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Abstract

Land-use change is one of the biggest threats to biodiversity globally. The

effects of land use on biodiversity manifest primarily at local scales which are

not captured by the coarse spatial grain of current global land-use mapping.

Assessments of land-use impacts on biodiversity across large spatial extents

require data at a similar spatial grain to the ecological processes they are assess-

ing. Here, we develop a method for statistically downscaling mapped land-use

data that combines generalized additive modeling and constrained optimization.

This method was applied to the 0.5° Land-use Harmonization data for the year

2005 to produce global 30″ (approx. 1 km2) estimates of five land-use classes:

primary habitat, secondary habitat, cropland, pasture, and urban. The original

dataset was partitioned into 61 bio-realms (unique combinations of biome and

biogeographical realm) and downscaled using relationships with fine-grained

climate, land cover, landform, and anthropogenic influence layers. The

downscaled land-use data were validated using the PREDICTS database and the

geoWiki global cropland dataset. Application of the new method to all 61 bio-

realms produced global fine-grained layers from the 2005 time step of the

Land-use Harmonization dataset. Coarse-scaled proportions of land use esti-

mated from these data compared well with those estimated in the original data-

sets (mean R2: 0.68 � 0.19). Validation with the PREDICTS database showed

the new downscaled land-use layers improved discrimination of all five classes

at PREDICTS sites (P < 0.0001 in all cases). Additional validation of the down-

scaled cropping layer with the geoWiki layer showed an R2 improvement of

0.12 compared with the Land-use Harmonization data. The downscaling

method presented here produced the first global land-use dataset at a spatial

grain relevant to ecological processes that drive changes in biodiversity over

space and time. Integrating these data with biodiversity measures will enable

the reporting of land-use impacts on biodiversity at a finer resolution than pre-

viously possible. Furthermore, the general method presented here could be use-

ful to others wishing to downscale similarly constrained coarse-resolution data

for other environmental variables.

Introduction

Across the globe, anthropogenic use of the environment

has led to changes in the quality and health of ecosystems

(Foley et al. 2005). The clearance, modification, and

fragmentation of natural habitat for human use has been

a major driver of biodiversity loss at local, regional, and

global scales (Chapin et al. 2000; Sala et al. 2000; Fischer

and Lindenmayer 2007). The ability of scientists and con-

servation practitioners to reliably assess land-use impacts

on biodiversity relies on access to spatially consistent

information on anthropogenic use throughout the area of

interest.

Depending on the spatial extent and needs of a study,

land-use data can be derived from three sources: direct

surveys, remote sensing, or model-based analyses. Each
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approach presents benefits and limitations to their use.

Direct surveys are generally performed across relatively

local extents for specific purposes where they can provide

reliable fine-grained information. However, the time and

cost of implementing such surveys limits their utility for

large-scale assessments.

Classification of spectral data from remote sensing

(e.g., MODIS satellite imagery) is used to map the distri-

bution of land-cover classes (De Fries et al. 1998; Hansen

et al. 2000; Friedl et al. 2002; Chen et al. 2015). While

classified spectral data produce high-resolution snapshots

of the current state of land cover, these analyses may not

differentiate between anthropogenically modified ecosys-

tems and spectrally similar natural ecosystems (Hurtt

et al. 2001; Kerr and Ostrovsky 2003; Haines-Young

2009). For example, a remotely sensed grassland classifica-

tion could include undisturbed natural grassland or grass-

land created by clearing natural forest for domestic

livestock grazing. Land-use classifications in this example

are markedly different – primary and pasture, respec-

tively, and the capacity for local biodiversity retention is

likely to differ greatly between such areas (Zimmermann

et al. 2010).

While land cover delineates differences in the physical

cover of the Earth’s surface, land-use classifications

describe the type and extent of human influence (Fisher

et al. 2005). Spatial distribution in land use is typically

described using multiscale modeling techniques that inte-

grate multiple local, regional, and global influential dri-

vers of land-use change (Veldkamp and Lambin 2001;

Verburg et al. 2004; Verburg and Overmars 2009). These

models classify land use, land-use intensity, and combina-

tions of land-use and land-cover classes (Verburg et al.

2002; Verburg and Overmars 2009; Connor et al. 2015).

At their simplest, land-use models generate spatial pre-

dictions of land-use classes by combining commodity-

based economic models with information describing land

productive capacity (Heistermann et al. 2006). Present-

day land-use data at a variety of spatial scales (e.g.,

country, regional and/or subregional statistics) are used

to initialize the model (Heistermann et al. 2006). Models

then balance the trade-offs between different land uses

and spatially allocate predictions of land-use type. This is

achieved by maximizing economic benefit to meet pre-

sent-day production levels (reported by country, regional,

or subregional statistics) or future production targets

(Verburg et al. 2004). Land-use models can then provide

spatial predictions of both present-day land use and pro-

jections of future land-use change following multiple sce-

narios of future human development and growth

(Verburg et al. 2008; van Delden et al. 2010).

Increased technical and computational complexities

have limited the production of a global fine-grained

land-use model (Heistermann et al. 2006). Rather, land-

use modeling scientists have focused on producing fine-

grained regional models (Verburg et al. 2002; Sohl et al.

2012; Connor et al. 2015). There exist a number of mod-

els that classify land-use globally; however, these are much

coarser grained (≥10 km2) than regional models (Erb

et al. 2007; Havl�ık et al. 2011; Hurtt et al. 2011a; Letour-

neau et al. 2012; Souty et al. 2012).

Land-use classifications contain substantial information

of relevance to biodiversity research and conservation

assessment (Newbold et al. 2015). By describing anthro-

pogenic influence in an area, these classifications reduce

the potential for geographically variable interpretations of

biodiversity outcomes, thereby providing spatially equiva-

lent measures for large-scale biodiversity analyses. How-

ever, many ecological processes affected by land use

operate at a much finer spatial grain than that provided

by current global land-use models (Pereira et al. 2010).

Refining the spatial resolution of global land-use model-

ing and mapping could help to better account for relevant

ecological processes in assessing impacts of land-use

change on biodiversity and to better integrate considera-

tion of these impacts across local, regional, and global

scales.

We here explore the use of statistical downscaling

(Atkinson 2013) as a relatively straightforward and cost-

effective means of enhancing the spatial resolution of glo-

bal land-use modeling. This involves fitting a statistical

model relating coarse-scaled spatial patterns in the distri-

bution of land-use classes to finer-scaled land cover, cli-

mate, landform, and anthropogenic influence layers, and

then using this fitted model to map land use at the finer

spatial resolution. We describe a new technique for

accommodating multiclass proportional data in statistical

downscaling and apply this to the 0.5� Land-use Harmo-

nization dataset of Hurtt et al. (2011b) to produce a glo-

bal, 30″ (approx. 1 km2) dataset of five land-use classes

(primary habitat, secondary habitat, cropland, pasture,

and urban). The resulting dataset represents a critical step

toward integrating land use into global biodiversity assess-

ment at a spatial resolution of greater ecological relevance

than has been possible to date.

Methods

Inputs

The Land-use Harmonization dataset (LUH; Hurtt et al.

2011b) is a global time series of past, present, and future

land use at 0.5�, spanning 1500–2100. The dataset

describes the proportional cover in each 0.5� grid cell of

five land-use categories: primary habitat, secondary

habitat, cropping, pasture, and urban (see Table 1 for
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additional descriptions). We selected this dataset because

of its global extent and wide temporal coverage and to

ensure compatibility with recent work establishing a glo-

bal database of the response of biodiversity to land-use

pressures (see Hudson et al. 2014). In this first applica-

tion of our downscaling method, we downscaled a time

point representative of the present day (2005) to produce

fine-grained, global estimates of the five land-use classes.

However, we have plans to extend these methods to pro-

duce fine-grained projections of future land-use change,

which are temporally and spatially consistent.

To downscale the LUH dataset, we required fine-

grained covariate layers that were identified a priori as

potentially correlating with fine-grained land-use patterns.

There are instances where relying solely on satellite-based

information can lead to a misinterpretation of relation-

ships (Gilmore 2015). To mitigate this, we selected satel-

lite derived and additional data sources as covariate data.

We accessed best-available spatial data on climate, land-

form, soil, land cover, human population density, and

accessibility and derived 30″ layers of each. Fine-grained

cells were defined as useable land, water, or ice, using a

land mask consistent with the WorldClim dataset (Hij-

mans et al. 2005) (See Table 2 for further description of

input data sources).

The consensus land-cover dataset (Tuanmu and Jetz

2014), that was used as input to the downscaling (see

Table 2), describes 12 land-cover classes. Due to strong

collinearity between some classes, the consensus land-

cover data were rotated using a principal components

analysis to produce the minimum uncorrelated compo-

nents accounting for 99% of the variation within the 12

classes. The resulting principal components were used as

predictor variables in the downscaling procedure, rather

than raw land-cover data.

Table 1. Descriptions of the five Land-use Harmonization land-use

classes that were used in our downscaling model.

Land-use type Description

Primary Undisturbed natural habitat

Secondary Recovering, previously disturbed natural habitat

Cropland Land used for crop production (e.g., wheat, rice, corn)

Pasture Land used for the grazing of livestock

Urban Land converted to dense urban settlement

Table 2. Description of data layers used as covariates or masking layers during the downscaling process.

Description Units Use Source

Climate

EARS MOD16 dataset gap filled with Annual Actual Evaporations

calculated as the sum of monthly EA derived using the

Budkyo framework based on WorldClim climatic data,

using PAWHC calculated from 1 km Soil Depth from

www.soilgrids.org combined with AWC from the

Harmonized World Soil Database

mm Predictor Hijmans et al. (2005);

Mu et al. (2007);

FAO/IIASA/ISRIC/ISSCAS/JRC (2012);

Hengl et al. (2014)

MAT Mean Annual Temperature with maximum and minimum

temperature corrected for radiation differences due to

variation in terrain based on Danielson and Dean (2011)

following Wilson and Gallant (2000)

°C Predictor Wilson and Gallant (2000);

Hijmans et al. (2005);

Danielson and Dean (2011)

PTA Annual precipitation. Sum of monthly precipitation from WorldClim mm Predictor Hijmans et al. (2005)

TWI Topographic Wetness Index. Calculated at 9″ and upscaled to 30″ Predictor Reuter and Hengl (2012)

Landform/substrate

ICE Presence of permanent ice Binary Mask Olson et al. (2001)

SLP Slope calculated at 9″ and upscaled to 30″ % Predictor Reuter and Hengl (2012)

SOC Soil Organic Carbon content. Weighted average of all depth classes g/kg Predictor Hengl et al. (2014)

WATER Presence of permanent water bodies Binary Mask Lehner and Doll (2004)

Anthropogenic

ACC Global Accessibility Index. The travel time to the nearest

population center of 50,000 or more

Predictor Uchida and Nelson (2010)

POP Population density. People/km2 Predictor Balk et al. (2005)

Land cover

CLC Consensus land cover. 30″ land-cover product made by

harmonizing multiple products

% Predictor Tuanmu and Jetz (2014)

PAWHC is the Plant Available Water Holding Capacity of soil. AWC is the Available Water Capacity of soil. A variable used as a predictor

describes a fine-grained covariate used in the regression model. A variable described as a mask describes a binary (0 or 1) variable used to

determine whether values from a cell are included in the model or excluded.
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Downscaling algorithm

Statistical downscaling uses statistical methods to translate

relationships between coarse-grained response data and

(multiple) fine-grained covariate data into fine-grained

predictions of the response (Atkinson 2013). These

methods usually rely on regression modeling to identify

correlative relationships between the response variable

and the covariates (Dendoncker et al. 2006; Atkinson

2013; Poggio and Gimona 2013). Applying these methods

to the global LUH dataset required an approach capable

of describing the complex spatial structure within a

constrained dataset.

The LUH dataset has five classes to downscale, with

each representing a fraction of coarse-grained land area

occupied by the respective land-use class. Relationships

between this dataset and our chosen fine-grained covari-

ates will be complex and nonlinear. Thus, our method

must accommodate nonlinear patterns and the fine-

grained predictions should, when aggregated back to 0.5�,
approximate the original coarse-grained LUH predictions.

Our fine-grained data should also represent the fraction

of each land use within a fine-grained grid cell j, so pre-

dictions of all five land uses must obey the constraints

X5
a¼1

luj;a ¼ 1; (1)

0 � luj;a � 1: (2)

Here, luj,a is the proportion of land use at a cell and a

represents one of the five classes being downscaled. A

multinomial logistic regression could meet these con-

straints (e.g., Dendoncker et al. 2006). However, this

would limit our ability to fit complex nonlinear patterns

expected in this dataset.

The new method to statistically downscale proportional

land-use data obeying the constraints in equations 1 and 2

is shown in Figure 1. We extended the method of Malone

et al. (2012), using a combination of nonlinear regression

and constrained optimization. This produced multiple high-

resolution layers based on the global LUH dataset (Hurtt

et al. 2011b). We now discuss our approach in detail.

To account for the nonlinear land-use patterns, we use

a distinct generalized additive model (GAM) for each

land-use class. These used a quasi-binomial error family

with logistic link function to account for the 0–1
bounded constraint (eq. 2). We set coarse-scale land-use

values from the LUH layers as initial response variables

for five separate GAMs (Fig. 1A). These were modeled

against the fine-grained climatic, land-form, and land-

cover variables (described in the “inputs” section above)

to predict each land-use at 30″ (Fig. 1B,C).

With the five GAMs constructed, we then calculated

the 0.5� grid cell average for these predictions and com-

pared them to the original LUH values. The predicted 30″
land-use values were subsequently rescaled multiplica-

tively for each land-use class a following the expression

lupj;a ¼ luj;a � LUi;aPNi

j¼1 luj;a=Ni

 !
; (3)

where luj,a is the GAM predicted land-use a in fine-

grained cell j, LUi,a is the proportion of land-use a in

coarse-grained cell i, and Ni is the number of available

fine resolution cells within each coarse-resolution cell i.

This produces a scaling adjusted prediction lupj,a for each

land-use a at the fine-grained cell j.

Given that each land-use prediction is based on sepa-

rate GAMs, the predictions may not obey the constraint

in equation 1. Additionally, the rescaling in equation 3

may cause predictions to violate the constraint in equa-

tion 2. To balance our predictions while obeying all con-

straints, we passed the rescaled lup predictions of all five

land-uses and their associated standard errors (r)
(derived from the GAMs) through a constrained opti-

mization algorithm. This algorithm identifies, per

fine-grained cell j, the optimal configuration of the five

classes by minimizing the v2 function ðv2 ¼P5
a¼1

ðlucj;a � lupj;aÞ2=r2aÞ , where lucj,a is land use from the

constrained optimization. Accounting for the standard

error allows the algorithm to preferentially adjust uncer-

tain GAM predictions, while maintaining both con-

straints.

The interim constrained estimates of all five land uses

are then passed back into the GAMs as response variables

for use with the fine-grained predictors in the next itera-

tion (Fig. 1D). This is repeated until the average land-use

interiteration prediction difference at 30″ is less than

0.001. When predictions for one land-use converge, that

class is fixed and the procedure repeats until all classes

converge. At this point, the optimal GAM solution is

assumed to be found. The predictions are passed to the

constrained optimization algorithm a final time, ensuring

all constraints are obeyed and the output is returned

(Fig. 1E).

Global implementation of the downscaling
algorithm

It was assumed that the form of the relationship between

each land-use class and the predictor variables might vary

across different regions due to local differences in land-

use conversion patterns. These differences could relate to

both environmental and anthropogenic factors (Lambin

et al. 2003). Consequently, downscaling the land-use data
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in a single global model would have been inappropriate.

Instead, we partitioned the global terrestrial region into

61 bio-realms (Lee and Jetz 2008), representing unique

combinations of biome and biogeographical realm, based

on the WWF ecoregional classification (Olson et al. 2001)

and downscaled each bio-realm separately.

The lower level division of realms and biomes into

ecoregions, as described by Olson et al. (2001), was not

used because our downscaling method required a suffi-

cient spatial coverage of coarse-grained land-use informa-

tion to establish relationships between land use and

fine-scaled covariates within each model. It was felt that

ecoregions were generally too small for this purpose,

whereas bio-realms were both sufficiently large to provide

adequate sample sizes for downscaling, while allowing for

any major differences in relationships between covariates

and land use as a function of environmental and anthro-

pogenic differences between these units.

In reality, bio-realm boundaries are not sharp divisions

and land-use patterns may be similar in neighboring

regions. Thus, in addition to all coarse-grained cells where

a fine-grained cell belonged to the target bio-realm, we

Figure 1. A schematic of the algorithm used to downscale the Land-use Harmonization dataset (2005) into fine-grained (30″) land use.
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included a buffer of one 0.5� cell from neighboring bio-

realms, allowing within bio-realm land-use patterns to be

influenced by neighboring bio-realms.

The target LUH proportions are only for available land

in each grid cell. Consequently, where a cell contains

hydrological features (lakes, rivers, and ocean) or perma-

nent ice, the target proportions were adjusted to represent

the remaining fraction of land in the cell. Fine-grained

cells designated as water or ice were then excluded from

subsequent analyses.

The final downscaled, 30″ land use from the 61 areas

was converted into five global mosaics (one per land-use

class). Each area was joined to adjacent areas by removing

buffering cells from neighboring regions. We treated each

model output as the best solution for the bio-realm being

modeled and, as such, made no attempt to smooth across

bio-realm boundaries. Rather, we show the consistency of

predictions between adjoining models in areas where pre-

dictions overlapped (see description in validation section

below).

Validation

We compared the downscaled data with the original LUH

dataset by aggregating the fine-grained layers to their

original coarse grain. We fitted linear models to the

aggregated output of each downscaling model, evaluating

differences by comparing goodness of fit (R2). The down-

scaled data and LUH data were also aggregated into glo-

bal and regional (realm) proportions of land use and

differences between the two populations compared. A v2

goodness-of-fit statistic was not calculated as the extre-

mely large sample sizes would result in statistically signifi-

cant results even when the actual changes in proportions

were minor.

Consistency between model predictions was assessed by

extracting the “buffer” cells from models and comparing

overlapping model predictions. Compositional differences

between predicted land uses were calculated using Bray–
Curtis dissimilarity for each cell (Bray and Curtis 1957).

The spatial configuration of mean dissimilarity and the

absolute differences in prediction for individual land uses

in overlapping regions are presented here.

There are few datasets available to evaluate the accuracy

of our fine-grained predictions. Most datasets are

restricted in spatial extent or lack statistical independence

because they have been used in our input layers. For

example, the LADA land-use systems maps (Nachtergaele

and Pertri 2011) have been generated using the GLC2000

land-cover maps (Bartholom�e and Belward 2005) and the

GRUMP population density maps (Balk et al. 2005), both

of which have been used as predictor variables during our

modeling. Conversely, other existing spatial datasets have

been derived from data that are also used in generating

our response variables (the coarse LUH data). For exam-

ple, the ANTHROME land-use maps (Ellis et al. 2010)

were derived from the HYDE models (Kees Klein et al.

2011) which are also a major component of the LUH

models. Nonetheless, we used two available independent

global datasets to critically evaluate our methods.

The Projecting Responses of Ecological Diversity In

Changing Terrestrial Systems (PREDICTS) project has

established an extensive global dataset for assessing

impacts of land use on biodiversity, by collating both bio-

logical and land-use information for a large number of

sites extracted from previous studies (Hudson et al.

2014). We used the spatial location and land-use classifi-

cations from PREDICTS sites surveyed in 2004–2006
(1 year either side of the downscaled land use) to validate

our downscaled predictions (accessed 28 July 2015).

The PREDICTS database describes land use at each site

categorically for multiple patch sizes. Our downscaled lay-

ers predict the proportion of each land use within a 30″
grid cell; thus, a direct 1:1 comparison between datasets is

not possible. Instead, we extracted predicted land use for

the PREDICTS sites from the downscaled layers and from

the original coarse-grained LUH dataset. We tested the

ability of predictions to discriminate between each of the

five land uses in the PREDICTS database (treated as five

separate binary indicators). This was achieved by calculat-

ing the relative operating characteristic (ROC) curves for

land-use predictions from the LUH and downscaled data-

sets (Pearce and Ferrier 2000). The area under the ROC

curve (AUC) was estimated using the Mann–Whitney

statistic, and significant differences in AUC were tested

using confidence intervals calculated by the bootstrap

method detailed in Carpenter and Bithell (2000) via the R

package pROC (v 1.8; Robin et al. 2011).

Additional validation was carried out on the cropping

layer using the remotely sensed geoWiki cropping dataset

(Fritz et al. 2015). This global dataset contains propor-

tional cropping values at 30″ for 2005, making it ideal for

comparison with our downscaled cropping data. The geo-

Wiki cropping layer was compared to the downscaled and

LUH cropping layers using two linear models (geoWiki

vs. downscaled cropping and geoWiki vs. LUH cropping).

Each model’s intercept was fixed to zero, to ensure we

assessed a direct 1:1 relationship between the response

and predictor data. We assessed the difference in esti-

mated slope and R2 for the two models when regressed

against the geoWiki data.

Results

We combined our best estimate results of the downscaling

models for each of the 61 bio-realms to produce global,
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spatially complete, 30″ land-use estimates for all five

land-use classes (Fig. 2. See Figs S1–S5 for maps showing

individual land-uses). All estimates obeyed the constraints

given in equations 1 and 2. The downscaled layers exhib-

ited far finer spatial patterns when compared with the

original datasets (e.g., Figs 3 and S6–S8 for additional

examples).

Models predicted similar proportions of land use

within the coarse-grained cells compared to the original

LUH values (Global mean R2 � SD: 0.68 � 0.19, Fig. 4

and Table S1). Globally, the dataset estimated the propor-

tions of all land between 60�S and 90°N to contain 46.2%

primary habitat, 20.4% secondary habitat, 10.8% crop-

land, 22.1% pastoral land, and 0.5% urban areas. Aggre-

gated values compared well with the original LUH

estimates at both global and realm level (Fig. 5;

Table S2). An exception is the Oceania realm where our

models predicted greater proportions of primary and

urban land use and less secondary and pasture land use

compared with the LUH dataset (Fig. 5; Table S2).

Overall, overlapping predictions between neighboring

bio-realm models were reasonably consistent with dissim-

ilarity values, averaging 0.13 � 0.11 for the globe and for

individual realms 0.08 � 0.07 (Australasia), 0.16 � 0.11

(Afrotropics), 0.13 � 0.10 (Indo-Malaysia), 0.10 � 0.11

(Nearctic), 0.16 � 0.10 (Neotropics), and 0.12 � 0.12

(Palearctic) (Fig. 6A). However, several areas showed buf-

fer zone downscaling predictions with higher dissimilari-

ties compared to neighboring models (Fig. 6B),

suggesting differences in underlying GAM response func-

tions between these models. The greatest mismatches

occurred in the Arabian Peninsula where boundaries had

average dissimilarity values ranging 0.41–0.59 (Fig. 6B).

Comparisons of the absolute difference between each

land-use class for overlapping regions highlighted that

discrepancies detected through calculating dissimilarity

values were primarily caused by variation in primary and

secondary habitat predictions between bio-realms that

were topographically complex (Fig. S9).

Validation with independent datasets

The PREDICTS database contained a total of 3669 unique

sites for which land use was recorded within the period

of interest to our analysis (2004–2006). Of these, the

number of sites available per land-use class was 1302 for

Figure 2. Map showing the global results of the downscaling analysis. The transparency of individual colors (representing each land-use class)

has been varied according to the proportion of that class predicted to occur within a given cell. Cells with a single dominant land use will show a

color closest to the color representing that land-use class, whereas cells predicted to contain a mixture of classes will exhibit a mixed color. Inset

panels a–e show the spatial distribution of each land use individually where (A) is primary, (B) is secondary, (C) is cropping, (D) is pasture, and (E)

is urban. See Figures S1–S5 for high-resolution global maps showing each land-use individually.
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primary, 1112 for secondary, 555 for cropping, 564 for

pasture, and 136 for urban. Sites were spread globally

with an average of 522 � 450 sites per realm (min: 3 for

Oceania. max: 1191 for Neotropics). However, a bias

existed toward sites occurring in the Western Palearctic

and Neotropics (23% and 32% of all sites, respectively).

Our downscaled datasets achieved a significant

improvement in AUC compared with the LUH datasets

at PREDICTS sites for all five land uses (P < 0.0001 in all

cases; Table S3). The AUC value increased between 0.03

and 0.12 depending on the land-use class. Discrimination

was good to very good (AUC > 0.7) for all downscaled

predictions (AUC range 0.73–0.98; Fig. 7) with the excep-

tion of secondary habitat which showed poor discrimina-

tion between PREDICTS sites classed as secondary

(AUC = 0.59).

Our downscaled cropping data compared well with the

geoWiki cropping dataset. There was an improvement in

cropping estimates relative to the original coarse-grained

LUH data. The two linear models showed an improve-

ment in the R2 of 0.12 and an increase in the slope coeffi-

cient of 0.04 between the two models (R2 0.76 and 0.64

and slope coefficients 0.96 and 0.92 for downscaled and

LUH models, respectively).

Discussion

Using our statistical downscaling method, we have been

able to derive a set of globally complete and consistent

fine-grained land-use layers for the present day (2005).

These layers estimate the distribution of land-use classes

at a spatial grain more relevant to local-scale ecological

processes and land management practices affecting the

distribution and state of species and biological communi-

ties across the landscape. Throughout this study, we have

described our approach as downscaling coarse-grained

land-use data using fine-grained covariates, including

remotely sensed land cover. Some readers might, however,

find it useful to view the approach from an alternative

perspective. This involves thinking of fine-grained land

cover as the primary source of data and viewing our

modeling as translating this layer into fine-grained land

use, based on observed correlations with coarse-grained

land-use, and information on other fine-grained environ-

mental covariates.

Our downscaled land-use data compared well with the

original 0.5� LUH dataset, and the independent PRE-

DICTS and geoWiki validation data (Hudson et al. 2014;

Fritz et al. 2015). Our dataset estimated 32.77% of terres-

trial habitat in 2005 was under some level of human use

(10. 8% cropping, 22.1% pasture, and 0.5% urban). Pre-

vious studies covering a similar time period (2000–2002)
estimate between 11.8% and 12% of global terrestrial land

were used for cropping; 22–26% for pasture and 0.24–
0.51% for urban use (Bartholom�e and Belward 2005;

Potere and Schneider 2007; Ramankutty et al. 2008; FAO-

STAT 2013). It should be stressed that our analyses are

guided and constrained by the original coarse-grained

LUH dataset from which broad-scaled spatial patterns of

land use are derived. As such, validation against other

land-use data needs to be viewed within the constraints

Figure 3. Visual comparison of the south-east Australian region with

true color landsat imagery and the proportions of each of five land-use

classes predicted to occur by the original coarse-grained (0.5�) Land-
use Harmonization dataset (left panel) and the fine-grained (30″)

downscaled land-use datasets (right panel). Color intensity in panels in

rows 2–5 represent low to high proportions of land use within a pixel.
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of the original coarse-grained LUH dataset. The method

presented here is, however, relatively generic and could be

applied to other land-use or land-cover datasets. For

example, by applying this method to the GLOBIO/

IMAGE 10 km2 resolution datasets, fine-grained layers

spanning the numerous classes contained within that

dataset could be derived (Letourneau et al. 2012). Simi-

larly, replacing the consensus land-cover (Tuanmu and

Jetz 2014) dataset, as the source of land-cover covariates

employed in our initial analysis, with a land-cover dataset

with multiple time points (e.g., the MODIS land-cover

data; Friedl et al. 2002) could enable the generation of a

time series of downscaled recent land-use change.

One realm, Oceania, showed higher differences in the

proportions of land uses predicted between the new

downscaled layer and the original LUH dataset (Fig. 5).

This is the smallest realm by landmass, consisting of

many islands scattered throughout the Pacific Ocean.

There are 288 coarse-grained grid cells in Oceania within

the LUH dataset, representing 57,386 fine-grained cells in

our downscaled layers. The power of our technique comes

from its ability to identify covariate relationships from a

large number of coarse-grained grid cells and translate

these into fine-grained predictions. The small number of

coarse-grained cells, sparsely distributed across a large

region, likely contributed to the discrepancies between

datasets.

The buffering approach we employed allows us to

express uncertainty in our estimates at the boundaries of

neighboring models and identify areas where predictions

differ (Fig. 6 and Fig. S9). Boundary effects were strongest

in areas where topographically complex bio-realms met

more uniform bio-realm (i.e., mountainous regions meet-

ing plains; Fig. 6 and Fig. S9). In these areas, models

describing mountainous regions have probably fitted rela-

tionships to much steeper gradients in topography and

climate compared with models of areas where topography

was more uniform. Thus, it is understandable that predic-

tions in areas novel to the model (i.e., a mountains model

predicting into a plains region or vice versa) may differ,

creating a disjunct at these boundaries.

Boundaries could be minimized by spatially smoothing

bio-realm edges (e.g., using inverse distance weighting or

smoothing splines) but while this would be visually satis-

fying, the underlying disjunct in model outputs would

still exist. We partitioned the modeling using the global

classification of bio-realm provided by Olson et al.

(2001), who delineated these regions using broad differ-

ences in landform, climate, and vegetation cover. An

alternative approach might be to develop anthropocentric

divisions that discriminate major spatial or cultural differ-

ences in land utilization (e.g., Ellis et al. 2010). However,

such a global classification as large-scale contiguous spa-

tial blocks has yet to be developed.

Figure 4. Comparison of R2 values obtained

from regressing the proportion of each of five

land-use classes predicted to occur within a

0.5� cell from the downscaled 30″ datasets

and the original coarse-grained (0.5�) Land-use
Harmonization datasets. Values are shown as

mean � standard deviation. Realms: AA:

Australasia, AT: Afrotropics, IM: Indo-Malaysia,

NA: Nearctic, OC: Oceania, PA: Palearctic.

Figure 5. Comparison of the aggregated

proportions of each of five different land-use

classes from both the Land-use Harmonization

dataset (triangles) and the results of the

downscaling procedure (circles) aggregated

globally and for each realm. AA: Australasia,

AT: Afrotropics, IM: Indo-Malaysia, NA:

Nearctic, OC: Oceania, PA: Palearctic.
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Recently, Newbold et al. (2015) presented the first

global-scale assessment of local land-use effects on biodi-

versity. Their study used the PREDICTS database, giving

their analyses unprecedented spatial and taxonomic cover-

age. The authors made use of the best-available spatial

data on land use when projecting their results to areas

beyond their study sites. However, those data were of a

coarse spatial grain (0.5°) which may have masked some

of the local ecological processes the study was seeking to

quantify. The integration of the PREDICTS dataset with

the global fine-grained land-use layers presented here

would allow analyses employing the methods of Newbold

et al. (2015) to report on biodiversity at a finer spatial

grain than previously possible.

While our downscaling of global land use was pur-

posely designed to complement the data and analyses

arising from the PREDICTS project, the product we have

generated has potential for broader application in biodi-

versity and conservation studies. For example, the transla-

tion of land-cover mapping into anthropogenic land-use

types, achieved by our downscaling approach, opens up

opportunities for a fine-grained analysis of the global state

of natural habitat within and outside protected areas

(e.g., Hoekstra et al. 2005). These downscaled data could

also be used to generate an index of habitat condition

and, using community level modeling techniques (such as

generalized dissimilarity modeling; Ferrier et al. 2007),

global scale analyses assessing the state of regional

Figure 6. Distribution of Bray–Curtis dissimilarity values calculated in the areas where two neighboring models provided overlapping predictions.

(A) The frequency of values from the global sample of overlapping cells. (B) The spatial arrangement of dissimilarity values, colors represent the

mean dissimilarity of all cells within each unique boundary between two unique pairs of bio-realm.
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biodiversity could be undertaken (e.g., Allnutt et al.

2008). Additionally, these data could feed into conserva-

tion prioritization analyses addressing spatial relationships

between anthropogenic land-use change and needs for

biodiversity protection (e.g., Moilanen et al. 2011).

We have described here the downscaling of present-day

(circa 2005) data but have not extended this to produce

fine-grained future land-use projections. One of the ulti-

mate goals of our research is to utilize the coarse-grained

predictions of land use in the LUH dataset, coupled with

the fine-grained present-day predictions presented here to

produce spatially and temporally consistent fine-grained

projections of future land use. Currently, however, the

method leverages much of its spatial pattern through pre-

sent-day remotely sensed land-cover maps. The lack of

future land-cover predictions means our method cannot

be simply used to produce fine-grained future scenarios

of land use. This problem could be partially overcome by

replacing the land-cover covariates by the land-use out-

puts produced by downscaling present-day land use and

then employing these alongside abiotic covariates in

downscaling coarse-scaled projections of future land use.
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Figure 7. Relative operating characteristic curves for comparisons of the PREDICTS validation dataset and each of the five different land-use

classes for the downscaled data (solid gray line) and the Land-Use Harmonization dataset (dashed gray line). (A) Cropping land-use. (B) Pasture

land-use. (C) Primary habitat. (D) Secondary Habitat. (E) Urban land-use.
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However, the production of the 2005 layers relied on

accessing 1024 GB of RAM, spread between 17 compute

nodes, run for almost a month. To repeat this process

iteratively for numerous future time steps would require

major improvements in computational power or effi-

ciency to be completed within a reasonable timeframe.

However, refinements and extensions of the current

method are being actively pursued that will allow us to

build on the datasets presented here to produce a pro-

jected time series of fine-grained future and past land

use.

One component of land use that is currently missing

from our downscaled maps is the intensity of anthro-

pogenic use. The intensity of a particular land use can

have major effects on the outcomes for local biodiversity

(Klein et al. 2002; Kleijn et al. 2009; Newbold et al. 2013;

Tuck et al. 2014; Kehoe et al. 2015) and the ability to

divide our maps into different intensities would be a

major improvement. Defining and mapping land-use

intensity of multiple land-use classes, particularly at global

extents, is challenging (Kuemmerle et al. 2013) and doing

this well will require methodological advances on several

fronts. These include analytical improvements (e.g.,

improved use of remote sensing data) as well as greatly

improved primary data with large spatial coverage for all

aspects of land-use intensity, including inputs (e.g., fertil-

izer type), outputs (e.g., yields, felling ratios), and unin-

tended outcomes (e.g., net affect to biodiversity) (Erb

et al. 2013). However, this is an active field of research

(Jain et al. 2013; V�aclav�ık et al. 2013; Erb et al. 2014; Petz

et al. 2014; Rufin et al. 2015) and continuing advances

may make it possible to combine our maps with addi-

tional data to develop fine-grained maps of land-use

intensity in the near future.

For example, Newbold et al. (2015) inferred intensity of

secondary land uses from the LUH dataset by substituting

time since conversion for intensity, allowing them to make

the distinction between young, intermediate, and mature

secondary habitat. A similar method could be incorpo-

rated into our downscaling approach with the addition of

past time steps. Additionally, because our estimates are

continuous and not categorical, an inference of intensity

could be made based on a simple “rule of thumb” being

applied – for example, based on the estimated proportion

of a grid cell belonging to a given land-use class (LU):

0 < LU < 0.33 = low intensity, 0.33 < LU < 0.66 = mod-

erate intensity and 0.66 < LU < 1 = high intensity. How-

ever, this would address only a subset of the complex

multidimensional, and spatially variable, factors relating to

land-use intensity (Erb et al. 2013).

Our new approach to the constrained downscaling of

land-use data successfully reproduces the original coarse-

grained data and results in qualitatively sensible fine scale

outputs. Quantitative analyses of aspects of the outputs

confirm the downscaling reduces spatial error when com-

pared to the coarse-grained inputs. While applied to

land-use data in this worked example, the approach has

wider potential application downscaling coarse-scaled

mapping of other environmental variables.
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Supporting Information

Additional Supporting Information may be found online

in the supporting information tab for this article:

Figure S1. Global distribution of primary habitat pre-

dicted to occur at 30 arc sec resolution produced by

downscaling the coarse grained (0.5�) Land-use Harmoni-

sation dataset. Colours are ramped light (low) to dark

(high).

Figure S2. Global distribution of secondary habitat pre-

dicted to occur at 30 arc sec resolution produced by

downscaling the coarse grained (0.5�) Land-use Harmoni-

sation dataset. Colours are ramped light (low) to dark

(high).

Figure S3. Global distribution of cropland predicted to

occur at 30 arc sec resolution produced by downscaling

the coarse grained (0.5�) Land-use Harmonisation dataset.

Colours are ramped light (low) to dark (high).

Figure S4. Global distribution pasture predicted to occur

at 30 arc sec resolution produced by downscaling the

coarse grained (0.5�) Land-use Harmonisation dataset.

Colours are ramped light (low) to dark (high).

Figure S5. Global distribution of urban land-use pre-

dicted to occur at 30 arc sec resolution produced by

downscaling the coarse grained (0.5�) Land-use Harmoni-

sation dataset. Colours are ramped light (low) to dark

(high).

Figure S6. Visual comparison of New York region of the

USA with true colour landsat imagery (a) and the pro-

portions of each of five land-uses predicted to occur by

the original coarse grained (0.5�) Land-use Harmonisa-

tion dataset (b–f) and the fine grained (30 arc sec) down-

scaled land-use datasets (g–k).
Figure S7. Visual comparison of part of the Mediter-

ranean including parts of north Africa and Spain with

true colour landsat imagery (a) and the proportions of

each of five land-uses predicted to occur by the original

coarse grained (0.5�) Land-use Harmonisation dataset (b–
f) and the fine grained (30 arc sec) downscaled land-use

datasets (g–k).
Figure S8. Visual comparison of part of south-east Asia

including parts of north Vietnam, Laos and China with

true colour landsat imagery (a) and the proportions of

each of five land-uses predicted to occur by the original

coarse grained (0.5�) Land-use Harmonisation dataset
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(b–f) and the fine grained (30 arc sec) downscaled land-

use datasets (g–k).
Table S1. R2 values from comparison of initial LUH

coarse-scale (0.5�) data values and the aggregated means

of the fine-grained (30″) downscaled land use data.

Table S2. Absolute differences in aggregated proportions

of each of the five different land-uses from the original

Land-use Harmonisation datasets and the new down-

scaled dataset.

Figure S9. Distribution of absolute difference in land-use

predictions calculated in the areas where two neighbour-

ing models provided overlapping predictions.

Table S3. Results from Relative Operating Characteristic

curve analysis and bootstrapped comparisons of the Area

Under the Relative Operating Characteristic curve (AUC)

for land-use predicted from the coarse grained Land-use

Harmonisation (LUH) datasets and the fine grained

downscaled land-uses from the current study.
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