Efficient estimation of return value distributions from non-stationary marginal extreme value models using Bayesian inference

Ross, E. and Randell, D. and Ewans, K. and Feld, G. and Jonathan, P. (2017) Efficient estimation of return value distributions from non-stationary marginal extreme value models using Bayesian inference. Ocean Engineering, 142. pp. 315-328. ISSN 0029-8018

Full text not available from this repository.

Abstract

Extreme values of an environmental response can be estimated by fitting the generalised Pareto distribution to a sample of exceedances of a high threshold. In oceanographic applications to responses such as ocean storm severity, threshold and model parameters are typically functions of physical covariates. A fundamental difficulty is selection or estimation of an appropriate threshold or interval of thresholds, of particular concern since inferences for return values vary with threshold choice. Historical studies suggest that evidence for threshold selection is weak in typical samples. Hence, following Randell et al. (2016), a piecewise gamma-generalised Pareto model for a sample of storm peak significant wave height, non-stationary with respect to storm directional and seasonal covariates, is estimated here using Bayesian inference. Quantile regression (for a fixed quantile threshold probability) is used to partition the sample prior to independent gamma (body) and generalised Pareto (tail) estimation. An ensemble of independent models, each member of which corresponds to a choice of quantile probability from a wide interval of quantile threshold probabilities, is estimated. Diagnostic tools are then used to select an interval of quantile threshold probabilities corresponding to reasonable model performance, for subsequent inference of extreme quantiles incorporating threshold uncertainty. The estimated posterior predictive return value distribution (for a long return period of the order of 10,000 years) is a particularly useful diagnostic tool for threshold selection, since this return value is a key deliverable in metocean design. Estimating the distribution using Monte Carlo simulation becomes computationally demanding as return period increases. We present an alternative numerical integration scheme, the computation time for which is effectively independent of return period, dramatically improving computational efficiency for longer return periods. The methodology is illustrated in application to storm peak and sea state significant wave height at a South China Sea location, subject to monsoon conditions, showing directional and seasonal variability.

Item Type:
Journal Article
Journal or Publication Title:
Ocean Engineering
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300/2305
Subjects:
ID Code:
133037
Deposited By:
Deposited On:
23 Apr 2019 13:50
Refereed?:
Yes
Published?:
Published
Last Modified:
30 Sep 2020 08:50