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Introduction
In the main text, we provided a brief overview of our method. Here, in this Supplementary Material, we provide more detail for
the interested reader. The method is based on the formalism introduced in Reference 1.

Electromagnetic Radiated fields
In the general model of circuit resonator interactions with EM fields, we assume that the charge and current sources are
initially driven by an incident electric displacement field Din(r, t), and magnetic induction Bin(r, t), with frequency Ω0. The
electric Esc, j(r, t) and magnetic Hsc, j(r, t) fields scattered by resonator j, are a result of its oscillating polarization P j(r, t) and
magnetization M j(r, t) sources. In general, the electric and magnetic fields are related to the electric displacement and magnetic
induction through the auxiliary equations

D(r, t) = ε0E(r, t)+P(r, t) , H(r, t) =
1
µ0

B(r, t)−M(r, t) , (1)

where ε0 and µ0 are the free-space permittivity and permeability, respectively. When analyzing the EM fields and resonators,
we adopt the rotating wave approximation where the dynamics is dominated by Ω0. In this work, all the EM field and resonator
amplitudes refer to the slowly-varying versions of the positive frequency components of the corresponding variables, where the
rapid oscillations e−iΩ0t due to the dominant laser frequency has been factored out. The scattered electric and magnetic fields
are then given by1

Esc, j(r, t) =
k3

4πε0

[∫
d3r′G(r− r′)·P j(r′, t)+

1
c

G×(r− r′)·M j(r′, t)
]

, (2)

Hsc, j(r, t) =
k3

4π

[∫
d3r′G(r− r′)·M j(r′, t)− cG×(r− r′)·P j(r′, t)

]
, (3)

where k = Ω/c. Explicit expression for the radiation kernels are1

G(r) = i
[

2
3

Ih(1)0 (kr)+
(

rr
r2 −

I
3

)
h(1)2 (kr)

]
− 4π

3
Iδ (kr) , G×(r) =

1
k

∇× eikr

kr
I , (4)

Here: the dyadic rr, is the outer product of r with itself; I is the identity matrix; and h(1)n (x) are spherical Hankel functions of
the first kind, of order n, defined by

h(1)0 (x) =−i
eix

x
, h(1)2 (x) = i

[
1
x
+ i

3
x2 −

3
x3

]
eix . (5)

The radiation kernel G(r− r′) determines the electric (magnetic) field at r, from a polarization (magnetization) source at r′2.
The cross kernel G×(r− r′) determines the electric (magnetic) field at r, from a magnetization (polarization) source at r′. In
general, for sources other than point resonators, the scattered field equations are not readily solved for P j(r, t) and M j(r, t).
When resonators are separated by distances less than, or of the order of a wavelength, a strongly coupled system results.



The total electric Eext, j(r, t) and magnetic Hext, j(r, t) fields external to resonator j comprise the incident fields and those
fields scattered from all other resonators,

Eext, j(r, t) =
1
ε0

Din(r, t)+∑
i6= j

Esc,i(r, t) , Hext, j(r, t) =
1
µ0

Bin(r, t)+∑
i 6= j

Hsc,i(r, t) . (6)

The total driving of the charge and current oscillations within the resonator is provided by the external electric and magnetic
fields, Equations (6), aligned along the direction of the source, providing a net electromagnetic force (emf) and flux1, Eext, j and
Φext, j, respectively. We define the external emf and flux as1

Eext, j =
1√

ω jL j

∫
d3r

P j(r, t)
Q j

·Eext, j(r, t) , Φext, j =
1√

ω jL j

∫
d3r

M j(r, t)
I j

·Hext, j(r, t) , (7)

where Q j has units of charge and I j = Q̇ j, is the rate of change of Q j. The external emf and flux can be decomposed into
contributions from the incident (Ein, j and Φin, j) and scattered (E sc

i, j and Φsc
i, j) fields,

Eext, j = Ein, j +∑
i6= j

E sc
i, j , Φext, j = Φin, j +∑

i6= j
Φ

sc
i, j . (8)

The driving by the incident displacement field and magnetic induction is Ein, j and Φin, j, respectively. The driving of resonator j
by the scattered electric and magnetic fields from resonator i is the emf E sc

i, j and flux Φsc
i, j, respectively. The total driving of a

resonator can be summarized by the external driving Fext, j, the sum of the incident Fin, j and scattered Fsc, j driving contributions,
respectively, where1

Fext, j = Fin, j +Fsc, j = Fin, j +∑
i 6= j

Ci j , (9)

where the components

Fin, j =
i√
2

[
Ein, j + iω jΦin, j

]
,
[
C
]

i6= j =
i√
2

[
E sc

i, j + iω jΦ
sc
i, j

]
. (10)

Normal modes
In order to express the coupled equations for the EM fields and resonators, in the main text we introduced the slowly varying
normal mode oscillator amplitudes1 b j(t),

b j(t) =
1√
2ω j

[
Q j(t)√

C j
+ i

φ j(t)√
L j

]
, (11)

with generalized coordinate the charge Q j(t) and φ j(t) its conjugate momentum.
The normal mode oscillators b j(t) represent the current oscillations of the resonator. These current oscillations are subject

to radiative damping due to their own emitted radiation. The Hamiltonian equation of motion for Q and φ [Q̇ = I; and φ̇ = E ]
together with the scattered EM fields from all the resonators results in a linear system of equations for b j(t). For a system
which comprises N resonators, we write the system as1

ḃ = C b+Fin , (12)

where b is a column vector of N normal oscillator amplitudes

b =


b1
b2
...

bN

 , (13)

Fin is a column vector formed by the first equation in Equation (10). The matrix C describes the interactions between the
resonator’s self-generated EM fields (diagonal elements) and those scattered from different resonators [off-diagonal elements;
the interaction terms in, the second equation of, Equation (10)]1. The diagonal elements of C contain the resonators’ total
decay rate Γ j and resonance frequency shift1,[

C
]

j, j =−
Γ j

2
− i(ω j−Ω0) . (14)

Although generally the emitters can have different resonance frequencies, here, for simplicity, we focus on the case of equal
frequencies, i.e., ω j = ω0, for all j.
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Collective eigenmodes
Strong multiple scattering results in collective excitation modes of the system. The collective modes of current oscillation
within the system are described by the eigenvectors vn of the interaction matrix C . The decay rate and resonance frequency
shift of the mode are described by the real and imaginary parts of the corresponding eigenvalues ξn,

ξn =−
γn

2
− i(Ωn−Ω0) . (15)

The number of collective modes is determined by the number of resonators N. The collective eigenmodes can then exhibit
different resonance frequencies and linewidths and line shifts1. The different modes’ emitted radiation may be suppresed by the
metameterial (subradiant with γn < Γ) or enhanced (superradiant with γn > Γ).

Point multipole approximation
The general model of interacting resonators formally introduced in Reference 1, and summarized above, can be applied to
any type of circuit element resonator. In practice, however, one tends to apply approximations to the intrinsic structure of
the resonator. One approach, particularly when the size of the resonator is less than the incident wavelength, is to treat the
resonator as a point multipole source3–5. Split ring resonators are dominated by electric and magnetic dipole radiation, and
a point dipole approximation has been used successfully to study the collective effects in planar resonator arrays, e.g., the
transmission properties6, 7 and the development of an electron-beam-driven light source from the collective response8.

The point dipole approximation alone can not always accurately model interacting resonators. It may be impractical to treat
the constituent dipoles separately and higher order multipoles may be more appropriate. In Reference 9, the point multipole
approximation was extended to include the point electric quadrupole. In principle, the model can be extended to include any
arbitrary multipole. Here, we approximate our resonators as nanorods (cylinders) with radius a and height H. Each nanorod
comprises a finite distribution of atomic point electric dipoles along the axis of the rod. Hence, M j(r, t) ' 0, and we only
consider the point electric dipole.

Point electric dipole approximation
In the point electric dipole approximation, the polarization density is given by1 (see also the main text),

P j(r, t) = Q jH jd̂ jδ (r− r j) , (16)

where H j has units of length and d̂ j is the orientation vector of the dipole. The electric field follows from inserting Equation (16)
into Equation (2). Similarly, the emf resulting from the interaction of dipoles i 6= j is1

E sc
i, j =

√
ΓE1,iΓE1, j

3
2

d̂i·G(ri− r j)· d̂ j
b j√

2
. (17)

Here, ΓE1, j is the radiative emission rate of the dipole1,

ΓE1, j =
C jH2

j ω4

6πε0c3 . (18)

The total decay rate Γ j of the point electric dipole comprises the radiative emission rate ΓE1, j and ohmic losses ΓO, j;

Γ j = ΓE1, j +ΓO, j . (19)

Finite size nanorod model
For a nanorod aligned along the z-axis, the polarization density is

P j(r, t) =
Q j

πa2 ẑΘ(a−ρ)Θ(H j/2− z)Θ(H j/2+ z) , (20)

where Θ is the Heaviside function and ρ < a. The electric field Esc, j is obtained by inserting Equation (20) into Equation (2)
and integrating over the volume of the nanorod. The emf resulting from nanorods i and j interacting is

E sc
i, j =

k3

4πε0Qi
√

ω jL j

∫
d3r d3r′Pi(r, t)·G(ri− r j)·P j(r′, t) . (21)

Equation (21) comprises the integral over the volume of the nanorod located at r and the volume of the nanorod located at r′.
Each nanorod also experiences a radiative decay rate given by Equation (18) and an ohmic loss rate. Its total decay rate is also
given in Equation (19).
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A finite size effective metamolecule
Thus far, we modeled the interactions between individual nanorods and point electric dipole resonators. When there are a large
number of resonators, one may look to optimize the model. Because resonators are often arranged about a lattice framework,
this can result in rows of parallel resontors. In our optimization method, we treat closely spaced parallel nanorods as a single
effective resonator. In a point multipole approximation, this effective resonator has magnetic dipole and electric quadrupole
properties9. However, when we extend our finite-size nanorod model to include this effective metamolecule; the effective
metamolecule has the same properties as its constituent nanorods; that is electric dipole properties.

We consider two parallel nanorods located at r±, j = [x j,y j± l,z j]; with corresponding polarization densities P±, j(r, t).
When l is small, we approximate the pair as a single metamolecule located at r j = [x j,y j,z j]. The metamolecule may be
symmetrically excited, i.e., P+, j(r, t) = P−, j(r, t), or it may be antisymmetrically excited, i.e., P+, j(r, t) =−P−, j(r, t), where
P+, j(r, t) is defined in Equation (20). When we consider the interactions between these effective metamolecules, we integrate
over the volume of the pair of nanorods centered at r, and the pair centered at r′.

In our model, we assume that a single nanorod and a point electric dipole have the same radiative decay rate, ohmic loss
rate and resonance frequency ω0 . However, our symmetrically excited or antisymmetrically excited effective metamolecules
have radiative decay rates and resonance frequencies different to a single nanorod. We denote the decay rates of symmetrically
and antisymmetrically excited nanorods as γs and γa, respectively, and their resonance frequencies as Ωs and Ωa, respectively.
In general, Ωs 6= Ωa 6= ω0. We calculate these decay rates and resonance frequencies in the main text by analyzing a pair of
parallel nanorods.

Radiative emission rate of a single nanorod
In the main text we gave the radiative emission rate of a single gold nanorod as ΓE1 ' 0.83Γ with an ohmic loss rate of
ΓO ' 0.17Γ. We also drove our systems at the resonance frequency of the electric dipole ω0. Here, we provide justification for
these parameter choices and calculate ω0. To do so, we consider the scattering and polarizability of a small metallic nanorod.
This allows us to estimate its radiative and ohmic loss rates as well as its resonance frequency.

The analysis relies on the Drude model for the permittivity ε of a metallic resonator

ε(ω) = ε∞−
ω2

p

ω(ω + iΓD)
, (22)

where: ω is the frequency of the incident light; ε∞ is the permittivity at infinite frequencies; ωp is the plasma frequency; and ΓD
is the decay rate of current oscillations within the material.

The scattering cross section σsc of small particles depends on their polarizability α and frequency of the incident light10

σsc =
ω4

6πc4 |α|
2 . (23)

The polarizability is determined by the particle’s physical characteristics, especially its volume V0 and geometry. The geometry
introduces a depolarization effect L on the particle10. In the Rayleigh approximation, the polarizability is

αi =V0
ε−1

1+Li(ε−1)
, i = x,y,z . (24)

For a cylinder aligned along the z axis, the depolarization factor is11, 12

Lz = 1− 1√
1+κ2

and Lx = Ly =
1

2
√

1+κ2
, (25)

where κ = 2a/H is the aspect ratio of a cylinder with radius a and height H.
The curve produced by the scattering cross section Equation (23) has two Lorentzian profiles with two independent

resonance frequencies. The first is associated with the longitudinal polarizability αz and depolarization factor Lz, the second is
associated with the radial polarizability αx = αy, with depolarization factors Lx = Ly.

For gold, the Drude parameters are13–15: ε∞ = 9.5; ωp ' (2π)2200 THz; and ΓD ' (2π)17 THz. In the Rayleigh
approximation (for a cylinder with fixed radius a), the full width at half maximum (FWHM) of σsc is approximately independent
of the cylinder’s length and is associated with the ohmic loss rate ΓO. In Figure 1(a,b), we show ΓO and resonance frequency
ω0 for a gold nanorod with radius a = λp/5, where λp = 2πc/ωp ' 140 nm is the plasma wavelength. We find ΓO ' ΓD '
(2π)17 THz.
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Figure 1. We show: (a) the ohmic loss ΓO; (b) the resonance frequency ω0; and (c) the relative radiative decay ΓO/ΓE1, as
functions of the nanorod rod length H, for a gold nanorod with radius a = λp/5.

For larger particles, the Rayleigh approximation is insufficient and retardation effects must be considered. Mie’s formulation
accounts for this retardation for spherical particles. For non-spheroidal particles, a generalization of Mie’s polarizability was
obtained in Reference 16 and successfully used to model the scattering of metallic nanoparticles. The approximate ratio of
ohmic losses to radiative decay is

ΓO

ΓE1
=−Im

(
3λ 3

0
4π3a2(H(ε−1)

)
=

6ΓDω2
p c3

a2Hω2
0

[
ω2

0 Γ2
D(ε∞−1)+

(
ω2

0 (ε∞−1)−ω2
p
)2
] . (26)

In Figure 1(c), we show the relative decay rates as a function of the nanorod length. When the nanorods are shorter, the ohmic
losses are more dominant. For example, when H = 0.75λp, the total decay rate Γ is twice that when H = 1.5λp, however, the
ohmic losses are larger; ΓO ' 0.3Γ.

For longer nanorods, H ' 3λp the total decay rate reduces. For example, when H = 3λp the total decay rate is approximately
one third that when H = 1.5λp, however, here the ohmic losses are ΓO' 0.18Γ. In the region 1.25λp .H . 1.75λp, the radiative
decay rate is approximately constant, ΓE1 ' 5ΓO. In the main text, we choose our nanorods to have length H = 1.5λp ' 0.24λ0,
where λ0 = 2πc/ω0 ' 860 nm is the resonance wavelength of this nanorod. This results in a radiative decay rate ΓE1 ' 0.83Γ

and ohmic loss rate ΓO ' 0.17Γ, where Γ is the total decay rate of this nanorod.

The effects of rod length
In the main text, we analyze in detail different systems of gold nanorods with radii a = λp/5' 28 nm and length H0 = 1.5λp '
210 nm. The total decay rate of this nanorod is Γ0 (we introduce the subscript (0) here for convenience). The corresponding
radiative decay and ohmic loss rates are ΓE1 ' 0.83Γ0 and ΓO ' 0.17Γ0, respectively. In order to investigate the effect of the rod
length on the response, we also consider two separate systems of two interacting symmetric nanorods, still with radii a = λp/5.
However, in the first system the lengths are significantly shorter, Ht = H0/2 ' 0.18λt , where λt ' 570 nm is the resonance
wavelength of the short rod, and in the second system, the rod lengths are longer, Hl = 2H0 ' 0.27λl , where λl ' 1540 nm is
the resonance wavelength of the long rod. For the shorter nanorods, this results in a radiative decay ΓE1 ' 1.40Γ0 and ohmic
losses ΓO ' 0.6Γ0, where Γ0 denotes the total decay rate of a nanorod with length H0. For the longer nanorods, we have
ΓE1 ' 0.29Γ0 and ΓO ' 0.07Γ0. We compare each pair of nanorods, separately, to two interacting point electric dipoles that
possess the same orientation vectors, radiative decay, ohmic losses and resonance frequency as the corresponding nanorods.

We analyze the characteristic response of the system in the absence of driving, studying the characteristic collective modes
of current oscillation described by the eigenvectors vn with corresponding eigenvectors ξn =−γn/2− i(Ωn−ω0) (the real part
of which correspond to the collective mode linewidth and the imaginary part the corresponding line shift) of the interaction
matrix C .

The two parallel nanorods are located at r1 = −r2 = [0, l/2,0]. The coupling matrix C has two eigenmodes of current
oscillation: the symmetric mode (denoted by a subscript ‘s’) where the current oscillations are in-phase d̂1 = d̂2; and the
antisymmetric mode (denoted by a subscript ‘a’) where the current oscillations are out-of-phase d̂1 =−d̂2.

In Figure 2, we show the radiative linewidths and line shifts for the collective eigenmodes of two parallel nanorods and two
parallel point electric dipoles. In Figure 2(a,b), the nanorods are short (H = H0/2) and in Figure 2(c,d), the nanorods are long
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(H = 2H0). In both cases, the linewidths γn of the collective modes in the point electric dipole approximation qualitatively
agree with the corresponding linewidths in our finite size nanorod model. The line shifts δωn agree when kl & π/2, where
k = 2π/λ and λ is the resonance wavelength of the nanorod of length H. At kl ' π/2, the line shifts of the point electric dipole
approximation show a noticeable deviation from the finite size nanorod model. As the separation become small kl . π/2,
the point electric dipole model deviates significantly, with the δωa blue shifting and δωs red shifting from ω , the resonance
frequency of the nanorod with length H.

In the main text, we show the linewidths and line shifts for two parallel nanorods with length length H0. With those, together
with Figure 2, we show that our point electric dipole approximation is valid over an appreciable range of rod lengths (centred
on H0) when the relative separation is kl & π/2, where k is the resoannce wavenumber of the light.
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Figure 2. The radiative resonance line shifts δωn =−(Ωn−ω0), and linewidths γn, for the collective antisymmetric (a,c) and
symmetric (b,d) eigenmodes, as a function of their separation parameter l, for two parallel nanorods. In (a,b), the nanorods
have: length Ht = 0.5H0 ' 0.18λt (where λt ' 570 nm is the resonance wavelength of this rod); radiative decay rate
ΓE1 ' 1.4Γ0; and ohmic loss rate ΓO ' 0.6Γ0. In (c,d), the nanorods have: length Hl = 2H0 ' 0.27λl (where λl ' 1540 nm is
the resonance wavelength of this rod); radiative decay rate ΓE1 ' 0.29Γ0; and ohmic loss rate ΓO ' 0.07Γ0. Each nanorod has
radius a = λp/5' 0.032λ0, where λ0 ' 860 nm is the resonance wavelength of our reference nanorod with length
H0 = 1.5λp ' 0.24λ0 and Γ0 is is the total decay rate of this nanorod.
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