Dragonflies: climate canaries for river management

Bush, A. and Theischinger, G. and Nipperess, D. and Turak, E. and Hughes, Lesley (2012) Dragonflies: climate canaries for river management. Diversity and Distributions, 19 (1). pp. 86-97. ISSN 1366-9516

[thumbnail of Bush et al 2013 Dragonflies - climate canaries for river management]
PDF (Bush et al 2013 Dragonflies - climate canaries for river management)
Bush_et_al_2013_Dragonflies_climate_canaries_for_river_management.pdf - Published Version
Available under License Unspecified.

Download (262kB)


Aim Freshwater ecosystems are highly vulnerable to the effects of climate change. Where long‐term datasets are available, shifts in species phenology, species distributions and community structure consistent with a climate change signal have already been observed. Identifying trends across the wider landscape, to guide management in response to this threat, is limited by the resolution of sampling. Standard biomonitoring of macroinvertebrates for water‐quality purposes is currently not well suited to the detection of climate change effects, and there are risks that substantial changes will occur before a management response can be made. This study investigated whether dragonflies, frequently recommended as general indicators of ecological health, are also suitable as indicators of climate change. Location Data were analysed from standard bio‐assessment monitoring at over 850 sites spanning a 9° latitudinal gradient in eastern Australia. Methods Using variation partitioning, we analysed the proportion of assemblage turnover in dragonflies and other macroinvertebrate assemblages that can be explained by climate and other environmental drivers. We also tested whether the utility of dragonflies as indicators improved at higher taxonomic resolution and whether the turnover of dragonfly assemblages was congruent with that of other groups. Results Climate explained three times as much variation in turnover of dragonfly species than dragonfly and other macroinvertebrate assemblages at family level. The dissimilarity of dragonflies and varying turnover in each macroinvertebrate assemblage meant surrogacy amongst groups were low. Main conclusions On the basis of the influence of climate on turnover of macroinvertebrate assemblages, dragonfly species distribution appears highly sensitive to climatic factors, making this taxon a potential useful indicator of climate change responses. However, the low surrogacy amongst assemblages also suggests that a shift in the focus of conservation management from specific taxa to the functional composition of assemblages across a diverse range of habitats is needed.

Item Type:
Journal Article
Journal or Publication Title:
Diversity and Distributions
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
22 Apr 2019 13:55
Last Modified:
19 Sep 2023 02:10