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Abstract

Multivariate extreme value models are used to estimate joint risk in a number of applica-

tions, with a particular focus on environmental �elds ranging from climatology and hydrology to

oceanography and seismic hazards. The semi-parametric conditional extreme value model of Hef-

fernan and Tawn (2004) involving a multivariate regression provides the most suitable of current

statistical models in terms of its �exibility to handle a range of extremal dependence classes. How-

ever, the standard inference for the joint distribution of the residuals of this model it su�ers from

the curse of dimensionality since in a d-dimensional application it involves a d − 1-dimensional

non-parametric density estimator, which requires, for accuracy, a number points and commen-

surate e�ort that is exponential in d. Furthermore, it does not allow for any partially missing

observations to be included and a previous proposal to address this is extremely computationally

intensive, making its use prohibitive if the proportion of missing data is non-trivial. We propose

to replace the d−1-dimensional non-parametric density estimator with a model-based copula with

∗r.towe@lancaster.ac.uk

1



univariate marginal densities estimated using kernel methods. This approach provides statistically

and computationally e�cient estimates whatever the dimension, d or the degree of missing data.

Evidence is presented to show that the bene�ts of this approach substantially outweigh potential

mis-speci�cation errors. The methods are illustrated through the analysis of UK river �ow data

at a network of 46 sites and assessing the rarity of the 2015 �oods in north west England.

Keywords: Copula, dependence modelling, missing values, multivariate extreme value theory and

spatial �ood risk assessment.

1 Introduction

Widespread �ooding, such as the events of winter 2015/2016 in the UK, demonstrate the importance

of understanding the likelihood of multiple locations experiencing extreme river �ows. During these

events 43,000 homes were left without power and the estimated damages totalled ¿1.3-1.9 billion

(Environment Agency, 2018). For �ood risk management and insurance purposes, we are interested

in understanding the joint probability of events such as those observed in winter 2015/2016 and the

likely nature of events that are even more extreme.

Let Ri represent the river �ow at gauge i at a given time with corresponding location si. Consider n

independent and identically distributed realisations of the variableR = (R1, . . . , Rd), with this variable

representing the joint behaviour of river �ows at d gauges recorded over a given time period. From

observations of these variables we are interested in estimating marginal and joint probabilities. For

example, for assessing the rarity of the 5th December 2015 event in north west England, let vi be the

measured �ood value in this event for the ith gauge in the region. Then we need to know about marginal

risk assessment at gauge i, through estimating the probabilities P (Ri > vi), i = 1, . . . , d, and for joint

risk assessment the probability P (R ∈ A) where A = {r = (r1, . . . , rd) ∈ Rd : ri > vi, i = 1, . . . , d}.

More generally we are interested in estimating the probability P (R ∈ A) where the set A ⊂ Rd is

extreme for at least one component, Ri of R say, so that for all r ∈ A, then ri > qi with qi a high

quantile for variable i.

For modelling spatial multivariate extremes data, the most widely used approach uses max-stable

processes (Davison et al., 2012; Asadi et al., 2015). However, max-stable processes imply a strong form
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of extremal dependence, termed asymptotic dependence, in which the largest values at each site, over

di�erent events, can occur in the same particular �ood event. The assumption of asymptotic depen-

dence is probably reasonable for local-scale studies, such as in a mesoscale river basin. However, for

larger-scale studies, such as widespread studies across regions of the UK, this dependence assumption

is highly restrictive as the largest values at di�erent sites are unlikely to be occur in a single event.

Recent developments in statistical modelling of hydrological extremes allow us to now place such

widespread events into a probabilistic framework (Keef et al., 2009a; Lamb et al., 2010; Keef et al.,

2013b). Underpinning such methods is the theory of multivariate conditional extremes of He�ernan

and Tawn (2004). This approach is able to handle the required mixture of both asymptotic dependence

and asymptotic independence (a weaker form of extremal dependence than asymptotic dependence,

see Section 2.2, for both extremal dependence structures that are identi�ed in river �ow data. Their

conditional dependence model is formed through a semi-parametric regression with parametric com-

ponents describing variation in the means and the variances of the joint conditional distribution, and

the joint distribution of the multivariate residuals being estimated empirically. The parametric com-

ponents determine the core extremal dependence features, such as whether subsets of the variables

are asymptotically dependent or asymptotically independent, and model across the range of possible

dependence structures.

For hydrological applications the method needs to be able to: handle high dimensions (typically

for 10 − 1, 000 sites); give realistic simulations of multivariate extreme events; enable the estimation

of the risk of events which are simultaneously rare at all and/or many sites; and allow covariates to

be incorporated. Direct application of the He�ernan and Tawn (2004) method fails when dealing with

any one of these issues, let alone being able to address all of these aspects in one analysis. The key

problem with He�ernan and Tawn (2004) is that the empirical multivariate residual modelling su�ers

from the curse of dimensionality, which along with its restriction to its reliance on the previously

observed residuals, means that extrapolations to rarer events corresponds to relocated and rescaled

versions of past events. These events have poor coverage over the extremal regions of the sample space

in high-dimensional studies and so lead to ine�cient inference.

An additional complication that hydrological applications bring is that of missing data. Here we
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assume the data to be missing at random. Data are likely to be missing when gauges are installed at

di�erent times or gauges become faulty. The He�ernan and Tawn (2004) approach, with its empirical

residual distribution model, can only be applied for a d-dimensional problem when all components

of the d-dimensional variable are observed. One approach would be to only analyse complete vector

observations. This approach is highly restrictive, for example when considering the whole of the UK

river network, with ∼ 1000 gauges, which were considered as part of the National Flood Resilience

Review (Tawn et al., 2018), no concurrent observations are observed at all locations, and hence leads

to highly ine�cient inference about extreme events. An alternative approach, proposed by Keef et al.

(2009b), is to replace these missing data, via in�lling all the missing residuals with jointly generated

multiple samples for the distribution of missing residuals given the observed residuals. This approach,

which assumes a Gaussian copula for the joint distribution of missing and observed residuals only, and

treats fully observed variables empirically, is hugely computationally intensive when the amount of

missing data is non-trivial. Critically it fails to address all the other problems with the He�ernan and

Tawn (2004) method that are described above.

Instead, in this paper the full residual distribution is modelled semi-parametrically: one-dimensional

kernel-smoothed distribution functions capture the marginal behaviours of the observed residuals and a

Gaussian copula is used for their dependence structure (Joe, 2014). Although this change in approach

may at �rst seem rather small it has major implications for the applicability of the method, in that it

addresses all the problematic issues of He�ernan and Tawn (2004) as well as handling large volumes

of missing data e�ciently. The primary reasons for its success are that as it the removes the problems

of the curse of dimensionality and the choice of copula is �exible and parsimonious. Of course there

is a cost to be incurred by this modelling approach, as there is no theoretical motivation to support

this assumption. However, here we show plenty of evidence to suggest that the Gaussian copula is

suitable for modelling the residual copula structure, mainly as it plays a secondary role in capturing the

extremal dependence relative to the He�ernan and Tawn (2004) regression parameters. It is important

though to have strong diagnostic tools to assess departures from this model and a clear understanding

of the e�ects of mis-speci�cation. This paper is the �rst that looks carefully at these aspects and �nds

that there are substantial improvements from the added �exibility and the more e�cient use of the
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data on the estimation of probabilities of rare events.

The He�ernan and Tawn (2004) model is explained brie�y in Section 2; with the extensions that

we propose and their connections with previously adopted Gaussianity assumptions given in Section 3.

The methodology for testing the validity of our proposed approach, including dealing with missing

data, is detailed in Section 3.2. The comparisons with existing approaches to handle missing values

are presented in Section 3.3. A generic simulation algorithm for the proposed conditional extreme

value model and techniques for estimating probabilities of extreme joint events are given in Section 4.

Then, examples of the proposed methodology are given in Sections 5 and 6 for simulated and observed

data respectively. The methodology is applied to study widespread �ooding in north west England,

the success of the di�erent methods is compared through estimated probabilities of joint �ood risk.

The paper �nishes with a discussion which considers ways in which the model can be made more

parsimonious. Throughout the paper all vector algebra is to be interpreted as being componentwise.

2 The He�ernan and Tawn model

2.1 Marginal model

The model for the marginal distributions of R has two components, separated using the predetermined

threshold level ui for variable Ri (i = 1, . . . , d). For a univariate random variable Ri, asymptotic theory

considers the distribution of excesses over a threshold of ui, scaled by some function c(ui) > 0, i.e.,

P (c(ui)(Ri − ui) ≥ r|Ri > ui), with r > 0; if this converges to a non-degenerate limit as ui tends to

the upper endpoint of the distribution of Ri then the limit distribution can only be the generalised

Pareto distribution (Pickands, 1971). If it is assumed that this limit model holds exactly for some

large enough threshold ui it follows that

P (Ri ≥ r|Ri > ui) = [1 + ξi(r − ui)/σi]−1/ξi+ , for r > ui, (2.1)

with the scale parameter σi > 0 and the shape parameter ξi ∈ R and the notation [r]+ = max (r, 0)

(Davison and Smith, 1990). Above the threshold, the generalised Pareto distribution (GPD) is adopted.

For those points below the threshold ui, there is no theoretical justi�cation for any particular model
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choice, so instead a kernel smoothed empirical cumulative distribution function F̃i(r) of Ri is used.

Thus

Fi(r) =


F̃i(r) for r ≤ ui,

1− φui [1 + ξi(r − ui)/σi]−1/ξi+ for r > ui,

(2.2)

where φui = 1− F̃i(ui) is the probability of an exceedance above the threshold ui.

Estimating (σi, ξi) for each gauge separately can lead to ine�cient inference as the spatial coherence

and dependence of Ri over gauges suggests that (σi, ξi) and (σj , ξj) should be more similar when gauges

i and j are closer together. Methods such as the covariate hierarchical/latent variable models that

spatially smooth the GPD parameters have been developed by Cooley et al. (2007) and Cooley and Sain

(2010). These models are ideal in the generation of marginal quantile maps as they share information

from neighbouring sites to reduce any uncertainty in the estimation of quantiles. As the focus of this

paper is on dependence modelling we restrict ourselves to separate marginal �ts, but recognise this

typically can be improved upon.

To help estimate the dependence structure of the random variable R, the data are transformed

componentwise to a variable Y = (Y1, . . . , Yd), with common Laplace margins, via the transform

Yi =


log {2Fi (Ri)} for Fi (Ri) < 0.5,

log {2 [1− Fi (Ri)]} for Fi (Ri) ≥ 0.5,

(2.3)

for i = 1, . . . , d and where Fi is given in equation (2.2). The transformation to Laplace margins means

that P (Yi > y + v|Yi > v) = P (Yi < −(y + v)|Yi < −v) = exp (−y) for y > 0, and v > 0. Therefore,

the marginal random variables of Y now have exponential upper and lower tails. This is a minor

deviation from the He�ernan and Tawn (2004) approach, as they transform to Gumbel margins, but

the use of Laplace margins uni�es the handling of positive and negative dependence (Keef et al., 2013a).

2.2 Introduction to Extremal Dependence Properties

Extremal dependence properties need to be studied for all combinations of the variables as, unlike

for multivariate Gaussian distribution, not all dependence is determined by the set of pairwise de-
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pendences. So consider C ∈ 2D with |C| ≥ 2 and D = (1, . . . , d), then de�ne a measure of extremal

dependence for variables {Ri; i ∈ C} by

χC = lim
p→1

P (Fi(Ri) > p, i ∈ C) /(1− p) = lim
v→∞

P (Yi > v, i ∈ C) 2 exp(v),

where Fi is the marginal distribution function of Ri. If χC > 0 (χC = 0) the variables in C are jointly

asymptotically dependent (asymptotically independent). Here χC > 0 means that extreme events can

occur simultaneously over all sites in C, whereas if χC = 0 such events are impossible for the set of

sites C. Clearly for B ⊂ C, it is possible that χC = 0 and χB > 0 but if χB = 0 then χC = 0. Thus it

is possible to have asymptotic dependence locally but asymptotic independence over all sites.

If a copula model is used the extremal dependence structure is pre-determined by the choice of the

copula before the model is �tted. For example the class of bivariate extreme value distribution copulas

have χ1,2 > 0 (unless the variables are independent) and the class of multivariate Gaussian copula,

with parameters {ρi,j ; i 6= j ∈ D}, have χC = 0 (unless ρij = 1 for all i, j ∈ C for all C ∈ 2D with

|C| ≥ 2). Other standard copula models typically can only handle one of the two classes of extremal

dependence (He�ernan, 2000). As both of the extremal dependence classes are typically observed in

extreme river �ow data sets, see Keef et al. (2009b); Tawn et al. (2018), a standard copula approach

is almost never su�ciently �exible. Instead, like with univariate extremes, we appeal to asymptotic

formulations to motivate a class of models speci�c to the tail region. These models allow any possible

combination of feasible χC values for C ∈ 2D.

2.3 Extremal Model for Conditional Dependence

After making the transformation given in equation (2.3), the extremal behaviour of the joint tail of

the random variable Y can now be determined. The approach models Y given that at least one of its

elements is extreme, i.e., given that max(Y) > v for large v, where v is a dependence threshold.

First assume that Y1 > v, then the joint distribution of the (d − 1) remaining variables Y−1 =

(Y2, . . . , Yd) is modelled conditional on Y1 being above v. The approach is motivated by the following

asymptotic formulation studied by He�ernan and Tawn (2004) and He�ernan and Resnick (2007).

The underlying idea is to see how Y−1 behaves as Y1 gets large. In order to avoid non-degeneracy
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of the limiting conditional distribution of Y−1 as Y1 tends to its upper end point it is sensible to

look for a componentwise location-scale transformation of Y−1 using functions of Y1. As dependence

between Y1 and each component of Y−1 may be di�erent these location-scale transformations need

to have the �exibility to be di�erent for each component. This leads to the assumption that there

exists normalising functions, a(.) : R → Rd−1 and b(.) > 0 : R → Rd−1+ such that the following limit

probability holds for y > 0

lim
v→∞

P
(
Y−1 − a(Y1)

b(Y1)
≤ z, Y1 − v > y | Y1 > v

)
= exp (−y)G(z) (2.4)

where the joint distribution function G(z) is non-degenerate in each margin and has no mass for any

margin at in�nity. The �rst term in the limit given in equation (2.4) arises from the fact that Y1

follows a standard Laplace distribution. The second term in the limit characterises the behaviour of

Y−1|Y1 > v in terms of the limiting distribution function G(z) along with the location a(.) and scale

b(.) functions. It is assumed that the normalisations of the variables Y−1 and Y1 are independent

in the limit. This last assumption parallels that in classical point process models for multivariate

extremes and regularly varying distributions (Coles and Tawn, 1991; Resnick, 2013), with radial and

angular representations being assumed to be independent in the limit as the radial variable tends to

in�nity. He�ernan and Tawn (2004) show that formulation (2.4) holds for all standard copula models.

As a result of equation (2.4), G(z) is the limiting conditional distribution of

Z =
Y−1 − a(Y1)

b(Y1)
, given Y1 > v as v →∞, (2.5)

where Z ∼ G and we call Z the residual of the conditional extreme value model. The result of the

limits given in equations (2.4) and (2.5) is that Z and Y1 are independent given that Y1 > v in the

limit as v → ∞. Similar limits, with potentially di�erent a(.), b(.) and G holds for Y−j |Yj > v for

any j = 2, . . . , d. Joining together these d di�erent conditionals we have a model for the joint tail

behaviour of Y, when at least one component is large.

Under weak assumptions on the joint distribution of Y, He�ernan and Resnick (2007) show that

componentwise a(·) and b(·) must be regularly varying functions satisfying certain constraints, which

for Laplace margins corresponds to each of the components of a (respectively b) being regularly varying
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functions of index 1 (respectively less than 1). He�ernan and Tawn (2004), Keef et al. (2013a) and

Papastathopoulos and Tawn (2016) found that although di�erent classes of extremal dependence have

di�erent forms for a(.) and b(.), they all can be well approximated in a simple parametric form,

which is the dominant power term of the regularly varying functions, i.e., excluding the slowly varying

function. For Laplace margins, this form simpli�es to

a(y) = αy and b(y) = yβ, − 1 ≤ α ≤ 1 and −∞ < β < 1 (2.6)

with α = (α2, . . . , αd) and β = (β2, . . . , βd). When (αi, βi) = (1, 0) for all i ∈ C−1 ⊂ D\{1} then if

C = C−1 ∪ {1} it follows that χC > 0 and the variables indexed by C are asymptotically dependent.

Similarly if αi < 1 for any i ∈ C−1 then χC = 0 and the variables indexed by C are asymptotically

independent. Thus α controls the collections of variables which are asymptotically dependent with

variable Y1. It is clear therefore that this model captures all the possible sets of asymptotically

independent and dependent variables as set out in Section 2.2. This uni�cation of the parametric

forms for all dependence classes enables �exible e�cient statistical modelling unlike with standard

parametric copula modelling.

He�ernan and Tawn (2004) assume that limit (2.4) holds exactly above a su�ciently large depen-

dence threshold v and that the normalising functions are given by the parametric forms (2.6). This

leads to the following model:

Y−1 = αY1 + Y β
1 Z, for Y1 > v, (2.7)

where −1 ≤ α ≤ 1 and −∞ < β < 1 and Z ∼ G, where G is a marginally non-degenerate distribution

function and the Z is independent of Y1. There is no general theoretically justi�ed family of distribu-

tions G for the multivariate residuals Z, so He�ernan and Tawn (2004) assumed that Z has marginal

�nite means and variances µ and σ2 respectively, where µ = (µ2, . . . , µd) and σ = (σ2, . . . , σd). As

a result, the following expressions for the conditional expectation and variance of Yi|Y1 = y can be

determined for y > v and i = 2, . . . , d,

E[Yi|Y1 = y] = αiy + yβiµi,

Var[Yi|Y1 = y] = (yβiσi)
2. (2.8)
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He�ernan and Tawn (2004) model the joint distribution of Z non-parametrically using an empirical

joint distribution, with the speci�c form of this model presented in Section 2.4.

So far we have presented the behaviour of Y|Y1 > v for large v, or equivalently Y|Yi > v for an

arbitrary i ∈ D, but we really want the behaviour of Y|max(Y) > v. This conditional behaviour can

be derived from the set of distributions of Y|Yi > v for i ∈ D. As the conditioning variable changes

to Yi the norming functions a(·) and b(·) as well as the limiting distributions G all change with i.

We can piece together results from a series of models of the form above. A limitation of this set of

models is that self-consistency is not ensured unless speci�c constraints on these di�erent normalisation

and distribution functions are made. A lack of self-consistency may lead to inconsistencies when

joint exceedance probabilities are estimated, with the results depending on the choice of conditioning

variable. He�ernan and Tawn (2004) review ways of avoiding this problem with partitioning the sample

space and Liu and Tawn (2014) discuss a number of approaches to reduce this problem. In this paper

we will, however, largely look at the individual conditional distributions, i.e., Y|Yi > v for i ∈ D and

not overall joint tail inference.

2.4 Inference

The dependence parameters α and β of the He�ernan and Tawn (2004) model are estimated through

pairwise maximum pseudo likelihood for the nv pairs with Y1 > v. The pseudo likelihood L (α,β,µ,σ)

for inference for (α,β) is constructed under the temporary working assumption that

G(z) =

d∏
i=1

Φ

(
zi − µi
σi

)
,

i.e., independent Gaussian distributions. Hence

L (α,β,µ,σ) ∝
d∏
i=2

nv∏
j=1

1

yβiij σi
exp

{
−

(yij − αiy1j − µiyβi1j )2

2(yβiij σi)
2

}
, (2.9)

here −∞ < µi <∞, σi > 0, −1 ≤ αi ≤ 1, and −∞ < βi < 1, where yij denotes component i = 1, . . . , d

for the jth exceedance of v by Y1. The maximum pseudo likelihood estimates α̂ = (α̂2, . . . , α̂d) and

β̂ = (β̂2, . . . , β̂d) are found, by jointly maximising equation (2.9), with µ and σ.

Now we present the He�ernan and Tawn (2004) modelling and inference for the joint distribution of

the residuals. This is where our inference approach outlined in Section 3 di�ers. Firstly the temporary
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working assumption of independent Gaussianity of the components of Z used in the estimation of α

and β is discarded. With the �tted values of these parameters there are nv observed exceedances of v

by Y1, denoted y1j , j = 1, . . . , nv. The associated vectors of residuals are {z(j), j = 1, . . . , nv}, where

z(j) = (z2j , . . . , zdj) with its component associated with Yi given by

zij =
yij − α̂iy1j

yβ̂i1j

, for y1j > v, where j = 1, . . . , nv, i = 2, . . . , d. (2.10)

He�ernan and Tawn (2004) estimate the joint distribution function G through the empirical joint

distribution function of these residuals z(1), . . . , z(nv). Extrapolation from the model comes from (2.7),

with larger events arising when Y1 is larger than the observed events. Due to the independence of

Y1 and Z, for Y1 > u, all simulated events are of the form Y−1 = (αy + yβz(j)), for y > v and

j = 1, . . . , nv. This leads to simulated events on Laplace margins being shifted and rescaled versions

of past events. Thus the extrapolation is restricted to nv sets of 1-dimensional extrapolations, which

clearly do not span the required extrapolation space, particularly when nv is small relative to d.

3 New Modelling Features

3.1 Semi-parametric inference for G

We model the joint residual distribution G by a semi-parametric joint distribution model with 1-

dimensional kernel smoothed marginal distribution functions and a Gaussian copula (Joe, 2014). Let

Ĝi(z) be the kernel smoothed distribution function for observations of Zi, then

Ĝi(z) =
1

nv

nv∑
j=1

Φ

(
z − zij
hi

)
, where i = 2, . . . , d (3.1)

with hi > 0, the bandwidth (Silverman, 1986) and zij , given by expression (2.10), corresponding to

the ith component of the jth residual vector when Y1 > v. The kernel smoothed distribution provides

�exibility as it allows smooth interpolation between observed data points as well as some limited

extrapolation and critically it leads to a non-deterministic extrapolation of past events. Our model for

the joint distribution function G is then

G(z) = Φd−1

(
Φ−1Ĝi(zi), i = 2, . . . , d; Σ

)
(3.2)
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where z = (z2, . . . , zd), Φ and Φd−1(.,Σ) are the cumulative distribution functions of a standard

univariate Gaussian and a standard (d−1)-dimensional Gaussian with correlation matrix Σ with (i, j)th

element ρij with i 6= j = 2, . . . , d. The use of the componentwise probability integral transformation

gives

ZN = (ZN2 , . . . , Z
N
d ) =

{
Φ−1

(
Ĝi(Zi)

)
, i = 2, . . . , d

}
.

Our copula assumption (3.2) then corresponds to ZN being a (d− 1)-dimensional standard Gaussian

distribution with the correlation matrix Σ giving a relationship between the residuals which is fully

determined by its bivariate marginals. Furthermore, the Gaussian copula is chosen because it is

computationally feasible in high dimensions and is closed to marginalisation and conditioning. The

Gaussian copula has an asymptotically independent extremal dependence structure (Ledford and Tawn,

1996), however this property is not restrictive as the joint tails of Z are not vital for determining the

joint tails of Y−1|Y1 as that distribution is a mixture over Y1, for Y1 > v, so even independent Z can

lead to Y−1|Y1 > v being asymptotically dependent. See Section 3.3 for details of how to estimate Σ.

Unlike the standard He�ernan and Tawn (2004) approach the residuals are no longer restricted to

the sample as the kernel smoothing allows both interpolation and limited extrapolation of the residuals

and the Gaussian copula enables new combinations of Z to occur.

3.2 Tests of the Gaussian copula assumption

A formal test to check whether the copula it is fairly close to being Gaussian is required to avoid

the residual joint model being applied inappropriately. For assessing pairwise dependence, visual

inspections of the residual distribution is sometimes su�cient, however this comparison fails to assess

the importance of higher-order dependence. In order to assess the full dependence structure, we adopt

the methods of Bortot et al. (2000) for assessing Gaussian copula in joint tail regions.

Consider the set of independent and identically distributed observations of ZN , which follows a

(d − 1)-dimensional multivariate Gaussian distribution with correlation matrix Σ. The square of the

Mahalanobis distance is de�ned by

T = ZNΣ−1
(
ZN
)′
. (3.3)
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Then T follows a χ2
d−1 distribution with E[T ] = d − 1 and Var[T ] = 2(d − 1). In reality, there are

missing (at random) values in the observations of the residual variable ZN and the percentage of

missing values is not consistent across locations. Therefore, the test statistic T has to be adapted to

account for the di�erent record lengths of data. First let 1i = (12,i, . . . , 1d,i) be a (d− 1)-dimensional

vector with 1j,i = 0 (1j,i = 1) if ZNj,i is missing (observed) respectively. Consider a particular vector ZNi

with missing vector 1i where di elements of ZNi are observed, i.e., di = sum(1i) with 0 ≤ di ≤ d− 1,

then ZNi ∼ MVN(0,Σi), where Σi = 1iΣ1
′

i with dim(Σi) = di × di. By de�ning

Ti = ZNi Σ−1i (ZNi )
′
,

it follows that Ti has a χ
2
di
distribution with E[χ2

di
] = di and Var[χ

2
di

] = 2di. We can de�ne the adapted

test statistic of Gaussianity to be

T ∗ =
1
√
nv

nv∑
i=1

Ti − di√
2di

(3.4)

where nv is the number of observations of ZN . If a particularly large value of T ∗ is observed then

there is a deviation away from the assumption of multivariate normality. The sampling distribution

of T ∗ under the null hypothesis for a given pattern of missing data is easily derived by Monte Carlo

methods, but has been constructed to have E(T ∗) = 0 and Var(T ∗) = 1 under the null hypothesis of

the Gaussian copula whatever the missingness pattern, provided min(d1, . . . , dnv ) ≥ 1 and Σ is known.

3.3 Handling missing values

He�ernan and Tawn (2004) only consider vectors of complete observations so with any missing data the

method will be highly ine�cient. The data-usage e�ciency can be de�ned as 100
∑n
i=1 1 (di = d− 1) /n

with 1 being the indicator function and di as de�ned in Section 3.2. Keef et al. (2009b) developed

a strategy to replace each missing variable by a sample of m replicates generated from a d − 1 − di

dimensional Gaussian approximation for the conditional distribution of the missing ZNi given the

observed ZNi elements for all i with di < d − 1. This approach has major computational problems

when more than a small number of missing values are present as it requires w
∑nv
i=1(d − 1 − di)

simulations, where w needs to be reasonably large to remove Monte Carlo noise, e.g., w ∈ (100, 1000).

This approach is subsequently referred to as the in�ll approach.
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We propose using our Gaussian copula model to give a statistically and computationally e�cient

approach. Equation (3.2) is used to transform the Z variables, on their original margins, to ZN

on Gaussian margins. Concurrent pairs of observations of ZN are used to estimate the correlation

parameters provided that datum exists for a given ZNi and ZNj pair. This gives the following estimated

correlation matrix Σ̂, with (i, j)th entry of ρ̂i,j being

ρ̂ij =

∑nv
k=1 1i,k1j,k(zi,k − z̄i)(zj,k − z̄j)√∑nv

k=1 1i,k1j,k(zi,k − z̄i)2
∑nv
k=1 1i,k1j,k(zj,k − z̄j)2

,

with z̄i =
∑nv
k=1 1i,kzi,k/

∑nv
k=1 1i,k and similarly for z̄j . When there are no concurrent data for the

pair (i, j), i.e.,
∑nv
k=1 1i,k1j,k = 0, then a covariate model or prior information can be used to give an

estimate. As the correlation matrix is estimated for non-overlapping data sets, there is a possibility that

the resulting estimated correlation matrix Σ is not positive semi�de�nite. However, there are eigen-

decomposition methods that can solve this problem by giving the nearest positive-de�nite matrix Σ̃

to Σ̂ that maintains unit diagonals (Franklin, 2012).

3.4 Connections with other models

There have been some Gaussian assumptions made in other work using the He�ernan and Tawn (2004)

model, but that di�ers from what is proposed here. In the original He�ernan and Tawn (2004) paper for

the inference of the regression parameters (α, β) a pseudo likelihood is constructed with independent

Gaussian residuals, but for subsequent inference on Z this assumption was then dropped. So there

is in fact no overlap with the approach in He�ernan and Tawn (2004). Motivated by early �ndings

in this paper, in a spatial setting Tawn et al. (2018) assume that Z is a realisation from a Gaussian

process at a set of sites, so there they make an assumption of marginal Gaussianity for Z in addition

to the Gaussian copula we assume. In that paper there is no discussion on how to assess the Gaussian

copula model or why it may be appropriate. This is what this paper does.

There is a question of whether our model is reasonable at all. In fact Z is multivariate Gaussian

for two very widely used copula. Speci�cally, it arises for the asymptotic dependent multivariate

extreme value Hüsler-Reiss distribution copula (Hüsler and Reiss, 1989) with (αi, βi) = (1, 0) for all

i = 2, . . . , d, see Engelke et al. (2015), and for the the asymptotically independent Gaussian copula
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with (αi, βi) = (ρ21i, 1/2) for all i = 2, . . . , d, see He�ernan and Tawn (2004).

4 Simulation Algorithm and Joint Event Estimation

4.1 Simulation of extreme events

The procedure to simulate from our model for R, assuming that its �rst component is large, is an

adaptation of the algorithm in He�ernan and Tawn (2004) and Jonathan et al. (2013). Firstly we

de�ne qi,p as the pth quantile of Ri, thus Fi(qi,p) = p. The aim is then to simulate R | R1 > q1,p. On

Laplace margins this corresponds to simulating Y | Y1 > vp, where vp = log[2(1−p)]. Here we assume

p is su�ciently large so that vp > v, where v is the dependence threshold described in Section 2.3.

The steps of the simulation procedure are outlined as follows:

1. Simulate ZN from a standard (d− 1)-dimensional Gaussian distribution with correlation matrix

Σ̂ (as de�ned in (3.2)).

2. Transform ZN marginally through a 1-dimensional kernel smoothed distribution functions to

produce a sample of residuals Z = (Z2, . . . , Zd), i.e., Zi ∼ Ĝ−1i (Φ(ZNi )) for i = 2, . . . , d.

3. Independent of ZN draw a value of the conditioning variable Y1 from a standard Exponential

distribution above vp, e.g., Y1 = vp + Y ∗1 , where Y
∗
1 ∼ Exp(1).

4. Derive the simulated value of the conditioned variates Y−1, which is a function of Y1, Z and the

estimated dependence parameters (α̂, β̂), via

Y−1 = α̂Y1 + Y β̂
1 Z, for Y1 > vp.

This gives a sample of Y = (Y1,Y−1) with Y1 > vp.

5. The inverse of the probability integral transform, as given in equation (2.3), can be used to

transform Y back to its original margins of R = (R1, . . . , Rd), with R1 > q1,p.

In the simulation of spatially consistent extreme events, we want to ensure that events are simulated

conditional on R being extreme for at least one location. We adopt the model of Keef et al. (2013b)
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that generates an extreme event conditional on the event {max(F1(R1), . . . , Fd(Rd)) > p} with p near

1, or equivalently {∃i = 1, . . . , d : Ri > qi,p}. After transformation to Laplace margins this corresponds

to simulating max (Y1, . . . , Yd) > vp. To be able to simulate from this conditional distribution using

the previous algorithm for simulating from Y|Y1 > vp, we need to determine the conditioning gauge

for each event. The approach is to �rst simulate Ip = arg max {Y |max {Y1, . . . , Yd} > vp}, with

P(Ip = j) =
P(Yj = max(Y1, . . . , Yd), Yj > vp)∑d
k=1 P(Yk = max(Y1, . . . , Yd), Yk > vp)

=
P(Yj = max(Y1, . . . , Yd) | Yj > vp)∑d
k=1 P(Yk = max(Y1, . . . , Yd) | Yk > vp)

,

where here each of these conditional probabilities can be estimated from our models for Y|Yk > v, for

k = 1, . . . , d. Finally if Ip = j then apply the above algorithm for Y|Y1 with the index 1 replaced by j

and this point is rejected if max (Y−j) > Yj , i.e. steps 1-5 need repeating until for the selected gauge,

j, we have max (Y−j) < Yj .

4.2 Estimation of joint extreme events

In many applications, such as the design of �ood defence schemes or assessing potential �ood losses

over an insurance portfolio, interest lies in accurately estimating the probability of rare events across

a number of spatial locations or environmental hazards. The Monte Carlo methods described in

Section 4.1 are the most e�ective way to estimate many extreme events. However, as was noted in

Section 1 there are major limitations with these methods for events which are rare relative to the

marginal probability for the conditioning variable. Estimation of these probabilities require a more

careful analysis, which we can achieve for the �rst time here due to our semi-parametric residual

distribution model choice. We will illustrate the estimation for both these types of events.

Firstly consider an event A which is extreme in the sense that at least R1 is extreme. Then there

exists a value of p, near 1 such that A ⊂ [q1,p,∞)× (∞,∞)d−1. It follows that

P(R ∈ A) = P(R1 > q1,p)P(R ∈ A | R1 > q1,p)

= (1− p)P(R ∈ A | R1 > q1,p).
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An estimate of this joint probability is given by

P̂(R ∈ A) = (1− p)
∑̀
t=1

1(R̃t ∈ A)/`

where R̃1, . . . , R̃` are independent and identically distributed values simulated from R|R1 > q1,p and

` is the number of the simulations. However if {Ri; i ∈ C}, with 1 ∈ C, is asymptotically independent

then as χC = 0 the conditional probability that is being estimated by the Monte Carlo methods above

is near zero if A ⊂
∏
i∈C(qi,p,∞). For sets such as A it is better to exploit the Gaussian copula

structure and express the result through an integral for which standard numerical integration methods

can be used. Speci�cally for A =
∏
i∈D(qi,pi ,∞), with p1 near 1, the model gives

P (R1 > q1,p1 , . . . , Rd > qd,pd) = P (Y1 > y1, . . . , Yd > yd)

=

∫ ∞
y1

P (Y−1 > y−1|Y1 = s) fY1
(s)ds

=

∫ ∞
y1

P
(
α̂Y1 + Y β̂

1 Z > y−1|Y1 = s
) 1

2
exp(−s)ds

=

∫ ∞
y1

P
(
Z >

y−1 − α̂s

sβ̂
|Y1 = s

)
1

2
exp(−s)ds

=

∫ ∞
y1

P
(
ZN > Φ−1

(
G̃

(
y−1 − α̂s

sβ̂

))
|Y1 = s

)
1

2
exp(−s)ds

=

∫ ∞
y1

Φ̄d−1

(
Φ−1

(
G̃

(
y−1 − α̂s

sβ̂

))
, Σ̃

)
1

2
exp(−s)ds (4.1)

where G̃(z) = (G̃2(z2), . . . , G̃d(zd)), y−1 = (y2, . . . , yd) with yi the pith quantile of a Laplace distribu-

tion, and Φ̄d−1 (.,Σ) is the joint survivor function of the standard multivariate Gaussian variable with

correlation matrix Σ. This result allows us to reduce the complexity of the (d−1)-dimensional integral

calculation of rare event probabilities through the direct evaluation of the multivariate Gaussian joint

survivor function and a 1-dimensional integral.

5 Simulation Study

To assess the performance of our proposed Gaussian copula approach, for modelling the joint distribu-

tion of the residuals in the conditional multivariate extremes model, we undertake a simulation study

to compare it with the empirical approach of He�ernan and Tawn (2004) and with an approach using

a multivariate kernel density estimate
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Ĝ(z) =
1

nv

nv∑
i=1

Φd−1 (z|zi,H) , (5.1)

where the ith kernel is Gaussian with mean zi and H is a positive de�nite bandwidth matrix (Wand

and Jones, 1994) and {z1, . . . , znv} are the observed residuals. The methods are compared via their

estimation of the probability

γd = P (R1 > q1,p, . . . , Rd > qd,p) (5.2)

with p = 0.99, 0.998 and 0.999.

Data are simulated from a symmetric multivariate extreme value logistic distribution (Tawn, 1990),

with dependence parameter δ ∈ (0, 1] with the lower and upper limits for δ corresponding in perfect

dependence and independence respectively. For the symmetric logistic distribution and a given dimen-

sion d, the true probability of equation (5.2) is γd =
∑d
m=0

(
d
m

)
(−1)

m
pm

δ

. For all δ < 1 the variables

are asymptotically dependent, i.e., χD > 0, and hence parameters of the He�ernan and Tawn (2004)

model are α = 1 and β = 0. Furthermore, for this distribution the true copula for Z is not Gaussian,

so our model gives a mis-speci�cation. We consider d = 5, 10 and 20 with δ = 0.75 (results with

δ = 0.5 are not reported but are similar) and a sample size of 5000 with 25 replicated data sets and a

0.98 dependence threshold corresponding to 100 observations being in the joint tail region. Correctly

in each case, we �nd that there is strong evidence to reject the Gaussian copula assumption, at a 5%

level, when using the test statistic (3.4) for each of our simulations. Despite this we proceed to using

the Gaussian copula model to see if this mis-speci�cation is important for inference.

Table 1 shows results for d = 5 where the regression parameters are both set to their true values and

when they are estimated. For this relatively low dimensional case all three methods perform broadly

similarly both in terms of their point estimates and bootstrap based 95% con�dence intervals, with all

intervals containing the truth. Despite its clear mis-speci�cation, the Gaussian copula method gives

estimates that are closest to the truth in all 6 cases. Also we see that the multivariate kernel approach

performs worst (underestimating) in all cases.

Furthermore, note that getting good knowledge of the regression parameters (α, β) is more im-

portant that the choice of distributional model for Z. This feature is interesting given that much
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of multivariate extreme value inference has focussed on assuming asymptotic dependence (�xing the

regression parameters) and e�ectively only estimating Z in di�erent ways. These results suggest that

focus of attention has been mis-placed.

[Table 1 about here.]

Higher dimensional studies, d = 10 and 20, are compared in Table 2 with the true regression

dependence parameters treated as known to enable easier comparison of the di�erent methods for

handling the residuals. The multivariate kernel approach is now clearly failing when d = 10 and

becomes increasingly computationally expensive as d increases and so is omitted from the d = 20

study. The empirical approach of He�ernan and Tawn (2004) and the Gaussian copula approach

perform broadly similarly as well, though again where they di�er the Gaussian method works best.

So even in this case with clear mis-speci�cation the proposed Gaussian copula is at least very highly

competitive relative to the existing method. It should be noted that when there is either no mis-

speci�cation or there are missing data, the Gaussian copula approach substantially out-performs the

empirical approach of He�ernan and Tawn (2004), see Section 6.2.2 for an example of this.

[Table 2 about here.]

6 River Flow Applications

6.1 Data

We apply the proposed semi-parametric conditional extreme value model to daily mean measurements

of river �ow data from the National River Flow Archive (NRFA) to answer questions typically proposed

by �ood risk managers. Gauges from the north west region of England were selected and the locations

of these are given in Figure 1; on average each gauge has record length of approximately 30 years.

This region has one of the better spatial coverages of data in the UK. The proportion of missing values

in the data is relatively low. The region exhibits varying spatial characteristics, for example due to

changing soil types and elevation the behaviour is likely to be very di�erent in Cumbria compared to

say Manchester (in the north and south of the region respectively). The data set was selected as it
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has been used for previous spatial �ood risk assessments (Lamb et al., 2010; Tawn et al., 2018; Towe

et al., 2016) and it is a region badly a�ected by the 2015 �oods, discussed in Sections 1 and 6.4. For

the data, we discuss how our proposed methodology can aid in producing better inferences for rare

events at much reduced computational cost and with minimal risk of mis-speci�cation error.

In Section 6.2 we will illustrate all of the steps of the methodology with a basic case study of 10 sites,

then undertake to a full application to 46 gauges in Section 6.3. We see the 10 site study as important

as it lets us look carefully at some of the features of the modelling/inference without getting lost in the

volume of the data. In particular, we can look at what happens when large portions of the data are

missing. To help investigate how our methods work in the basic case study we estimate probabilities of

extreme events for two data sets. The original data set, denoted F, has 1% missing (0.5% are missing

conditional on the �rst site being large), with a missingness pattern that allows use of He�ernan and

Tawn (2004) and the in�ll approach of Keef et al. (2009b). The second data set, denoted M has 28%

removed to missing status in such a way that no complete observations are available (30% are missing

conditional on the �rst site being large). In both of the analyses the conditioning site is the same and

can be identi�ed by the triangle in Figure 1. For the full application considering 46 gauges, in Section

6.3, 2% of the data are missing.

6.2 Basic case study

6.2.1 Assessing the Gaussian copula

First we use the original data set to assess our modelling assumptions for these data. Conditioning

on R1 being large, we focus on studying the behaviour of ZN , the residuals after the marginal trans-

formation to standard Gaussian margins. A check of the assumption of standard Gaussian margins

is given in Figure 2, the empirical quantiles of a standard Normal are plotted against those of the

residuals ZN with this being a pooled QQ plot over all margins and replicates of ZN . The di�erent

lines in Figure 2 for each respective margin of ZN show that there is no signi�cant deviation away

from the line of equality, therefore the marginals satisfy the assumptions for the proposed Gaussian

copula model.

Pairwise bivariate kernel density estimates for ZN can be seen in Figure 3. From a visual inspection
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Figure 1: Locations of the 46 daily mean river �ow gauges situated in the north west of England.

The subset of 10 gauges are shown given in light blue. The conditioning station used in estimation of

probability τm,p, de�ned in equation (6.1), is represented by a triangle.

Figure 2: Pooled marginal QQ plots of ZN = (ZN2 , . . . , Z
N
10).
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the pairwise dependence seems close to Gaussianity, although in a couple of pairs such as (ZN3 , Z
N
5 )

there does seem to be departure away from the expected elliptical contours. Figure 3 does not help us

assess any higher order dependence, and as a result the test for Gaussianity (as given in Section 3.2) is

performed to test the assumption of a Gaussian copula more rigorously. The test statistic is calculated

using the methodology given in Section 3.2. The p-value is calculated to be equal to 0.29, which

is greater than the signi�cance level of 0.05. Therefore the assumption of a Gaussian copula seems

reasonable.

Figure 3: Pairwise kernel density estimates for ZN = (ZN2 , . . . , Z
N
10).

Some bene�ts of the Gaussian copula approach are that the new method is able to interpolate

and extrapolate the observed residuals giving simulated events which are not simply deterministic

functions of observed events. A comparison of these features of the He�ernan and Tawn (2004) and

Gaussian copula approaches is illustrated in Figure 4. Under these two approaches Figure 4 (top)

shows data and simulations of Y2|Y1 > vp, (bottom) shows (Y2, Y3)|Y1 > vp; both for p = 0.99. From

the top row our proposed approach is seen to give a continuous distribution for Y2|Y1 with slightly more

variation in Y2|Y1 > vp. This additional variation, which seems realistic given the extremal behaviour

of the observed data set, is due to the use of a kernel smoothed marginal distribution functions for
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ZN . Similarly, from the bottom row, it can be seen that the simulated joint residuals can di�er from

observed values, due to the Gaussian copula assumption. Collectively these new features lead to the

simulation of a more realistic joint sample with our proposed approach than from the He�ernan and

Tawn (2004) model.

Figure 4: Top row: observed (black) and joint behaviour of site 1 and site 2 and simulated (grey)

given that an extreme event is observed at site 1. Bottom row: observed (black) and simulated (grey)

joint behaviour of site 2 and site 3 given that an extreme event is observed at site 1. Left: the existing

method; right: our proposed method. In all �gures the data are shown after transformation to standard

Laplace margins.

6.2.2 Conditional probabilities for �ood risk management

In many �ood risk management cases, interest lies in determining the spatial extent of any given �ood

event. One common risk measure that �ood managers are interested in is the probability that given

a site, site 1 say, exceeds its pth quantile that there are then at least m other sites that also exceed

their respective pth quantile, i.e.,

τm,p = P(#(j = 2, . . . , d : Rj > qj,p) ≥ m | R1 > q1,p) = P(Y(m) > vp| Y1 > vp), (6.1)
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m = 1, . . . , d− 1 and where Y(m) is the mth largest value of (Y2, . . . , Yd). Probabilities

τm,p (m = 1, . . . , d − 1) are useful as they give a clear insight into the spatial extent of a �ooding

event. If the pth quantile is the level of �ood defence at all sites, the probability of exactly m other

sites being �ooded, given site 1 �oods is τm,p − τm+1,p.

[Table 3 about here.]

For τm,p, given in equation (6.1) with m = 5, in Table 3 we provide a point estimate and associated

95% con�dence intervals, obtained by using the parametric bootstrap for a range of return periods.

These estimates are compared using the He�ernan and Tawn (2004) method with two missing value

methods (in�ll method of Keef et al. (2009b) and our proposed Gaussian copula method). The two

data sets denoted F and M are considered, see Section 6.1.

For data set F, all three methods produce very similar estimates. This is not surprising for the

He�ernan and Tawn (2004) and in�ll methods as for 99% of the data these methods are identical.

However for the Gaussian copula we are using the modelled residual copula for all the data that are

extreme at the conditioning site, and so to �nd that the estimate varies so little from that of He�ernan

and Tawn (2004) is particularly pleasing. For the F data, con�dence intervals for both the missing

data methods are largest due to a combination of the additional Monte Carlo uncertainty and residual

marginal distribution smoothing in the respective methods. Here only 1% of the data were missing,

so we would not expect to see any clear improvement in using these missing data methods, which use

all partially observed components unlike in the He�ernan and Tawn (2004) method.

For data set M, it is impossible to obtain estimates from the He�ernan and Tawn (2004) approach

due to there being no observations being made concurrently. What is pleasing to see here is that

the two missing data methods give broadly similar estimates to those from data set F. In particular,

the Gaussian copula model gives estimates which are very close to those using the F data sets for all

events in Table 3 whereas for the in�ll method the estimates are less self-consistent for the rarer of

these events. The con�dence intervals of the two methods are approximately the same, which is to be

expected as both model the missing values by using a Gaussian copula but handle the computation in

di�erent ways. Naturally, the con�dence intervals for the M data are larger than the equivalent ones
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for the F data.

A critical feature is that the Gaussian copula approach is computationally much quicker even in

this basic case. Speci�cally, the time to get the point estimates using the Gaussian copula is 30% less

than the in�ll method (assuming ω = 100), and this e�ciency gain improves dramatically as both the

number of sites and the proportion of missing data increase.

The probabilities in Table 3 were estimated through simulation. However, if we were interested in

all sites being above a given return level, this corresponds to m = 9 in equation (6.1). This probability

is incredibly computationally expensive to estimate through Monte Carlo simulation, however the

methods developed in Section 4.2 can provide us with an estimate which avoids Monte Carlo noise,

as it obtained using the formulation (4.1) divided by p, with d = 10. Table 4 provides estimates of

the τ9,p for the same return periods as in Table 3 along with the corresponding numerical integration

error.

[Table 4 about here.]

6.3 Large-scale study

Here the entirety of the north west region of England is considered, this equates to 46 sites in our

study. The �rst modelling step is to �t the conditional extreme value model of He�ernan and Tawn

(2004) conditioning on each of the 46 gauges in turn. For each of these 46 models the estimates of the

dependence parameters α and β are obtained along with the residuals Z of the model.

The residuals ZN of the model are tested to determine whether they can be characterised by using

a Gaussian copula. For each conditioning gauge in turn the sampling distribution of the test statistic

T ∗, as given in Section 3.2, is obtained through Monte Carlo simulation and a p-value for a Gaussian

copula is derived. Figure 5 shows a histogram of the p-values with all of the 46 p-values above the 5%

signi�cance level. Therefore, we can conclude that there is no evidence against modelling the residual

distribution with a Gaussian copula. Given this conclusion it seems reasonable to use the model-based

Gaussian copula for the multivariate residual component of the conditional extreme value model of

He�ernan and Tawn (2004).

We can use these models to make extrapolations using the Monte Carlo methods given in Sec-
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Figure 5: Histogram of test statistic p values for the hypothesis of a Gaussian copula for ZN under 46

di�erent conditioning sites.

tion 4.1. These simulations maintain the extremal dependence structure of the observed data set but

will also generate events that are larger and more varied than those we have already observed. Two

such examples are shown in Figure 6 with these illustrating how the spatial structure of an event

varies depending on where in the region the event is extreme. The two events have been selected to

be extreme at two di�erent sites in the region, in Cumbria and Manchester, in the north and south

of the region respectively. In Figure 6(a), when the conditioning location is in Cumbria, there is a

much wider spatial impact, than in Figure 6(b), for an event near Manchester. This re�ects that

when we condition on Cumbria being extreme, relative to Manchester being extreme, the associated

α parameters are larger over many more sites, so the spatial extremal dependence is stronger and

extreme events in the north of the region are more widespread than those in the south of the region.

To further study the varying spatial characteristics of extreme �ood events, a conditioning site is

selected to have an extreme event and the distribution of the number of other gauges that are also

extreme is estimated. This estimated distribution is derived for the same two conditioning sites as in

Figure 6. Here the probability of exactly m other gauges is τm,p − τm+1,p, and this is estimated for

three return periods. Estimates of τm,p − τm+1,p are compared in Figure 7 for the two conditioning

26



Figure 6: Two realisations (on the return period scale) from the proposed model, where the conditioning

gauge observes at least a 1 in 100 year event, the conditioning sites are: left, in Cumbria; right, close

to Manchester.

gauges. There is a clear di�erence in these estimated probabilities. The estimates show that there is

greater clustering of �ood events when conditioning on the Cumbria site being large. However, some

of this clustering could be explained by the fact there are a higher density of gauges in this region.

Furthermore, the estimates decay to zero, for m > 1, at di�erent rates, thus events become more

localised as they become more extreme, due to asymptotic independence.

6.4 Determining the rarity of the storm Desmond event

The methodology is used to determine the rarity of river �ows that were observed on the 5th December

2015 storm Desmond event. This estimate is derived from the daily mean river �ow data discussed in

Section 6.1 with the results presented on a daily scale. The observed daily mean river �ows are shown in

Figure 8(a) with the largest values observed near Lancaster and Carlisle. However, when we determine

the associated estimated marginal return periods, with inference using the GPD tail model (2.2), the

river �ow observed near Lancaster is found to be the most extreme, as shown in Figure 8(b). The

marginal observational probability for the Lancaster gauge is estimated to be 3.6× 10−5. Figure 8(b)

27



Figure 7: Distribution of the number m of other sites that are extreme given the condition site is

extreme: the grey lines, conditioning on gauge 69017 near Manchester; black lines conditioning on

gauge 74001, in Cumbria. The solid, dashed and dotted correspond to observing a 100, 1000 and

10000 year event at the respective conditioning site.

shows that the event was particularly rare over all Cumbria and northern Lancashire, but it was

extreme at only one of the gauges near Manchester in the south of the study region.

In order to determine the probability P (R1 > q1,p1 , . . . , Rd > qd,pd) of jointly observing river �ows

over the region which are worse than the 2015 event we use both the empirical He�ernan and Tawn

(2004) residual approach and our Gaussian copula approach with the joint probability given by the

integral (4.1). We illustrate the calculations by separately taking the conditioning gauge to the Cum-

brian gauge, shown in Figure 6(a), and the Lancaster gauge, identi�ed by Figure 8(b). Using the

Cumbrian gauge we estimate the joint probability to be < 1.60 × 10−12 and 3.70 × 10−9 using the

respective methods, whereas these respective estimates become 9.50 × 10−10 and 8.00 × 10−9 using

Lancaster. When conditioning on the Cumbrian gauge we can only bound the joint probability using

the empirical He�ernan and Tawn (2004) residual approach as we get no events as extreme as that

observed at Lancaster in 108 events simulated all of which exceed the observed 2015 event at the Cum-

brian gauge. In contrast, the Gaussian copula approach gives estimated probabilities which are stable

with respect to the conditioning gauge and are computationally e�cient in contrast to the existing

approach for such an extreme and widespread event.
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Figure 8: Left: observed daily mean river �ows measured in m3s−1 from the 5th December 2015 and

right: the corresponding marginal return periods for those observed daily mean river �ows plotted on

the log scale.

7 Discussion

Through using semi-parametric model-based inference this paper has shown how the methodology of

He�ernan and Tawn (2004) can be extended to produce more e�cient inferences, particularly as the

dimension of the multivariate problem increases. Our approach proposed improvements in the inference

of the residual distribution of the He�ernan and Tawn (2004) model; via kernel smoothed-marginal

distributions and using a Gaussian copula. These methods also help in terms of computational and

statistical e�ciency in dealing with the problem of missing data that is commonly encountered in

environmental data sets.

Our proposed Gaussian copula approach has a downside in that a di�erent correlation matrix

Σ is required for each conditioning site. Thus for d sites there are d
(
d−1
2

)
correlation parameters

to estimate, i.e., O(d3) parameters. As a result it seems sensible to determine whether there are

any known relationships that can help to make the model parsimonious. An approach suggested by

a referee was to adopt a semi-parametric speci�cation method similar to that of De Carvalho and

Davison (2014), whereby the di�erent residuals densities are inter-linked via a tilting term, i.e.,
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log

(
gi(z)

g1(z)

)
= γi + zT δi, for i = 2, . . . , d (7.1)

with gi(z) = dGi(z)/dz, with Gi the limiting distribution in expression (2.4) when conditioning on

variable Yi being large, and with (γi, δi) being constants. If condition (7.1), holds the number of

parameters reduces to O(d2). Unfortunately this formulation does not appear to be appropriate for

our residual data either before or after standardisation to Gaussian marginals. An alternative O(d2)

approach would be to use a stationary Gaussian process to explain ZN (Tawn et al., 2018), but that

requires the process to be modelled in an appropriate space. In standard environmental studies, the

Euclidean distance metric between sites is used to explain spatial dependence. However, as shown by

Keef et al. (2009a) and Asadi et al. (2015), Euclidean distance is not always su�cient for capturing

the dependence between river �ow gauges. The more appropriate distance metric is to consider the

hydrological distance, which is de�ned as the distance between centroids of the associated catchments

for each site. This takes into account that two gauges that spatially might be far apart in fact are

similar in nature as they lie within the same catchment.

In order to determine whether this factor could be used to simplify the correlation matrix, four

conditioning sites were selected with di�ering spatial locations and catchment areas. Conditional on

location k, the estimates of correlation between Zi and Zj (for sites si and sj) given Yk is large,

denoted ρij|k for i, j 6= k, were plotted as a function of both the Euclidean ||(si, sj)||E and hydrological

||(si, sj)||H distance for each pair. This comparison of the correlation and distance metrics can be

seen in Figure 9. As expected as the distance between pairs of sites increases the correlation tends

to decrease. Interestingly, there is no substantial di�erence between the explanatory capabilities of

Euclidean and hydrological distance. Anomalous behaviour can be seen in panel Figure 9a, as for

one of the sites the residual correlation with all other sites is approximately equal to zero. This site

is close to conditioning gauge 68003, therefore the He�ernan and Tawn (2004) model has explained

all of extremal behaviour at this gauge, with the other sites. This illustrates that ρij|k will depend

on sk as well. Other known hydrological characteristics could also be used to explain the residual

dependence structure, these include variables such as the catchment responsiveness as well as the soil
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type. For example, a chalk catchment is slower to respond to heavy rainfall events than a catchment in

north west England (Boorman et al., 1995). Generalising these features is di�cult as we are trying to

simplify the correlation of unexplained behaviour of the extremes rather than of the observed process

itself.

The paper has shown that the proposed Gaussian copula model for the joint residual distribution of

the He�ernan and Tawn (2004) model is ideal for classes of asymptotically dependent and asymptoti-

cally independent distributions. A simulation study shows in low- and high -dimensional examples the

bene�ts of the proposed approach over other alternatives for both missing and non-missing data prob-

lems as well as under mis-speci�cation of the Gaussian copula. A case study of river �ow data shows

the bene�ts of the method for assessing the risk of an event similar to the storm Desmond event. An

analogous analysis using existing methods would have been both incredibly computationally expensive

and numerically sensitive to the choice of conditioning variable to estimate using existing methods.
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Marginal probability 0.99 0.998 0.999

True joint probability 1.80 0.36 0.18

True regression dependence parameters

He�ernan and Tawn 1.97 (1.50,2.48) 0.39 (0.30,0.50) 0.20 (0.15,0.25)

Multivariate kernel 1.63 (1.22,2.03) 0.32 (0.24,0.41) 0.16 (0.12,0.20)

Gaussian copula 1.90 (1.44,2.30) 0.38 (0.28,0.46) 0.19 (0.14,0.23)

Estimated regression dependence parameters

He�ernan and Tawn 1.38 (1.08,1.87) 0.18 (0.05,0.26) 0.07 (0.01,0.12)

Multivariate kernel 1.10 (0.85,1.45) 0.13 (0.04,0.22) 0.06 (0.01,0.10)

Gaussian copula 1.46 (1.03,2.00) 0.20 (0.07,0.31) 0.09 (0.02,0.14)

Table 1: The estimates (with 95% con�dence intervals in parenthesis) for the joint event probability

1000γd, given in equation (5.2), for d = 5 with δ = 0.75 for a sample of size 5000 from the symmetric

logistic distribution.
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Marginal probability 0.99 0.998 0.999

d=10

True joint probability 1.39 0.28 0.14

True regression dependence parameters

He�ernan and Tawn 1.49 (0.98,1.87) 0.30 (0.20,0.37) 0.15 (0.10,0.19)

Multivariate kernel 0.79 (0.52,1.05) 0.16 (0.10,0.21) 0.08 (0.05,0.11)

Gaussian copula 1.34 (1.00,1.65) 0.27 (0.20,0.33) 0.13 (0.10,0.17)

d=20

True joint probability 1.15 0.23 0.11

True regression dependence parameters

He�ernan and Tawn 1.09 (0.84,1.50) 0.22 (0.17,0.30) 0.11 (0.10,0.19)

Gaussian copula 1.12 (0.81,1.33) 0.22 (0.16,0.27) 0.11 (0.08,0.13)

Table 2: The estimates (with 95% con�dence intervals in parenthesis) for the joint event probability

1000γd, given in equation (5.2), for d = 10 and 20 with δ = 0.75 for a sample of size 5000 from the

symmetric logistic distribution.
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Probability He�ernan and

Tawn (F)

In�ll (F) Gaussian

Copula (F)

In�ll (M) Gaussian

Copula (M)

τ5,100 4.3 (0.0,12.2) 4.3 (0.1,11.9) 4.1 (0.1,12.7) 4.0 (0.6,15.5) 4.5 (0.3,14.5)

τ5,500 2.9 (0.0,9.6) 2.9 (0.0,9.7) 3.0 (0.0,10.4) 2.4 (0.2,13.7) 3.1 (0.1,13.1)

τ5,1000 2.5 (0.0,8.3) 2.5 (0.0,8.9) 2.4 (0.0,9.5) 2.0 (0.1,12.5) 2.6 (0.1,12.3)

τ5,10000 1.6 (0.0,6.8) 1.6 (0.0,6.8) 1.6 (0.0,7.8) 1.0 (0.0,10.9) 1.7 (0.0,10.1)

Table 3: The estimates (with 95% con�dence intervals in parenthesis) for the conditional probability

100τm,T , given in equation (6.1), with m = 5 using the original (F) and 28% missing data (M). The T

is the probability that corresponds to a speci�c annual return period. The He�ernan and Tawn (2004)

column corresponds to the conditional extreme value model �tted to all of the data. The modelled

in�ll column refers to the missing values being modelled and in�lled into the observed data.
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Probability Estimate Numerical Error

τ9,100 7.34× 10−5 6.00× 10−8

τ9,500 1.19× 10−5 1.26× 10−8

τ9,1000 8.58× 10−7 1.60× 10−8

τ9,10000 2.51× 10−12 1.90× 10−14

Table 4: The estimates (and integration numerical error) for the conditional probability τm,p, given in

expression (4.1), with m = 9. The table uses the same return periods as in Table 3.
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