -    1.0000       -       -  
Sum of Squares of 12-Steps-Ahead Forecast Errors: 1756523.4294 
 
>> tr =  irwsm(y, 1, nvr, [87 106]); 
>> t = [1953.75:0.25:1992.75]'; 
>> subplot(211), plot(t, [y tr]) 
>> subplot(212), plot(t, y-tr) 
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Although not necessary for this example, the sixth input argument to irwsmopt illustrates 
how to change the MATLAB® optimisation function. In particular, the example above 
utilises lsqnonlin, which assumes that the MATLAB® Optimisation Toolbox is installed. 
The graphical output of this analysis is illustrated in Figure 2.5, where the jumps in the 
trend at the variance intervention points can be clearly seen and the perturbation about the 
trend (lower plot) appropriately shows that there are no remaining jumps in the series. 

 

Figure 2.5 UK steel consumption, trend and perturbation about the trend. 

Finally, it is sometimes interesting to reconstruct the data by assuming that the jumps in the 
trend did not occur, as shown below. Here, the CAPTAIN function reconst serves as a tool 
to remove the jumps, with the new estimate of the trend added to the perturbation signal. 
The value of such a calculation will be shown later in Chapter 3. 

>> yr = y - tr + reconst(tr, [87 106]); 
>> plot(t, yr) 

1955 1960 1965 1970 1975 1980 1985 1990

250

300

350

400

450

500

Th
ou

sa
nd

 M
et

ric
 T

on
s

Months

1955 1960 1965 1970 1975 1980 1985 1990

-50

0

50

Th
ou

sa
nd

 M
et

ric
 T

on
s

Months



 

22 

 
Figure 2.6 UK steel consumption with the jumps in the trend removed. 

Before moving to the final example, it is useful to first introduce the Autocorrelation 
(ACF) and Partial Autocorrelation (PACF) Functions, together with the Ljung-Box test, 
since these will be utilised below and occasionally in later chapters. 

Autocorrelation (ACF) and Partial Autocorrelation (PACF) functions 

The ACF and PACF are two key identification tools, very useful for detecting time 
structure dependence in any time series. Popularised by Box and Jenkins (1970), they have 
been extensively used by time series analysers ever since. The aim is to determine the 
linear correlation coefficients between a time series and the lagged values of the same 
series. The representation of these coefficients against the lag, usually in the form of a bar 
diagram, is the ACF or Correlogram. More formally, the theoretical ACF of a stationary 
process  (i.e. constant mean and variance) is defined as, 

            (2.18)  

where, 

            (2.19) 

Here,  is the autocovariance function that measures the covariance between a time series 
and its past, while  and  are the (constant) mean and variance of the process, 
respectively. The ACF is symmetrical around lag , so only positive values for the lag 
are considered. 

Several estimators have been proposed in the literature, including the sample equivalents 
of the population counterparts, i.e., 

            (2.20) 
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with, 

  (2.21) 

where T is the number of samples and  is the sample mean. Note that, if the time series is 
white noise, an approximation of the variance of the autocorrelation estimators is, 

            (2.22) 

Equation (2.22) may be used to test the significance of any individual coefficient, i.e. any 
coefficients bigger than twice the standard error will be considered significantly different 
from zero. 

The previous estimators are equivalent to the following set of linear regressions fitted to 
the data, 

  (2.23)  

where  and  ( ) are a set of constants and gaussian white noise terms, 
respectively. These equations are simply AR models of increasing orders, with all the 
intermediate parameters constrained to zero. 

Apart from the individual test for each ACF parameter quoted above, a summary test of 
autocorrelation up to order m is the Ljung-Box test (Ljung and Box, 1978), given by the 
statistic, 

            (2.24) 

This is distributed as a  with  degrees of freedom under the null hypothesis of no 
autocorrelation. 

The Partial Autocorrelation Function (PACF) extends the previous idea of the ACF using 
the standard statistical concept of partial correlation. This function measures the linear 
dependence between a time series and some lag of itself discounting the effect of all the 
intermediate lags. To understand this concept, and the difference with respect to the ACF, 
compare the following set of regressions with equation (2.23), 
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  (2.25) 

The PACF is a representation of the coefficients  ( ) against the lag. The 
variance of these coefficients are given by equation (2.22), or they may be computed as the 
standard error of the estimators in the previous set of regressions. 

The ACF, PACF, their standard errors and the Q test are all computed by the CAPTAIN 
function acf. For example, Figure 2.7 is the output of the following code, where the ACF 
and PACF are estimated for a sequence of gaussian random numbers. 

>> acf(randn(200, 1), 10); 
  m     acf     desv       Q      Prob    m    pacf     desv   
   1  -0.0199   0.0707   0.0808       -    1  -0.0199   0.0707 
   2  -0.0306   0.0707   0.2713   0.6025   2  -0.0310   0.0707 
   3  -0.0798   0.0708   1.5781   0.4543   3  -0.0812   0.0707 
   4  -0.0251   0.0713   1.7076   0.6353   4  -0.0298   0.0707 
   5  -0.0688   0.0713   2.6888   0.6112   5  -0.0759   0.0707 
   6   0.0505   0.0716   3.2207   0.6660   6   0.0390   0.0707 
   7   0.0481   0.0718   3.7060   0.7164   7   0.0415   0.0707 
   8   0.0721   0.0720   4.7987   0.6845   8   0.0663   0.0707 
   9  -0.0143   0.0723   4.8420   0.7743   9  -0.0041   0.0707 
  10   0.0245   0.0723   4.9700   0.8369  10   0.0343   0.0707 
 

The 2nd input argument to acf is the number of autocorrelation coefficients required by the 
user. As would be expected for white noise, Figure 2.7 shows that the series has no 
autocorrelation: the bars are all well within the standard errors (dotted trace). The same 
conclusion is strongly supported by the Q statistic and its probability value for any value 
of m, shown by the 4th and 5th columns above. 

 
Figure 2.7 Autocorrelation and Partial Autocorrelation functions of a gaussian white noise signal. 
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Example 2.4  Time variable mean estimation for volume in the Nile river 

Sometimes a debate arises among researchers about whether the mean level of a certain 
variable is changing over time or not. Numerous tests and procedures have been developed 
in order to investigate such a hypothesis. In this regard, if the stochastic behaviour of the 
signal about the time varying mean is approximately uncorrelated white noise, then there 
are some particularly simple and well formalised options. This is the case for the RW plus 
noise model introduced above. Here, the smoothed signal or trend is effectively a time 
varying mean variable that is assumed to evolve as a RW, while the rest of the signal is 
assumed white noise. Clearly, more complex options may be pursued by adding specific 
models to describe the perturbation about the trend if necessary, as discussed in Chapter 3. 

Consider, for example, the Nile river annual volume measurements from 1871 to 1970 
measured in 108 cubic meters, illustrated in Figure 2.8. 

>> load nile.dat 
>> t = (1871 : 1970)'; 
>> plot(t, nile) 
 

 
Figure 2.8 Annual volume of the Nile River in 10e8 cubic meters. 

These data were analysed by Cobb (1978) and Balke (1993), among others. The key issue 
here is to determine whether there is a systematic decline in the level from 1899 onwards 
(sample 29), a feature that seems visually apparent from the figure. To investigate, the RW 
plus noise model is estimated as shown below, with the output illustrated in Figure 2.9. For 
brevity, detailed optimisation results from irwsmopt are omitted from the text below and 
the later examples (incidentally, the other hyper-parameter optimisation routines in the 
toolbox have an option to turn off tabular and graphical output if desired). 

>> nvr = irwsmopt(nile, 0, 'ml')  
nvr = 
    0.0924 
>> [tr, deriv, err] = irwsm(nile, 0, nvr); 
>> plot(t, [nile tr tr+err tr-err]) 
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Figure 2.9 Annual volume of the Nile River, time variable mean and approximate 90% confidence intervals. 

Note that the second input argument to both irwsmopt and irwsm is zero, in order to 
specify a RW trend, and that the NVR parameter is estimated by ML. In fact, this analysis 
takes advantage of the fact that, as it was seen in Example 2.2, ML will only provide a 
sensible solution if the theoretical assumptions about the model are fulfilled by the data. In 
this case, we can later check that the perturbations about the trend are indeed white noise. 

It is clear from Figure 2.9 that the mean level has gone down since the beginning of the 
century. To test the adequacy of the model in a statistical sense, we examine the 
perturbations by means of the sample and partial autocorrelation functions (acf), together 
with a plot of the histogram superimposed over a Normal distribution (histon). The latter 
CAPTAIN function also returns a normality test, in the form of the Bera-Jarque statistic and 
associated probability value (Jarque and Bera, 1980). 

>> acf(nile-tr, 20); 
>> histon(nile-tr); 
 

These graphs are illustrated in Figure 2.10. The Ljung-Box Q-test of autocorrelation for 20 
lags is 17.7 indicating that there are no overall autocorrelation problems (Ljung and Box, 
1978). Furthermore, the Bera-Jarque test indicates that the normality hypothesis cannot be 
rejected by a very wide margin. To sum up, both tests show that the theoretical 
assumptions about the model are fulfilled with no problem. 

A second approach to the problem, which draws clearer light about the sharp decline in the 
level, is to use variance intervention again, directly specifying this 29th sample in the 
analysis, as shown below. 

>> nvr = irwsmopt(nile, 0, 'ml', 29) 
nvr = 
  2.9035e-20 
>> [tr, deriv, err] = irwsm(nile, 0, nvr, 29); 
>> plot(t, [nile tr tr+err tr-err]) 
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Figure 2.10  Analysis of the perturbations: Autocorrelation (ACF), Partial autocorrelation (PACF) 

and histogram of the residuals. 

The estimated NVR is approximately zero, implying that the mean is constant apart from 
the break at the selected sample, as illustrated in Figure 2.11. Finally, although not shown 
here, acf and histon again indicate that the perturbations about the trend are white noise 
(the Q test for 20 lags is 14.35). 

 
Figure 2.11 Annual volume of the Nile River, time variable mean and approximate 90% confidence intervals 

with variance intervention in 1899. 
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2.5  Conclusions 

The present chapter has introduced the state space framework that is the basis for most of 
the models implemented in CAPTAIN and has formally described the associated filtering 
and smoothing algorithms at the heart of the toolbox. The chapter has also discussed a 
number of approaches for the estimation of any unknown elements or hyper-parameters in 
these models, concentrating on Maximum Likelihood and the minimisation of the multiple-
steps-ahead forecasting errors. 

However, to date, the models illustrated have been limited to the simplest Random Walk 
and Integrated Random Walk (IRW), plus measurement noise, cases. Whilst useful for 
basic smoothing operations, these models are largely concerned with the estimation of a 
simple trend. For additional components, such as seasonality and any other perturbations 
about the trend, we must turn to the more general, unobserved components model in the 
next chapter. 
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Unobserved Components (UC) modelling is a general strategy for time series analysis and 
signal extraction, based on the assumption that the series is composed of an additive or 
multiplicative combination of different components that have defined statistical 
characteristics but which cannot be observed directly. In CAPTAIN, such components may 
include a trend, cyclical components, stochastic perturbations and so on. In the statistical 
literature, typical approaches to UC modelling include: 

• Ad-hoc methods of seasonal adjustment in which smoothing procedures are used 
to extract trend and seasonal components from the time series. In this regard, 
one of the oldest and best known techniques for signal extraction is the Census 
X-11 method and its later extensions X-11 ARIMA and X-12 ARIMA. See e.g. 
Findley et al. (1996) and the references therein. 

• The ARIMA or Reduced Form approach to UC model identification and 
estimation, based on the assumption that the series can be modelled as an Auto-
Regressive-Integrated-Moving-Average (ARIMA) model. See e.g. Box et al. 
(1978); Maravall  and Gómez (1998). Starting from this reduced form (ARIMA) 
model, the UC model (considered as a structural form following the 
Econometrics parallel) is obtained by the imposition of a number of (arbitrary) 
restrictions to ensure the existence and uniqueness of the decomposition. 

• The Optimal Regularisation approach, based on direct optimal estimation of the 
components within a regularisation context. See e.g. Akaike (1980); Young and 
Pedregal (1996); Hodrick and Prescott (1997). In this case, constraints are 
imposed on the state estimates via a Lagrange Multiplier term within the cost 
function, in order to ensure that they possess the required characteristics. 

• The State Space (SS) approach provides a rather more obvious formulation of 
UC concepts and, since this is the method implemented in CAPTAIN, is discussed 
in detail below. See also e.g. Ng and Young (1990); Young (1994); Young et al. 
(1999). Alternative SS approaches that have some points in common with 
CAPTAIN, as well as a few radically different aspects, are discussed by Harrison 
and Stevens (1976); Harvey (1989); and West and Harrison (1989). 

CHAPTER 3 

UNOBSERVED 
COMPONENTS MODELS 
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It is clear from these examples that UC modelling may be regarded as a broad philosophy, 
an alternative to other more traditional ways of time series modelling, rather than as a 
particular model form and estimation method. However, the present authors believe that 
the SS approach is one of the most powerful and flexible frameworks for developing UC 
models. Indeed, the state estimation algorithms and associated methods for hyper-
parameter optimisation, introduced in Chapter 2, provide a complete solution for the 
identification of UC models. All that remains is to characterise each component of the 
model in an appropriate SS form. 

The previous chapter has already discussed one of the simplest cases, namely a trend 
component represented by an Integrated Random Walk (IRW) plus white noise model. 
Here, the CAPTAIN function irwsmopt is utilised to optimise the hyper-parameters, while 
irwsm provides the filtering, smoothing, forecasting and interpolation operations (see e.g. 
Example 2.4). Following a similar syntax, the dhr/dhropt and univ/univopt combinations 
in CAPTAIN provide for a more diverse range of UC models, as discussed below. Finally, 
the toolbox includes a number of functions to assist in the identification of these models, in 
both the time and frequency domains, namely: aic, acf, arspec and period. 

3.1  General Form of the Unobserved Components Model  

UC models in CAPTAIN can be synthesized by the following discrete-time equation, 

  (3.1)  

where  is the observed time series;  is a trend or low frequency component;  is a  
sustained cyclical or quasi-cyclical component (e.g. an economic cycle) with period 
different from that of any seasonality in the data;  is a seasonal component (e.g. annual 
seasonality);  captures the influence of a vector of exogenous variables , if 
necessary including stochastic, nonlinear static or dynamic relationships;  is a stochastic 
perturbation model, i.e. coloured noise modelled as an Auto-Regression (AR) process; and, 
as shown,  is an ‘irregular’ component, usually defined for analytical convenience as a 
normally distributed Gaussian sequence with zero mean value and variance  (i.e 
discrete-time white noise).  

In the present context, equation (3.1) is regarded as the observation equation of a discrete 
time SS system, in which the dynamic behaviour of each of the UC’s has to be defined via 
the state equations. In order to allow for nonstationarity in the time series , the various 
components in (3.1), including the trend , can all be characterised by stochastic, Time 
Variable Parameters (TVP’s), with each TVP defined as a nonstationary stochastic 
variable, as discussed below. 
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One assumption that is maintained in every UC methodology is that all the components are 
orthogonal to the rest. In this context, it is noteworthy that the SS model representing 
equation (3.1) can be built by block-concatenation of all the matrices of each SS subsystem 
related to each of the components. 

Despite the generality of equation (3.1), it should be stressed that in the majority of 
applications not all these components will be simultaneously necessary. Indeed, important 
identifiability problems may arise among the components if they are not defined 
appropriately. For example, a  AR component including seasonal roots will conflict 
severely with the seasonal component  if both are included in a single model. In a similar 
manner, unit roots in the  component would have problems with the trend component 

. For these reasons, CAPTAIN normally restricts the user to formulations of the problem 
that are practically useful, so that such identification problems do not arise when using the 
toolbox (see examples below). 

3.2  State Space form for UC Models 

The SS model for each component in equation (3.1) is introduced below. 

Trend models ( ) 

The trend models available in CAPTAIN are all particular cases of the General Random 
Walk (GRW) family of models represented by equation (2.2). These include, most 
commonly, the Random Walk (RW) and Integrated Random Walk (IRW) introduced in 
Chapter 2. A third option, the Local Linear Trend (LLT) model may be obtained by using 
RW and IRW models simultaneously, as shown below. The SS form of such a LLT model 
with observational noise is defined as follows, 

                  (3.2)  

The state equations may be written using the backward-shift operator as, 

  (3.3) 

Then, substituting the second equation in the first one we have, 

  (3.4) 

Finally, substitution of this equation in the observation equation gives the reduced form, 
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  (3.5) 

i.e. the addition of a RW and IRW model if the state noises are independent of each other 
(an assumption that is usual in this context). 

Two further trend models, available only in the CAPTAIN functions univ and univopt for 
AR + Trend analysis, are the so-called Integrated AR (IAR) or Double Integrated AR 
(DIAR) models. The motivation for these options arises from the observation that, for the 
simplest trend models, it is quite common to find correlation in the residuals. For example, 
when utilising an IRW model for the trend, it is assumed that its second difference will be 
white noise, which is not always the case in practice. IAR and DIAR models take 
advantage of the correlation, by building an addition model for these residuals, in order to 
improve the overall forecasting performance. 

One caveat, however, is that it is possible for the FIS algorithm itself to induce this kind of 
correlation. Indeed, it can be shown (Young and Pedregal, 1996) that the correlation 
structure depends on the autocorrelation of the original time series itself. Nonetheless, if 
the second difference does show a predictable behaviour, especially if there is some 
physical meaning (e.g. related to the business cycle), then it would be worthwhile to try to 
forecast it. In this case, the DIAR model, which is defined below in a manner similar to the 
earlier examples, provides one particular approach, 

  (3.6) 

In SS form, this model may be described by the following equations, 

  (3.7) 
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The model is then fully defined by the variance of  and the coefficients of the AR 
polynomial. Although this is a rather more complex model than the GRW, it does have the 
capability of providing non-linear like forecasts of the trend, very useful in situations near 
turning points. 

Cyclical and seasonal models (  and ) 

Although these two types of components are given different names in equation (3.1), both 
can be treated in the same way from a modelling standpoint since both reflect a periodic 
kind of behaviour. The difference between them lies only on the period considered, with 
‘seasonal’ usually reserved for an annual cycle. CAPTAIN provides two approaches for 
modelling any such periodic behaviour, as discussed below. 

Dynamic Harmonic Regression (DHR; Ng and Young, 1990; Young et al., 1999) 

The DHR model is similar to a Fourier analysis, but with coefficients that evolve smoothly 
in time. The model is, 

  (3.8) 

with, 

  (3.9) 

and, 

                  (3.10) 

Here,  for even s and  for odd s. Parameters  and  are 
represented as GRW models with the associated NVR values both equal for the same 
harmonic period. Note that setting  reduces the correspondent term for  to a 
matrix of ones and zeros, implying that GRW trends are naturally accommodated within a 
DHR context. 

As an illustration of the SS form of this model, consider the following IRW trend with a 
single harmonic modulated by RW parameters for a period of 12 samples, typical of 
monthly time series, 
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Compared with other methodologies for modelling periodic components, the framework 
above is one of the most flexible. In some other approaches (e.g. Harvey, 1989; West and 
Harrison, 1989) all the variances in the harmonics must be the same. Furthermore, in many 
standard approaches to the problem, all the harmonics of the seasonal component are 
introduced into every model. By contrast, when using CAPTAIN, the modeller is strongly 
recommended to look at the spectral properties of the series in order to identify the most 
appropriate model for the time series in question, i.e. to check whether all the harmonics 
are actually necessary. For this latter purpose, CAPTAIN includes the functions period and 
arspec to estimate the power spectrum and an AR-spectrum respectively. The examples 
considered in section 3.4 will demonstrate the importance of this identification stage. 

The unknowns in the model (3.8)-(3.10), including the noise variances are the hyper-
parameters. Given an estimation of these hyper-parameters, the KF and FIS algorithms 
yield estimates of each TVP and hence the trend and harmonic component, together with 
the total cyclical component, i.e. the sum of all the individual harmonics. 

Finally, note that the DHR model may be regard as a particular example of Dynamic 
Linear Regression (see Chapter 4), in which the inputs are deterministic sinusoidal 
functions of time. Note that all the inputs in this model are orthogonal, a property that is 
highly desirable in regression methods and makes the TVP estimation problem particularly 
straightforward, even when a high number of parameters are involved. 

Trigonometric Cycle or Seasonal (Harvey 1989; West and Harrison, 1989): 

Here, the periodic components are introduced via the state equations of the SS model, 
rather than in the observation equation as for the DHR model. The full model is, 

  (3.11) 

with each  defined as follows, 
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                 (3.12)  

The same noise definitions utilised in DHR models apply here. The  parameter is 
introduced to allow convergence in the cyclical components when it is constrained between 
0 and 1. In seasonal models it is usually fixed at 1. 

The SS form of this model is straightforward. For example, with a trend and a single 
harmonic component, the overall SS form would be, 

 (3.13)  

Such a seasonal component, together with a LLT model for the trend, is called a Basic 
Structural Model (BSM) by Harvey (1989), although recent publications by the same 
author refer instead to unobserved components rather than structural models. 

Exogenous variables ( ) 

CAPTAIN provides numerous approaches for modelling the input-output relationship 
between variables. Such methods are discussed at length in future chapters, so will only be 
briefly listed here: 

• Dynamic Linear Regression (DLR; Chapter 4), in which one output is related to 
several inputs in a linear regression form, but with TVP’s. 

• Dynamic Autorregression with eXogenous inputs (DARX; Chapter 4). This is an 
extension of the DLR model, in which past values of the output are also 
regressors of the system. Again, all the parameters affecting the exogenous 
variables and the past values of the output (endogenous variables) may be TVPs. 

• Dynamic Transfer Function model (DTF, Chapter 4), effectively an extension of 
the DARX model but with a more widely applicable assumption for the noise. 

• Standard Transfer Function (TF) models in discrete and continuous time with 
constant parameters. These models are estimated by recursive, Refined 
Instrumental Variable (RIV) algorithms within the RIVSID module of CAPTAIN. 
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• State Dependent Parameter analysis (SDP, Chapter 5), a general approach for 
the identification and estimation of non-linear, non-stationary dynamic 
relationships between variables. 

Coloured noise components ( ) 

Several models implemented in CAPTAIN allow coloured noise components to handled as 
pure AR processes. In order to consider the SS form, it is convenient to assume that the 
sum of the coloured noise and the white noise component in equation (3.1) constitutes the 
AR process with the same white noise input (Young, 1984; Ng and Young, 1990), i.e., 

  (3.14) 

where . One SS form of such a model is, therefore, 

  (3.15) 

Models with polynomials of different orders can be implemented by constraining the 
corresponding parameters to zero. In the same way, multiplicative polynomials typical of 
seasonal ARMA models, in the manner of Box-Jenkins, can be converted into this 
equivalent form by convoluting the polynomials and transforming the model into a higher 
order system. 

A trend component straightforwardly attached to this model by simple block-concatenation 
of the appropriate SS matrices, in a similar manner to the earlier examples. This new 
model may be used as an alternative to DHR and BSM if the AR process order is high 
enough to allow for seasonal roots. It is also of interest in more general situations in which 
the signal has some none seasonal correlation about the trend. 

3.3  (Hyper-) parameter estimation for UC models 

The recursive state estimation algorithms require prior knowledge of all the system 
matrices in the state space models above. However, depending on the particular structure 
of the model chosen, some hyper-parameters will remain unspecified and must be 
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estimated separately before state estimation can proceed. Typically, these include the NVR 
matrix. Section 2.3 of Chapter 2 introduced the hyper-parameter estimation problem for 
general SS models. Since most of the models considered in the present chapter are set up in 
such a SS form, all the issues previously raised apply here. In particular, Maximum 
Likelihood (ML) and the minimization of the multiple-steps-ahead forecasting errors are 
available options for all the UC models in CAPTAIN. Two additional approaches, developed 
specially for UC models, are considered below, namely Frequency Domain estimation and 
Sequential Spectral Decomposition. 

Frequency domain estimation 

This method has been developed for DHR and BSM models, implemented in the CAPTAIN 
functional pair dhr/dhropt. Frequency domain estimation methods are generally 
concerned with approximating the theoretical pseudo-spectrum of the model (a function of 
the hyper-parameters in question) to the empirical pseudo-spectrum obtained directly from 
the time series. 

Given the DHR model (3.8) or the BSM (3.11), there are two logical steps when building 
the model spectrum: (a) derivation of the spectrum of the TVP models taken from a GRW 
process and (b) derivation of the spectrum of the sinusoidal components modulated by 
those TVP’s. These are considered in turn below, followed by (c) the full algorithm. 

(A) Pseudo-Spectra of GRW models 

In order to derive the spectrum of GRW models, it is necessary to first obtain the reduced 
form (or transfer function) of its SS description. For example, in the case of a SRW model 
(i.e. equation (2.2) with ; ; ) the reduced form is given by, 

  (3.16) 

where  is the difference operator. The stationary version of the model is then, 

  (3.17) 

For this process, the spectrum can be calculated by recalling that the frequency response 
(e.g. Priestley, 1989) of a signal , 

  (3.18) 
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  (3.19) 

In this case, the spectrum for  takes the following form, 

  (3.20) 

whilst for the non-stationary SRW process , the pseudo-spectrum is, 

 . (3.21) 

This is a function in  with a peak at . Spectra for particular cases can be found by just 
constraining the  parameter (i.e. 0 or 1 for RW or IRW models, respectively). However, 
for the other models considered so far, additional manipulations are necessary. For 
example, in the case of a Trigonometric Cycle, the reduced form is, 

  (3.22) 

with ,  and . Therefore, its pseudo-
spectrum is, 

 

  (3.23) 

This is also a function in  with a peak at . 

(B) Pseudo-Spectra of DHR terms modulated by GRW parameters 

From the basic Fourier transform properties, the frequency response of amplitude 
modulated signals of the form  is known to be, 

    (3.24) 

where  is the frequency response of . Consider now the case of a single DHR 
component of the form , in which the parameter variations 
are governed by SRW models. The pseudo-spectrum is given by, 
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This is a function of  with a maximum at  in a way such that the height and width 
depend on the variances of the noises and the value of . Once more, RW or IRW models 
may be found by constraining  to 0 or 1 respectively, while the LLT may be obtained by 
adding RW and IRW models together. Defining, 

 

   

then the pseudo-spectrum of the full DHR model (3.8) becomes, 

           

This latter expression can also be described in terms of the hyper- parameters 
, i.e., 

  (3.25) 

Here, the full set of NVR parameters is represented by the vector . Note also that 
(3.25) is linear in the NVR’s and, as we shall see, this facilitates the initial estimation of 
these hyper-parameters. The extension of  to accommodate more complex 
combinations of RW, IRW and LLT defined trends and parameters is obvious. 

 (C) Full estimation algorithm in the frequency domain 

The estimation problem is to find the set of parameters  (and any other hyper-
parameters present in the model, such as the  parameters in the SRW model) which yield 
the optimal least squares fit to the empirically estimated spectrum. Although a linear least-
squares fit is the most obvious, Young et al. (1999) show that substantial advantages can 
be found when the following non-linear objective function is used instead,  
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   (3.26) 

Here,  is either the sample periodogram or the AR spectrum of the time series, 
with the AR order in the latter case identified by the Akaike Information Criterion (AIC; 
Akaike, 1974). Using the log transformed spectra yields much better defined NVR 
estimates since it concentrates attention on the most important shape of the ‘shoulders’ 
associated with the harmonic peaks in the AR Spectrum. The linear solution is used as an 
initialisation for this non-linear optimisation, which is computationally very fast. 

The complete estimation algorithm in the frequency domain, thus consists of the following 
four steps: 

• Estimate an AR( ) spectrum  of the observation process  
and its associated residual variance , with the AR order  normally identified 
by reference to the AIC. Note the  significant peaks that characterise the 
spectrum (these will normally include a fundamental frequency and several or 
all of its associated harmonics).  

• Find the Linear Least Squares estimate of the NVR parameter vector which 
minimises the following linear least squares objective function, 

  (3.27) 

• Find the Nonlinear Least Squares estimate of the NVR parameter vector which 
minimises the following nonlinear least squares objective function, 

  (3.28) 

using the result from the second step to define the initial conditions. 

• Use the NVR estimates from the third step to obtain the recursive forward pass 
(KF) and backward pass (FIS algorithm) smoothed estimates of the components 
in the DHR model: i.e. the trend; the total cyclical and seasonal components; the 
fundamental/harmonic components; and the residuals. This last step should 
allow for any interventions and outliers, interpolate over gaps and forecast as 
necessary in the normal manner. 

Example 3.1 demonstrates the straightforward implementation of these four steps using the 
AR spectrum and DHR model estimation functions in CAPTAIN. 
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Example 3.1 Analysis of the Mauna Loa CO2 data using DHR and related models 

The measured CO2 concentration at Mauna Loa, illustrated in Figure 3.1, clearly have a 
seasonal component, which is related to the global net uptake and release of CO2 in the 
biosphere in the summer and winter. 

>> load co2.dat 
>> plot(co2) 

 
Figure 3.1  CO2 concentration at Mauna Loa (parts-per-million). 

The data are sampled monthly (i.e. ), hence the expected periodic components are 
12, 6, 4, 3, 2.4 and 2 samples per cycle (i.e. , ). However, rather than rely 
on these theoretical harmonics, the first step in the analysis is normally to identify the most 
significant harmonics in the series by means of some spectral measurement. CAPTAIN 
offers two possibilities: the AR pseudo-spectrum (arspec) and the periodogram (period). 
For example, the following straightforward command yields Figure 3.2. 

>> arspec(co2); 
 

 
Figure 3.2  AR(27) pseudo-spectrum of the CO2 data. 

The AR pseudo-spectrum Figure 3.2 is determined on the basis of an AR(27) model, 
identified automatically by the default arspec call (see Example 1.2). Additional 
arguments are possible, allowing for the direct specification of the AR model order from 
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any prior analysis (see help information for arspec). It is clear from the left hand side of 
Figure 3.2 that a trend is present while, most interestingly, the seasonal component is 
dominated by just the two first harmonics, i.e. the 12 and 6 samples per cycle (s/c) period 
components. In fact, since the harmonic corresponding to the period 2.4 s/c is very small 
and the 2 s/c harmonic is not present at all, these are ignored in the DHR analysis below. 

The NVR hyper-parameters are first estimated in the (default) frequency domain, using an 
IRW model for the trend and RW models for the four dominant harmonics of the seasonal 
component (12, 6, 4, and 3 samples per cycle). Note that the leading zero in the P variable 
below represents the trend, while TVP specifies the model types. In this analysis, the final 
three years of data are removed from the series in order to later illustrate the forecasting 
performance of the model. The resulting fit in the frequency domain, a standard output of 
the dhropt function, is shown in Figure 3.3. 

>> P = [0 12 6 4 3] 
>> TVP = [1 0]; 
>> nvr = dhropt(co2(1:288), P, TVP); 
 
METHOD: FREQUENCY DOMAIN. AR-SPECTRUM(24) 
OPTIMISER: LEASTSQ 
0.711 seconds. 
3 missing values 
   PER.    RW       NVR        Score    S.E.    Alpha    Score    S.E.  
    0.00   1.0   3.4771e-003  -2.4588   0.042   1.0000       -       -  
   12.00   0.0   7.1466e-002  -1.1459   0.030   1.0000       -       -  
    6.00   0.0   2.0435e-002  -1.6896   0.040   1.0000       -       -  
    4.00   0.0   8.0806e-004  -3.0926   0.088   1.0000       -       -  
    3.00   0.0   1.7861e-004  -3.7481   0.131   1.0000       -       -  

 
Figure 3.3  AR pseudo-spectrum of the CO2 data (solid) and fit of the model (dotted). 

Finally, the DHR model is estimated for the same data and settings using the NVR values 
listed above. Here, fcast is utilised to add nan’s to the series, representing the three years 
of artificially induced missing data; as discussed in Chapter 2, this is the approach taken in 
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CAPTAIN to generate forecasts. The trend estimate, forecasts of the series with 95% 
confidence intervals, seasonal component and its forecasts, together with the remaining 
irregular components are all illustrated in Figure 3.4, using the commands below. Here, the 
variable tf is introduced for convenience, simply to define the sample numbers over which 
the model is forecasted. 

>> [fit, fitse, tr, trse, comp, e] = ... 
>>             dhr(fcast(co2(1:288), [0 36]), P, TVP, nvr); 
>> t = [1 : length(co2)]'; 
>> tf = (289 : 324)'; 
>> bands = [fit(tf)+2*fitse(tf) fit(tf)-2*fitse(tf)];  % Confidence bands 
>> subplot(311); plot(t, [co2 fit tr(:, 1)], tf, bands, ':'); 
>> S = sum(comp')';  % Total seasonal component 
>> subplot(312); plot(S) 
>> subplot(313); plot([co2(1 : 288)-fit(1 : 288)])  % Irregular component 

 
Figure 3.4  Trend, forecasts, seasonal and irregular estimates of the CO2 series. 

Many other model types can be implemented using the same dhr/dhropt pairing in 
CAPTAIN. For example, by choosing TVP = [1 1], IRW models are selected for each of 
the TVP’s modulating the harmonics while, if instead, TVP = [1 2], then a trigonometric 
cycle is used. Alternatively, SRW models or damped seasonal/cyclical components may be 
specified as follows, 
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>> [nvr, alpha] = dhropt(co2(1 : 288), P, TVP, [], -2, -2); 

Here, the -2 terms in dhropt indicate free (unconstrained) estimation of both the NVR 
hyper-parameter and the smoothing ( ) parameter in equation (2.2). Finally, LLT or 
Damped trends may be estimated by specifying two zeros in the vector of periodic 
components, as shown below. 

>> P = [0 0 12 6 4 3];  % periodic components for LLT or damped trend 
>> TVP = [1 0];         % use RW and IRW trends simultaneously 
>> nvr = dhropt(co2(1:288), P, TVP);  % LLT 
>> [nvr, alpha] = dhropt(co2(1:288), P, TVP, [], -2, [1 -2 1]);  % Damped 
 

For the present example, the damped trend yields numerical problems and a very poor 
model fit for the first part of the time series, when using the default ‘Q-algorithm’ for FIS. 
Changing to the ‘P-algorithm’ (see equation (2.12) in Chapter 2) by means of the ninth 
input argument to dhr solves the problem, as follows: 

>> [fit, fitse, tr, trse, comp, e] = ... 
     dhr(fcast(co2(1:288), [0 36]), P, TVP, nvr, alpha, [], [], [], 0); 
 

All the examples above utilise the specially developed frequency domain optimisation 
routine for DHR model hyper-parameter estimation. However, as discussed in Chapter 2, 
ML is usually available in CAPTAIN as an alternative, even though it is sometimes unable 
to provide an appropriate solution unless it is constrained in some way. For example, the 
command, 

>> nvr = dhropt(co2(1 : 288), P, TVP, -24); 
 

utilises ML but takes a long time or is unable to find a solution before reaching the 
maximum number of iterations, or possibly converges to a local minimum, with associated 
MATLAB® warnings automatically generated. This is because the log-likelihood surface is 
very flat around the optimum in this case (see Young et al., 1999). Note that the fourth 
input argument above specifies in an initial condition for ML obtained from a frequency 
optimisation with an AR(24) spectrum. To help address such problems, an appropriate 
constraint is introduced into the model. In this regard, one common solution is to impose 
the same NVR values to all the seasonal harmonics using the fifth input argument to 
dhropt. Of course, this solution might be very different to the earlier frequency domain 
results, because of the entirely different method and the artificial constraints imposed. 

Sequential Spectral Decomposition 

Sequential spectral decomposition is designed for the Trend + AR type of model 
implemented in the CAPTAIN functional pair univ/univopt, although in principle it may be 

a
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applied to any UC model (see latter examples). The approach was developed to avoid 
certain identification problem that arise when using AR models. Such problems occur 
because the AR model, which is ideally reserved for the perturbational component about 
the trend, may in fact describe the whole series (i.e. the trend and the perturbation) if a 
joint estimation is attempted without constraints. In other words, there is nothing in the 
Trend + AR model that guarantees that the joint estimation is going to yield a perturbation 
and a trend orthogonal to each other, and with the frequency properties assumed in 
principle, i.e. the trend as a smooth line across the data and the perturbation as a 
component wandering about the zero line in a way such that the sum of both optimally fits 
the time series. 

This does not mean that such a model would not be useful for forecasting purposes, simply 
that each component by itself is not meaningful. Typically, one may find that the trend 
does not follow the data and that the perturbational component does not oscillate around 
zero as required (i.e. it is not stationary). This identification problem does not appear in the 
BSM or DHR models because in these cases, each seasonal harmonic is by definition 
independent to the rest and to the trend, so that each one concentrates on a particular 
narrow frequency band. In the case of the Trend + AR models, the problem may be 
conveniently solved in either four or five steps, as follows. 

• Estimate an initial trend component on the basis of the IRW model (see 
examples in Chapter 2). The NVR may be chosen using any a priori knowledge; 
on the basis of the frequency domain properties of this low-pass filter; or may be 
objectively estimated in some manner, such as by ML or the minimum of the 
multiple-steps-ahead forecasting errors. This initial selection of the NVR 
resembles Bayesian methods in an UC context, in the manner of West and 
Harrison (1989). 

• If an IAR or a DIAR trend proves necessary, then the identification and 
estimation of the AR polynomial for the trend must be based on the first or 
second difference of the initial trend estimate, respectively. 

• Obtain an initial estimate of the perturbational component as the difference 
between the data and the estimated trend in the previous step. Estimate an AR 
model or a subset AR model for this component. 

• Re-estimate the NVR parameter for the trend. The initial NVR selected for the 
trend is, by definition, the ratio of the variance of the state noise to the variance 
of the observational noise in the initial model. However, this initial model does 
not account for the new perturbational AR component and the variance of the 
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observational noise is generally much bigger than in the complete model, hence 
the NVR should be modified accordingly. 

• Re-estimate the components based on the full model including the Trend and the 
AR model with the new NVR for the trend and the estimated AR model for the 
perturbational component.  

All these steps are automatically handled by the univopt and univ functions. In this way, 
the overall non-linear problem is decomposed into several linear or quasi-linear steps, each 
solved in fully recursive terms. This simple solution, which has some loss of optimality 
from the ML viewpoint, has proven to be very successful in practice. 

Example 3.2 Modelling the US GDP using Trend + AR models 

Consider the quarterly US Gross Domestic Product (GDP) data from the first quarter of 
1947 until the last quarter of 2002. This series, which has already been seasonally adjusted 
by the authorities, is illustrated in Figure 3.5 using the command below. 

>> load usgdp.dat 
>> t = (1947 : 1/4 : 2002.9)'; 
>> plot(t, usgdp); 
>> y = log(usgdp(1 : 204)); 
 

 
Figure 3.5  The seasonally adjusted US Gross Domestic Product between 1947Q1 and 2002Q4. 

The last line of code above transforms the data to a logarithmic scale and reserves the final 
20 observations for forecasting comparisons, in a similar manner to the earlier CO2 
example. The present data are particularly interesting since the perturbations about the 
trend cannot be modelled as a seasonal component because it is a seasonally adjusted time 
series. However, it is not believed that the remaining perturbations are white noise, because 
there is evidence of a business cycle in the series. In such cases, a DHR type model with 
some periodic cycle of appropriate length may be fitted (e.g. Koopman et al., 2000), but 
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the existence of such a cycle is rather dubious. Consider, for example, the inconclusive 
spectra estimates obtained from the following commands. 

>> arspec(y); 
>> period(y); 
 

For these reasons, CAPTAIN provides the Trend + AR model. This approach may be 
regarded as a powerful extension to its simpler predecessors, i.e. the IRW or HP filter 
which are traditionally applied to these data (e.g. Hodrick and Prescott, 1997). Following 
the sequential spectral decomposition method outlined above, the first step is to select an 
NVR for the trend alone in an IRW + white noise model. For example, if the minimisation 
of the 4-steps-ahead forecasting errors is chosen (since 4 is the number of samples per 
year), 

>> nvr0 = irwsmopt(y, 1, 'f4') 
nvr0 = 
    0.0013 
>> tr = irwsm(y, 1, nvr0); 
 

The NVR fitted in this way corresponds to a cut-off period of  8 years and one quarter, i.e. 
all the periods above that value are included in the trend (Table 2.1). The second step is to 
select the order of the AR model for the perturbations. It can be identified using either the 
acf or aic functions as follows. 

>> aic(y-tr, [], 1); 
>> acf(y-tr); 
 

The optimal model order chosen by the AIC criterium is the AR(13) model. The estimation 
of the whole model, conditional on the NVR of the trend in the first step then follows, 

>> [nvr, ARp] = univopt(y, [1:13], 1, nvr0); 
ESTIMATION OF TREND+AR MODEL 
AR Model for Perturbations: 
========================== 
  AR     ARp     S.E.       T     
    1  -0.9709   0.0715  -13.5808 
    2   0.1517   0.0948    1.6006 
    3   0.1513   0.0936    1.6158 
    4   0.0292   0.0941    0.3100 
    ... 
   10  -0.0208   0.0937   -0.2224 
   11   0.0118   0.0930    0.1270 
   12   0.2062   0.0927    2.2250 
   13  -0.0605   0.0676   -0.8943 
 Final trend NVR estimate: 5.9559e-03 
 Integration order of trend: 2 
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The table shows the AR lag in the first column; the point estimate for each parameter in the 
second column; their standard error in the third column; and the typical T statistic (i.e. each 
parameter divided by its standard error) in the fourth column. At the bottom of the table the 
new estimate of the trend NVR is calculated, which is greater than the initial nvr0. The 
reason is clear, nvr0 was the ratio between the trend variance and the perturbation 
variance, in a model in which the perturbation about the trend was assumed to white noise 
but which actually included the whole perturbational component; while the new nvr is the 
same ratio based on a much smaller observational noise variance. 

It is clear that not all the lags are significant and necessary in the AR model based on the 
T-test, and a subset model would perform as well. This is the reason why a final estimation 
iteration is usually worthwhile, i.e., 

>> [nvr, ARp] = univopt(y, [1:3 12 13], 1, nvr0); 
ESTIMATION OF TREND+AR MODEL 
AR Model for Perturbations: 
========================== 
  AR     ARp     S.E.       T     
    1  -1.0243   0.0686  -14.9365 
    2   0.1265   0.0958    1.3204 
    3   0.2418   0.0660    3.6648 
   12   0.1849   0.0594    3.1138 
   13  -0.0889   0.0593   -1.4987 
 Final trend NVR estimate: 5.6884e-03 
 Integration order of trend: 2 
 

The associated smoothing, forecasting, signal extraction, etc. of the series, using the final 
NVR estimate above, is achieved by means of the univ function, 

>> [fit, fitse, tr, trse, comp] = univ(fcast(y, [0 20]), ARp, 1, nvr); 
>> subplot(311), plot(t(1 : 204), tr(1 : 204)) 
>> subplot(312), plot(t(1 : 204), comp(1 : 204)) 
>> subplot(313), plot(t(1 : 204), y-fit(1 : 204)) 
 

The components are shown in Figure 3.6, where a significant decrease in variance of both 
the cycle and the irregular component can be observed after the middle of 1982. 

Finally, Figure 3.7 shows a detail of a forecasting exercise five full years ahead, starting on 
December 1997, where it can be seen that almost all the data lie within the standard error 
bounds of the forecast. This figure may be plotted as follows, 

>> tfor = (205 : 224)'; 
>> confband = [fit(tfor) + 2*fitse(tfor) fit(tfor) - 2*fitse(tfor)]; 
>> plot(t, [log(usgdp) fit], '-', t(tfor), confband, ':') 
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Figure 3.6  The components of the trend + AR model for the US GDP. 

 
Figure 3.7  Example five year ahead forecasts for the US GDP. 

 

3.4  Advanced Examples using Variance Intervention  

The following two examples introduce an iterative approach for the simultaneous 
estimation of the trend NVR and perturbations when variance intervention is required. 

Example 3.3  Steel consumption in the UK revisited 

In Chapter 2, Example 2.3 considered the quarterly steel consumption data (Figure 2.4) in 
the context of a simple trend only model. However, as pointed out then, a better option 
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would be to estimate a UC model in which all the components were fitted jointly, an 
approach pursued below.  

Spectral identification is a very important step in this analysis, required in order to check 
for the existence of all or part of the seasonal harmonics. In this case, it is often preferable 
to calculate the AR-spectrum of the series when any dramatic jumps in the trend have 
already been removed using the reconst function, as discussed in Example 2.2 (see Figure 
2.6). Such jumps in the trend could distort the spectrum estimate of the original series, 
especially the frequency band corresponding to the trend, as illustrated in Figure 3.8. In 
fact, it is clear from Figure 3.8, that while the distortion is minimal with respect to the 
seasonal spectral peaks (4 and 2 samples/cycle), it is quite noticeable in the low frequency 
band of the spectrum. Figure 3.8 also reveals the existence of an approximate four years 
cycle in the data and most of the associated harmonics (note that the seasonal peak is one 
of these harmonics). 

 
Figure 3.8  AR(17)-spectrum of raw data (dotted) and the reconstructed series from Figure 2.6 (solid). 

Because of such potential distortions in the spectrum, frequency domain methods should 
always be applied with care, especially when estimating the trend (and cyclical) NVR 
hyper-parameters. Indeed, this is a typical case where ML in the time domain with 
simultaneous variance intervention estimation may yield a superior answer. In this regard, 
a DHR model may be estimated by entering the following commands. 

>> load steel.dat 
>> P = [0 16 8 16/3 4 2]; 
>> TVP = [1 0]; 
>> nvr = dhropt(steel, P, TVP, -17, [],[],[],[],[],[],[],[],[87 106]); 
>> [fit, fitse, tr, trse, comp] = ... 
>>            dhr(steel, P, TVP, nvr, [], [], [], [], [], [87 106]); 

The fourth input argument to dhropt specifies ML optimization using a frequency domain 
estimation based on the AR(17) model as the initial condition. The final input argument 
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provides the variance intervention points, using a similar syntax to the irwsm/irwsmopt 
pair introduced in Chapter 2. 

A more satisfactory solution may be obtained by an iterative procedure which combines 
both frequency and time domain methods. Although more complex to implement, this 
approach arguably provides a more objective and complete UC analysis. Indeed, while the 
simple commands above may be regarded as the basic default option, the code below is a 
good illustration of the open architecture of CAPTAIN in the MATLAB® environment, by 
which each user may find different ways to exploit potential solutions to a particular time 
series problem. 

The idea here is that NVR frequency estimation based on the raw data is contaminated by 
jumps in the trend. If these jumps were known, they could be removed and the 
contamination problem would disappear. Obviously, such information is not immediately 
available and has to be estimated simultaneously with the NVR hyper-parameters. In other 
words, trend jumps may be estimated conditional on given NVR parameters by variance 
intervention, while the NVR parameters themselves may be estimated in the frequency 
domain conditional on given estimates of the trend jumps. In this case, a simultaneous, 
unconditional estimate of the trend jumps and NVR parameters may be obtained by the 
following iterative algorithm (cf. Example 2.3). 

>> Int=[87 106];  % interventions 1975Q1 and 1980Q1 
>> nvr0 = irwsmopt(steel, 1, 'f12', Int); 
>> tnew = irwsm(steel, 1, nvr0, Int); 
>> ynew = steel - tnew + reconst(tnew, Int); 
>> P = [0 16 8 16/3 4 2]; TVP = [1 0]; 
>> tol = 1e-4; iter= 0; obj= 1000*tol; 
>> while obj > tol 
>>    nvr = dhropt(ynew, P, TVP, 17); 
>>    [fit, fitse, tnew, trse, comp] = ... 
>>                   dhr(steel, P, TVP, nvr, [], [], [], [], [], Int); 
>>    ynew = steel - tnew(:, 1) + reconst(tnew(:, 1), Int); 
>>    if iter>0, obj = max(abs(nvrold-nvr)); end 
>>    nvrold = nvr; iter = iter+1; 
>>    [iter obj] 
>> end 

The first four lines yield an initial estimate of the constructed series without the trend 
jumps based on the IRW + noise model (see Figure 2.6). Subsequently, the iterations are 
built in such a way that the NVR parameters are estimated using continuously updated 
versions of the jump-free series (first line after the while sentence). However, in each 
case the smoothing is based on the DHR model for the raw data, the current estimate of the 
NVR parameters and the variance intervention points. The iterations end when the 
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difference between two subsequent estimates of NVR values are less than the tol control 
value, here with NVR values . Finally, the 
trend estimates, together with the cyclical and seasonal components are all illustrated in 
Figure 3.9, obtained as follows. 

>> subplot(311), plot([steel tnew])          % Trend and series 
>> subplot(312), plot(sum(comp(:, 1:3)')')   % Cycle 
>> subplot(313), plot(sum(comp(:, 4:5)')')   % Seasonal 

 
Figure 3.9  Estimated components of the steel consumption series, using the frequency domain method. 

Example 3.4  Car drivers killed and seriously injured 

In order to show that the iterative procedure developed in the previous example is 
applicable to other data sets, a similar analysis is performed for the monthly car drivers 
killed and seriously injured in Great Britain from January 1969 to December 1984. 
Figure 3.10 displays this series using the following commands. 

>> load cars.dat 
>> t = (1969 : 1/12 : 1984.99)'; 
>> plot(t, cars) 

[0.0001,0.0434,0.0000,0.0009,0.0233,0.0017]
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Figure 3.10  Car drivers killed and seriously injured in Great Britain from January 1969 to December 1984. 

A mild trend and seasonal components are clearly visible in these data. However, more 
interesting, are the apparent jumps in the series related to seat-belt legislations in January 
1974 and February 1983 (samples 61 and 179). As before, these may be accounted for with 
the trend signal using variance interventions. In this case, it is also clear that the seasonal 
pattern changes in 1974 and 1975 after the first intervention point, so for the purposes of 
the present example, a third intervention is set at sample 74 (February 1975). 

An initial estimate of the trend is first obtained using irwsm/irwsmopt with variance 
interventions. The AR-spectrum of the raw data and the reconstructed intervened data are 
shown in Figure 3.11, where it is clear that the final harmonic is not present and is, 
therefore, not necessary in the analysis. Furthermore, the distortion due to the trend jumps 
are less significant here than in the steel consumption series. Nonetheless, for illustrative 
purposes, the full iterative procedure outlined in the previous subsection is still 
implemented and yields the components illustrated in Figure 3.12, together with the 
reconstructed series in Figure 3.13. 

 
Figure 3.11  AR-spectrum of the driver casualties data (dotted) and constructed series (solid). 
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Figure 3.12  Estimated components of the driver casualties data. 

 
Figure 3.13  Driver casualties data with the variance interventions removed. 
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3.5  Conclusions 

The present chapter has introduced the Unobserved Components (UC) modelling tools in 
CAPTAIN, and shown how the toolbox may be utilised for forecasting and signal extraction 
of periodic time series with widely varying characteristics. 

One point worth stressing again, is that in every example included in the chapter, the 
seasonal components are such that not all of the theoretical harmonics are observed in the 
data. In this regard, the present authors believe that the identification stage utilised above, 
based on both spectral and time domain methods, is a particularly important part of the 
analysis, although it is often neglected in conventional UC modelling. In addition to 
providing evidence on whether all or only some of the harmonics are really necessary 
(especially important for frequency domain estimation methods), this also identifies the 
relative importance of each component (measured by the relative magnitude of their NVR). 
This latter information is useful if the model has to be constrained in some way at the 
estimation stage. 

To illustrate the methodology, the models above have been limited to a trend and a cyclical 
or seasonal component. However, in fact, CAPTAIN allows for a much wider range of 
models than considered so far. The following chapters, therefore, introduce various 
additional components such as exogenous variables. 
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Chapters 2 and 3 have developed an approach to nonstationary signal processing based on 
the identification and estimation of time variable parameter (TVP) stochastic models. The 
methodological tools that underpin this modelling philosophy are unified in terms of the 
discrete-time Unobserved Components (UC) model (3.1). Here, in order to allow for non 
stationarity in the time series , it is assumed that the various components in the model, 
including the trend , can be characterised by TVP’s. 

Most often, the nature of such parametric time variability will not be known prior to the 
analysis and so each TVP is defined as a non stationary stochastic variable. This adds a 
statistical degree of freedom to the estimation problem, so allowing for the estimation of 
any ‘slow’ parameter variations. By slow, we mean here variations that are slow in relation 
to the variations in the time series itself. Such variations may result from slow physical 
changes in the process or from some form of nonlinearity in the data. In this manner, the 
models obtained are all inherently self-adaptive: namely, they change their parameters 
automatically in an optimal manner to reflect changes in the nature of the time series. For 
this reason, they can be exploited in applications such as self-adaptive forecasting, 
operational control and management.  

In practice, as mentioned in Chapter 3, not all the possible components in the UC model 
are necessary: indeed, the simultaneous presence of all these components can induce 
identifiability problems in which it is not possible to unambiguously estimate the model. 
For this reason, the models considered in Chapter 3 are limited to univariate time series 
characterised by a trend, together with a sustained cyclical and/or seasonal component. To 
complete the discussion, therefore, the present Chapter considers the other optimal 
recursive TVP models that may be estimated using CAPTAIN. 

In particular, the Chapter describes the entire class of TVP, or ‘dynamic’, regression 
models, including Dynamic Linear Regression (DLR), Dynamic Harmonic Regression 
(DHR) and Dynamic Auto-Regression (DAR), as well as the closely related, TVP version 
of the Auto-Regressive eXogenous variables model (DARX). Finally, the Chapter 
considers an alternative Dynamic Transfer Function (DTF) model, estimated using an 
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instrumental variable method of fixed interval smoothing, and shows how this is superior 
to the DARX model when measurement noise is present. The practical utility and self-
adaptive functionality of the dynamic regression model in these various forms is illustrated 
by both simulated and practical examples. 

In CAPTAIN, the required forward pass filtering and fixed interval smoothing algorithms are 
accessible via shells, namely the functions dlr, dhr, dar/darsp, darx and dtfm, while 
associated hyper-parameters are estimated using dlropt, dhropt, daropt, darxopt and 
dtfmopt respectively. These shells provide for ready estimation of the various special 
cases discussed below. 

4.1  Dynamic Linear Regression (DLR) 

As discussed in Chapter 2, the SS model (2.1) is particularly well suited to estimation 
based on optimal time variable parameter recursive estimation, in which the time variable 
parameters (acting as surrogate ‘states’) are estimated sequentially by the Kalman Filter 
(KF) whilst working through the data in temporal order. In the off-line situation, where all 
the time series data are available for analysis, this filtering operation may be accompanied 
by optimal Fixed Interval Smoothing (FIS). 

In this regard, one of the simplest yet widely applicable SS models using time variable 
parameters, is a DLR model based on the exogenous input component  of equation 
(3.1), interpreted in its most basic linear regression form, i.e., 

  (4.1) 

where  is a trend or low frequency component;  are either constant 
parameters (the normal regression model) or they may vary over the observation interval to 
reflect possible changes in the regression relationship; and  are the 
regression (input or exogenous) variables that are assumed to affect the ‘dependent’ 
variable . The presence of significant time variation can be due to various causes, 
dependent on the nature of the application, as discussed in the examples below. Finally, as 
shown,  is an ‘irregular’ component, normally defined for analytical convenience as a 
serially uncorrelated and normally distributed Gaussian sequence with zero mean value 
and variance  (i.e. discrete-time white noise). 

Equation (4.1) is a generalisation of the two parameter DLR model introduced in 
the CAPTAIN Getting Started Guide: see equation (3.3). In this regard, note that  is 
effectively another TVP with an associated regression variable of unity and, if required, 
must be explicitly specified as such when using CAPTAIN. 
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Reflecting the statistical setting of the analysis, the stochastic evolution of each parameter 
is assumed to be described by the Generalised Random Walk (GRW) process introduced in 
Chapter 2, including RW, AR(1), IRW, SRW, LLT and damped trends as particular cases. 
As discussed previously, the AR(1), SRW and damped trend models all require the 
specification or optimisation of an additional ‘hyper-parameter’, . An overall state space 
model (2.1) can then be constructed straightforwardly by the aggregation of the GRW 
subsystem matrices, in a similar manner to the examples given in Chapter 3 for dynamic 
harmonic regression. 

Take, for example, a DLR model with an IRW trend and two inputs, where the latter are 
governed by SRW and RW parameters, respectively. The overall SS form of such a model 
is given by, 

 (4.2) 

Recall from equation (2.1) that the ‘system disturbances’ noise vector, denoted earlier 
by , contains the white noise inputs to each of the TVP models, i.e. ,  and  
here. These white noise inputs are assumed to be independent of the observation noise  
and have a covariance matrix  formed from the combination of the individual covariance 
matrices for each parameter. The associated NVR matrix  is defined as follows, 

  

The NVR parameters that characterise  are unknown prior to the analysis and clearly 
need to be estimated on the basis of the time series data  before the filtering and 
smoothing algorithms can be utilised. The optimization of both the NVR and  hyper-
parameters in this DLR context, is accomplished either by Maximum Likelihood (ML) 
optimisation or by the minimisation of the multiple-steps-ahead forecasting errors, as 
discussed earlier. 

Note that, in the case of the simplest random walk model for all the parameters involved, 
each parameter can be assumed to be time-invariant if the variance of the white noise input 
in the state equation is zero. Then the stochastic TVP setting reverts to the more normal, 
constant parameter regression situation. In other words, the recursive estimation algorithms 
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described below for the general stochastic TVP case will provide constant parameter 
estimates identical to the normal en-bloc regression if RW models with zero variance white 
noise inputs are specified. Of course, there is some added value to the recursive solution 
even in this situation, since the user is provided with the recursive estimates over the whole 
interval. 

Furthermore, forecasting, interpolation and backcasting are an inherent part of these 
filtering and smoothing algorithms. For example, if missing samples are encountered 
anywhere within the output series, then the KF and FIS algorithms provide an optimal 
interpolation (Chapter 2). If, on the contrary, missing observations are found immediately 
after the last sample or prior to the first one, optimal forecasts and backcasts are similarly 
produced. Of course, all these cases require knowledge or forecasts of the exogenous 
regression variables over the missing data period. 

As illustrated in the example below, dlr and dlropt are the CAPTAIN functions for general 
DLR analysis and hyper-parameter optimisation, respectively. 

Example 4.1 Initial Evaluation of the Relationship Between Sunlight and Dissolved 
Oxygen in the River Cam using DLR (Young, 1998b) 

Although regression analysis is a particularly popular method of modelling economic, 
business and social data (see e.g. Example 1.1), DLR analysis can also prove useful in the 
initial data evaluation and the processing of environmental and other scientific data. For 
example, one interesting and successful practical example of the latter type is discussed by 
Young and Pedregal (1996) where this approach is utilised in the analysis of LIDAR 
(laser-radar) data. In the present example, however, we consider how DLR analysis can be 
applied to the data shown in Figure 4.1 (Beck and Young, 1975): namely 81 daily 
measurements of Dissolved Oxygen (DO) in the river Cam, near Cambridge; together with 
the associated measurements of sunlight hours. 

As we shall see, DLR analysis is not an entirely appropriate method of modelling these 
data: indeed they have been selected here in order to stress the need for careful appraisal of 
the TVP estimation results before making any scientific inferences. In effect, the analysis 
does no more than provide an initial evaluation of the simplest possible relationship 
between the two time series and how it appears to change over time. However, the 
simplicity of the DLR analysis helps to expose more clearly how DLR modelling can 
function as a useful and easy to use exploratory tool in these initial stages of time series 
analysis.  
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Figure 4.1  River Cam data: dissolved oxygen (top) and sunlight hours (bottom). 

It is well known that sunlight can influence DO levels because of physical and biological 
factors and it is not surprising, therefore, that there is a visible relationship between the two 
variables in these plots. The maximum cross correlation coefficient between the series is 
0.5542 when the sunlight series is lagged (delayed) by one sample. 

Using CAPTAIN, this can be seen be entering the following commands, 

>> load cam.dat 
>> u = cam(:, 1);  % sunlight (hours/day) 
>> y = cam(:, 2);  % DO (mg/l) 
>> ccf(y, u); 

Therefore, perhaps the most obvious constant parameter regression model takes the form, 

   (4.3)     (6.1) 

where  represents the DO measurements, while  and  are constant parameters (again 
showing how the trend in the DLR model is a time variable equivalent of the ‘intercept’ 
parameter in the constant parameter regression model). This model is determined as 
follows, 
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>> z = [ones(size(u)) del(u, 1)];  % define regressors 
>> [fit, fitse, par, parse] = dlr(y, z); 
>> par(end, :)  % final parameter estimates 
ans = 

6.4284 0.1423 
>> parse(end, :)  % final standard errors 
ans = 
    0.1870    0.0256 
>> r2 = 1-(cov(y)-cov(fit))/cov(y)  % coefficient of determination 
r2 = 

0.3134 

Here, the CAPTAIN function del provides the necessary lagged sunlight values. Only two 
input arguments to dlr are required, since constant parameters are assumed by default (i.e. 
RW model with NVR = 0 for both TVP’s: see dlr help information). As shown above, this 
yields estimates of  and , together with a coefficient of 
determination : i.e. the regression model with these constant parameter 
estimates explains only 31.3% of the DO series. The output of this model (dashed line) is 
compared with the DO data (circles) in Figure 4.2 and the poverty of the fit is obvious: it 
explains the intermediate values of DO between 6.5 and 8.5 mg/l to some extent, but fails 
completely to explain the larger deviations from the mean DO level (7.28 mg/l). 

 
Figure 4.2  DLR analysis of River Cam data. Top: comparison of DLR model output (full trace) with DO 

data (circles), while the output of the constant parameter model is shown dashed. Bottom: time varying  
and standard errors, together with the constant parameter equivalent . 
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Therefore, it is useful to turn to the time variable form of the model. In fact, it makes some 
sense to constrain the  trend estimate to be constant in this case, in order to force all the 
estimated variation into the  parameter, which controls the direct relationship between 
DO and sunlight. The first step is to optimise the NVR hyper-parameters as shown below, 

>> nvr = dlropt(y, z, [0 1], [], [0 -2]) 
nvr = 
  1.0e-003 * 
         0 
    0.4258 

As before, the stochastic model for the variations in  are specified as a RW process with 
the associated NVR constrained to zero. Here, however, the  parameter is defined as an 
IRW with a freely optimised NVR (see dlropt help information). It is clear that the default 
ML optimisation yields an NVR = 0.00043 for this model. 

Some comment is required regarding the fifth input argument above, i.e. [0 -2], which 
specifies the constraints for each NVR, listed in the same order as the regressors. Here, any 
value greater than or equal to zero yields a fixed NVR of that value, while the -2 employed 
above implies free optimisation. Constrained optimisation is also possible: all NVRs 
associated with -1 will be optimised to the same value. For example, with 5 TVP’s, 
specifying [-1 -1 -1 -2 0.1] implies that the first three NVRs will be optimised together 
(returning the same value), the fourth will be optimised independently, and the final NVR 
will take the defined fixed value (0.1). 

Returning to the present example, the model fit is obtained in the usual manner, 

>> [fit, fitse, par, parse] = dlr(y, z, [0 1], nvr); 
>> par(end, :) 
ans = 
    6.6213    0.2081 
>> parse(end, :) 
ans = 

0.1501 0.0513 
>> r2 = 1-(cov(y)-cov(fit))/cov(y) 
r2_= 
    0.6684 

It is clear that the trend is now estimated as a constant value of , while  
is shown as the time varying solid line in the lower panel of Figure 4.2 (it’s final value 

). As expected, this DLR model now has an improved value of . 
Note that, by allowing both  and  to vary over time as IRW processes, the fit may be 
improved further to . 
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This DLR model seems reasonably satisfactory, but does it provide a meaningful 
representation of the data? In this regard, it is necessary first to consider whether the DLR 
normalised recursive residuals are satisfactory. Here, however, the Autocorrelation (ACF), 
Partial Autocorrelation (PACF) and Cross Correlation Functions (CCF) show some 
evidence of misspecification, albeit marginally, with some evidence of minor correlation in 
all cases. These statistical deficiencies of the model suggest simply that it is not an entirely 
appropriate representation of the relationship between sunlight and DO. This conclusion is 
not surprising since the real relationship is probably more complex and a static regression 
model, even with dynamically changing parameters, cannot hope to explain the data in an 
entirely satisfactory manner. For these reasons, we will return to this example later in the 
chapter, when discussing the more complicated DARX model. 

4.2  Dynamic Harmonic Regression (DHR) 

The DHR model contains the trend, cyclical, seasonal and white noise components of 
equation (3.1), i.e., 

  (4.4) 

Although it is sometimes convenient to define the seasonal term  and the cyclical term 
 separately (e.g. Young, 1998), they are both modelled in the same manner and, in fact, 

no distinction is made in CAPTAIN. Both are defined by equation (3.8) and the CAPTAIN 
user simply specifies the periodic components required, i.e. the fundamental and harmonic 
frequencies associated with the seasonality, together with the frequencies associated with 
the (normally longer period) cyclical component. 

In both cases, these frequency values are chosen by reference to the spectral properties of 
the time series, as discussed in Chapter 3. As for the DLR model above, the trend 
component  is also be considered as a stochastic, time variable ‘intercept’ parameter and 
so is incorporated, if so desired, into the cyclical or seasonal components as a zero 
frequency term. This DHR model can be considered as a straightforward extension of the 
classical, constant parameter, Harmonic Regression (or Fourier series) model, in which the 
gain and phase of the harmonic components can vary as a result of estimated temporal 
changes in the parameters. 

In general, each of these TVP’s, as well as the trend , are modelled as GRW processes 
and the subsequent recursive estimation procedures are exactly the same as for the DLR 
model, except that the NVR values (and any other hyper-parameters) in the GRW models 
associated with the parameters of each component are usually constrained to be equal. 
However, as discussed in Chapter 3, the ML method used for hyper-parameter 
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optimization in the DLR case does not work so well in this DHR context and so a novel 
frequency domain optimization algorithm has been developed for CAPTAIN. 

It is worth noting that adaptive forecasting, interpolation and backcasting are much more 
straightforward than in the DLR case, because the regression variables in the DHR model 
are all known functions of time and can be specified easily outside the data sample when 
using the model for forecasting and backcasting purposes.  

If desired, the DHR model can be estimated directly using the CAPTAIN function dlr, by 
manually specifying the regressors as appropriate harmonic components. However, special 
shells are included in the toolbox for this purpose, namely dhr and dhropt. These 
functions are useful for signal extraction and forecasting of periodic or quasi-periodic 
series, as shown by the examples in Chapter 3. 

4.3  Dynamic Auto-Regression (DAR) and Time-Frequency Analysis 

The basic DAR model is similar to the DLR model, except that the input variables are 
defined as past values of the output series. More formally, a DAR(p) model may be 
formulated as: 

  (4.5) 

in which  is a time variable parameter polynomial in the 
backward shift operator L. On multiplying throughout by  so that it operates on , 
we obtain the DAR(p) model in the discrete-time equation form: 

  (4.6) 

In other words,  is dependent on past values of itself plus a random component in the 
form of the white noise .  

Noting that its constant parameter relative, the AR model, is used for spectral analysis in 
the form of the AR spectrum (see Chapter 3), the most obvious application of the DAR 
model is, therefore, in time-frequency analysis. Here, at the t-th time instant, the FIS 
estimated parameters  of the DAR model (4.5) and (4.6) are used to 
compute the instantaneous AR spectrum at that time from the well-known relationship (see 
e.g. Priestley, 1981), 
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where  is the estimated variance of the model residuals. The order  is selected either 
by the user on the basis of prior knowledge, or by use of the AIC (see Chapter 3). Then, for 
each user-selected value of  over the range 0 (zero frequency) to 0.5 (the Nyquist 
frequency), , or its logarithm, is evaluated with . The 
set of all these instantaneous but smoothly changing spectra over the interval  
then provide an indication of the changing spectral properties of the series  over this time 
interval. As we shall see in the example below, these time-frequency spectra can be 
presented in various ways. 

The DAR model may be useful even when constant parameters are specified (by selecting 
zero NVR parameters), because unlike conventional AR-spectrum analysis, it still provides 
estimates when missing data are encountered. Indeed, when the CAPTAIN function arspec 
detects missing data, it automatically estimates the AR model recursively in this manner. 
Another important feature is that a constant parameter AR model estimated using the DAR 
function in CAPTAIN, provides recursive estimates of all the parameters and their standard 
errors, so that the assumed time invariance of these parameters may, in fact, be tested. 

The DAR model can be estimated directly using the CAPTAIN function dlr, by manually 
specifying the regressors as appropriate past values of the output. However, this is not an 
optimal approach when the time series involves missing data, since such missing data in 
the output also generate missing values in the regressors (i.e. the lagged output variable). 
However, a solution is provided in CAPTAIN by replacing the missing values in the output 
and inputs by their expected values, according to the estimated model, as soon as they are 
detected. In other words, when a missing value is encountered at the p-th lagged output, the 
KF forecast replaces all subsequent occurrences of this datum in the analysis. Special 
shells are included in CAPTAIN for this purpose, namely dar and daropt, while the 
auxiliary function darsp allows for automatic graphing of the time-frequency spectra. 

Example 4.2  Analysis of a signal with sawtooth changing frequency using DAR 

This example considers a simulated signal with ‘sawtooth’ changing frequency. The data 
are loaded into the workspace, standardised and a time invariant AR model identified, 

>> load tvp1.dat 
>> y = stand(tvp1); 
>> p = aic(y) 
p = 

1.0000    0.0771   -0.1322 
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Figure 4.3  Simulated signal with sawtooth changing frequency (top); 

DAR parameters and their standard errors (bottom). 

The standardised data are illustrated in Figure 4.3, while the AR(2) model is shown below, 

  (4.8) 

In the straightforward command above, aic automatically selects the model order using the 
AIC criterion (Akaike, 1974). As an aside, note that the toolbox function mar can be used 
to estimate conventional AR models for any model structure. For example, the AR(2) 
model (4.8) is alternatively obtained using (see help information for mar), 

>> th=mar(y, 2); p=getpar(th) 

Returning to the DAR analysis, the NVR hyperparameters and DAR model are estimated, 
and the time-frequency spectra graphed, as shown below, 

>> nvr = daropt(y, [1:2], [1 0]) 
nvr = 
    0.0011 
    0.0000 
>> [fit, fitse, par, parse]= dar(y, [1:2], [1 0], nvr); 
>> par(end, :) 
ans = 
    1.6164    0.8056 
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>> parse(end, :) 
ans = 
    0.2159    0.0456 
>> darsp(par, 6, 1); 
 

Note that the second input argument [1:2] in the calls to daropt and dar specify the 
structure of the DAR model, based on (4.8), and takes the same syntax as that used for mar 
and univ (see Chapter 3). For the purposes of this example, IRW and RW models are 
chosen for  and , respectively, with the DAR model taking the following form, 

  (4.9) 

Here, it is interesting to note that the second TVP takes an almost constant value of 
 (the associated ML optimised ), leaving the first 

parameter  ( ) to account for the time varying frequency of the original 
signal, as shown by the lower plot of Figure 4.3. 

In this regard, of more interest is the time-frequency spectra of the series shown in 
Figure 4.4. Here, the second and third input arguments to darsp specify that a 3D spectrum 
plot with a resolution of  is required. The visual appearance of this plot depends on the 
computer platform and it is sometimes necessary to experiment to find the best resolution. 
Finally, note that contoured surfaces and 2D stacked plots may also be obtained by 
changing the 3rd input argument. It is clear from Figure 4.4 that this series has a single 
peak, the frequency of which gradually changes over time, not surprising since these 
simulated data were deliberately generated in such a form to illustrate the methodology. 

 
Figure 4.4  Time-frequency spectra. 
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Young (1998b) applies DAR analysis to the well known SPECtral MAPping series 
(SPECMAP: see Imbrie et al, 1992), which has been obtained from the analysis of oxygen 
isotope variations in deep ocean cores. Here, the spectral properties of the series are 
examined, revealing some localised variations in the estimated peak frequencies over time 
and a significant change at around 650-700 ka. Such analysis is useful in exposing time 
series data to greater scrutiny and ‘focussing-in’ on interesting aspects of the data which 
would not be nearly so apparent from the results of more conventional time series analysis. 

4.4  Dynamic AutoRegressive eXogenous Variables (DARX) 

The DARX model is simply the extension of the DAR model (4.6) to include measured 
exogenous or input time series that are thought to affect  in a truly dynamic, systems 
sense. In the case of a single input variable , it takes the form, 

 (4.10) 

where  is a pure time delay, measured in sampling intervals, which is introduced to allow 
for any temporal delay that may occur between the incidence of a change in  and its first 
effect on . Such ‘transport delays’ are, of course, a common feature of many 
environmental and engineering systems. This DARX model is, in fact, a special example of 
the discrete-time Transfer Function (TF) model, which is considered in more detail in the 
RIVSID module of CAPTAIN. This becomes apparent if it is written in the following L 
operator form, 

  (4.11) 

where .  It is a special model because it assumes 
that the white noise input enters through the TF (or filter) , so avoiding certain 
difficult statistical problems that beset more general TF models (see RIVSID module and 
e.g. Chapter 8 of Taylor et al. (2013)). 

The close relationship between the DAR and DARX models means that the hyper-
parameter optimisation and recursive estimation of the TVP’s is identical to the earlier 
examples in this chapter. Indeed, the DAR model may be estimated directly using the 
CAPTAIN function dlr, by manually specifying the regressors as appropriate past values of 
the input and output variables. This approach provides the greatest freedom for the user to 
also specify a trend and/or other components, as shown in Example 4.3 below. However, 
this solution may not be optimal; for example, if there are any missing data the same 
problems discussed in Section 4.3 above apply. Therefore, special shells are included for 
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the estimation of a purely DAR model (4.11), namely darx and darxopt. Use of these 
functions is demonstrated later in Example 4.4. 

Example 4.3  River Cam Data Revisited (Young, 1998b) 

Given the DLR results for the Cam data (Example 4.1) and initial evaluation of different 
DARX model structures, the best identified DARX model is (Young, 1998b), 

  (4.12) 

where  has been replaced by  because the analysis suggests strongly that the 
‘dynamic lag’ effect introduced by the lagged term in  effectively removes the need for 
the pure time delay  in this case. Under the assumption that the trend  and  evolve 
as RW processes, while   varies as an IRW processes, the associated NVR coefficients 
are optimised by ML, as shown below, 

>> load cam.dat 
>> u = cam(:, 1);  % sunlight (hours/day) 
>> y = cam(:, 2);  % DO (mg/l) 
>> z = [del(y, 1) ones(size(y)) u];  % define regressors 
>> nvr = dlropt(y, z, [0 0 1]); 
nvr = 
  1.0e-006 * 
    0.0000 
    0.0012 

0.5094  
>> [fit, fitse, par, parse] = dlr(y, z, [0 0 1], nvr); 
>> par(end, :) 
ans = 

0.7186    1.6557    0.0679 
>> parse(end, :) 
ans = 
    0.0757    0.5275    0.0309 
>> r2 = 1 - cov(y-fit)./cov(y) 
r2 = 
   0.7433 
 

Initially, all three parameters were assumed to vary as IRW processes but the FIS 
estimation results then suggested strongly that  and  were not varying significantly, so 
that  more appropriate stochastic model in both cases was the RW process. In fact, as we 
see from the above optimised NVR values, which are insignificantly different from zero in 
the case of  and , the ML optimisation is indicating that these parameters are 
stationary. Indeed, the resulting estimates, using these optimised NVR’s, are virtually 
constant in both cases, with  and . 
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The estimate of  , shown in Figure 4.5 is also not estimated as changing very much and 
it is difficult, at this point in the analysis, to say whether the variation is significant in 
comparison with the fully constant parameter ARX alternative, whose constant parameters 
are estimated as ; ; and . These 
latter estimates are obtained by setting the third and fourth input arguments to dlr to the 
default zero, as shown below, 

>> [fit, fitse, parc, parse] = dlr(y, z); 
>> parc(end, :) 
ans = 
    0.7455    1.4784    0.0641 

The output of the DLR model with time varying parameters (the output argument fit), as 
computed from the equation, 

  (4.13) 

is compared with the DO data (circles) in the top graph of Figure 4.5. 

 
Figure 4.5  DLR analysis of River Cam data. Top: 1-step ahead predictions (full trace) with DO data 

(circles). The simulated model output (dashed) and constant parameter (dotted) model outputs are also shown 
for comparison. Bottom: time varying  and standard errors, together with the constant parameter 

equivalent  (dashed). 
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The DARX model  can be compared with the initial DLR model (Example 4.1) 
, and the constant parameter ARX model of , which is only a little 

smaller. The statistical diagnostics are more satisfactory than the initial DLR model: the 
ACF and PACF of the normalised recursive residuals show no significant lag correlation 
and are consistent with the white noise assumption. However, the CCF between the 
residuals and the sunlight series shows some minor instantaneous correlation. 

Since the coefficients of determination for the TVP and constant parameter models are so 
similar, it would appear at first sight that little is being gained by allowing for time variable 
parameters in this case. However, there is an important complicating factor that needs to be 
considered: the output  of the model in equation (4.13) represents only the one-step-
ahead predictions of the DLR model, since  on the right had side of the equation is the 
last measured value of the DO. Consequently, the  values relate to the one-step-ahead 
prediction errors, which is the normal definition of the coefficient of determination for 
regression-type models. Unfortunately, in the case of transfer function models of the 
DARX and ARX type, this measure can often provide a somewhat overly optimistic 
indication of the model’s explanatory ability, which may be the reason why it is so often 
quoted in the modelling literature! 

A much more discerning and critical measure of the model’s ability to characterise the data 
is the coefficient of determination based on the simulation model residuals, , in which 
the simulation model output  is generated from the equation, 

  (4.14) 

where now the lagged output term on the right hand side of the equation is the last value of 
the simulated output , rather than the measured . In other words,  is generated 
solely from the sunlight series  and the trend term  (here estimated as a constant), 
without any reference at all to the measured DO, , as shown below. 

>> tf=y(1);  % initial condition 
>> for ff=2:length(y) 
>>   tf(ff, 1) = par(ff, 1)*tf(ff-1) + par(ff, 2) + par(ff, 3)*u(ff); 
>> end 
>> r2 = 1 - cov(y-tf)./cov(y) 
r2 = 
   0.6189 
 

As expected, the  value based on this simulation model residuals, , 
is quite a lot less than the equivalent  obtained from the one-step-ahead 
prediction errors , but it is much better than the  based on the 
simulation model with all constant parameters. The plot of  for the DARX model is 
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shown as the dashed line in Figure 9 and this is clearly superior to the equivalent graph of 
the constant parameter ARX model output, shown as the dotted line, despite the fact that 
the  TVP estimate is changing very smoothly and by quite small amount.  

So what can we conclude from the results here and in the previous DLR modelling 
exercise? In terms of the  values, the DLR and DARX models are very similar. Both 
have a single time variable parameter, the coefficient associated with the sunlight series, 
although the estimated variations of the DARX parameter are much less and much 
smoother than in the DLR case. But the DARX model has an additional constant 
parameter, the coefficient associated with its additional regression variable, the lagged 
dependent variable . And, finally, the DARX model has superior, albeit not perfect, 
statistical diagnostics.  

Taking all these factors in to consideration, the DARX model seems to be marginally 
superior. First, its single TVP varies less and much more smoothly that the equivalent TVP 
in the DLR model, which is clearly advantageous (if a constant parameter model can be 
identified and estimated it is always preferable to a TVP model). Second, it is a dynamic 
model, in the systems sense, which seems more acceptable from a physico-biological 
standpoint and better satisfies the Data-Based Mechanistic (DBM) modelling strategy 
developed at Lancaster over the past few decades (see e.g. Price et al. 1999 or Young et al. 
2001a, and the references within). In addition to providing an efficiently parameterized 
model that explains the data well, this strategy requires that, if at all possible, the model 
should be interpretable in physically meaningful terms. In this regard, the above modelling 
provides a straightforward, quick and objective method of analysis, which reveals that the 
potentially changing nature of the relationship between lagged sunlight and DO can be 
represented by very simple models with only one smoothly changing parameter. 

Furthermore, having completed this initial analysis, the estimated variations in the 
parameters can be investigated further to see if they are associated with other measured 
variables (states or inputs) of the system. For example, we might wish to investigate 
whether  is a function of temperature, as it might well be from physico-biological 
considerations. The CCF between the  parameters from both the DLR and DARX 
models and water temperature reveals a quite marked correlation with a maxima of about 
0.7 at lag zero. Moreover, if the water temperature data is smoothed using irwsm with 

, then there is a remarkable maximum instantaneous correlation of 0.997, 
as shown below, 

>> w = cam(:, 3);  % river water temperature (degrees Centigrade) 
>> w = irwsm(w, 1, 0.00002); 
>> ccf(w, par(:, 3)); 
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Figure 4.6  CCF between the DARX estimate  (dashed) and smoothed water temperature (full). 

While this certainly does not mean that there is a physical relationship between the TVP’s 
and water temperature, it does show how the analysis can expose potential relationships 
and provide food for thought. In this case, it suggests that the  parameter in both models 
may be a State Dependent Parameter (SDP), of the kind discussed in Chapter 5, and such 
state dependency is suggestive of a multiplicative nonlinearity of the bilinear kind.  

Finally, by demonstrating the need for such a lagged, TVP or SDP relationship between the 
variables, it provides a useful prelude to further, more mechanistically oriented DBM 
modelling which considers the possibility of simple but nonlinear stochastic, dynamic 
relationships involving other relevant variables, such as: upstream measurements of DO; 
Biochemical Oxygen Demand (BOD) arising from pollution in the river, nutrient inputs 
and algal dynamics (see e.g. Beck and Young, 1975).  

4.5  Dynamic Transfer Function (DTF) 

Unfortunately, the DARX model (4.10) is limited in practical terms since it depends on the 
assumption of the, rather specific, signal topology, with the noise entering the model 
through a restricted AR process with a polynomial  equal to that of the denominator 
polynomial. A more general Dynamic Transfer Function (DTF) model, without the 
restrictions of the DARX, is the following, 
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  (4.15) 

Here,  and  are time variable coefficient polynomials in  of the following 
form: 

  (4.16) 

and  represents uncertainty in the relationship arising from a combination of 
measurement noise, the effects of other unmeasured inputs and modelling error. Normally, 

 is assumed to be independent of  and is modelled as an AutoRegressive (AR) or 
AutoRegressive-Moving Average (ARMA) stochastic process (see e.g. Box and Jenkins, 
1970; Young, 1984), although even this restriction can be avoided by the use of 
instrumental variable methods, as discussed below. 

Equation (4.16) can be written in the following vector equation form, 

   (4.17) 

where, 

  (4.18) 

and . For convenience of notation, let  be defined as follows,  

  (4.19) 

with , relating to the TF model parameters   and  through 
(4.17). In order to estimate the assumed time variable model parameters in , it is 
necessary to make some assumptions about the nature of their temporal variability. As for 
the earlier examples in this chapter, the ith  parameter, , in  is 
defined by a two dimensional stochastic state vector  , where  and  
are, respectively, the changing level and slope of the associated TVP. The stochastic 
evolution of each  (and, therefore, each of the n+m+1 parameters in ) is assumed to 
be described by the GRW process defined in Chapter 2. 

Having introduced the GRW models for the parameter variations, an overall SS 
model (2.1) can then be constructed straightforwardly by the aggregation of the subsystem 
matrices. As before, the white noise inputs , which provide the stochastic stimulus for 
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parametric change in the model, are assumed to be independent of the observation noise  
and have a covariance matrix  formed from the combination of the individual 
covariance matrices . Finally,  is a   vector of the following form, 

  

that relates the scalar observation  to the state variables, so that it represents the DTF 
model (4.12) with each parameter defined as a GRW process. In the case of the scalar RW 
and AR(1) models, the alternate zeros are simply omitted. 

In the previous sections of this chapter, a standard algorithmic approach to the problem has 
been utilized based on a forward-pass filtering algorithm, followed by fixed interval 
smoothing. In this regard, it should be noted that the recursive filtering algorithm is closely 
related to the Kalman Filter (KF: 1960) and is often referred to as such. The difference is 
that the  matrix in the present, recursive TVP estimation context for the TF model 
(4.12), is based on measured variables. In particular, the output variables  , 
in  are affected by the noise  (the ‘errors-in-variables’ problem); whereas, strictly, in 
the KF,  has to be composed of exactly known (but, if necessary, time variable) 
deterministic coefficients. 

This difference is important in the present TF context since it can be shown that the TVP 
estimates obtained from the standard recursive filtering/smoothing algorithm will be 
asymptotically biased away from their ‘true’ values. This bias may be unimportant if the 
model is to be used within a forecasting context since the forecasts produced by the model 
are not biased (although they may not be statistically efficient). However, the level of the 
bias is dependent on the magnitude of the measurement noise and it can be problematic in 
high noise situations, particularly if the parameters are physically meaningful (see e.g. 
Young, 1984 for a discussion of this problem in the constant parameter situation).  

For this reason, it is necessary to modify the standard algorithm (2.5, 2.6) to avoid these 
biasing problems. The approach taken is similar to that used the RIVSID module of 
CAPTAIN for the identification of general transfer function models and requires the 
introduction of instrumental variables. In relation to the time series , the 
time variable parameter recursive Instrumental Variable (IV) filtering/smoothing algorithm 
has the following form: 

et
Q

Qh ,i Ht 1 p´

Ht = -yt-1 0 - yt-2 0 .... yt-n 0 ut-d 0 ....ut-d -m 0[ ]

yt

H t

yt-i, i = 1,2,...,n
H t x t

H t

yt , t = 1, 2,...,N



 

76 

1. Forward Pass Symmetric IV Equations (iterative)  

Prediction: 

  (4.21)      

Correction: 

  (4.22) 

where, 

  (4.23) 

  (4.24) 

As before, the FIS algorithm is in the form of a backward recursion operating from the end 
of the sample set to the beginning. 

2. Backward Pass Fixed Interval Smoothing IV Equations (FISIV: single pass) 

  (4.25) 

with . 

The main difference between the above algorithm (4.23)-(4.25) and the standard 
filtering/smoothing algorithms is the introduction of ‘hats’ on the  vector and the  
matrix.  in (4.15) is the IV vector, which is used by the algorithm in the generation of 
all the  terms and is the main vehicle in removing the bias from the TVP estimates. The 
subscript  on  and  indicates that the estimated DTF polynomials in 
the auxiliary model, (4.15), which generates the instrumental variables  that appear in 
the definition of , are updated in an iterative manner, starting with the least squares 
estimates of these polynomials. 
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Iteration is continued until the forward pass (filtered) IV estimates of the TVP’s are no 
longer changing significantly: normally only 3 iterations are required. 

This iterative approach is based on the IV algorithm for constant parameter TF models 
(e.g. Young, 1984), except that the symmetric gain version of the IV algorithm (Young, 
1970; 1984, p.183) is used, rather than the more usual asymmetric version. This is 
necessary in order that the standard recursive FIS algorithm can be used to generate the 
smoothed estimates of the TVP’s. Note also that, in these algorithms, the NVR matrix  
is defined by equation (2.10) as usual. The optimization of these hyper-parameters is 
achieved through either Maximum Likelihood estimation or the minimisation of the n-step 
ahead forecasting errors as discussed before. 

These modified filtering and smoothing algorithms mean that the standard dlr function 
cannot be utilised to estimate the TF model (4.15). Instead, special shells are included in 
CAPTAIN, namely dtfm and dtfmopt, which require the user to specify only the structure 
of the model, as shown below. 

Example 4.4  Comparison of DARX and DTFM for simulated data 

As a straightforward example of DTF analysis, consider the estimation of the parameters in 
the following first order TVP model with gradually changing denominator parameter, a 
fixed numerator parameter and a time delay of two samples. 

  (4.25) 

where  represents the output,  the input and  a zero mean white noise signal. For 
this example, we allow the denominator parameter to change slowly over time as a sine 
wave, as illustrated in Figure 4.7. The MATLAB® code for this example is shown below, 
where we initially assume IRW models for both parameters. 

>> load tvp3.dat 
>> y=tvp3(:, 1);  % output 
>> u= tvp3 (:, 2);  % input 
>> nvr=dtfmopt(y, u, [1 1 2], 1) 
nvr = 
  1.0e-007 * 
    0.2951 
    0.0000 
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Figure 4.7  Top: output ; bottom: parameter (thin); DTF estimate (solid) and standard errors; 

for comparison, the DARX estimate is also shown (dotted). 

ML optimization yields a NVR for the  parameter that is insignificantly different from 
zero, indicating that the parameter is identified as being time invariant. This shows how, 
quite objectively, the ML optimization is able to identify the relative temporal variability 
of the model parameters from the input-output data. Continuing the analysis with time 
invariant  now selected a priori, 

>> nvr=dtfmopt(y, u, [1 1 2], [1 0], [], [-2 0]); 
>> [tfs1, fit1, fitse1, par1, parse1]=dtfm(y, u, [1 1 2], [1 0], nvr); 
>> [tfs2, fit2, fitse2, par2, parse2]=darx(y, u, [1 1 2], [1 0], nvr); 
 

The final line above estimates the equivalent model using the DARX noise assumption, i.e. 
instrumental variables are not utilised in the filtering and smoothing algorithm. The third 
input argument in the calls to dtfm, darx and dtfmopt is the model structure (4.35), 
represented by the triad [n, m, ]. Of course, this example assumes that the model 
structure is known prior to the analysis. In practice, the identification procedure could 
involve testing a range of potential model structures until the most appropriate one is 
found. Alternatively, the identification tools available in the RIVSID module of CAPTAIN 
may be utilised. 
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The dotted trace in the lower plot of Figure 4.7 shows the equivalent DARX estimates of 
using the same NVRs. The superiority of the DTF estimates is clear. The DTF model 

with these estimated parameters explains the data well: the coefficient of determination 
based (on the rather noisy) simulated model output compared with the noise free output, 

; whilst for the DARX model, this is reduced to . The model 
residuals (innovations) for the DTF model are also superior: they have an approximately 
normal amplitude distribution; and, as required, both the ACF and the CCF between the 
residuals and the input , are insignificant at all lags. In contrast, the CCF for the DARX 
model residuals shows significant correlation with  at some lags. 

4.6  Conclusions 

The present chapter has briefly summarised the entire class of TVP or ‘dynamic’, 
regression models implemented in CAPTAIN, including Dynamic Linear Regression (DLR), 
Dynamic Harmonic Regression (DHR) and Dynamic Auto-Regression (DAR), as well as 
the closely related, TVP version of the Auto-Regressive eXogenous variables model 
(DARX) and an alternative Dynamic Transfer Function (DTF) model, estimated using an 
instrumental variable method of fixed interval smoothing. 

As pointed out in the introduction to this chapter, such TVP models allow for the 
estimation of any slow parameter variations that may result from slow physical changes in 
the process or from some form of nonlinearity in the data. However, when the parameters 
vary at a rate commensurate with that of the system variables themselves then the model 
may behave in a heavily nonlinear or even chaotic manner. Nonetheless, if these TVP’s are 
found to be functions of the state or input variables (i.e. they actually constitute stochastic 
state variables), then CAPTAIN provides for the estimation of State Dependent Parameter 
(SDP) models, as discussed in the next Chapter 5. 

ta1

0.6075R2T = 0.4705R2T =

ut
ut



 

80 

 

 

 

 

 

The idea of using State-Dependent Parameter (SDP) models to represent nonlinear 
dynamic systems goes back to Young (1978), who showed how the forced logistic growth 
equation could be represented, identified and estimated in SDP form. However, the 
practical development of these ideas is of a more recent origin (Young, 1993b, 1998a,b, 
2000, 2001a,b; Young et al., 2001).  The associated sdp tool in CAPTAIN has been 
available since 2001 (Taylor et al. 2007). 

5.1  The State-Dependent ARX (SDARX) Model 

In order to introduce the ideas that underlie SDP models, consider first the Dynamic ARX 
(DARX) model introduced in Chapter 4 which, for the case of a single input variable, is 
written in the following form, 

  (5.1a) 

or, in transfer function terms, 

  (5.1b) 

Equation (5.1) is based on a nomenclature favoured by econometricians and used 
throughout most of the present book. However, earlier publications concerned with SDP 
models have utilised the following nomenclature for equation (5.1), as used by systems and 
control analysts,  

   (5.2a) 

For consistency with these numerous earlier publications, the present chapter will utilise 
this alternative nomenclature. Here , rather than  is used as the backward shift 
operator and the subscript k is used to denote that the associated variable is sampled at a kth 
sampling instant: i.e. ;  is still used to denote a pure time delay; and  is a 
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zero mean, white noise signal. In this form, ,  are the following TVP 
polynomials in the backward shift operator  , 

   (5.2b) 

The polynomial coefficients,  and  may vary between 
samples k to k+1, and the stochastic evolution of each parameter is assumed to be 
described by the Generalised Random Walk (GRW) process introduced in Chapter 2, 
including RW, AR(1), IRW, SRW, LLT and damped trends as particular cases. As 
discussed previously, the AR(1), SRW and damped trend models all require the 
specification or optimisation of an additional ‘hyper-parameter’, , although this is rarely 
necessary in practice. Also, as before in Chapter 4, the model structure is defined by the 
triad [n, m, ] (see Example 4.4). 

The SDP version of the model (5.2a) is made explicit by writing the definitions of (5.2b) in 
the following SDP form: 

  (5.2c) 

where the notation  indicates that the parameters are 
nonlinear functions of the vector . In general,  is defined in terms of any variables on 
which the parameters are identified to be dependent. In the present context, however, each 
SDP is assumed to be a nonlinear function of a single variable which might, for instance, 
be its associated past input or output variable, i.e., 

  (5.2d) 

However, in general, the SDARX model can be written in the equation form of (5.1a) but 
with the time variable parameters defined explicitly as a function of user-specified 
variables , i.e., 

 (5.2e) 

Young (2000, 2001a) and Young et al. (2001) describe an identification and estimation 
strategy for SDP models of this general type. The details of this strategy are given in these 
references and it will suffice here to outline the main features of the approach.  
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Initial non-parametric estimation of the SDARX model 

The identification and estimation of a model such as (5.2) follows a similar procedure to 
that discussed in previous chapters for TVP models: after all, a SDP is also a TVP. Indeed, 
if the variable  is only slowly changing in relation to the changes in the input and 
output variables  and , then it can be treated as a TVP model and estimated in the 
same manner as the DARX model considered in Chapter 4. 

However, consider the situation where the input  and output  of the dynamic system 
are changing rapidly and the variable  is changing at a rate that is commensurate with 
the changes in these variables (e.g. it could be a function of the input and output variables, 
as in the definition (5.2d) above). Under these conditions, normal TVP estimation will fail 
because the GRW models for the parameters will be unable to effectively track the very 
rapid variations in the SDPs. For instance, as we shall see, the SDP model can describe a 
chaotic process, in which case the SDPs could also be chaotic! In order to obviate these 
difficulties, it is necessary to perform the TVP estimation in a different manner, in which 
the data are ‘re-ordered’ prior to estimation and the recursive FIS algorithm is applied 
using a special ‘back-fitting’ procedure.  

The data re-ordering is a simple but very effective device for transforming the rapid TVP 
estimation into a much simpler and solvable, slow TVP estimation problem. It works on 
the basis that if, at any sample time k in an off-line (non-real-time) situation, all the 
variables in an equation such as (5.2) are available for the purposes of estimation, then it 
is not necessary to consider each equation in the normal temporal order, . For 
instance, each equation and the variables appearing in this equation, can be re-ordered in 
some manner and the model parameters in the equation can then be recursively updated in 
this new, transformed data space. And if the re-ordering is chosen such that, in this 
transformed data space, the variables and associated parameters are changing quite slowly, 
then recursive FIS estimation, based on the GRW class of models for the parameter 
variations, will provide sensible estimates of the parameter variations in the transformed 
data space. Transformation of these estimated SDPs back into the original data space then 
reveals their true rapid variation in natural temporal terms. 

In order to illustrate the nature of this re-ordering procedure, consider first a simple 
example in the form of the following State Dependent AR (SDAR) model: 

  (5.3)    

This is the chaotic version of the logistic growth equation and so the state dependency of 
the parameter induces rapid, chaotic changes in  that are clearly not identifiable 
using standard TVP estimation. However, if the data are re-ordered in the ascending order 
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(using the MATLAB® function sort) of the dependent state , then the variations of 
 in this re-ordered data space have the same degree of smoothness as the re-

ordered . This is shown in Figure 5.1, where the upper plot shows 200 samples of 
 in natural temporal order; while the lower plot shows  sorted in ascending order 

of magnitude. Table 1 compares the first ten samples of  (second column) with the 
first ten samples of , the re-ordered  series, in the fourth column. The sampling 
index of  in the normal temporal order is shown in the third column.  

 
Figure 5.1  Chaotic example: model output in normal time (upper panel); model output 

re-ordered in ascending order of magnitude (lower panel). 

    
1 0.7 47 0.0009 
2 0.7 26 0.0019 
3 0.8398 116 0.0027 
4 0.5381 48 0.0036 
5 0.9940 147 0.0038 
6 0.0241 27 0.0077 
7 0.0943 117 0.0106 
8 0.3415 155 0.0117 
9 0.8994 167 0.0120 
10 0.3616 49 0.0144 

 
Table 5.1  Example of sorted data. 
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In the case of this simple example, TVP estimation based on the re-ordered data provides 
information on the nature of the parametric state dependency. But what if there is more 
than one term on the right hand side of the model equation? How do we sort the data in this 
case if the associated parameters are dependent on different variables? This is where the 
back-fitting procedure comes into the analysis. To clarify this back-fitting procedure, 
consider the following, first order example of the SDARX model (5.2e), 
 
  (5.4) 

where the time delay  has been removed for simplicity.  

Backfitting Algorithm for the Model (5.4)   

• Assume that, without any sorting, FIS estimation has yielded prior TVP estimates 
 and  of  and , respectively1. An SDP estimation 

equation for  can then be formulated as,  

  (5.5) 

where the term on the left hand side can be considered as a modified dependent 
variable and the superscript sy denotes that all the variables are sorted in the 
ascending order of . Application of the standard TVP algorithm to this single 
SDP sub-model then yields the FIS estimate  of  .  

•  is then ‘unsorted’ so that an SDP estimation equation for  can 
be formulated as,  

  (5.6) 

with the superscript su denoting that all the variables are sorted in the ascending 
order of . Application of the standard TVP algorithm to this single SDP sub-
model then yields the FIS estimate  and the first iteration of the ‘backfitting’ 
algorithm is complete.  

• This process is continued in an iterative manner (each time unsorting, forming the 
modified dependent variable, and sorting according to the current right hand side 
variable, prior to TVP estimation using the FIS algorithm), until the FIS estimates 
of the SDP’s  and  (which are each 
time-series of length N) do not change significantly between iterations. Here, the 

 
1 The sdp tool in CAPTAIN uses the constant least squares parameter estimates, since the convergence of the 

backfitting procedure is not too sensitive to the prior estimates, provided they are reasonable. 
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nomenclature  indicates the FIS estimate at sample k given the whole data 
set of  N samples. 

• The smoothing hyper-parameters required for FIS estimation at each iteration are 
optimized by Maximum Likelihood (ML), as discussed in Chapter 2. Such ML 
optimization can be carried out in various ways: after every complete iteration until 
convergence; only at the initial iteration, with the hyper-parameters maintained at 
these values for the rest of the backfitting; or just on the first two iterations. The 
latter seems most satisfactory in general practice, since very little change in the 
optimised NVR values or improvement in convergence occurs if optimization is 
continued after this stage.  Normally, convergence is completed after only a few 
iterations. However, care must be taken to ensure that the convergence is 
completely satisfactory in each example, since a large number of iterations are 
sometimes required (see Young, 2001a).  

Example 5.1  Analysis of a simulated SDARX model 

This example utilizes data generated from the following 1st order SDARX relationship that 
is similar to equation (5.4) but with each parameter a function of its associated variable, i.e. 
with , 

 (5.7) 

Here, the functions  are defined as follows, 

  (5.8) 

When written in the nonlinear functional form, 
 
  (5.9) 

or, 
  (5.10) 

this is revealed as the SDP formulation of the non-chaotic logistic growth equation, with an 
input signal in the form of a normally distributed white noise sequence passed through a 
cubic law nonlinearity. A typical response of this system is shown in Figure 5.2, where the 
output  is in the top panel and the input  in the lower panel. Here, the percentage 
noise/signal, based on the standard deviations (i.e. ), is 28%. The 
MATLAB® code for this example, including both the simulation and SDP estimation is 
given below, 
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>> nn = 2000;                 % number of samples 
>> e = 0.0053*randn(1, nn);   % measurement noise 
>> u = 0.08*randn(nn, 1);     % input signal 
>> y = zeros(nn, 1); 
>> y(1) = 0.5;                % initial condition 
>> for i = 2:nn               % simulation response with noise 
>>   y(i) = 2.0*y(i-1)-2.0*y(i-1)*y(i-1)+10*u(i)*u(i)*u(i)+e(i); 
>> end 
>> yd = del(y, 1);            % output delayed by one sampling interval 
>> z = [yd u];                % states 
>> x = [yd u];                % regressors 
>> nvrc = -2; 
>> [fit, fitse, par, parse, zs, pars, parses, rsq, nvr] ... 

= sdp(y, z, x, [], nvrc); 
 

The results of the SDARX analysis for a total sample size of  are shown in the 
upper panels of Fig. 5.3. The hyper-parameter optimization is carried out at the first and 
second iterations (nvr specified as -2): thereafter, the NVR hyper-parameters are 
maintained constant, for the four iterations required to obtain good convergence in this 
case, at the following optimized values, 

  (5.11) 

By default, sdp limits the maximum magnitude of each NVR to unity and, for the present 
example, this user adjustable constraint (see help information for sdp) has been reached for 
the second parameter. Clearly for a stochastic simulation (with noise) as here, the exact 
values obtained depend on the seed utilised in MATLAB® for the generation of the random 
signals. This caveat applies to all the numerical values given in the present section. 

The upper panels of Figure 5.3 show the estimated SDPs obtained using these optimized 
NVR values, with  in the left graph and  in the right. The 
thin traces are the actual SDP relationships, while the thick traces are the estimates. It is 
clear that the state dependency has been estimated well in both cases. The standard error 
(se) bounds are not plotted on these graphs but they are available as returned variables in 
the parse or parses matrices, corresponding to the unsorted (in normal temporal order) and 
sorted parameter estimates par and pars respectively. The other returned variables are fit 
and fitse, the output of the SDARX model, 

  (5.12) 

and its se bound, respectively; zs are the sorted variables on which the SDPs are dependent 
(in this case, the sorted  and , respectively); rsq is the Coefficient Of Determination 
(COD), normally denoted by , based on ; and nvre are the optimised NVR 
values. 
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Figure 5.2  Input and output data for the SDARX simulation example. 

 
Figure 5.3  SDP estimation results: upper panels show the results based on 2000 samples; lower panels 200 

samples. In both cases, the left hand plots show  and the right hand plots , returned as the 
first and second columns in pars respectively, plotted against the associated state variable. 
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The response of the estimated SDARX model can be generated in two ways. First, directly 
from the equation (5.12), in the usual, SDARX regression-like manner, where it will be 
noted that the  on the right hand side of the equation is based on the actual 
measurements  and not the modelled value of this variable. This is returned as rsq 
(see above) and suggests that the model explains 95.8% of the output ; i.e. the 
regression-based COD is  (again, this numerical value depends on the particular 
realisation of the stochastic signals). However, since the SDARX model is a truly dynamic 
nonlinear system, this is a little misleading. It is more sensible to base the COD on the 
simulated model output, as generated from the equation, 

                (5.13) 

This is most easily generated by a SIMULINK® model using ‘look-up’ tables based on the 
SDP estimation results, as illustrated in Figure 5.4 below. 

 
Figure 5.4  SIMULINK® block diagram to determine the model response (5.13). 

The COD obtained in relation to the actual output , including the effects of the noise , 
is , where the subscript T is introduced to differentiate this simulation-based 
COD from the more normal standard, regression-based . However, if this simulation 
model output is compared with the ‘noise free’ output (i.e. ), then  
and it is clear that the SDARX model (5.13) provides an excellent representation of the 
nonlinear system (5.2). These results are obtained as follows, 

>> x = zeros(nn, 1); 
>> x(1) = 0.5;                   % initial condition 
>> for i = 2:nn;                 % noise-free simulation response 
>>   x(i) = 2.0*x(i-1)-2.0*x(i-1)*x(i-1)+10*u(i).*u(i)*u(i); 
>> end 
>> t_in=[0:length(x)-1]';        % time vector for block diagram 
>> sim('chapt5sim',1999);        % simulate block diagram (Figure 5.4) 
>> RT2f = 1-cov(x-ym) / cov(x)   % RT2 based on noise-free system 
RT2f = 0.9812 
>> RT2n = 1-cov(y-ym) / cov(y)   % RT2 based on original noisy system 
RT2n = 0.9161 
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Final parameteric estimation of the SDARX model 

Each FIS estimated SDP in the SDARX model can be considered as a ‘nonparametric’ 
estimate because it has a different value at each sample in time and can only be viewed in 
complete form as a graph. However, as we see in the continued example below, it is 
possible to proceed to a final parametric identification and estimation stage, where the non-
parametrically defined nonlinearities obtained initially by FIS estimation are parameterised 
in some manner in terms of their associated dependent variable. For example, this can be 
achieved by defining an appropriate parametric model in some convenient form, such as a 
polynomial or trigonometric function; a radial basis function; a more general neuro-fuzzy 
relationship; or a neural network. The parameters of this parameterised model can then be 
estimated directly from the input-output data using some method of dynamic model 
optimization: e.g. deterministic Nonlinear Least Squares (NLS) or a more statistically 
efficient stochastic method, such as maximum likelihood. 

Example 5.2  Final parameter estimates for the model in Example 5.1 

Even without our prior knowledge in this simulation example, it is fairly obvious from 
Figure 5.3 that the two SDPs are linear and quadratic functions of the associated variables 
respectively (i.e. the associated nonlinearities are quadratic and cubic functions, 
respectively). Thus, it is straightforward to obtain these parametric estimates, either by 
Least Squares (LS) or Weighted Least Squares (WLS) estimation based on the SDP 
estimation results (Young, 1993a; Young and Beven, 1994); or, preferably, by direct 
estimation from the data using NLS based on the identified model structure, 

    (5.14) 

In this case, the two sets of estimation results are given as follows: 

(i) LS from SDP estimates: . 

(ii) Direct NLS from data: . 

Here, the estimates (i) are obtained as follows, 

>> z = [ones(size(zs(:, 1))) zs(:, 1)]; 
>> ab = inv(z'*z)*z'*pars(:, 1);  % parameters a and b 
>> ee = pars(:, 1)-z*ab; 
>> P = cov(ee)*inv(z'*z); 
>> sd1 = sqrt(diag(P));           % standard errors 
>> z = [zs(:, 2).*zs(:, 2)]; 
>> c = inv(z'*z)*z'*pars(:, 2);   % parameter c 
>> ee = pars(:, 2)-z*c; 
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>> P = cov(ee)*inv(z'*z); 
>> sd2 = sqrt(diag(P)); 
>> disp([ab' c'; sd1' sd2']); 
   1.9803   -1.9613    9.9992 
   0.0023    0.0042    0.0551 

 

The estimates (ii) are obtained directly from the data using conventional MATLAB® 
optimisation tools, or functions such as leastsq available in specialist toolboxes. Although 
the standard errors on the initial SDP-based estimates (i) tend to be too optimistic, the 
parametric estimates themselves are close to the true values, showing the efficacy of the 
SDP estimation stage in identifying the nature of the nonlinearities. Indeed, the SDP 
estimates obtained for only  samples, as shown by the two graphs in the lower 
panel of Fig. 5.3, are quite good enough to identify the form of the nonlinear functions 
themselves. 

5.2  Other SDP Models 

Of course, SDP models are not restricted to the dynamic SDARX form: they can be of any 
chosen type as long as the model is in the form of a SDP regression model. The simplest 
and most obvious of these models is the SDP equivalent of the DLR model (4.1). In the 
case where the trend component is zero, this model has the following form, 

  (5.15) 

where the regression variables are defined by the user. For instance, they 
could be simply other independent variables that are assumed to be related nonlinearly to 
the dependent variable ; they could be delayed versions of a single ‘input’ variable, so 
that the model is a nonlinear SDP version of the linear Finite Impulse Response (FIR) 
model; or they could be ‘basis functions’ defined in various ways: e.g. as orthogonal 
functions or principle components. Clearly, the possibilities are multi-various. 

However, one model that is worthy of special mention is the State Dependent Transfer 
Function (SDTF) model, which takes the form: 

  (5.16) 

where  is, in general, coloured noise; and 

  (5.17) 
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Once again, the , are the variables on which the parameters are 
dependent. However, even in the case where  is zero mean value, white noise, the SDP 
estimates obtained from the sdp tool in CAPTAIN will show signs of bias caused by the 
noise. An example of these biasing effects is given in example 3 of Young (2000) and the 
user of CAPTAIN must take this into account when using the function. 

To illustrate the wide ranging utility of the sdp tool, one further example is briefly 
considered below. 

Example 5.3  Analysis of Squid Data (Young, 2001a) 

A typical example of univariate SDP modelling is an analysis of the squid data shown in 
Figure 5.5 (Young, 2001a). These squid data were obtained by Kazu Aihara and Gen 
Matsumoto from experiments on the giant axon of a squid (see Mees et al., 1992). A first 
order SDAR model of the following kind is identified from the data , 

  (5.18) 

The MATLAB® code to identify a SDP model is as follows, 

>> load squid.dat 
>> yd = del(squid, 1); 
>> [fit, fitse, par, parse, zs, pars, parses, rsq, nvre] ... 

= sdp(squid, yd, yd, [], -2); 
 

Figure 5.6 is a plot of the SDP estimate against the delayed output , with the estimated 
se bounds shown dashed. It is interesting to note that the parameter is roughly constant 
over the range  but that it has wide variations after this, leading to the observed 
chaotic behaviour. When the actual data  are compared with a simulated random 
realization of the SDP model, it is clear that the latter captures the major nonlinear 
dynamic characteristics of the electrical signal very well, as discussed by Young (2001a). 
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Figure 5.5  Electrical signal obtained from experiments on the giant axon of a squid.  

 
Figure 5.6  SDP estimation results for the squid data: plot of the SDP estimate of the parameter in a first 

order, SDARX model. The standard error bounds are shown as dashed lines.  
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5.4  Conclusions 

This chapter has summarised the main features of the State Dependent parameter (SDP) 
class of nonlinear, stochastic models that can be identified and estimated using the sdp tool 
in CAPTAIN. This class of model has quite wide applicability, ranging from static SDP 
regression models to SDARX and SDTF stochastic, dynamic models. The simulation and 
real examples emphasise the practical utility of the sdp tool and relative ease of use.  
Indeed, it may have even wider application potential, as revealed by research that shows 
how it can not only result in a drastic reduction in the cost of the sensitivity analysis, but 
also allow for the estimation of the first order sensitivity terms of high dimensional model 
representations, at no additional cost (see Ratto et al., 2004). 

The examples in this guide are adapted from an earlier version of the CAPTAIN handbook. 
For more recent examples of SDP modelling and, indeed, for data-based mechanistic 
analysis more generally, as applied to a wide range of engineering, environmental, 
biological and socio-economic systems, please refer to more recent articles by the present 
authors, collaborators and other researchers e.g. those that have used and cited the toolbox. 
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