
On Optimizing Backup Sharing
Through Efficient VNF Migration

Saifeddine Aidi∗, Mohamed Faten Zhani∗, Yehia Elkhatib∗‡
∗École de Technologie Supérieure (ÉTS Montreal), Montreal, Quebec, Canada
‡MetaLab, School of Computing and Communications, Lancaster University, UK

E-mail: saifeddine.aidi.1@ens.etsmtl.ca, mfzhani@etsmtl.ca, {i.lastname}@lancaster.ac.uk

Abstract—With the emergence of software defined networking
and network function virtualization technologies, network
services are expected to be offered as service function chains
made out from virtual network functions that are connected
to steer and process the incoming traffic. In this context, achieving
the survivability of these chains against failures is a key challenge
to ensure high availability and continuity of the services.
A promising solution proposed in the literature is to provision
backups for the virtual network functions that could be shared
among multiple service chains. These backups are used in case
of a failure to take over the failed functions and ensure
service continuity.

In this paper, we propose two solutions to efficiently place
and provision the shared backups in order to ensure the
survivability of the service chains against single node failures. The
originality of these solutions is that they leverage the migration
of virtual network functions to minimize the resources consumed
by the backups. Simulation results show that, compared
to existing solutions, the proposed schemes leveraging migration
are able to reduce by up to 20% the amount of resources
allocated for the shared backups while ensuring the survivability
of the service chains .

I. INTRODUCTION

The emergence of Network Function Virtualization (NFV)
and Software-Defined Networking (SDN) is changing the way
networks are designed and managed by offering more
flexibility to customize and configure network services. These
services are hence provisioned and implemented as Service
Function Chains (SFCs) that process and steer traffic through
Virtual Network Functions (VNFs) towards the destination.

In this context, one key challenge is to ensure
the survivability of service function chains against failures.
Indeed, the failure of even one single physical node hosting
several VNFs belonging to different service chains would
bring down these chains and affect their offered services.
It is known that failures are common in cloud infrastructures.
For instance, major cloud providers like Amazon, Microsoft
and IBM have suffered in 2017 from several outages that
could last to up to 4 hours, which affects their reputation
and may translate into hundreds of thousands of dollars
of revenue loss [1].

Existing literature contains a large array of proposals
to manage failures and mitigate their impact in order to ensure
service chains’ survivability [2]. Previous work proposed
to proactively allocate backups for VNFs so that they can take

over when a failure occurs [3], [4]. They also advocate to use
backups that are shared among multiple VNFs belonging
to different service chains in order to avoid wasting resources.
As such, one shared VNF backup could be used to mitigate
the failure of multiple VNFs assuming that they do not fail
at the same time, i.e., only a single VNF from these VNFs
is assumed to fail at a time.

In this paper, we further investigate this solution. However,
unlike previous work [2]–[4], we propose novel solutions
that (1) decide on the number and the placement of the shared
backups and (2) leverage VNF migration (i.e., the migration
of the virtual machine or container hosting the network
function) to relocate the VNFs in order to minimize
the number of shared VNF backups.

We can summarize the main contribution of this paper
as follows:

• We devise a first backup provisioning scheme,
called MABS-Pull, that starts by deciding of the number
of shared backups and their placements and then uses
migration to relocate the VNFs to ensure that all VNFs
have backups.

• We devise a second backup provisioning scheme,
called OBS, that leverages migration to relocate VNFs
before allocating the shared backups and also after their
allocation, which allows to further optimize the results.

• Through extensive simulations, we evaluate
the performance of the two proposed schemes and
compare them to an existing solution [3] that does
not leverage VNF migration. Simulations show that
OBS could reduce up to 20% the amount of resources
allocated to shared backups while providing the same
level of survivability achieved by the existing solution.

The remainder of this paper is organized as follows.
Section II provides a detailed description of the service chain
survivability problem and showcases how migration could
be leveraged to reduce the amount of resources allocated
for shared backups. We then discuss relevant related work
in Section III. In Section IV, we present the proposed heuristic
solutions. We describe the experimental results in Section VI.
Finally, we present some conclusions and describe potential
future work in Section VII.978-1-5386-9376-6/19/$31.00 ©2019 Crown

Figure 1: Example showing how VNF migration could allow (1) to ensure to have backups for all VNFs and (2) to reduce
the number of backups

II. PROBLEM DESCRIPTION

A service function chain is a set of different types
of VNFs (e.g., router, load balancer, NAT, IDS). These
VNFs are connected through a set of virtual links
in a specific order to form a chain to steer the traffic
from the source to the destination [5]. Service function
chains are embedded into a physical infrastructure referred
to as NFV Infrastructure (NFVI) [6].

Figure 1 shows an example of three service chains
mapped onto a wide area NFV infrastructure and it
shows also the backups that are provisioned to ensure
the survivability against any single failure. The figure shows
how the VNFs are placed from the source to the destination
for each chain. For instance, chain 2 has traffic coming
from physical node 2 towards physical node 13
and it is composed of three VNFs of type NF1, NF2 and NF3
that are embedded in physical nodes 3 , 6 and 10 ,
respectively. As an example of placing the shared backups,
we can see in Figure 1 (a) that physical node 8
hosts 8 backup instances of VNF type NF1 that are
shared between the 3 VNFs (type NF1) of chain 1
and the 8 VNFs (type NF1) of chain 2. If physical node 4

fails, the 3 VNFs (type NF1) of chain 1 become out of service,
3 backups type NF1 from those hosted in 8 take over
and replace the failed functions. It is also easy to see that any
single node failure could be mitigated using the provisioned
backups. It is also worth noting that the VNF backups
need to be continuously synchronized with the corresponding
primary VNFs to save the last state of the failed function –
see green arrows in Figure 1 (a).

Some VNF instances may be left without backups due
to the lack of resources to provision backups. For instance,
we can see in Figure 1 (a) that there is an instance of VNF
type NF1 hosted in node 7 that has no backup. Figure 1 (b)
shows that VNF migration could be leveraged to relocate
the VNF that has no backups to other physical nodes where
they can benefit from existing shared backups. The figure
shows that the VNF type NF1 of chain 3 hosted in node 7
has been migrated to node 4 , and thus, it is now backed up
by one of the 8 backups already embedded in node 8 .

Migration could be also leveraged to reduce the number
of backups. This can be done if we distribute the VNFs fairly
among the nodes that are close to the one hosting backups.
Figure 1 (c) shows how relocating the VNFs could allow to

reduce the number of needed backups. In the figure, two VNFs
type NF1 of chain 1 embedded in node 3 were migrated
to node 4 and hence, with this new configuration, only 6
backups are needed rather than 8.

It worth noting that, in any of the three configurations
(a), (b) and (c) illustrated in Figure 1, any single node failure
could be mitigated using the provisioned backups.

We also note that migration has a cost (e.g., in terms
of bandwidth and cpu consumption and service interruption
as well [7]). To ensure a minimal migration cost, we assume
in this work that a migration could be carried out only
if the number of hops between the original location of a VNF
and the new one does not exceed a maximal number of hops.
For instance, the number of hops is limited to 3 in the example
provided in Figure 1.

To conclude, as illustrated in the aforementioned
example, the main challenge addressed in this paper
is to leverage migration to ensure that all VNFs have
backups and also to minimize the number of these backups
by efficiently relocating the VNFs.

III. RELATED WORK

In this section, we provide an overview of related work on
the survivability problem. We also present some relevant work
on VNF migration as our proposal relies on migration.

A. Backup provisioning

Reactive techniques do not pre-allocate backup resources
but simply deal with a failure when it occurs which leads
to a longer interruption time. As this work focuses on proactive
techniques, we will focus mainly on proactive solutions.

Yu et al. [8] introduced two approaches to provision backup
nodes to address a single-node failure. Both approaches
redesign the virtual network request into a survivable network
by adding backup nodes. The difference between the two
approaches is the number of nodes added. The first approach,
called 1-redundant, adds a single backup node whereas the
second approach, called k-redundant, adds k backups nodes.
The main limitation of this approach is the wastage of
resources as the number of backups k is constant.

To address this limitation, Ayoubi et al. [4] aimed to find the
optimal number of backup nodes to be added to the requested
virtual network by exploring the space between 1 and k.

To further optimize the number of backups, we proposed
in our previous work [3] two schemes, called BS-Pull and
BS-Push, that provision backups that are shared among VNFs
belonging to different service chains. These schemes are
able to protect the chains again single node failures and
significantly reduce the total number of backups provisioned
in the system.

As all the aforementioned solutions do not leverage VNF
migration to further optimize the placement and the number
of backups requested to ensure the survivability of the service
chains, this current work focuses on migration and shows how
it can further reduce the number of the shared backups while
achieving the survivability of the chains.

B. VNF Migration

Nobach et al. [9] propose SliM, a statelet-based framework
for seamless VNF state migration that are based on a novel
interface added to the VNF, sends statelets of the snapshot
of the source VNF instance over the corresponding stream
to the destination instance. This VNF state is responsible
for replicating status of VNF instances of the same type in
the service chain. Compared to the duplication-based model,
that incur significant high additional costs according to them,
SliM performs 3 times better in terms of link utilization.
However, the authors did not take into consideration the
distance between the VNF source and its destinations and the
cost of the communication raised due to congested links.

Peuster and Karl [10] proposed E-State, a management
framework that automatically handles the migration of the state
of the VNF. The framework shares logically the VNF state
by creating distributed state memory. Compared to centralized
management system, E-State provide a better performance in
terms of the number of replicated instances. One limitation of
this work is that the authors do not take into consideration a
service chain composed of multiple instances.

As the solutions proposed in this paper are based on
our previous work [3], we provide in the following a brief
overview of the the framework proposed in [3].

IV. SURVIVABILITY-AWARE MANAGEMENT FRAMEWORK

Figure 2: Architecture of the Proposed Resource Management
Framework with the Survivability Module [3].

Figure 2 shows the survivability-aware service chain
management framework proposed in [3]. In additional to
traditional modules like the service chain provisioning
module, the monitoring module and the SDN controller,
we advocate to have a survivability module. This module
is responsible for finding the minimal number of needed
backups and for deciding where they should be provisioned
(i.e., their locations) in order to protect the service chains
against single node failures.

The module is implemented using the BS-Pull algorithm [3].
The BS-Pull algorithm identifies the number of shared backups
for each types of VNF and decide of their placement in the
physical infrastructures. It also minimize the synchronization
cost and delay between the VNF and its backup by satisfying
the two hop constraint, that is to ensure that the backup
of a particular VNF is only two hops away from this VNF.

Unfortunately, with BS-Pull, some VNFs may remain
without backups because of the lack of free resources
to provision these backups or the inability to satisfy the two
hop constraint. The solutions proposed in this paper aim
at addressing this limitation by leveraging VNF migration
in order to ensure that all VNFs have backups and that their
placement satisfies the two hop constraint.

V. MIGRATION-AWARE BACKUP PROVISIONING

Before providing the details of the proposed schemes,
we define a new metric called the sharing ratio as the total
number of VNFs divided by the total number of their
backups. If this ratio is high, it means that, on average,
a high number of VNFs have a small number of shared
backups. In other words, the higher is this ratio, the better
is the provisioning scheme.

The objective of the migration in both proposed schemes
is to maximize the sharing ratio by migrating the VNFs that
are left with no backups. The first proposed scheme, called
MABS-Pull (i.e., Migration After BS-Pull), migrates the VNFs
after running the BS-Pull algorithm. The second proposed
scheme is called OBS (i.e., Optimized Backup Sharing)
and uses migration before and after applying the BS-Pull
algorithm in order to optimize the number of backups
to be allocated.

Both schemes are carried out in two phases. The first phase
aims at finding the candidate physical nodes that satisfy the
constraints of number of hops and the capacity. The second
phase aims at migrating a certain number of VNFs
to each of the candidate nodes. The difference between
the two algorithms lies in the timing at which we execute
the migration, as well as the objective of the migration itself.
In the following, we provide the details of the two proposed
schemes.

• Algorithm MABS-Pull: The scheme aims to distribute
the VNFs that have no backups among the nodes whose VNFs
have backups to further benefit from these existing backups.
Assuming we consider VNF type j ∈ J first, all nodes in the
physical infrastructure are assumed to be able to host backups
for type j VNFs. Our goal in the following steps is to select
which node or nodes could really host the VNFs left without
backups and how many VNFs per node.

We first define the MigrateTo neighbors of a physical
node n (i.e., MigrateTo(n)) as the set of physical nodes
that could be reached from n within at most dmax hops
and such as the nodes in MigrateTo(n) have some resources
to host more VNFs. After executing BS-Pull for a certain type
j, we compute the set of MigrateTo neighbors MigrateTo(n)

for each physical node n ∈ N whose VNFs have no backups,
and we also compute bn, which is the number of VNFs
of type j that should be migrated to MigrateTo(n) in
order to reach the number of backups already provisioned
by BS-Pull. Finally, the VNFs are migrated and the whole
process is repeated for all VNF types.

Algorithm 1 MABS-Pull

1: Inputs: Output of BS-Pull for each VNF type
2: N : set of physical nodes
3: un: total number of VNFs hosted in physical node n
4: mij : number of type j VNFs hosted in physical node i
5: BNodes(j): set of physical nodes whose type j VNFs

have already backups
6: BHosts(j): set of physical nodes hosting type j backups
7: xnhost

: number of type j backups hosted in the node nhost

8: cn: remaining capacity in each node n ∈ N
9: for j ∈ J do . Parsing VNF types

10: for n ∈ N do
11: MigrateTo(n)← Ø . set of candidate nodes

to host migrated VNFs
from a physical node n

12: bn← 0 . number of type j VNFs to be migrated
13: . Finding candidate nodes to host VNFs migrated

from n
14: for i ∈ BNodes(j)\(BHosts(j) ∪ {n}) do
15: if dni ≤ dmax & cn ≥ 0 then
16: MigrateTo(n)←MigrateTo(n) ∪ {i}
17: bn ← xnhost

−mij

18: end if
19: end for
20: end for
21: . Compute the number of migrated VNFs s
22: s = min(cn, bn)
23: . Migrate VNFs and update unhost

24: Migrate(s VNF type j, MigrateTo(n), unhost
)

25: end for

• Algorithm OBS: In this scheme, we are actually
migrating the VNFs before allocating the backups. The goal is
to minimize the number of backups provisioned. The migration
is done after the first phase of the BS-Pull where we compute
both the neighbors SNeigh(n) and the number of backups to
allocate.

The first phase of the migration is to determine the nodes
having some resources left among SNeigh(n) which will
be refereed to as MigrateTo(nmax) where nmax is the
node with the highest number of VNFs (i.e. the number of
backups provisioned). The second phase consist in distributing
some of the VNFs embedded in nmax among the nodes in
MigrateTo(nmax) to get a balanced number of VNFs among
all nodes. The backup resources are then recomputed, allocated
and associated to all neighbors of the selected node.

Finally, we apply the MABS-Pull to maximize the coverage
of the backups and the whole process is applied again for each

of the VNF types.

Algorithm 2 OBS

1: Inputs
2: N : set of physical nodes
3: un: total number of VNFs hosted in physical node n
4: mij : number of type j VNFs hosted in physical node i
5: cn: remaining capacity in each node n ∈ N
6: for j ∈ J do . Parsing VNF types
7: BNodes(j)← Ø . set of physical nodes whose

type j VNFs have already backups
8: repeat
9: Compute SNeigh(n) ∀n ∈ N

10: . Finding source neighbors of n
11: for i ∈ SNeigh(n) do
12: if ci ≥ 0 then
13: MigrateTo(nmax) ←

MigrateTo(nmax) ∪ {i}
14: end if
15: end for
16: . Compute the balanced number of VNFs s
17: s =

∑
mij/ i∈MigrateTo(nmax)
|MigrateTo(nmax)|

18: . Migrate backups and update unhost

19: Migrate(s VNF type j, MigrateTo(n), unhost
)

20: . Allocate backups and update unhost

21: Allocate (s backups, VNF type j, host nhost)
22: BNodes(j)← BNodes(j) ∪ SNeigh(nhost)
23: until SNeigh(n) = Ø ∀n ∈ N
24: MABS-Pull . execute the MABS-Pull algorithm

for
type j VNFs

25: end for

VI. SIMULATION AND RESULTS

In this section, we compare the performance of the
proposed backup provisioning schemes with the performance
of the BS-Pull algorithm that does not use migration and that
was proposed in [3]. The comparison is done in terms of total
number of backups and the execution time and sharing ratio.
To do so, the proposed algorithms were implemented in C.
We simulated a physical network having 55 physical links
and 24 physical nodes. These nodes have different hosting
capacities ranging from 40 to 120 VNF instances.

Figure 3: Infrastructure utilization for the studied scenarios.

We considered 8 different embedding scenarios provided
by an existing VNF placement algorithm proposed by
Racheg et al. [11] where the utilization of the infrastructure
has been gradually increased. Figure 3 shows that we
have low-utilization scenarios (i.e., S1–S4) where utilization
is less than 50% and high-utilization scenarios (i.e., S5–S8)
where utilization goes from 50% up to almost 80%.

A. Number of backups

Figure 4 compares the total number of backups
found with the two proposed schemes compared
to the original BS-Pull algorithm for each of the 8
scenarios. For low-utilization scenarios (i.e., S1 to S4),
the number of backups provided by MABS-Pull is the same
as the one provided by BS-Pull which is a normal as there
is no VNFs left without backups after executing BS-Pull.
However, OBS provides a slightly fewer number of backups
compared to BS-Pull because the migration in OBS is carried
out before the allocation of the backups aiming to optimize
the number of backups for all tested scenarios.

For high-utilization scenarios (i.e., S5–S8), MABS-Pull
provides a slightly higher number of backups whereas
it is always less with OBS, which reduces by up to 20%
the number of shared backups (e.g., scenario S6).

As to the number of VNFs left without backups (Figure 5),
both MABS-Pull and OBS significantly reduce this number.
We can see that there are VNFs left without backups
for MABS-Pull for scenarios S5 and S6 while there are
many for the last two scenarios S7 and S8. This is mainly
due to the lack of free resource in the infrastructure
to provision backups.

Figure 4: Total number of provisioned backups.

Figure 5: Number of VNFs without backup.

B. Execution Time

Figure 6 depicts the execution time of the two proposed
migration schemes for each of the studied scenarios.
The execution time of both schemes are slightly

different. OBS takes slightly more time than MABS-Pull
as it is optimizing the number of backups by distributing
the number of VNFs between the nodes before allocating
the backups and migrating the left VNFs after the allocation.

Figure 6: Execution time of the proposed solutions.

C. Infrastructure Utilization
Figure 7 shows the infrastructure utilization after

the execution of the three schemes. Since MABS-Pull
is providing the same number of backups as BS-Pull for low
utilization scenarios (i.e., S1–S4), they both result in the same
resource utilization. However, OBS leads to lower utilization
as it optimizes the number of backups for all the studied
scenarios. We can also see that, for high-utilization scenarios,
the utilization remains high for the three algorithms, although
OBS results in a slightly reduced utilization.

Figure 7: Infrastructure utilization after applying the different
algorithms.

D. Sharing Ratio

Figure 8: Average sharing ratio.

Figure 8 depicts the average sharing ratio found with
the three studied schemes and for all the studied scenarios.
The results show that starting from S5, we can notice
a small difference between BS-Pull and MABS-Pull. However,
for OBS, the sharing ratio is considerably higher than both
solutions. These results demonstrate that using MABS-Pull
and OBS allows to maximize the sharing ratio.

VII. CONCLUSION

Ensuring the survivability of service function chains
is a challenging task for cloud providers. In this paper,
we proposed two solutions to ensure the survivability
of the service chains against single-node failures
by proactively provisioning backups for the VNFs
composing the chains. The originality of the proposed
schemes is that they leverage VNF migration to reduce
the number of the provisioned backups and to further
optimize their placement. The conducted simulations showed
that they are able to reduce by up to 20% the amount
of resources allocated to VNF backups.

REFERENCES

[1] “The 10 biggest cloud outages of 2017,”
https://www.crn.com/slide-shows/cloud/300089786/the-10-biggest-
cloud-outages-of-2017-so-far.htm, accessed: 2018-07-10.

[2] M. F. Zhani and R. Boutaba, Survivability and Fault Tolerance in
the Cloud. John Wiley & Sons, Inc, 2015, pp. 295–308. [Online].
Available: http://dx.doi.org/10.1002/9781119042655.ch12

[3] S. Aidi, M. F. Zhani, and Y. Elkhatib, “On improving service chains
survivability through efficient backup provisioning,” in 2018 14th
International Conference on Network and Service Management (CNSM).
IEEE, 2018, pp. 108–115.

[4] S. Ayoubi, Y. Chen, and C. Assi, “Towards promoting backup-sharing
in survivable virtual network design,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 3218–3231, 2016.

[5] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: State-of-the-art
and research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 236–262, 2016.

[6] “ETSI GS NFV-REL 001 V1.1.1 (2015-01), Network Functions
Virtualisation (NFV) Resiliency Requirements,” https://goo.gl/PbQySQ,
accessed: 2018-07-10.

[7] R. Boutaba, Q. Zhang, and M. F. Zhani, “Virtual machine migration:
Benefits, challenges and approaches,” in Communication Infrastructures
for Cloud Computing: Design and Applications, H. T. Mouftah and
B. Kantarci, Eds. USA: IGI-Global, 2013, pp. 383–408.

[8] H. Yu, V. Anand, C. Qiao, and G. Sun, “Cost efficient design of
survivable virtual infrastructure to recover from facility node failures,”
in IEEE International Conference on Communications (ICC), 2011, pp.
1–6.

[9] M. Peuster and H. Karl, “E-state: Distributed state management in elastic
network function deployments,” in NetSoft Conference and Workshops
(NetSoft), 2016 IEEE. IEEE, 2016, pp. 6–10.

[10] L. Nobach, I. Rimac, V. Hilt, and D. Hausheer, “Slim: Enabling efficient,
seamless nfv state migration,” in Network Protocols (ICNP), 2016 IEEE
24th International Conference on. IEEE, 2016, pp. 1–2.

[11] W. Racheg, N. Ghrada, and M. F. Zhani, “Profit-driven resource
provisioning in NFV-based environments,” in IEEE International
Conference on Communications (ICC), 2017, pp. 1–7.

