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Key points: 

1. For the first time, we estimate the hygroscopicity of aerosols in Delhi (κ=0.42±0.07), 

based on 3-year (2016-2018) ground observations. 

2. Hygroscopicity of aerosols in Delhi is much higher than Beijing and Asian average, 

therefore leading to remarkable climate effects.   

3. We demonstrate a valuable method for deriving bulk-averaged hygroscopicity of aerosol 

based on publicly available datasets.  
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Abstract: 

Hygroscopicity of aerosol (κchem) is a key factor affecting its direct and indirect climate 

effects, however, long-term observation in Delhi is absent. Here, we demonstrate an approach 

to derive κchem from publicly available datasets, and validate it (bias of 5-30%) with long-

term observations in Beijing. Using this approach, we report the first estimation of κchem in 

Delhi and discuss its climate implications. The bulk-averaged κchem of aerosols in Delhi is 

estimated to be 0.42±0.07 during 2016-2018, implying a higher activation ability as cloud 

condensation nuclei in Delhi compared with Beijing and continental averages world-wide. To 

activate a 0.1 µm particle averagely requires just a supersaturation of ~0.18±0.015% in Delhi, 

but ~0.3% (Beijing), 0.28-0.31% (Asia, Africa and S. America) and ~0.22% (Europe and N. 

America). Our results imply that representing κchem of Delhi using Asian/Beijing average may 

result in a significant underestimation of aerosol climate effects.  

Plain Language Summary: 

Hygroscopic water uptake of aerosols can enhance its light extinction and cloud 

activation. Therefore, hygroscopicity of aerosol (κchem) is a key factor affecting its direct and 

indirect climate effects, however, long-term observation of κchem in Delhi is absent. Here, we 

demonstrate an approach to retrieve κchem from publicly available datasets of PM2.5 and 

meteorology, and report the first long-term estimation of κchem in Delhi is 0.42±0.07 during 

2016-2018. This value indicates only a supersaturation of ~0.18±0.015% is required to 

activate a particle with 0.1 µm diameter in Delhi, in contrast to ~0.3% supersaturation is 

required for Beijing and Asian average. It implies a higher water uptake and cloud activation 

ability for Delhi aerosols. Therefore, using Asian/Beijing averaged κchem to represent Delhi 

aerosols would lead to a significant underestimation of aerosol climate effects.  

Keywords: long-term, kappa value, light extinction enhancement, PM2.5, CCN  
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1. Introduction 

Aerosol particles in the atmosphere exert direct radiative forcing via scattering and 

absorbing solar radiation [Charlson et al., 1992], also exert indirect radiative forcing and 

impact hydrologic cycle via serving as cloud condensation nuclei (CCN, [Tang et al., 2016; 

Twomey, 1974; Wex et al., 2007; Wex et al., 2009; Yin et al., 2000; Zhao et al., 2006]). The 

influences of anthropogenic aerosols on these direct and indirect effects contribute the largest 

uncertainty in climate change assessment [IPCC, 2013; Attwood et al., 2014; Nemesure et al., 

1995]. Hygroscopicity of aerosol, i.e., interaction between aerosol and atmospheric water 

vapor, is one of the most important factors affecting these uncertainties [Kuang et al., 2016; 

Zhao et al., 2006]. In addition to the climate concerns, hygroscopic water uptake increases 

aerosol water content as relative humidity (RH) increases. This can significantly influence the 

secondary particle formation [Chen et al., 2018b; Cheng et al., 2016; Ervens et al., 2011; 

Hennigan et al., 2008; Wu et al., 2018], visibility [Charlson et al., 1967; Malm et al., 2000; 

Mukherjee and Toohey, 2016], aerosol optical depth and remote sensing measurements 

[Brock et al., 2016a; Brock et al., 2016b; Crumeyrolle et al., 2014; Esteve et al., 2012], as 

well as directly influence the measurements of aerosol loading and chemical compositions 

[Chen et al., 2018a].  

Traditionally, the hygroscopic property of aerosol can be described as the enhancement 

of light extinction/scattering [Wright, 1939] and the growth of geometrical size [Köhler, 1936] 

due to water uptake. The enhancement factor of aerosol light extinction/scattering coefficient 

(σ), defined as f(RH) = σ(RH)/σ(RHref), is a common way to describe aerosol hygroscopicity 

[Titos et al., 2016; Brock et al., 2016b]. In this definition, σ(RH) and σ(RHref) represent the σ 

at a certain RH and at the reference RH in low/dry humid condition (RHref), respectively. 

Humidified nephelometer system is commonly used to directly measure f(RH) [Covert et al., 

1972; Pilat and Charlson, 1966]. In term of geometrical growth, Petters and Kreidenweis 
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[2007] introduced the κ-Kӧhler theory to describe hygroscopic growth of particle diameter 

using a single parameter (κ), on the basis of the original Köhler theory [Köhler, 1936]. This 

single parameter represents the dependence of hygroscopicity on chemical composition of 

particles, referred to as κchem in the following. The κchem of a multicomponent particle can be 

calculated as volume-weighted average of each component, i.e., the Zdanovskii–Stokes–

Robinson rule [Stokes and Robinson, 1966; Zdanovskii, 1948]. The parameter κchem is widely 

used in laboratorial, field-observational and modelling studies, because it harmonizes the 

comparisons of hygroscopicity derived from different techniques and environments. The 

parameter κchem can be derived from diameter growth factor measured by Hygroscopic 

Tandem Differential Mobility Analyser (HTDMA) or CCN activity following the κ-Kӧhler 

theory [Liu et al., 2018; Liu et al., 2011; Petters and Kreidenweis, 2007; Wang et al., 2018; 

Wex et al., 2010], and can also be calculated with measurements of chemical components 

[Petters and Kreidenweis, 2007]. A drawback of HTDMA method is missing the information 

of coarse particles [Titos et al., 2016], which could be highly hygroscopic (e.g., sea salt) and 

greatly contribute to hygroscopic growth [Chen et al., 2018a]. The previous closure studies 

usually show reasonable agreements between HTDMA-derived, CCN-derived and chemical-

derived κchem values [Hansen et al., 2015; Wu et al., 2016; Yeung et al., 2014]. The strong 

relationship between f(RH), hygroscopicity (κchem), particle composition and CCN activation 

has been investigated in lots of previous studies since the works of Charlson et al. [1967], 

Covert et al. [1972], Ervens et al. [2007] and Pilat and Charlson [1966]. 

Hygroscopicity (κchem) measurements have been carried out world-wide during the past 

two decades, the observational results are compiled in previous works [Bhattu et al., 2016; 

Kreidenweis and Asa-Awuku, 2014; Swietlicki et al., 2008]. Hygroscopicity of aerosols was 

mostly measured during short-intensive field campaigns due to high financial cost and 

complicated maintenance. A few previous long-term observational studies mainly focused on 



 

 
© 2019 American Geophysical Union. All rights reserved. 

clean environments [Fors et al., 2011; Holmgren et al., 2014; Kammermann et al., 2010] and 

one long-term study focused on Beijing [Wang et al., 2018]. To the best of our knowledge, no 

long-term observation of aerosol κchem in Delhi and National Capital Region of India was 

reported. Given the intensive solar radiation and the strong influence of the South Asia 

monsoon over Indian subcontinent, aerosol hygroscopicity assessment, especially based on 

long-term observations, is urgent and critical for the studies of radiative forcing and 

hydrologic cycle.   

In this study, we demonstrate an approach for assessing long-term bulk-averaged aerosol 

hygroscopicity, based on datasets publicly available in a large spatial and temporal coverage. 

The bulk-averaged κchem of aerosols in Delhi is reported based on 3-year (2016-2018) ground 

observations. The corresponding climate implications are also discussed. The approach 

demonstrated here is also valuable for studies in the other regions where high-quality long-

term observations of aerosol hygroscopicity are not available. 

 

2. Materials and Methods  

2.1 Observations 

PM2.5 mass loading is measured by a beta attenuation monitor (BAM-1020, MetOne) at 

the U.S. Embassy in Delhi during 2016-2018. BAM is a U.S. EPA (Environmental Protection 

Agency) equivalent reference method for continuous PM2.5 monitoring and is used for over 

80% of the state and local level observations in U.S. [EPA, 2015; Mukherjee and Toohey, 

2016]. PM2.5 measured with BAM is not strongly influenced by aerosol associated water 

[Mukherjee and Toohey, 2016]. The instruments are well maintained and calibrated, details of 

instrument technique, operation and calibration are given in EPA [2009; 2015]. Hourly PM2.5 
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concentrations in Delhi are available from the AirNow platform (https://www.airnow.gov/) 

maintained by the U.S. EPA. 

The hourly visibility and meteorological conditions are recorded at the Indira Gandhi 

International Airport (DEL) in Delhi. The hourly visibility is observed by a transmissometer 

(Drishti, CSIR-National Aerospace Laboratories, [Khare et al., 2018]), which is well 

calibrated and performs well at the airport as reported by India Meteorological Department 

(http://metnet.imd.gov.in/mausamdocs/16644_F.pdf). RH is calculated as the ratio between 

water vapor pressure and saturation vapor pressure, which are respectively derived from dew-

point temperature and temperature using the Magnus formula [WMO, 2008]. As one of the 

Integrated Surface Database (ISD) stations, the measurements at DEL are well calibrated and 

quality controlled according to the regulation of National Oceanic and Atmospheric 

Administration, National Climatic Data Center (NOAA-NCDC, [Neal Lott, 2004]). These 

datasets are available from the NOAA-NCDC website (https://www.ncdc.noaa.gov/).  

A limited spatial inhomogeneity is expected in PM2.5 concentrations and visibility 

between the U.S. Embassy and DEL. As shown in Fig. S1, the distance between them is only 

~7 km, which is in the visibility measuring range. Furthermore, there is very slight variation 

in topography and anthropogenic PM2.5 emission flux over the region between DEL and the 

U.S. Embassy in Delhi [Marrapu et al., 2014; Sahu et al., 2011].  

2.2 Assessment of aerosol hygroscopicity  

The f(RH) and κchem are parameters describing aerosol hygroscopicity. Here, we briefly 

describe the approach in this study for deriving f(RH) and κchem using publicly available long-

term datasets. The approach consists of two steps. First, estimate bulk-averaged f(RH) as a 

function of RH from the datasets of PM2.5 loading and meteorology [Mukherjee and Toohey, 

2016]. Second, derive κchem from the function between f(RH) and RH [Brock et al., 2016b; 
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Kuang et al., 2017]. We firstly validate the approach by measurements in Beijing, where 

extensive datasets of field campaigns have been published in recent years. And then the 

approach is applied to conduct the first estimation of aerosol hygroscopicity in Delhi.    

First step, a recent study [Mukherjee and Toohey, 2016] demonstrated a method to 

derive the bulk-averaged f(RH) based on publicly available datasets: i) PM2.5 loading (units: 

[µg/m
3
]) from U.S. Embassy, and ii) RH (units: [%]) and visibility (units: [km]) from 

NOAA-NCDC. The total light extinction coefficient can be derived using Koschmieder’s 

equation from visibility [Koschmieder, 1924]. As shown in Eq. 1, the PM2.5 associated 

extinction coefficient (𝜎𝑃𝑀, with units of [km
-1

]) can be estimated as total σ deducted by air 

extinction (𝜎𝑎𝑖𝑟 ) and other factors (𝜎𝑜𝑡ℎ𝑒𝑟 ). As recommended by Mukherjee and Toohey 

[2016]: i) a constant empirical factor 𝜎𝑜𝑡ℎ𝑒𝑟=0.064 km
-1

 is adopted to represent the influences 

of gaseous pollutants and coarse particles; and ii) 𝜎𝑎𝑖𝑟=0.056 km
-1

 is adopted in our study, 

corresponding to a maximum visibility of 70 km under clear-sky condition [Mukherjee and 

Toohey, 2016]. Therefore, the dataset consisting pairs of RH, PM2.5 and 𝜎𝑃𝑀 can be prepared 

for analysis. Although the value of 𝜎𝑜𝑡ℎ𝑒𝑟  is adopted from an estimation for Beijing 

[Mukherjee and Toohey, 2016], this only introduces uncertainty to κchem estimation by less 

than 5% in general (details in Text S1). In the study of Mukherjee and Toohey [2016], Beijing 

dataset during 2009-2014 was prepared and projected to 10 RH bins with 280-320 pairs per 

bin. The slope between 𝜎𝑃𝑀 and PM2.5 (𝜎𝑃𝑀/PM2.5 with units of [m
2
/g]) can be obtained for 

each RH bin using least squares fit linear regression, referred to as slope(RH) in the following. 

The slope at RHref (median RH at the lowest RH bin) is used to assess dry mass extinction 

efficiency of PM2.5. The ratios between slope(RHref) and the slopes of higher RH bins 

represent the enhancements of light extinction by aerosol liquid water. Finally, the unitless 

light extinction enhancement factors are derived by normalizing the slopes with slope at RHref, 

i.e., f(RH)=slope(RH)/slope(RHref). In our study and Mukherjee and Toohey [2016], we use 
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median RH in the bin between 30-40% as RHref,, since WMO/GAW [2016] recommends a 

reference RH of 30-40% for nephelometer and 40% as a maximum RH for the sampling flow. 

Mukherjee and Toohey [2016] validated this approach with other independent observation-

based estimations. The slope at RHref (3.7±0.4 m
2
/g) is in a good agreement with an 

independent estimation [Wang et al., 2015] using IMPROVE algorithms I (3.2 m
2
/g) and II 

(4.1 m
2
/g) [Pitchford et al., 2007]. The derived f(RH) values are also in a good agreement 

with the estimations in other studies, details shown in the Figure 6d of Mukherjee and Toohey 

[2016].  

Second step, we further derive κchem from f(RH), following the works of Brock et al. 

[2016b] and Kuang et al. [2017]. Recently, Brock et al. [2016b] proposed a single parameter 

(κopt, refer to κ value directly derived from optical method/datasets) to describe f(RH), and 

Kuang et al. [2017] further developed this parameterization with RHref included, as shown in 

Eq. 2. They demonstrated that κopt can better describe f(RH) than the widely used ‘gamma’ 

power-law approximation [Kasten, 1969]. Following the works of Brock et al. [2016b] and 

Chen et al. [2014], which are based on κ-Kӧhler and Mie theories, Kuang et al. [2017] 

proposed a physically based approach to derive the equivalent κchem from κopt with R
2
=0.97. 

The derived κchem values (κf(RH) in Kuang et al. [2017]) agree well (R
2
=0.77) with 

measurements in Beijing using HH-TDMA, which is similar to HTDMA with capability of 

operating under higher RH. The ratio between κopt and κchem (Rκ) is influenced by particle 

number size distribution (PNSD) and chemical composition to some extent. Rκ is in a range 

of 0.58-0.77 (0.69 on average) based on Beijing observations [Kuang et al., 2017]. 

Furthermore, they simplified the influences of PNSD and chemical composition on Rκ as a 

function of Ångström exponent and κopt, and provided a 2-D look-up table for Rκ (Fig. S2).  

To validate our approach for deriving κchem from datasets of PM2.5 loading and 

meteorology, we estimate a bulk-averaged κchem of 0.18-0.24 (0.2 on average, considering the 
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variation of Rκ) using the estimated f(RH) values in Beijing 2014, which is adopted from 

Mukherjee and Toohey [2016]. Our results agree well with a long-term observation of κchem in 

Beijing 2014 [Wang et al., 2018]. They conducted a 9-month HTDMA field measurement 

and reported that the averaged κchem in Beijing is in a range of 0.14-0.23 for dry particles with 

diameters of 50-350 nm, details in the Table 2 of Wang et al. [2018]. An increase of κchem as 

particle size increases was found in their study. This may explain the slight overprediction of 

κchem (bias of 0.01-0.04, about 5-30%) in our approach. Since, HTDMA can only measure the 

κchem of particles at a certain size (usually smaller than 350 nm), however, our approach 

estimates a bulk κchem of the whole PM2.5 population. These results strongly suggest that the 

approach we demonstrated here can estimate κchem value in a reasonable range. 

where f(RH), κchem, κopt and Rκ are unitless variables. 

The PM2.5 and meteorological datasets during 2016-2018 in Delhi are used in this study 

for the assessment of κchem. We conduct the analysis using the visibility records in the range 

of 0-9 km, as recommended by Mukherjee and Toohey [2016]. This makes the analysis of 

f(RH) more reliable, since all visibility with values greater than 10 km are recorded as 10 km. 

The data pairs with wind speed larger than 6.5 m/s [Kurosaki and Mikami, 2007; Tegen and 

Fung, 1994; 1995] alongside PM2.5 concentration higher than 500 µg/m
3
 are excluded from 

analysis to minimize the uncertainties induced by dust. Additionally, we exclude the period 

with RH higher than 90%. This can minimize the uncertainties from noise signals caused by 

fog, cloud, precipitation and low accuracy of RH-senser under high RH conditions. We 

project the data pairs of RH, PM2.5 and 𝜎𝑃𝑀 to 8 RH bins (with borders of 30%, 40%, 50%, 

𝜎𝑃𝑀 =
3.912

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦
− 𝜎𝑎𝑖𝑟 − 𝜎𝑜𝑡ℎ𝑒𝑟  (1) 

𝑓(𝑅𝐻) =
1 +  𝜅𝑜𝑝𝑡

𝑅𝐻
100 − 𝑅𝐻

1 +  𝜅𝑜𝑝𝑡

𝑅𝐻𝑟𝑒𝑓

100 − 𝑅𝐻𝑟𝑒𝑓

,                  𝜅𝑐ℎ𝑒𝑚 =
𝜅𝑜𝑝𝑡

𝑅𝜅
 (2) 
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60%, 70%, 75%, 80%, 85% and 90%), and estimate the bulk-averaged f(RH) of each RH bin 

where more than 300 pairs of data are available. Then κopt can be derived from the function 

between f(RH) and RH (Eq. 2), and κchem can be estimated as Rκ is given. We identify the Rκ 

value for Delhi using the 2-D look-up table (Fig. S2, [Kuang et al., 2017]), and perform 

Monte Carlo calculation (1 million random samples) to estimate the uncertainties of Rκ (Fig. 

S3a) and κchem (Fig. S3b). Uncertainty estimation is detailed in Text S2 (long-term Ångström 

exponent for Delhi refer to Lodhi et al. [2013]). Finally, the potential of CCN activation in 

Delhi is estimated using κchem and κ-Kӧhler theory [Petters and Kreidenweis, 2008]. 

 

3. Results and Discussion  

As shown in Fig. 1, increased PM2.5 loading and RH can lead to higher light extinction. 

The 𝜎𝑃𝑀 shows a clear increase trend with increase of PM2.5, and also progressively increases 

as increase of RH for a given PM2.5. This is because hygroscopic growth of particle 

significantly enhances the light extinction. In order to estimate this enhancement effect, we 

derive the f(RH) as a funtion of RH (see Method) as shown in Fig. 2. The long-term bulk-

averaged f(RH) monotonically increases with RH in general. The shapes of f(RH) curves are 

similar for each year during 2016-2018. In line with the works of Brock et al. [2016b] and 

Kuang et al. [2017], the pattern of f(RH) follows Eq. 2 well with R
2
>0.95. The f(RH=80-85%) 

in Delhi is in the range of 1.7-2.3 during 2016-2018, with an average of ~2.0. This light 

extinction enhancement factor in Delhi is higher than the values measured in urban and rural 

regions of Beijing, where show a f(RH=80-85%) of 1.3 in the clean conditions and 1.5 in the 

polluted conditions [Titos et al., 2016]. But the f(RH=80-85%) in Dehi is lower than the 

values measured over clean marine environments, e.g., NY-Alesund (2.5-3.8), east Asia (2.2-

2.8, clean) and Cabauw (~3.5, clean); whereas, similar to the polluted or dust dominant 

marine environments, e.g., Gosan, Jeju Island in Korea (1.8-2.2, dust), east Asia (2.0-2.3, 
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polluted) and Cabauw (~2.0, polluted) [Titos et al., 2016]. These results indicate that the 

urban pollutants may moderate the hygroscopicity of marine aerosols, however, may enhance 

the hygroscopicity over inland regions, such as Delhi and Beijing. The higher hygroscopicity 

of aerosols in Delhi may also imply a more severe anthropogenic pollution than Beijing. This 

is in line with the database of WHO (http://www.who.int/airpollution/data/cities/en/) which 

shows a twice higher PM2.5 loading in Delhi compared with Beijing. Furthermore, lots of 

previous studies (e.g., [Titos et al., 2016; Wang et al., 2007; Zhang et al., 2015]) reported that 

f(RH=80-85%) is inversely propotional to the mass fration of organic matter (FOM). Higher 

f(RH=80-85%) in Delhi may indicate a lower FOM compared to Beijing. This is consistent 

with a recent long-term observational study in Delhi [Sharma et al., 2018], which reported an 

annual averaged FOM in PM2.5 is in a range of 15-20% during 2012-2016 (mass of organic 

matter is usually calculated as 1.4 times of organic carbon). However, the FOM in Beijing is 

usually in a range of 20-40% [Hu et al., 2015; Huang et al., 2014; Tao et al., 2017; Yang et 

al., 2017], where more than half of the organic matter originates from secondary organic 

aerosol (SOA) [Hu et al., 2015; Huang et al., 2014; Jimenez et al., 2009]. Stronger solar 

radiation in Delhi may increase photochemical reactions and oxidation of volatile organic 

compounds, therefore may enhance SOA formation [Hu et al., 2019; McFiggans et al., 2019; 

Zhang et al., 2015; Guo et al., 2014; Zhu et al., 2011]. However, hotter weather in Delhi 

compared with Beijing could suppress the condensation of semi-volatile organic compounds 

and compensate the enhancement of SOA formation. The lower FOM in Delhi may be due to 

less SOA, resulting from the competition between the two effects above; however, more 

observational evidences are required. Moreover, in constract to the rapid decrease of SO2 

emission in China over the past decade, the significant increase of SO2 emission in India [Li 

et al., 2017] could lead to a great formation of highly hygroscopic particulate sulfate. This 

could be another reason of higher hygroscopicity and larger light extinction enhancement of 
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aerosol in Delhi than in Beijing. The intensive field measurements of physicochemical 

properties of particulate matter and gaseous pollutants are scarce in Delhi, we hightlight the 

urgence of these observational studies for better understandings of physical and chemical 

properties of aerosols in Delhi.  

To facilitate the assessment of climate impact and comparison with other studies, we 

derive the κchem of aerosols in Delhi from f(RH) using Eq. 2. The annual bulk-averaged κchem 

in Delhi is about 0.42±0.07 during 2016-2018. In line with above discussion, this value 

indicates higher (by ~100%) hygroscopicity in Delhi than in Beijing. The long-term HTDMA 

field observation in Beijing reports an averaged κchem in the range of 0.14-0.23 for particles 

within a size range of 50-350 nm [Wang et al., 2018]. Given the absence of direct 

hygroscopicity measurements in Delhi, we compare our observation-based estimation with a 

global model study [Pringle et al., 2010]. They show reasonable model results, with 

deviations between the modelled and observed κchem values less than 0.05 at 10 out of the 14 

locations over the world. In line with our study, their model result of κchem in Delhi is about 

50-100% higher than the result in Beijing. Our estimated κchem in Delhi is much higher than 

averaged values of Asia (0.22), Australia (0.21), S. America (0.17) and Africa (0.15), 

howerver, much lower than the averaged values of N. Atlantic (0.59) and Southern Ocean 

(0.92) [Pringle et al., 2010]. The κchem in Delhi is much higher (by about 100%) than Asian 

averages and Beijing observations. As discussed above, this is possibly resulting from less 

SOA or abundant anthropogenic sulfate aerosol in Delhi, which is also implied by Pringle et 

al. [2010].  

 

4. Implication of Finding  

Cloud formation exerts a significant impact on the radiative balance of the earth system 

(indirect radiative forcing) and hydrologic cycle. Cloud droplet number plays a crucial role in 
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determining albedo and lifetime of cloud [Ming et al., 2006], and is very sensitive to κchem 

[Reutter et al., 2009]. To further investigate the impact of κchem on aerosol-cloud interaction, 

we estimate the CCN activation ability of aerosols in Delhi using κchem following the works 

of Petters and Kreidenweis [2007; 2008], and compare it with the activation ability of other 

regions over the world and some typical constituents of atmospheric relevance (Fig. 3). It is 

worth noting that κchem can be size-dependent, bulk-averaged κchem values are adopted and 

could introduce uncertainty in the following estimation. Long-term size-resolved particle 

hygroscopicity observations are required in future studies to quantify this uncertainty. The 

activation ability of aerosols in Delhi is much higher than some organic matters of 

atmospheric relevance, e.g., oxidized dihexylethyle sebacate, fractionated fulvic acid, fulvic 

acid, mixture of levoglucosan with succinic and fulvic, and pure levoglucosan (Fig. 3a) 

[Svenningsson et al., 2006]. However, the activation ability is lower than some typical 

inorganic matters of atmospheric relevance, e.g., ammonium nitrate (Fig. 3a). The activation 

ability of aerosols in Delhi is close to continental polluted aerosol represented by a mixture of 

inorganic (70%) and organic matters (30%), detailed information of mixture is given in 

Petters and Kreidenweis [2007] and Svenningsson et al. [2006]. This result may imply that 

the aerosol in Delhi is a mixture containing majority of inorganic and minority of organic 

species, and this is consistent with long-term measurements in Delhi [Khare et al., 2018; 

Sharma et al., 2018]. In order to emphasize the importance of climate impacts of aerosols in 

Delhi (Fig. 3b), we compare its activation ability with averaged values of Beijing [Wang et 

al., 2018] and continental averages world-wide [Pringle et al., 2010]. A 0.1 µm particle can 

activate as a cloud droplet under a supersaturation of ~0.22% for Europe and North America, 

about 0.28-0.31% for Asia, Australia, South America and Africa, and ~0.3% for Beijing. 

However, only a supersaturation of ~0.18±0.015% is required to activate 0.1 µm particles in 

Delhi on average. To activate a smaller particle possessing a diameter of 0.05 µm requires a 
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supersaturation of ~0.51±0.04% (Delhi), ~0.70% (Europe and North America), 0.80-0.92% 

(Asia, Australia, South America and Africa), and ~0.85% (Beijing), respectively. Therefore, 

the CCN activation ability of aerosols in Delhi is much higher than the continental averages 

and another Asian megacity, Beijing. This indicates a larger impact of aerosols in Delhi on 

climate and hydrologic cycle, even if under same meteorologic conditions and same particle 

number concentration. Additionally, the frequent influence of monsoon and great PM2.5 

loading in Delhi make its climate impacts more remarkable (~125 µg/m
3
 on average during 

2016-2018, and ~110 µg/m
3
 in 2015 as details given in Fig. S1 [van Donkelaar et al., 2015]). 

Our results imply that using Asian average or measurements in other Asian megacities (e.g., 

Beijing) to represent the κchem in Delhi would lead to significant underestimation of its 

climate impacts.  

Various parameterizations of cloud droplet nucleation are applied in general circulation 

models (GCMs) (e.g., [Ghan et al., 2011; Jiang et al., 2010; Jiang et al., 2012; Roelofs et al., 

2006; Zhang et al., 2016]). Some earlier cloud microphysical schemes empirically diagnose 

cloud droplet number concentration from aerosol mass (e.g., [Boucher and Lohmann, 1995; 

Lohmann and Feichter, 1997; Menon et al., 2002] ) or aerosol number (e.g., [Gultepe and 

Isaac, 1996]) to account for aerosol-cloud interaction. However, these empirical relationships 

can vary largely over different regions [Ramanathan et al., 2001] and lead to substantial 

uncertainty. Later on, various Köhler-theory-based [Köhler, 1936] parameterizations (e.g., 

[Abdul-Razzak and Ghan, 2000; Fountoukis and Nenes, 2005; Ming et al., 2006; Nenes and 

Seinfeld, 2003]) have been applied in GCMs. For example, CMIP5-cm3 (Coupled Model 

Intercomparison Project, [Jiang et al., 2012; Ming et al., 2006]), CAM5 (Community 

Atmosphere Model, [Abdul-Razzak and Ghan, 2000; Zhang et al., 2016]), UKCA (UK 

Chemistry and Aerosols community model, [Abdul-Razzak and Ghan, 2000; West et al., 

2014]) and MRI-ESM1 (Meteorological Research Institute Earth System Model Version 1, 
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[Abdul-Razzak and Ghan, 2000; Yukimoto et al., 2012]). However, the chemical complexity 

has an important impact on cloud activation and incorporating such complexity into these 

parameterizations is difficult [Fountoukis and Nenes, 2005]. By introducing a new concept of 

‘population splitting’, Fountoukis and Nenes [2005] and Nenes and Seinfeld [2003] take the 

soluble, slightly soluble, insoluble species and organic surfactants into consideration. 

Recently, Chang et al. [2017] applied a κ-Köhler-based [Petters and Kreidenweis, 2007] 

parameterization in EMAC (ECHAM5-MESSy Atmospheric Chemistry model) to diagnose 

cloud activation efficiently and robustly, with consideration of aerosol chemical complexity 

but without the need of aerosol-specific information (e.g., Van’t Hoff factor and osmotic 

coefficient), which is required by Köhler-theory-based parameterizations. Chang et al. [2017] 

shows that using the model predicted region-dependent κ values can improve the cloud and 

climate simulations over polluted regions (e.g., India), compared with using prescribed κ 

value (continental average value). This indicates the regional variation of κ can substantially 

influence climate simulation, and using our long-term observation-based κ estimation to 

constraint climate models would improve the assessment of climate change. 

 

 

5. Summary 

Hygroscopicity of aerosol is an important parameter affecting its climate effects, 

however, the long-term observation of it in Delhi, one of the biggest cities in the world, is 

absent. In this study, we demonstrate an approach to derive the hygroscopicity (κchem) of 

aerosol in Delhi from publicly available datasets. This approach is well validated, and shows 

a good agreement (bias of 0.01-0.04, 5-30%) with long-term observations in Beijing.  

We analyze the Delhi observations during 2016-2018, and estimate a long-term bulk-

averaged κchem of 0.42±0.07. This value is much higher (by about 100%) than the κchem of 
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Beijing as reported from previous modelling and observational studies. This implies the 

difference in aerosol chemical composition between these two Asian megacities, Delhi and 

Beijing. The possible reasons could be higher contribution from anthropogenic sulfate or 

lower contribution from SOA in Delhi; however, further evidences are still needed from 

direct measurements. To activate particles of 0.1 µm (0.05 µm) as cloud condensation nucleis, 

a supersaturation of ~0.18±0.015% (0.51±0.04%) is required in Delhi, which is much lower 

than that in Beijing and the Asian average. Furthermore, the hygroscopicity-induced light 

extinction enhancement of aerosols in Delhi, i.e., f(RH=80-85%), is estimated to be in the 

range of 1.7-2.3, which is much higher than Beijing (1.3-1.5). The higher light extinction 

enhancement and easier cloud activation imply larger direct and indirect radiative forcing of 

aerosols in Delhi. These climate effects can be significantly underestimated if a 

hygroscopicity of Beijing or Asian average is used to represent the condition of Delhi. We 

highlight the urgence of direct hygroscopicity measurements in Delhi for a deeper 

understanding of human’s influences on cloud formation, climate change and global 

hydrologic cycle. The approach we demonstrated in this study is also valuable for estimating 

aerosol hygroscopicity and its climate effects in other parts of the world where high-quality 

direct measurements are not available. 
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Figure 1.  Light extinction efficiency as a function of PM2.5 loading, colored by RH. Hourly 

values during 2016-2018 are presented.  
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Figure 2. Estimation of κchem and light extinction enhancement factor as a function of RH. The 

hourly values are projected to 8 RH bins (see Method) for analysis. The annual bulk-averaged values 

are presented. The black line shows the mean results with variation range indicated by error bars. The 

estimated κchem (average ± standard deviation) are marked, uncertainty estimation is detailed in Text 

S2.  
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Figure 3. Critical supersaturation for cloud condensation nuclei (CCN) activation as a function 

of particle dry diameter. The estimated bulk-averaged values for Delhi (blue line with standard 

deviation in the pink shading area) is compared with values of other compounds (a) and values of 

continental regions world-wide (b). Panel (a) is modified from the figure 2 of Petters & Kreidenweis 

[2007], dots indicate the experiment results taken from literatures therein and the dashed lines 

indicate the best fit for each particle type. Panel (b) is modified from the figure 7a of Pringle et al. 

[2010]. The figures are reused under the CC Attribution 3.0 License. 

 

 


