
Point-dipole approximation for small systems of
strongly coupled radiating nanorods
Derek W. Watson1*, Stewart D. Jenkins1, Vassili A. Fedotov2, and Janne Ruostekoski1,3

1Mathematical Sciences and Centre for Photonic Metamaterials, University of Southampton, Southampton SO17
1BJ, United Kingdom
2Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton,
Southampton SO17 1BJ, United Kingdom
3Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
1*derek.w.watson@gmail.com

ABSTRACT

Systems of closely-spaced resonators can be strongly coupled by interactions mediated by scattered electromagnetic fields.
In large systems the resulting response has been shown to be more sensitive to these collective interactions than to the
detailed structure of individual resonators. Attempts to describe such systems have resulted in point-dipole approximations to
resonators that are computationally efficient for large resonator ensembles. Here we provide a detailed study for the validity of
point dipole approximations in small systems of strongly coupled plasmonic nanorods, including the cases of both super-radiant
and subradiant excitations, where the characteristics of the excitation depends on the spatial separation between the nanorods.
We show that over an appreciable range of rod lengths centered on 210 nm, when the relative separation kl in terms of the
resonance wave number of light k satisfies kl & π/2, the point electric dipole model becomes accurate. However, when the
resonators are closer, the finite-size and geometry of the resonators modifies the excitation modes, in particular the cooperative
mode line shifts of the point dipole approximation begin to rapidly diverge at small separations. We also construct simplified
effective models by describing a pair of nanorods as a single effective metamolecule.

Introduction
Plasmonic nanorods are the most basic form of optical resonators. The scattering of light from any resonator has the ability
to produce strong interactions that can result from the wave repeatedly scattering of the same resonator. The EM coupling
between different resonators results in different eigenmodes of response, the strong interaction limits of which can be most
easily achieved in microwave systems with low ohmic losses1, but can also manifest in plasmonic systems2. The eigenmodes
can also destructively interfere and manifest as Fano resonances in the transmitted field3–5, whose narrow resonances potentially
make them useful in applications such as plasmonic rulers6 and biosensors7. Designing material structures to support Fano
resonances is difficult; not least due to the complex interactions of different modes, but variations in the resonators can affect
the line shifts and widths of the interacting modes also8.

Apart from applications in plasmonics and nanophotonics, optical resonators (and nanorods in particular) that are much
smaller than the wavelength of the driving light are now commonly used as the building blocks of metamaterials - artificial
material composites that are designed to interact with light in ways no conventional materials can. Functionalities of
metamaterials include perfect absorption9 and optical magnetism10; with applications ranging from cloaking11–13 to perfect
lenses14–16. An important part of understanding how metamaterials realize their functions is knowledge of the electromagnetic
(EM) fields scattered by the constituent resonators.

Metamaterials that exhibit strong collective interactions are becoming increasingly popular with experimentalist2, 17–23.
However, modeling the EM interactions in large resonator systems is generally challenging. The interactions among the
resonators can be simplified, e.g., by treating the array as an infinite lattice24, 25 or the resonators as point multipole sources2, 26.
Point multipole descriptions in particular have been successful in modeling the cooperative response in planar arrays, e.g.,
developing electron-beam-drive light sources27 and transmission properties28, 29. Point dipole descriptions can also be extended
to more complex metamolecules, such as those exhibiting toroidal dipoles30.

Here, we analyze the accuracy of the dipole approximation in more detail in small systems of plasmonic nanorods and
show, qualitatively, at what separations the finite-size of a nanorod, and its near fields, must be accounted for. Our theoretical
model does not require solving the full Maxwell’s equations for a resonator ensemble; which is computationally demanding for
more than a few resonators31. Rather, we utilize the formalism developed in Reference 32 to produce a system of coupled
equations for the dynamics of the EM interactions of the scattered and incident EM fields. The method relies on capturing the



fundamental physics of each resonator, e.g., its decay rate and resonance frequency, relevant for the radiative coupling between
resonators. Our model is readily applied to more complex systems such as those whose resonators are distributed over two
planes (one above another) with non-uniform orientations, e.g., a toroidal metamolecule30.

Finally, in our paper we also provide an alternative approach for treating each element of a nanorod as a separate meta-atom
when we model closely spaced nanorods as a single effective metamolecule. This can notably reduce the number of degrees of
freedom in the system.

Method
In analyzing the EM interactions between plasmonic nanorods and an incident EM field, we utilize the general theory derived in
detail in Reference 32, specifically, the point electric dipole approximation. We regard nanorods as cylinders-shaped resonators
and study their longitudinal polarization excitation; where the charge and current oscillations are assumed to be linear along
the axis of the nanorod. Here, we provide a brief overview of our model, a more detailed description is provided in the
Supplementary Material.

An incident electric displacement field Din(r, t)=Dinêin exp(ikin·r−iΩ0t) and magnetic induction Bin(r, t)=
√

µ0/ε0 k̂in×
Ein(r, t), with frequency Ω0, polarization vector êin and propagation vector kin drives each resonator j’s internal charge and
current sources. These source oscillations behave in a manner comparable to an LC circuit with resonance frequency ω j

32,

ω j =
1√
L jC j

. (1)

Here, L j and C j are respectively, an effective self-inductance and self-capacitance. A dynamic variable with units of charge
Q j(t) and its time derivative, the current I j(t) = Q̇ j(t), describes the state of current oscillations within each resonator j. In
order to analyze the coupled equations for the EM fields, we introduce the slowly varying normal mode oscillator amplitudes
b j(t)32, with generalized coordinate the charge Q j(t) and conjugate momentum φ j(t), where

b j(t) =
1√
2ω j

[
Q j(t)√

C j
+ i

φ j(t)√
L j

]
. (2)

In the rotating wave approximation the conjugate momentum and current are linearly-proportional32. We use Equation (2) to
describe a general resonator with sources of both polarization P j(r, t) and magnetization M j(r, t). The resonator’s scattered
EM fields result from the oscillations of Q j(t) and I j(t); which are proportional to P j(r, t) and M j(r, t), respectively32.

The collective interactions of N resonators with each other and an external field is described by the linear system of
equations32

ḃ = C b+Fin . (3)

Here, ḃ is the rate of change of b; a vector of N normal oscillator variables, and Fin is a vector describing the interaction
of resonator j with the incident EM field. The N ×N interaction matrix C requires solving the scattered EM fields for
the polarization and magnetization sources. The EM interactions between different resonators i 6= j are described by the
off-diagonal elements of C . The strength of Ci6= j depends on the separation and orientation of the resonators, and naturally
accounts for the reduced coupling between elements at the edges compared to the center of a lattice, see Supplementary
Material. The diagonal elements describe the EM interactions of a resonator with itself, resulting in the resonator’s decay rate
Γ j and resonance frequency;

[
C
]

j j =−
Γ j

2
− i(ω j−Ω0) . (4)

In our model we consider magnetization due to induced macroscopic currents. In straight rods
:
a
::::::
straight

:::
rod

:
even though the

::::::
induced

:
current is non-zero, the induced

:
it

::
is

:::::
linear

:::
and

::::::::
therefore

:::
the

::::::::::::
corresponding magnetization is negligible; M j(r, t)' 0.

Thus, the scattered EM fields result from nanorod’s polarization sources P j(r, t) alone. This results in an effective accumulation
of charge on the nanorod’s ends. Analogous simulation methods can also be used to study collective responses of arrays of
other resonant emitters, such as atoms1.

Finite-size resonator model
For our finite-size model we consider a nanorod with a radius a and height H j, see Figure 1. The polarization density is a
uniform distribution of atomic point electric dipoles (with orientation vectors d̂ j) throughout the volume of the nanorod. For a
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Figure 1. Schematic of a nanorod with radius a and length H.

single nanorod centered at the origin and aligned along the z axis, i.e., d̂ j = ẑ, the spatial profile distribution of the polarization
density is

P j(r, t) =
Q j(t)
πa2 ẑΘ(a−ρ)Θ(H j/2− z)Θ(H j/2+ z) , (5)

where Θ is the Heaviside function and ρ < a. An individual nanorod experiences radiative decay ΓE1, j, resulting from the
interaction of the scattered field with the rod itself. The total decay rate of the rod Γ j also includes a phenomenological ohmic
loss rate ΓO, j, where

Γ j = ΓE1, j +ΓO, j , ΓE1, j =
C jH2

j ω4
j

6πε0c3 . (6)

Point electric dipole approximation
In a point multipole approximation where the length is much less than the wavelength of the incident light (H j � λ0), the
nanorod may be approximated as a point electric dipole with polarization density

P j(r, t) = Q j(t)H jd̂ jδ (r− r j) . (7)

The orientation of the electric dipole is described by the unit vector d̂ j, and H j has dimensions of length. The rate at which the
electric dipole radiates as a result of its self interactions is ΓE1, j. The radiative decay, ohmic losses and total decay rate are
given in Equation (6).

A finite-size effective metamolecule
Thus far, we have only considered the interactions between individual nanorods and point electric dipole resonators. When
there are a large number of resonators, one may look to optimize the model. Because resonators are often arranged in a lattice
framework, it is possible to consider closely spaced parallel pairs of nanorods as a single effective metamolecule. Here, we
extend our finite-size nanorod model to include this effective metamolecule with the same properties as its constituent nanorods,
i.e., electric dipole properties.

We consider two parallel nanorods with location vectors r±, j = [x j,y j ± l,z j], and polarization densities P±, j(r, t), re-
spectively. When l is small, we may approximate the pair as a single metamolecule with location vector r j = [x j,y j,z j].
The metamolecule may be symmetrically excited, i.e., P+, j(r, t) = P−, j(r, t), or it may be antisymmetrically excited, i.e.,
P+, j(r, t) =−P−, j(r, t), where P+, j(r, t) is defined in Equation (5).

Our effective metamolecules resonance frequency and radiative decay rate depends on the interactions of the individual
nanorods. We calculate these properties later; by analyzing in detail a pair of parallel nanorods and point electric dipoles.
In principle, one may continue to approximate these effective metamolecules in a point multipole approximation. When
symmetrically excited there is an effective point electric dipole. When antisymmetrically excited, there is an effective current
loop and the metamolecules have both an electric quadrupole and a magnetic dipole moment33. In this work, however, we only
consider the finite-size effective resonators.

Results
In this section, we analyze the EM interactions of nanorods, both as point electric dipole emitters and accounting for their
finite-size and geometry. We formulate the model for the nanorods by assuming all the nanorods are made of gold and have
equal length, i.e., H j = H0 for all j. As the nanorods are identical, they experience identical ohmic losses, radiative, and total
decay rates, i.e., ΓO, j = ΓO, ΓE1, j = ΓE1, and Γ j = Γ. We choose H0 = 1.5λp ' 210 nm and radius a = λp/5' 28 nm, where
λp ' 140 nm is the plasma wavelength of gold34. This yields H0 ' 0.24λ0 and a' 0.032λ0, where λ0 = 2πc/ω0 ' 860 nm is
the (longitudinal) resonance wavelength of the nanorod. Each individual nanorod has a total decay rate Γ, with resulting radiative
emission rate ΓE1 ' 0.83Γ and ohmic loss rate ΓO ' 0.17Γ. We calculate these parameters in the Supplementary Material,
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where we employ formulas developed in Reference 35 for the resonant scattering of light from plasmonic nanoparticles, and
ohmic losses are accounted for in the Drude model. To simplify the comparison between our point dipole approximation and
finite-size nanorod model, we use the same resonance frequency, radiative decay, ohmic losses and total decay rate in both
models.

The resonance frequency of the incident light is tuned to that of a single nanorod, i.e., Ω0 = ω0. The charge oscillations
within each nanorod are driven by this incident light, that multiply scatters between the different resonators. This strong multiple
scattering system has collective modes represented by the eigenvectors vn of the interaction matrix C . The corresponding
complex eigenvalues ξn, describe the collective mode’s characteristic linewidth (real part) and resonance frequency shift
(imaginary part); ξn =−γn/2− i(Ωn−Ω0). The number of modes is determined by the number of resonators, and the radiation
may be suppressed γn < Γ (subradiant), or enhanced γn > Γ (superradiant).

Two parallel nanorods
As our first example, we consider two parallel nanorods (and two point electric dipoles) with location vectors r1 = −r2 =
[0, l/2,0]. The coupling matrix C had two eigenmodes of current oscillation. In the first mode, the current oscillations
are in-phase (symmetric) with d̂1 = d̂2. In the second mode, the current oscillations are out-of-phase (antisymmetric) with
d̂1 =−d̂2. The former we denote by a subscript ‘s’; and latter by a subscript ‘a’.

In Figure 2, we show the collective eigenmode’s radiative resonance line shifts and linewidths for two finite-size parallel
nanorods and two parallel point electric dipoles. Throughout the range of kl, the decay rates γn of the point dipole model closely
agree with the corresponding decay rates of the finite-size nanorod model. When kl ≈ π , the symmetric mode is subradiant
with γs ≈ 0.9Γ, and the antisymmetric mode is superradiant with γa ≈ 1.1Γ; for both the nanorods and point electric dipoles. As
the separation reduces, the symmetric mode becomes superradiant and the antisymmetric mode subradiant. When kl ≈ 2π/3,
the decay rates of the point multipole approximation are: γa ≈ 0.7Γ (subradiant); and γs ≈ 1.3Γ (superradiant); the finite-size
model shows decay rates: γa ≈ 0.8Γ; and γs ≈ 1.2Γ. As the separation becomes small kl ≈ π/6, the antisymmetric linewidths
approach the ohmic loss rate, γa ≈ 0.2Γ and the symmetric mode linewidths become more superradiant γs ≈ 1.8Γ.

The lineshifts δωn, however, only agree when kl & π/2. As the separation becomes small kl . π/2, the line shift of the
point electric dipole model begins to separate from the corresponding line shift of the finite-size resonator model. The line shift
of the finite-size resonator model here is Ω

(1)
a −Ω0 =−(Ω(1)

s −Ω0)' 2.5Γ. For kl . π/2, the antisymmetric mode line shift
of the point electric dipole model is blue shifted from Ω0, and the symmetric mode red shifted.

π/2 π

-0.5

0.5

1.5

ka

(a)

Point electric
dipole model

kl

δωa

Γ

γn
δωn

π/2 π

-2

-1

0

1

ka

(b)

Finite-size
rod model

kl

δωs

Γ

γn
δωn

Figure 2. The radiative resonance line shifts δωn =−(Ωn−Ω0), and linewidths γn, for the collective out-of-phase (a) and
in-phase (b) eigenmodes, for two parallel nanorods (point electric dipoles) as a function of their separation l. The finite-size
rods have lengths H ' 0.24λ0 and radii a' 0.032λ0. The radiative decay rate of each nanorod is ΓE1 ' 0.83Γ, the ohmic
losses are ΓO ' 0.17Γ.

In Figure 2, the nanorods have length H0 ' 0.24λ0 and radius a = λp/5. In the Supplementary Material, we show the
line shifts and linewidths when driven on resonance for longer and shorter rods, still with radius a = λp/5. The longer
rods have length Hl = 2H0 ' 0.27λl , where λl ' 1540 nm is the resonance wavelength of the longer rod, and shorter rods
Ht = H0/2' 0.18λt , where λt ' 570 nm. For both longer and shorter rod systems, the point dipole approximation becomes
valid when the separation is kl & π/2, where k is the resonance wavenumber of the light. When we make small changes to the
nanorod radius λp/6 < a < λp/4; we also find the point dipole approximation is valid for separations kl & π/2.
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Two interacting pairs of nanorods
In this section, we analyze two parallel pairs of horizontal nanorods. Firstly, we treat the interacting pairs as four discrete
finite-size nanorods that have a non-vanishing polarization density. Secondly, we optimize the model by treating the two pairs
as two effective metamolecules. In each case, we compare the model to four discrete point electric dipoles.

(a) (b)

(c) (d)

Figure 3. The eigenmodes of two horizontal pairs of nanorods (electric dipoles) shown schematically. The red arrows
indicate the phase of current oscillations, the shading indicates nanorods in a shared plane. The vertical separation is l and the
horizontal separation is kx = 2π . The modes are designated as follows: (a) E1a; (b) E2a; (c) E1s; and (d) E2s.

Four discrete nanorods
In general, we position the jth pair of nanorods at r±, j = [x j,y j± l/2,z j]. In our example, we set y j = z j = 0, kx = 2π and
vary the parameter l. When the interactions between individual nanorods are considered, there are four collective modes, see
Figure 3. When each parallel pair of nanorods are symmetrically excited, they can be approximated as out-of-phase (E1a)
and in-phase (E1s) effective electric dipoles, see Figures 3(a) and 3(c), respectively. When the nanorods in each pair are
antisymmetrically excited, they can be likened to two resonators with both electric quadrupole and magnetic dipole moments,
where each pair are out-of-phase (E2a) or in-phase (E2s), see Figures 3(b) and 3(d), respectively.

In Figure 4, we show the collective mode resonance line shifts and linewidths of four point electric dipole resonators
and those of four interacting finite-size nanorods. Again, we find the collective mode decay rates of the different models
qualitatively agree throughout the range of kl; while the line shifts only agree when kl & π/2. The E1a and E1s modes behave
very similarly, as do the E2a and E2s modes. The deviation of the point electric dipole approximation’s line shift from the
nanorod model’s, begins to occur when the separation between parallel pairs of rods is kl ' π/2. Here, both the E1a and
E1s modes are superradiant with γE1a ' 1.6Γ and γE1a ' 1.4Γ. Conversely, here, the E2a and E2s modes are subradiant with
γE2a ' γE2s ' 0.6Γ.

At kl ' 9π/10, the E1s mode becomes noticeably subradiant with γE1s ' 0.9Γ. Here also, the E2a mode becomes noticeably
superradiant with γE2a ' 1.1Γ. The E1a mode remains superradiant while the E2s mode remains subradiant throughout the
range.

Two effective metamolecules
When we approximate each pair of nanorods as an effective single resonator; if the nanorods’ current oscillations are in-phase
there is an effective electric dipole resonator, if the current oscillations are out-of-phase there is an effective resonator with both
electric quadrupole and magnetic dipole responses33. In principle, cross coupling can occur between the effective resonators
whereby an in-phase pair and an out-of-phase pair get mixed due to interactions. However, here we consider only two interacting
in-phase pairs, and separately, two out-of-phase pairs; neglecting such processes. There are two modes of collective oscillation
for each effective resonator system; symmetric and antisymmetric. We also designate these as E1s and E1a, respectively, when
the nanorods within each pair are in-phase, and E2s and E2a, respectively, when the nanorods within each pair are out-of-phase.

In Figure 2, we calculated the collective mode decay rates for two parallel nanorods. These decay rates, γs and γa, provide
us the total decay rate for in-phase and out-of-phase pairs of nanorods, respectively. Also in Figure 2, we calculated the line
shifts of the collective modes, this allows us to determine the resonance frequencies for in-phase and out-of-phase pairs of
nanorods; Ωs, and Ωa, respectively. We continue to drive the system at the resonance frequency of an electric dipole, i.e.,
Ω0 = ω0. In general, Ωs, Ωa 6= ω0, this means that in our effective resonator model, the diagonal elements of C also contain an
imaginary component; Im

[
C
]

j j = δωs,a, where δωs,a are the line shifts of two in-phase and out-of-phase parallel nanorods,
respectively, see Figure 2.

In Figure 5, we show how the radiative linewidths
[
γ

(2s)
E1a , γ

(2s)
E1s , γ

(2a)
E2a , γ

(2a)
E2s

]
, and line shifts

[
δω

(2s)
E1a , δω

(2s)
E1s , δω

(2a)
E2a , δω

(2a)
E2s

]
of the collective modes of oscillation of the N = 2 effective interacting pairs of nanorods (denoted by the superscripts (2s) for
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Figure 4. The radiative resonance line shifts δω =−(Ωn−Ω0) and linewidths γn, as a function of the separation l between
parallel nanorods, with kx = 2π , for two pairs of horizontal nanorods and point electric dipoles, see Figure 3. We show the
collective modes: (a) E1a; (b) E2a; (c) E1s; and (d) E2s. For the nanorod parameters and plot descriptions see Figure 2 caption.

in-phase and (2a) for out-of-phase pairs) vary with the parameter l, and compare to the corresponding modes’ line widths and
shifts of N = 4 point electric dipole system (denoted by the superscript (1)).

The linewidths resulting from the interacting N = 4 point electric dipoles closely agree with those of the N = 2 effective
metamolecule models, both when in-phase and when out-of-phase. Also, comparing Figure 5(a,b), with Figure 4, the effective
metamolecules’ linewidths closely match those of the finite-size nanorod model.

The point electric dipole model’s line shifts in Figure 5(c,d) begin to separate from the corresponding effective metamolecule
line shifts when kl ' π/2. As kl reduces, the point electric dipole model’s line shifts for the E2a and E2s (E1a and E1s) modes
blue shift (red shift) from the out-of-phase (in-phase) effective metamolecule’s corresponding modes. Comparing Figure 5(c,d)
with the corresponding line shifts in Figure 4, the line shifts of the finite-size nanorod model closely agree with those of the
effective metamolecule model.

Conclusions
Understanding the complex EM interactions in resonator ensembles is important for the design of metamaterials. Our circuit
element resonator model provides an efficient way of understanding the dynamics of the system without having to fully solve
Maxwell’s equations. We have studied the strong collective modes of current oscillations resulting from the EM interactions in
closely spaced resonator systems. These collective modes have an associated radiative response that can be either superradiant
or subradiant, and together with the resonance line shift, is strongly influenced by the spatial separation of the resonators.
Though in this work, we have considered all the resonance frequencies of the resonators to be equal, variation in the resonances
(inhomogeneous broadening) can generally suppress the collective radiation interactions36.

We have analyzed, in detail, the validity of the point electric dipole approximation of interacting resonators in small systems;
demonstrating how we can model plasmonic nanorod systems both as point electric dipole resonators and accounting for their
finite-size and geometry. In particular, we have determined how interacting discrete nanorods with an appreciable range of
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Figure 5. The radiative resonance linewidths γ
(1,2s,2a)
n and line shifts δω

(1,2s,2a)
n for the collective eigenmodes as a function of

the separation l between parallel nanorods when kx = 2π , for two horizontal pairs of nanorods. We show: the linewidths γ
(1)
n

and line shifts δω
(1)
n for the n = (E1a, E1s, E2a, E2s) collective modes of the point electric dipole model; the linewidths γ

(2a)
n

and line shifts δω
(2a)
n for the n = (E1a, E1s) collective modes of the in-phase effective molecules; and the linewidths γ(2s) and

line shifts δω
(2s)
n , for the n = (E2a, E2s) out-of-phase effective metamolecules. For the nanorod parameters see Figure 2

caption.

lengths centered on H0 ' 0.24λ0 ' 210 nm can be approximated as interacting point electric dipoles, especially when their
separation is greater than kl ' π/2. For closely spaced resonators kl . π/2, their finite-size and geometry becomes increasingly
important.

An alternative approach for treating each resonator as a separate meta-atom is to model closely spaced resonators as a single
effective metamolecule, reducing the number of degrees of freedom. In principle, this could be extended to other more complex
effective metamolecules, e.g, toroidal metamolecules30.
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