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I. INTRODUCTION

This paper proposes a unified solution to two
issues of major import in current cosmology.
First, what is the nature of the inflaton? A ma-
jor problem at present is a lack of a proposal that
is bound in to established particle physics in a
solid way. Second, why is the early universe in a
very special state that allows inflation to start,
when that is a highly improbable situation when
one takes the entropy associated with possible
primordial black holes into account [35]?

We propose solving both issues simultane-
ously by using a Higgs dilaton as the inflaton,
but coupled in such a way that gravity is essen-
tially turned off in the very early universe. Our
purpose in this paper is to show that through
suitable couplings the Higgs field can be used to
answer both issues. This unifies proposals made
by others into a coherent whole that is well worth
exploring further.
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A. The nature of the inflaton

The theory of inflation is a huge success, be-
ing able to explain cosmological observations to
high precision [1, 2]. However it has a major de-
fect: we have no solid basis for stating what the
inflaton is. A great many models have been put
forward [33], with some fitting the observations
better than others; but most have no sound basis
in established physics. The inflaton fields may
have their roots in some underlying theory such
as string theory or supergravity, be an effective
description of a higher order theory of gravity
(e.g. Starobinsky inflation [38]), or simply be
designed for purpose.

‘Designer’ inflaton potentials are particularly
problematic as they have been shown to be an
implementation of Synge’s g-method [17]: one
can choose from a very broad range of geometric
features of a model as desired, and then run the
Einstein equations Gab = κTab from left to right
to find the matter content that would give rise to
this behaviour, thereby giving an exaat solution
of the field equations with the desired properties
[39]. In cosmology one can pick any behaviour
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of the scale factor required to produce the ob-
servations, and then (subject to a few caveats)
find a suitable potential V (φ) to give rise to the
required evolution [18]. As such, ad hoc inflaton
models are devoid of meaningful physical con-
tent; had we observed any other behaviour of our
universe, we could derive a model that would be
compatible with those observations to ‘explain’
them in this way.

The successes of inflationary models are pri-
marily induced by the geometries of the space-
times they bring about. The spectral tilt is
brought about by the slow reduction of the ex-
trinsic curvature, and the solutions to the hori-
zon and flatness problems have their roots in
this extended, almost-de Sitter phase. There-
fore the question of inflation should not be ‘is
there a scalar field that can bring about this be-
haviour?’ to which the answer in any universe is
‘yes’ (as just explained), but rather ‘does known
physics produce inflation with this behaviour?’
At present most scalar field models are not based
on tested, observable physics.

There is however one exception: Higgs infla-
tion [10] is possible [9]25 and fits the observa-
tions very well [33]. For reviews see: [7][37] This
is the one and only case in which the inflaton is
related to tried and tested physics [20], because
the Higgs has indeed been observed at the LHC.
Because its properties underlie key features of
the standard model of particle physics, if the
Higgs were to be the inflaton, one would have
one of the most awesome unifications imaginable
in physics: the same particle is responsible both
for mass at the microscale, and for the dynam-
ics of the very early universe, and hence controls
the seeds of structure formation at macro scales.
This is therefore a proposal that should be seri-
ously pursued to see if it might work [20]. It is
the one possibility for an inflaton solidly tied in
to the standard model of particle physics.

In this paper we depart from the aforemen-
tioned models in which new scalar fields not
known previously are introduced, by using a con-
struction that is in a sense minimal: it only re-
quires known standard model (SM) physics cou-
pled (in a non-minimal way) to gravity hrough
a single field that already occurs in the SM.

B. The fine tuned initial state

The second point is that while it is often
stated that inflation solves the flatness and hori-
zon problems in the early universe, that is not in
fact the case, as Penrose has pointed out in vari-
ous writings that are summarised in Chapter 3 of
Fashion, Faith, and Fantasy [35]. The essential
point is that the maximum gravitational entropy
of a given amount of matter is attained by col-
lapsing it into a black hole. By contrast, “the
Big Bang was an event of extraordinarily low
entropy ... the gravitational degrees of freedom
were completely suppressed” ([35]:258). Penrose
estimates the extraordinary precision that was
involved in setting the initial state of the uni-
verse as 10−10123 ([35]:275).

Penrose’s argument is simple and persuasive.
Consider the space of all possible universes that
could have been created by the big bang sub-
ject to the condition that they all have the same
number of baryons as in our observable uni-
verse. The entropy per baryon in the cosmic
microwave background has been found to be
around 109 [41]. However, had the same baryons
been packed into stellar mass black holes one
would find an entropy per baryon on the order
of 1020, and for supermassive black holes such
as the one found at the center of our galaxy
this becomes around 1026. Thus it is appar-
ent that in order to increase the entropy per
baryon, baryons should be concentrated in enor-
mous black holes, and to maximize it the entire
mass of the universe should be in a single black
hole, which would have an approximate entropy
of 10123 which completely dwarfs the observed
1089. From Boltzmann’s law, we know that the
entropy of a configuration is the logarithm of
the phase-space volume it occupies. Hence if we
consider the phase-space of all possible configu-
rations, a universe such as ours occupies a frac-
tion P of phase space given as the ratio of the
exponents of the related entropies;

P =
eS1

eS2
≈ e1089

e10123
≈ e−10123 (1.1)

Note that in his argument, Penrose points out
that in such numbers the difference between e
and 10 is insignificant given the enormity of the
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exponents. This argument invokes a uniform
measure on phase space; that is assuming the
big bang had an equal probability of distributing
baryons in all possible configurations. Whilst
this may be modified somewhat by various
probability measures, to overcome the large
factor obtained would require a very special
measure.

An objection to Penrose’s reasoning along an-
thropic lines may be raised: If all baryons in the
universe are inside black holes then observers
such as ourselves would not exist to see them.
However, these are easily overcome by a minor
perturbation to the reasoning; if we restrict our-
selves to conditions under which a galaxy similar
to ours formed we still find that the overwhelm-
ing majority of such systems (as measured frac-
tionally on phase space as above) would have
most of the matter in a super-massive black
hole. We similarly note that the overall num-
ber of baryons does not play a significant role in
the argument itself; a universe with any bary-
onic content sufficient to produce e.g. our sun
will find the black hole configuration entropically
favoured.

In order to address questions of probability
more fully, one should form a triple consisting
of the space of all possible universes, a measure
upon that space which assigns a probability
of realising any given universe, and a set of
observables of interest (in this case the number
of baryons in black holes). Since the space of
all possible universes remains an open question,
this is not possible. The complete space of
physically distinct solutions to General Rel-
ativity is unknown. However this is not an
impediment to Penrose’s argument. We know
the relative entropy per baryon in the case
in which black holes are common and those
where they are rare, with the former greatly
outweighing the latter. Although we may not
know the complete set of solutions, we do
know that the set of solutions that look like our
universe is vastly outnumbered by those wherein
the overwhelming majority of baryons are inside
black holes. Thus we should naively expect
universes like ours to occur far less frequently
than those which are black hole dominated.

This situation is not made clear by standard
inflationary studies because they consider only
perturbed Robertson-Walker geometries.

An argument due to Kleban - citing a series
of studies of inhomogeneous initial conditions for
inflation [31] [16] [15] [14] - states that one should
consider the deSitter horizon in calculating en-
tropy. Take the space of Schwarzschild-de Sit-
ter space-times and maximize the total horizon
area (the sum of the black hole horizon and the
de Sitter horizon) holding fixed the cosmologi-
cal constant. Then this area is maximized by
empty de Sitter space, and therefore this should
be considered the highest entropy state. We ob-
ject to this line of reasoning on three grounds:
The first is that a de Sitter horizon is not equiv-
alent to a trapping surface. The latter have been
shown to obey the laws of thermodynamics with
area replacing entropy, whereas the former do
not interact with one another. Further, a trap-
ping surface is a locally defined feature of space-
time, whereas there is a deSitter horizon run-
ning through every point in de Sitter space. Fi-
nally, note that this argument requires the max-
imization of area subject to having a set cos-
mological constant but allowing the matter con-
tent to vary. This is not the same as address-
ing the maximal entropy configuration subject
to a given baryonic mass in the universe. If we
also hold fixed the baryonic mass we see that
a homogeneous distribution within the deSitter
horizon leads to a smaller total area (and hence
entropy) of cosmological horizon than the com-
bined Schwarzschild-de Sitter horizons. The case
where matter has formed a black hole will remain
static, whereas the homogeneous matter distri-
bution will evolve, its cosmological horizon even-
tually reaching the end-point of that determined
by the dark energy alone. If one is to consider
a horizon brought about by a cosmological con-
stant, therefore, the only reasonable way to treat
this is as a fixed number which does not affect
dynamics.

But additionally, this argument appears to
hinge on the proposition that the Universe is at
some stage actually de Sitter, which will lead to
the Gibbons-Hawking de Sitter horizon proper-
ties and associated entropy. However the real
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universe is never de Sitter, and those properties
depend on exact symmetries which will not ap-
ply. It might possibly asymptote to de Sitter in
the far future, or it might not; whether this will
happen depends on the nature of dark energy -
which is unknown. This will in any case not re-
late to the issue of concern to Penrose as regards
entropy of black holes at the start of the universe
and the probability of inflation starting. What
might possibly be relevant there is a de-Sitter
like inflationary stage once it has started: but
that again is not de Sitter in the real universe,
as is proven by the Planck observations (which
show that r < 1). We cannot see how de Sitter
can be regarded as a maximal entropy state in
contrast to the black hole possibility as discussed
above.

Penrose proposes to solve the problem of the
initial conditions by invoking a Conformal Cyclic
Cosmology ([35]: §4.3). This is a creative idea
but the mechanisms involved in realizing such a
proposal are not all clear.

C. Turning off gravity at very high densities

By contrast, we propose to invoke a mecha-
nism proposed by Greene et al [26]: namely that
the strength of the gravitational force dies away
at very high energies. In that case the collapse
to black holes that causes the problems identi-
fied by Penrose will not occur: thermal forces
will be able to overcome gravitational forces in
the very early universe and prevent collapse to
blackholes. The gravitational degrees of freedom
will not be suppressed, they will simply not dom-
inate the degrees of freedom of ordinary matter
as in the standard case considered by Penrose.
Given enough time, thermal processes will result
in a uniform state of matter, which will allow the
geometry to also be smooth.

There is an issue here as to whether there
will be a sufficient time available for such equi-
libriation to take place; that will not always be
the case. However if we assume the universe
starts off in a most probable state, that will be
a state of maximal entropy, which will indeed be
smooth as in the case where gravity is completely
switched off. This may be taken as a reasonable

initial assumption, expressing the idea, under-
lying inflationary cosmology, that the starting
configuration of the universe (through whatever
creation mechanism) is the most probable one.

D. Putting them together

Thus we propose to combine these ideas: we
will use a Higgs inflaton in a context where grav-
ity is turned off at high densities by the kinds
of couplings considered by Greene et al [26].1

In physical terms, we make Newton’s constant
dynamical a la Jordan-Brans-Dicke but with
the Higgs playing the role of the coupling. We
aim to show this is then a viable cosmological
theory that embodies the unifications identified
above.

Black hole entropy The Bekenstein-
Hawking entropy is determined by the surface
area A of a black hole event horizon as measured
asymptotically flat spacetime, together with the
fundamental constants c, G, and h, and is given
by:

SBH =
c3A

4G~
(1.2)

In the case of a Schwarzschild black hole,

A = 16π
(
GM
c2

)2
and hence we find that we

should expect that the gravitational entropy of
black holes is linearly dependent on the strength
G of the effective Newton constant. Note that
we are thus broadly in keeping with the second
law of thermodynamics only if G is increasing.

Naturalness Proposals for Higgs inflation
have sometimes been criticized as beung “un-
natural”, as they require very large values of the
coupling parameter between the Higgs field and
gravity. When modifying the gravitational La-
grangian from R to R+ξφ2R for example, it has

1 A somewhat similar proposal was made by Alexander
et al [3] but they did not relate it to the gravitational
entropy problem identified by Penrose. In any case the
inflaton dynamics involved in that case does not work
(Section V B).
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been claimed that the large value of ξ, on the or-
der of 104 goes against ‘naturalness’ [12] (how-
ever, it should be noted that this requirement
can be brought about from order unity terms
[5]). In particular Barbón and Espinosa [6] ar-
gue that Higgs inflation requires the field to take
values well above the scale at which the effec-
tive field theory used is valid. Since the exact
theory is not known at these scales, there is no
good reason to simply extrapolate the standard
model to this point, and therefore the situation
is no more natural than that of choosing an infla-
tionary potential. The plateau which is induced
in the Einstein frame is sensitive to such correc-
tions, and thus the desirable properties on which
Higgs inflation makes it case may not survive a
closer analysis. This asymptotic ‘shift symme-
try’ [9] corresponds to scale invariance in the Jor-
dan frame. The naturalness issue comes in the
form of a tuning of the ratio between the square
of the coupling of Higgs to the Ricci scalar and
the large field value form of the potential, which
extends to scales well above the cut-off. In the
usual Higgs inflation models, this asymptotes to
unity and thus the transformed field in the Ein-
stein frame has a plateau (see section V). How-
ever this choice may not be justified, and Barbón
and Espinosa argue many choices of asymptotic
behaviour are possible, some compatible with in-
flation, some not.

In the current work we allow this coupling to
be more general. Using a scalar field toy model,
Lerner and McDonald [32] claim that Higgs
inflation is natural nonetheless, as the need to
introduce new couplings may simply be a failing
of the perturbative analysis used in performing
calculations, but the underlying physics remains
valid. Burgess et al. [13] show the cutoff energy
scale appears at the same region in either
frame, and note that there the Higgs scattering
amplitudes calculated beyond the cutoff scale
depend subtly upon the degrees of freedom of
the Higgs doublet. This is evidence that the
semiclassical approximation has broken down
at this scale, and it is therefore not valid to
draw conclusions about Higgs inflation coming
from energies at or above this level. It is
noted by Beruzkov and collaborators [9] that
the energy scales at which the effective field

theory can be considered valid are dependent
on the background energy of the field (Higgs)
itself. Thus they are able to show that in the
Einstein frame the cutoff during the necessary
inflationary phase is above the Planck scale, and
thus far higher than the required energy density
of the Hubble expansion, therefore the dynamics
are well modelled far into the region necessary
for agreement with observations. We do not
take a position on either side of the arguments
presented, but note that Hossenfelder [27] has
trenchantly pointed out that such ‘naturalness’
criteria may be very misleading, and should
not in general be taken as hard guidelines for
physical theories. In our case we adopt the same
position: given the other advantages flowing
from the proposed unification, we do not see that
any naturalness objection destroys our proposal.

A basis in quantum gravity theory?
We do not at this time have any proposal as to
how the effective theory we put forward might
have a deeper foundation in an underlying more
fundamental theory of gravity. This would
obviously be desirable. We take our choice to be
justified by the unification of different aspects
of cosmology achieved, as set out above.

This paper Section II deals with founda-
tions. Section III considers the case where the
field starts off at small values, and Section IV
the case where the field starts off at large val-
ues. Section V deals with the effect of frame
transformations, and Section VI considers issues
that arise.

II. FOUNDATIONS

We begin considering a scalar field φ non-
minimally coupled to gravity through some func-
tion F (φ) which multiplies the scalar curvature
R. Then the action is

S =

∫
√
g

(
F (φ)

6
R+

1

2
∂aφ∂

aφ− V (φ)

)
(2.1)

where V (φ) is the potential. We have chosen the
factor of 6 in the normalisation of the function
F to make algebra more convenient when spe-



6

cializing this to the case of a Robertson-Walker
geometry.

A. Cosmology

Let us now restrict ourselves to a homoge-
neous, isotropic spacetime with curvature k =
±1, 0. Thus the partial derivatives are simply
time derivatives (up to a choice of lapse). The
Ricci scalar in the case of a Robertson-Walker
geometry is:

R = 6

(
ä

a
+
ȧ2

a2
+

k

a2

)
(2.2)

where a(t) is the scale factor and k = {±1, 0}
the normalised spatial curvature. Since the ac-
tion contains second derivatives of the fields, we
integrate by parts and recover (up to boundary
terms) a Lagrangian which closely resembles the
familiar case of minimally coupled matter, with
an extra term arising from the variation of F ,
with F implicitly dependent upon φ:

L = a3

(
−F

(
ȧ2

a2
+
ȧF ′

aF
φ̇− k

a2

)
+
φ̇

2
− V

)
(2.3)

wherein primes denote derivates with respect to
the field φ.

The dependence of F on the field φ leads
to modifications of the momenta conjugate to
φ and a from their usual forms. Varying the La-
grangian with respect to the velocities of each of
these in turn yields:

Pφ = a3φ̇− F ′a2ȧ,

Pa = −F ′φ̇a2 + 2F ȧa = − d

dt
(Fa2). (2.4)

Thus we can find the Hamiltonian (the Noether
charge associated with time translation), which
determines the Friedmann equation from the
Einstein-Hilbert action:2

H = −a3F

(
H2 +

F ′

F
φ̇H +

k

a2

)
+a3

(
φ̇2

2
+ V

)
(2.5)

2 The cosmological equations are given in the Appendix.

with H = 0 as it is a constraint, and wherein
we have introduced the standard terminology
H = ȧ/a for the Hubble parameter. We note
that in the case of the reduction F ′ → 0 this
reproduces the usual Friedmann equation, how-
ever otherwise we have a new term introduced by
the variation of F . The extra term breaks the
usual relationship between expansion and energy
density, thus we should expect to see more inter-
esting dynamics away from stationary points of
F , as we will have to solve a quadratic equation
for H. Introducing

ρ =
φ̇2

2
+ V (2.6)

in the case of the scalar field (in general ρ rep-
resents the energy density of any matter present
and minimally coupled to gravity) we see:

H = −F
′φ̇

2F
±

√
F ′2φ̇2

4F 2
+
ρ

F
− k

a2
(2.7)

Since the additional term under the square root
is positive for F > 0 such functions would not
introduce qualitatively new features (such as
bounces in the k = 0,−1 cases) through the role
of F . We also retain two branches to cosmologi-
cal solutions, one expanding (H > 0), the other
contracting (H < 0).

The Euler-Lagrange equations for our system
give the dynamics of the fields. The motion of
the scalar field is the usual Klein-Gordon equa-
tion modified by a gravitational source term pro-
portional to F ′:

φ̈+ 3Hφ̇+ V ′ = F ′(Ḣ + 2H2 +
k

a2
) (2.8)

and the usual Raychaudhuri equation is replaced
by

2FḢ + 3FH2 + F
k

a2
+ 2F ′φ̇H + F ′φ̈+ F ′′φ̇2

= 3(V − φ̇2

2
). (2.9)

These equations each reduce to their regular
forms in the case F ′, F ′′ → 0, but have correc-
tions away from such points. We can combine
them to find a more informative version of the
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Klein-Gordon equation by eliminating the grav-
itational source term. Using 2.9 to eliminate
terms in Ḣ and 2.7 to deal with the remainder
we arrive at

φ̈+ 3Hφ̇+
V ′ + F ′

F

(
(1− F ′′) φ̇

2

2 − 2V
)

1 + F ′2

2F

= 0.

(2.10)

B. Stationary Points

An important feature is that this equation
reveals that the stationary point (φ̈ = φ̇ = 0) of
the scalar field may have shifted - it is no longer
necessarily at the minimum of the potential but
rather is determined by:

V ′

V
= 2

F ′

F
(2.11)

Here we note that depending of the functional
forms of V and F there could be many realiza-
tions of the above condition, or none. If we find
there to be such a condition away from the min-
imum of the potential, this appears as a new
term in the effective matter energy density of
the system; if viewed through the lens of mini-
mally coupled GR, it is an effective cosmological
constant. It also potentially has interesting ram-
ifications for reheating.

Let us consider the cases of V having a sta-
ble point at φs and a global minimum at φo.
Effects during reheating can come around from
two possible dynamical events. Since the Higgs
will oscillate about a stationary point, φs that
is not at the minimum of its potential (φo), it
may tunnel from this point to close to its global
minimum (another stable point). Thus the os-
cillatory phase in which there is particle produc-
tion through decay of the Higgs may be inter-
rupted by this sudden transition. Further these
two states could introduce different effective cou-
plings - if the interaction Lagrangian is given

Lint = −gσφ2χ2 (2.12)

say then oscillations about φs which are insuffi-
cient to reach φo will produce particles at a dif-
ferent rate than oscillations about φo. Further-
more, the canonical reheating scenario has an ef-
fective, time-averaged equation of state wre = 0

corresponding to simple harmonic motion of the
inflaton about its minimum. However, in oscil-
lations about this new minimum, a choice of F
can significantly alter this giving rise to varied
values for w and hence altering the reheating
process[34].

If this does not occur, the minimum will be at
the Higgs VEV. In either case, at the stationary
point F becomes fixed. Thereafter the system
will be described by GR with a fixed Newton
constant, whose value is set by the inverse of F
at this stationary point.

III. SMALL INITIAL FIELD

We first consider the case where our scalar
field begins at small field values, close to the
origin. This of course raises issues of natural-
ness - it would appear that the field would need
fine-tuning for this to occur in nature. How-
ever, we shall see that there are certain situa-
tions in which this can be alleviated. Specifically
we take:

F = A2 exp

[
−
(
φ

S

)n]
V = (Φ2 − φ2)2 (3.1)

with A, S, and Φ constants and n a postive in-
teger and will include other minimally coupled
matter, labelled by its energy density ρ. We will
choose S2 << Φ2 so that the dynamics of the
Higgs potential is close to that of the standard
model when we approach the minimum of the
potential.

A. Gaussian F

The first thing to notice is that in the case
that F is Gaussian (n=2) we find that φ = 0
becomes a stable minimum of the system. To
see this consider the Klein-Gordon equation in
this setup. Linearly perturbing φ, to order ε in
both φ and φ̇ we see that:

ε̈+ 3
√
ρ+ Φ4ε̇+

(
ρ

S2
+

4Φ4

S2
− 4Φ2

)
ε = 0

(3.2)
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and our condition on S2 means that the coeffi-
cient of ε is positive. In such a case we could
relax our tuning of the system somewhat, as
small perturbations about the hilltop in F and V
would not lead to run-away dynamics. Any ini-
tial condition with φ2

0 < Φ2−S2 will tend toward
φ = 0, and settle there classically. However, this
condition holds indefinitely, and as such it would
not be possible for the particle to escape from
this setup, unless it were to tunnel. That would
be the only way to end inflation.

At this point it is useful to note that this sys-
tem will have five stationary points: φ = 0, φ =
±Φ are stable, φ = ±

√
Φ2 − S2 are unstable.

To see this consider whether the Klein Gordon
equation with φ̇ = 0 = φ̈ can be satisfied by solu-
tions to equation 2.11, which in this case implies
the conditions for unstable equilibria. Likewise
φ = Φ is stationary. To see stability, we can ex-
pand our solutions to first order in φ, φ̇ about
these points. Setting φ =

√
Φ2 − S2 + ε we see

ε̈+ 3Hε− 8H(Φ2 − S2)

H + 2(Φ2 − S2)
= 0 (3.3)

hence these are unstable equilibria, as the coef-
ficient of ε is negative. Now let us consider the
minima of the Higgs potential: setting φ = Φ+ε
we find

ε̈+
8 S4Φ2

S4 + 2Φ2A2 exp[−Φ2/S2]
ε = 0 (3.4)

where the coefficient of ε is positive and hence
we have a stable equilibrium. At this point the
effective Planck mass is M2

p = A2 exp[−Φ2/S2].
Fixing this at this point to match with obser-
vations made in the late universe, we see that
if the field can move away from the equilibrium
point at the origin out to the Higgs minimum by
a tunnelling process, the effective Newton con-
stant will have fallen by a factor of exp[Φ2/S2].

In order for the classical motion to no longer
move the field towards the hilltop the tun-
nelling would have to take the particle beyond
φ =
√

Φ2 − S2 - the next (unstable) equilibrium
point of the system - and close to the minimum
of the potential. From this point onwards the
dynamics could reproduce that of slow-roll infla-

tion: The slow roll parameters3 are εH = −H′
H2

and ηH = H′′

H′H , which to first order about this
point can be expressed in terms of the field dif-
ference from the point, δ = φ−

√
Φ2 − S2:

εH ≈
8AΦ3δ

S4 exp[ Φ2

2S2 ]
=

8MpΦ
3

S4
δ

ηH ≈
24AΦ3δ

S4 exp[ Φ2

2S2 ]
=

24MpΦ
3

S4
δ (3.5)

at which points the Hubble parameter takes the
value H = S2

A exp[ Φ2

2S2 ] = S2

Mp
. Thus we see that

we have simply replaced one issue of fine-tuning
with another; the system would have to tunnel
incredibly close to the unstable equilibrium point
to begin a slow-roll inflation which was compat-
ible with observations. We therefore turn our
attention to other possible choices of F .

B. Even powers of φ

The next logical one is given by setting n = 4.
Unfortunately this, and all higher (even) pow-
ers also suffer from having multiple stable min-
ima that are away from the minimum of the
Higgs potential. It is, of course, possible to tune
such minima so that one of them is compatible
with the cosmological constant, however doing
so would be essentially no less arbitrary than
adding a constant to the potential to recover the
same effect. An interesting case in which this oc-
curs due to a more natural mechanism created
by the Higgs vacuum being dynamic is presented
in [11].

C. Free choice of F

Let us now consider whether a small ini-
tial field choice can ever resolve the problem of
gravitational entropy, with the function F kept
largely free. In order to have the field begin at
small values we require that at least the point

3 We here use the geometric version of the slow-roll con-
dition rather than the potential form, as it is H not V
which determines the behaviour of perturbations, and
our dynamics is not simply dependent on V .
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φ = 0 be an equilibrium point of the system.
For our argument we do not here need to require
stability at this point. From the Klein-Gordon
equation we see that φ = 0 being an equilibrium
requires that F ′ = 0 at this point. Our second
requirement is that we want to avoid there being
a stationary point of the system for φ ∈ [0, αΦ]
for some positive number α so that our cosmol-
ogy does not enter a deSitter phase that is in-
compatible with observations. From the current
value of the cosmological constant and the po-
tential V we see that this requirement is that
α ≈ (1− 10−37). Our requirement that there be
no stationary points means that equation 2.11
cannot be satisfied on this interval. Hence:

2(logF )′ < (log V ′) (3.6)

so

F (0)

F (αΦ)
<

√
V (0)

V (αΦ)
=

Φ2

√
Λ
≈ 1037 (3.7)

Let us summarise this result: If we want to
have the effective Newton constant G be a func-
tion of the Higgs field such that it does not gener-
ate a cosmological constant which is significantly
larger than the one currently observed and the
field begins its dynamics at the origin, then the
maximum ratio of the value of G today to its
early value is approximately 1037. Whilst this is
a very large number, it is not enough to overcome
the criticisms that Penrose has levelled about the
fine-tuning of the initial state: the initial entropy
per baryon would be dropped by 1037, which is
not enough to overcome the factor of 10123 that
Penrose calculates (he calculates the probability
of being in this state to be 1010123 and the en-
tropy is the log of this, hence 10123). Starting
near the origin appears to fail entirely unless one
is willing to have very fine-tuned quantum tun-
nelling out of such a phase and have F extremely
high at the origin.

Note further that this is a very liberal esti-
mate on the upper bound for this ratio; if we
were to make the more conservative assumption
that the dynamics of the Higgs field was unaf-
fected in a larger region about its minimum we
would obtain a much lower bound. For exam-
ple, insisting that the effective Newton constant

is within a few percent of its current value for
φ > 0.99Φ would restrict this ratio to being in
the region of 50.

D. In conclusion:

if we don’t want to require tunnelling nor in-
troduce a new cosmological constant this really
rules out the small field case as a solution to
the entropy problem pointed out by Penrose. A
(stable) stationary point of the scalar field away
from the minimum of the potential introduces a
cosmological constant, and the classical dynam-
ics comes to a rest at this point. We want to rule
that out if it would give an effective cosmologi-
cal constant orders of magnitude bigger than our
own today. This means that there’s a condition
relating the ratio of the potentials today and at
the origin, and the ratio of the function F today
and at the origin. This in turn puts an upper
bound on the ratio of G today to it’s minimum
value, which, even in the most liberal case, is
about 1037, and in much more realistic cases is
more like 100 - vastly less than needed to solve
the Penrose problem. The only way in which this
scenario can be avoided is to very precisely de-
fine F such that G becomes equal to its current
value very suddenly, requiring a degree of fine-
tuning on at least the same order as the problem
that Penrose identifies. We are therefore moti-
vated to move away from looking for situations
in which the field begins at small values and in-
vestigate the case of a large initial field.

IV. LARGE INITIAL FIELD

An alternative way in which we can realize
the dynamics we seek is to consider beginning
the scalar field at high (positive) field values.
We note that in such cases F should be mono-
tonically increasing towards high field values
so that equation (1.2) obeys the second law of
thermodynamics. To examine this possibility,
consider the dynamics of a field that begins
at rest at a high field value. From equation
2.10 we see that the acceleration of the field is
proportional to 2V F ′

F − V ′. Thus we see that
for this acceleration to be towards the minimum
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of the potential we need that asymptotically
F 2 ≤ V , which in the case of our Higgs potential
means that F cannot asymptote to a function
which grows faster than φ2.

As we have noted, to follow the second law of
thermodynamics, we need Ḟ < 0 so that G, its
inverse is increasing, and thus the black hole en-
tropy will increase. In the case of a large initial
field which we expect to roll back to the min-
imum of the Higgs potential, this means that
F cannot have local minima between the Higgs
minimum and the initial value.

A. Quadratic F

The case in which F ∝ φ2 is that examined in
many cases of Higgs inflation (see e.g. Shaposh-
nikov [9]) and this term means the acceleration
of the field tends to zero at large field values,
giving rise to the slow-roll effect, as needed for
inflation. This is usually established in the Ein-
stein frame for convenience of calculation, but
here we retain the Jordan frame as we will ex-
amine more general scenarios.

In recent work it was suggested that this al-
teration of the effective Newton constant could
be responsible for ‘turning off’ gravity at high
energy densities [3]. Here we demonstrate why
this limit is still singular in our case, and in sec-
tion V we give a general argument as to why
this cannot be achieved. The Hubble parameter
is determined by equation 2.7, and thus grows at
high field values. Since both kinetic and poten-
tial energy contribute to H, and both are pos-
itive, the Hubble parameter at a given value of
φ is greater than the value it would take if the
kinetic energy were zero:

H >

√
V

F
> V 1/4 ∝ φ (4.1)

by the same consideration in the case of a Higgs
potential. Thus we see from running our dynam-
ics backwards that in such cases the cosmological
model begins with an initial singularity (H →∞
at φ → ∞). We shall show that this behaviour
is universal in such models. The quadratic case
is the fastest rate of growth of F in which the

field is driven to the minimum of its potential
(see section V) but for our purposes the growth
need not be quadratic. We thus further split the
discussion into two cases; the first case to con-
sider is where F is unbounded from above (but
grows slower than φ2), and the second is where
F asymptotes to a finite constant.

B. If F is unbounded above

let us consider the following as an exemplar
function:

F =
A2φ2

(φ+ ξ2)
(4.2)

with A, ξ constants, and V is given by (3.1). We
choose ξ2 >> Φ, and could use the modulus of
the numerator to make an even function if we
wish to consider negative field values. In such a
model we see the asymptotic behaviour required
- F becomes linear in φ at high field values, and
is quadratic for φ < ξ2. We note that the condi-
tion for finding a non-trivial minimum was given
in equation (2.11). Here we show that this can-
not be realized:

V ′

V
− 2

F ′

F
=

2ξ2Φ2 + Φ2φ+ 6ξ2φ2 + 7φ3

2φ (ξ2 + φ) (φ2 − Φ2)
(4.3)

which is never zero (or singular) away from
φ = Φ. Therefore the complete dynamics of
such a system closely matches those we want:
the field begins at large field values where
the effective Newton constant is almost zero,
evolves through a phase in which it undergoes
Higgs inflation, and eventually comes to rest
at the minimum of the Higgs potential. The
behaviour of this system is analysed in the
Einstein frame in section V, with the effective
potential shown in figure 1. Thus this model
resembles the standard Higgs inflation case [9]
and so can fit the Planck data [33]. The current
value of the Planck mass is (for ξ2 >> Φ)
given by Mp = AΦ/ξ, whereas at high values
of the scalar field (i.e. in the early universe) it
tends towards Aφ, and hence tends to infinity
(G→ 0) at the initial singularity, thus removing
the initial entropy problem.

Overall: this is a case that works.
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C. F asymptotes to a finite constant

In the second case we mirror the ideas of,
for example, T-models or α-attractors [23, 30]
in which inflation is reproduced by a scalar field
with a potential that tends towards a plateau
at high field values. T-models, named in refer-
ence to their automobile counterparts for their
apparent ubiquity, arises when the theory has a
scalar field which has poles (usually two poles
of order two) in its kinetic term. Such theories
often arise as a result of supergravity theories.
This is remedied through a field redefinition to
recover a canonical kinetic term. In doing so the
relationship between the original field, χ, and
its canonical counterpart, x, of necessity must
monotonically map a finite range (the region be-
tween two poles, for example) in χ onto an in-
finite range in x, and hence dχ/dx → 0. Thus
any potential U(χ) which is finite and has finite
first derivative on this region will be rendered
as having an infinite plateau in x. This occurs
because

dU

dx
=
dU

dχ

dχ

dx
(4.4)

with the latter term tending to zero. Thus these
models are ubiquitous: Any well behaved poten-
tial in χ will render a plateau model suitable for
generating inflation in the transformed field x.

In our case, we are not directly motivating
our choice of function F from a more funda-
mental theory which leads to this behaviour, but
rather using such models as a qualitative exem-
plar of classes of functions which asymptote to
constants. Since turning points for F are dis-
allowed, it should approach the plateau mono-
tonically away from the Higgs minimum. Thus
as the function increases, its derivative tends to
zero from below.

In these situations slow roll inflation is
achieved since the potential is sufficiently flat
far from the origin, and finding the inflaton here
should not be considered unnatural as there is al-
ways an infinity of parameter space with higher
field values. As an example of this, we will
choose the function

F = M2
o +A2 tanh2(φ/S), (4.5)

with M0, A, and S constants, where we shall
choose S to be considerably larger than the
Higgs VEV. Note that there are a plethora of
functions we could have used in this instance
each of which although quantitatively distinct,
we should expect to have qualitatively similar
features. Our choice is motivated simply by
the quadratic nature of the function about zero
and the good approximation as such around the
Higgs VEV, matching the usual Higgs inflation
coupling, and its asymptotic plateau. In such a
case, since the terms F ′2/F and F ′V/F asymp-
tote to zero, we see that in the large field limit we
should expect to see the dynamics of the scalar
field match those of general relativity, albeit with
a significantly reduced Newton’s constant. How-
ever, once the field exits the plateau phase its
dynamics tend towards those of Higgs inflation
(see e.g. [9]) which agree with the Planck obser-
vations [33].

Let us note a few features of such choices of
F . First we can show that the asymptotic be-
haviour of the system is indeed that the field
comes to rest at the minimum of the Higgs po-
tential. Again, the condition for a stationary
point away from the Higgs minimum cannot be
realized:

V ′

V
− 2

F ′

F
=
φ2 − Φ2

4φ
(4.6)

− S cosh2(
φ

S
) coth(

φ

S
)(Mo(1 +A) tanh(

φ

S
))

First we consider the case φ > 0. Finding a Lau-
rent series for V ′/V − 2F ′/F reveals that this
can be expressed as a polynomial in φ, the coef-
ficients of each term being negative. Hence the
sign of the function is fixed. Now since the to-
tal expression is odd, a parallel argument runs
for φ < 0. Therefore the only possible points at
which the field can be at rest are at the origin
(which is an unstable equilibrium point, and thus
would only hold if the field were always there)
or at the minima of the Higgs potential (stable
equilibria). Hence the field will eventually come
to rest at the Higgs VEV. For S >> Φ we find
that this gives an effective Planck mass of

M2
p = M2

o (1 +A2 tanh2(
Φ

S
)) ≈M2

o (4.7)
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whereas at high field values, the effective Planck
mass is determined on the plateau of F :

M2
p ≈M2

o (1 +A2) ≈ A2M2
o (4.8)

Thus we see that if we want to alleviate the
initial fine-tuning problem we require that A
is of the order of 10123, thus reducing G, and
hence the entropy count of primordial black
holes, by this same factor.

In this bounded-above case, you do need a
large number somewhere to make the potential
high enough to overcome the 10123 factor inG. It
does look like an unnaturalness in terms of hav-
ing such a large number instead of one around
unity; but a number even larger than this would
still work, so it’s not fine tuning in the sense of
needing a rather specific value. Also on using a
log prior [29] it’s only tuned to around 1 part in
100. If we in any case adopt the view that nat-
uralness of such parameters is not a major issue
[27], this case works too. However perhaps the
unbounded-above case mentioned above is more
appealing as you only need to introduce one new
term (ξ) which is bounded to be an order of mag-
nitude above the Higgs minimum.

V. FRAME TRANSFORMATION AND
POTENTIAL

Our analysis thus far has been carried out
in the Jordan frame. However, if we want to
make comparisons with inflation, it is often use-
ful to transform to the Einstein frame. Here we
will follow Kaiser (94), and note that by mak-
ing a conformal transformation of the metric
(ĝµν = Ω2gµν) we can rewrite the non-minimally
coupled field as a scalar field with a transformed
potential. The choice Ω2 = F/6 renders the ac-
tion

S =

∫ √
ĝR̂+

∂µχ∂
µχ

2
− U(χ) (5.1)

wherein R̂ is the Ricci scalar of the metric ĝ, and
χ is obtained from solving

dχ

dφ
=

√
F + 3(F ′)2

4F 2
(5.2)

with the transformed potential

U(χ) =
V (φ)

4F 2
(5.3)

A. Unbounded-above case

Let us return our attention to the unbounded
large field case where the function F is that of

(4.3): F = A2φ2

ξ2+φ
. To analyse the choices in the

Einstein frame, we first note that the potential
U(χ) can be expressed as

U =
V

4F 2
=

(Φ2 − φ2)2

4A2φ4
(ξ2 + φ)2 (5.4)

and hence it becomes apparent that we should
split our analysis into three regimes correspond-
ing to (i) the initial large field, (ii) the region
in which A is most relevant, and (iii) the be-
haviour around the minimum of the Higgs po-
tential: φ >> ξ, Φ < φ << ξ and φ ≈ Φ respec-
tively. In the first of these regimes we see that F
is essentially linear, and hence χ ∝

√
x, and thus

U(χ) ∝ χ4, and our field will begin its descent
down the potential. In the latter two regimes

χ ∝
√
φ and hence at first U(χ) ≈ ξ4 + 2ξ2

χ2 , dur-
ing which phase the potential is approximately
a plateau, and the dynamics will match that of

Higgs inflation, since F ≈ A2φ2

ξ2
and thus our ac-

tion would match that of Higgs inflation. In the
final phase we can expand U about Φ2, and we
see that we once again recover the Higgs poten-
tial;

U =
(Φ + ξ2)2

4A2Φ4

(
χ− Φ2

)2
+O(χ− Φ2)3 (5.5)

Equation (5.5) refers to the unbounded-from-
above potential, but this time in the Einstein
frame rather than the Jordan frame. This is an
example that works. The point here is that you
can see why, for example, F > φ2 doesn’t work,
and the nice plateau form of the potentials in
this setup.

B. What does not work

Consider the case in which F grows faster
than φ2 for large field values. To make this ex-
plicit, consider F ∝ φn, where we shall later set
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χ

U(χ)

FIG. 1: Potential in χ for three different choices
for F corresponding to the usual quadratic (orange,
short dashed), a quartic (green, long dashed) and

F = φ2

A2+φ (blue, solid). We see that in the latter
two cases we recover the plateau for Higgs inflation
near the minimum of the potential, and in the first
case the field would roll off to infinity as described.

n > 2. Then when we transform to the Einstein
frame, we find

Ω2 ∝ φn, χ ∝ log φ+O(φ−2) (5.6)

which together tells us that at large field values

Ω2 ∝ e
2χ√
3 and thus we see that the transformed

potential in the Einstein frame is given by

U(χ) ∝ (Φ2 − e
4χ√
3n )2

e
4χ√
3

→ e
4χ√
3n

(2−n)
. (5.7)

Hence if n > 2 the potential is decreasing away
from the origin, and the field will roll away to in-
finity in such cases. Thus our analysis in the Ein-
stein frame matches that in the Jordan frame for
these choices of high initial field values. In other
words, if F asymptotically grows faster than φ2

our cosmological solutions will push φ→∞ for-
ever, and we will recover neither inflation nor
standard model physics. In fact this result only
relies on the fact that V must grow faster than
F 2 to have a monotonically non-decreasing po-
tential in χ, since χ is by design a monotonic
function of φ. Together with the result of equa-
tion 4.1 which tells us that for generic potentials
V and functions F , H ∝

√
FU , we see that if

both F and U are non-decreasing functions the
only way to avoid a H →∞ singularity at large
χ would be if both were bounded from above.

Let us consider that scenario. If we were to
modify the Higgs potential such that it asymp-
totes to a constant we would still find the sin-
gularity unavoidable. Suppose V = V∞ and
F = F∞ for φ > φm say for some finite values of
V∞ and F∞. Then the Klein-Gordon equation
2.10 reduces to a (somewhat rescaled) version of
the usual inflaton dynamics on a flat potential:

φ̈+ 3φ̇

√
φ̇2

2F∞
+
V∞
F∞

= 0 (5.8)

and thus the kinetic energy of the inflaton tends
to infinity, taking the Hubble parameter with it.
Hence any large field model is necessarily singu-
lar, and if we require that F is finite for all finite
values of φ we see that one cannot achieve the
goal of having the cosmological solution asymp-
tote to one in which G = 0 always [3] without
either resorting to breaking the second law of
thermodynamics or having to introduce a new
principle by which the Higgs field could tunnel
from infinity. The asymptotic behaviour of mod-
els in which G is taken to be small whilst φ grows
large differs qualitatively from that in which G
is set by hand to zero.

The approach of [3] requires F → ∞ at the
origin, so that does not work. The reason for this
is that in this case, V is still finite at the origin,
and hence the Higgs particle becomes trapped
there. To illustrate this we will work in the Ein-
stein frame. Suppose F ≈ φn for n < 0. Then,
close to φ = 0 we find χ ≈

√
3n/2 log(φ). Thus

φ → 0 as χ → ∞. There is ambiguity in taking
the square root of n2 in this calculation. How-
ever, taking a negative square root both changes
the sign of the relationship between χ and φ and
flips the potential about χ = 0 such that the
complete dynamics is insensitive to this choice.
The potential in the Einstein frame is rendered
differently from that in equation 5.7 :

U(χ) =
V

4F 2
→ Φ4e

− 4χ√
3 (5.9)

This is decreasing away from the origin, hence
the field would have to roll up the potential from
infinity to overcome this. In terms of the original
field (in the Jordan frame), this means that if φ
begins at the origin it will remain there through-
out the evolution. Thus we see that it is not
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possible that any such system (either beginning
at large or small values of the field) can asymp-
totically become deSitter or Minkowski - it will
always be singular.

VI. FURTHER STEPS

We have shown there are a number of models
that can provide the kind of desired unification
described in Section 1 and also be compatible
with the Planck observations. They are large
field cases, with two options presented that work,
see equations (4.2) and (4.5).

A. Agreement with inflation

The agreement of these models with inflation-
ary observations are guaranteed because during
the relevant phases of inflation the dynamics
is well approximated by systems already anal-
ysed in the Encyclopedia Inflationaris [33]. One
thing that should be considered carefully is the
relationship between the Einstein and Jordan
frames; the dynamics of inflation are usually an-
alyzed in the Einstein frame since this where the
scalar field is modelled as being minimally cou-
pled to the (transformed) gravitational theory.
However, other matter present will not have this
coupling - in the Einstein frame this will appear
as new couplings between the transformed field
and the remaining matter. Therefore when con-
sidering reheating, for example, if one is to work
in the Einstein frame, careful attention should
be paid to these induced couplings.

Similarly the masses of the standard model
particles are affected by the conformal transfor-
mation [24]. The precise way in which reheating
is achieved in non-minimally coupled inflation is
subject to a number of subtleties; there is a com-
plex set of decays through W and Z bosons which
in turn decay into fermions [8, 24]. The gauge
bosons can back-react upon the Higgs conden-
sate and thus the system can become highly non-
perturbative, and the production of particles can
be due to a force that appears ‘spike-like’ [21]. In
order to fully model these situations, lattice sim-
ulations are used [36]. A full accounting of this

is far outside the scope of this work, but fortu-
nately, do not alter the our overall finding that
Higgs inflation is viable. We have thus shown
that both the question of what is the nature of
the inflaton and why black holes do not dom-
inate the entropy of the early universe can be
reconciled in the same model.

B. Can it be the Higgs?

Throughout this paper we have used the
Higgs field as the inflaton. The results we have
obtained are not strictly dependent on the field
in question being the Higgs itself, as any scalar
field with the same non-minimal coupling to
gravity and potential would give rise to an iden-
tical effect. However, we take the viewpoint
that laboratory tested particle physics already
has discovered a scalar field which is suitable for
our purposes, and therefore is a strongly pre-
ferred candidate [20]. Therefore the question of
interest is not whether any scalar field could be
the inflaton, or answer questions about the low
entropy of matter in the early universe. The an-
swer to this has already been determined to be
yes. The question we have asked is ‘Could the
Higgs field answer these questions?’ What we
have shown is that the answer is yes. This can
be achieved without having to invoke new fields
at all.

Using the Higgs field in this way provides
interesting possibilities. Since the Higgs field is
related to directly testable physics, the ques-
tion arises as to whether there are observable
consequences of the model for example in black
hole physics, and particularly in terms of binary
black hole coalescence accompanied by emission
of gravitational radiation.

C. Further issues

Two issues regarding the ‘turning off’ of grav-
ity arise. Firstly, in principle we need 1/G to ini-
tially be infinity to completely turn gravity off.
Even in this case, we note that there is a dis-
tinct qualitative difference in dynamics between
models in which this is done through taking the
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limit of an unbounded from above field (as pre-
sented here) and formally setting G = 0 in the
equations of motion. In practice a finite value
of 1/G suffices to remove the entropy problem
(and infinities are in any case to be avoided in
real physics [19]). What that value is depends
on which detailed model is employed. This needs
further investigation, and is related to the sec-
ond issue: in principle thermalisation can be
achieved if the the Hubble parameter were very
low to begin with, so there is time to smooth
out the matter density in this weak gravity era.
However in practice models do not exist where
H is very small initially. We therefore have to
rely instead on the assumption that the universe
starts off in a maximum entropy state, which
will indeed be such a smooth state, instead of
one chock full of black holes.

Finally, we need an investigation of black
holes for such gravity theories: What is the di-

rect relationship between G and entropy? What
is Schwarzschild solution for these cases, the
horizon location, and the Hawking tempera-
ture/entropy? A naive consideration of the
Bekenstein-Hawking entropy 1.2 indicates that
(keeping matter fixed) the relationship is linear.
We note that since the Schwarzschild solution
is vacuum solution, it is a solution of the non-
minimally coupled theory for finite G. However
the event horizon is defined topologically as the
past horizon of future null infinity - this needs
modification in case in which G can vary over
time, and a more detailed analysis should be
based on a more local concept defined by a dy-
namical horizon in this context [4]. We leave
these issues for separate discussion.

We are grateful to the anonymous referee
whose insightful comments have greatly im-
proved this article.
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Appendix A: the cosmological equations

The cosmological equations are, the Fried-
mann Equation:

F

(
H2 +

F ′

F
Hφ̇+

k

a2

)
= ρ, (A1)

the Raychaudhuri (acceleration) equation:

2F (Ḣ+H2) = −(ρ+3P )−F ′φ̇H−F ′′φ̇2−F ′2φ̈,
(A2)

and the Klein-Gordon Equation:(
1 +

F ′

2F

)
(φ̈+ 3Hφ̇) + V ′

= −F
′

F

(
2V +

ρm − 3Pm
2

+ (1− F ′′) φ̇
2

2

)
.(A3)

The latter is equivalent to the conservation
equation for the scalar field, which in turn guar-
antees the consistency of (A1) and (A2).
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