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Abstract 

Tsetse flies transmit trypanosomes that cause Human African Trypanosomiasis (HAT) in 

humans and African Animal Trypanosomiasis (AAT) in animals. Understanding historical 

trends in the spatial distribution of tsetse fly habitat is necessary for planning vector control 

measures. The objectives of this study were (i) to test for evidence of any trends in suitable 

tsetse fly habitat and (ii) to test whether there is an association between trypanosomiasis 

detected from livestock sampled in dip tanks and local tsetse habitat in the project area. Results 

indicate a significant decreasing trend in the amount of suitable habitat. There is no significant 

correlation between trypanosomiasis prevalence rates in cattle and distance from patches of 

suitable tsetse habitat. The observed low trypanosomiasis prevalence and the lack of 

dependence on suitable tsetse fly habitat can be explained by the observed decreases in suitable 

tsetse habitat, which themselves are due to expansion of settlement and agriculture in North 

Western Zimbabwe. 

Introduction 

The tsetse fly (Glossina spp.) transmits trypanosomes that are responsible for causing Human 

African Trypanosomiasis (HAT) in humans and African Animal Trypanosomiasis (AAT) in 

animals (Holmes, 2013; Matawa et al., 2016, 2013). AAT results in increased rural poverty due 

to loss of livestock that represents a major source of livelihood (Holmes, 2013; Matawa et al., 

2016). In this regard, well planned vector control and eradication measures can improve rural 

livelihoods through improved livestock production. Characterising temporal trends in the 

spatial distribution of tsetse flies may, thus, be used to guide the planning of future vector 

control and eradication measures (Dicko et al., 2014; Matawa et al., 2016, 2013).  

Studies have shown that a reduction in the area of woody vegetation cover often results in 

reduction in the amount of suitable tsetse habitat in tsetse infested areas. This is due to the fact 

that loss of woody vegetation cover results in loss of both shade for tsetse flies and wildlife 

that provide the requisite blood meals for the tsetse flies (Kitron et al., 1996; Matawa et al., 

2016; Munang’andu et al., 2012; Scoones et al., 2017). Therefore, this study evaluates likely 
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trends and changes in suitable tsetse fly habitat in the light of environmental changes in the 

Zambezi valley of Zimbabwe. 

Evaluating trends in time-series of spatial data on tsetse habitat in relation to the expansion of 

settlement and agriculture in the Zambezi valley is needed to explain trypanosomiasis 

prevalence in livestock in the light of human encroachment into wild-lands and plan tsetse 

control. According to Van Den Bossche et al. (2010) human encroachment can create settings 

in which tsetse have “disappeared” because of habitat loss, but where livestock may be bitten 

by tsetse flies at the edge of tsetse-infested protected wildlife zones, or settings in which the 

density of game animals is low and livestock constitute the main source of food for tsetse flies. 

Once livestock are the main source of blood meals for tsetse flies the transmission cycle 

changes from a sylvatic cycle to a domestic cycle (Van Den Bossche et al., 2010). Studies on 

ecosystem change and its effect on tsetse habitat dynamics have remained limited (Matawa et 

al., 2016). In addition, few studies have investigated the impact of demography, land tenure, 

agriculture and livestock-production systems and habitat fragmentation on tsetse epidemiology 

with detailed scientific evidence (Van Den Bossche et al., 2010). Although an understanding 

of the temporal trends in suitable tsetse habitat is critical in characterising the dynamics of 

Trypanosomiasis transmission, studies on evaluating such trends in change in suitable tsetse 

habitat and their impact on tsetse transmission cycles have remained limited (Van Den Bossche 

et al., 2010). This study evaluates the trends and changes in suitable tsetse habitat and explains 

the pattern of trypanosome prevalence in livestock (cattle and goats) samples in the Hurungwe 

area of Zimbabwe in the context of these changes in tsetse fly habitat. 

Methods of evaluating trends in spatial time-series data include simple regression (Matawa et 

al., 2016), calculating percentage change (Diniz-Filho et al., 2010, 2009; Lawler et al., 2006; 

Pearson, 2006; Thuiller, 2004; Yates et al., 2010) and use of time-series analysis techniques 

such as the Mann-Kendall test (Best and Gipps, 1974; Hamed, 2008; Kendall, 1976; Kisi and 

Ay, 2014), Sen’s slope (Kisi and Ay, 2014), and the Cox-Stuart test (Rutkowska, 2015). This 

study uses the Mann–Kendall test because it can account for serial correlation in the data 

(Holsten et al., 2009), can manage non-normality, and has a high asymptotic efficiency (Yan 

et al., 2013). The Cox–Stuart test is slightly weaker in comparison to the Mann–Kendall test 

(Rutkowska, 2015). Where earlier studies have analysed spatial-temporal trends in species 

habitat, the studies have focused more on calculating percentage gains or losses in the future, 

usually based on climate change forecasts (e.g., Diniz-Filho et al., 2010, 2009; Lawler et al., 

2006; Pearson et al., 2006; Thuiller, 2004; and Yates et al., 2010). In contrast, this research 
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evaluates temporal trends in suitable tsetse habitat in relation to changes in woody vegetation 

cover as measured by remotely sensed NDVI based on results from an ensemble model using 

the Mann–Kendall test for trends.  

In this study, we test for any significant trend in suitable habitat based on an ensemble model 

derived from elevation and topographic position index (TPI) (temporary stable variables) and 

vegetation cover (dynamic variable) (Matawa et al., 2016). In addition, we test whether there 

is significant relationship between trypanosomiasis prevalence rates and distance from patches 

of suitable tsetse fly habitat. A statistically significant negative correlation between 

trypanosomiasis prevalence rates and Euclidean distance from patches of suitable tsetse fly 

habitat could indicate that high trypanosomiasis prevalence rates are clustered around patches 

of suitable tsetse fly habitat. This study is premised on the assertion that changes in vegetation 

cover over time due to expansion of settlement and agriculture may result in changes in suitable 

habitat for tsetse flies. Considering that elevation and TPI are largely temporally stable, the 

change in suitable tsetse habitat can be explained by a change in vegetation cover as NDVI is 

generally temporally dynamic (Matawa et al., 2016).  

Materials and Methods 

Study area 

The study area is located in North Eastern Zimbabwe (Figure 1). The area straddles protected 

areas (including safari areas) and settled areas comprising large and small scale farming as well 

as the communal lands of the Zambezi Valley (Matawa et al., 2016). Communal lands are areas 

characterised by community land ownership (Sibanda and Murwira, 2012). The area is 

characterised by low and variable annual rainfall averaging between 450 and 650 mm per year 

and a mean annual temperature of 25 ° C (Matawa et al., 2016). It has two clearly defined 

seasons: a wet season from December to March and a long dry season from April to November 

(Baudron et al., 2010; Matawa et al., 2016). The climatic conditions, thus, make the study area 

suitable as habitat for tsetse (Matawa et al., 2016). The natural vegetation is mainly deciduous 

dry savannah (Baudron et al., 2010; Matawa et al., 2016; Sibanda and Murwira, 2012). The 

elevation ranges from 340 m to 1400 m (Matawa et al., 2016). According to Pender et al. 

(1997), 1997, areas below 1100 m are climatically suitable for tsetse. 
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Figure 1: Location of the study area in Zimbabwe (Matawa et al., 2016). 

Species occurrence data 

Data on tsetse occurrence were extracted from tsetse fly trap records for the period 1994 to 

2012. We used the 1998 dataset for training the model because it had a wider geographic spread 

and a larger number of presence records (50) (Figure 1) (Matawa et al., 2016). The tsetse fly 

trap records were collected by the Zimbabwe Department of Veterinary Services and Livestock 

Production, Tsetse Control Division in Harare (Figure 1) (Matawa et al., 2016). Historical data 

on trap locations in Zimbabwe were read and marked with pencil on 1:250,000 topographic 

map sheets. There is room for locational error in the data. In addition, tsetse flies were trapped 

using odour baited targets often placed in open areas. Therefore, there exists the possibility of 

trapping tsetse outside of their normal habitat.  

Environmental variables 

We downloaded cloud-free (less than 10% cloud) Landsat Thematic Mapper (TM), Enhanced 

Thematic Mapper (ETM) with a spatial resolution of 30 m and Operational land Imager (OLI) 

satellite sensor data made available at the USGS EROS Data Centre (http://lpdaac.usgs.gov/) 

to estimate vegetation greenness (Matawa et al., 2016). Satellite sensor data were collected for 

the period April to early-July (day 110 to day 199) (Matawa et al., 2016) for the years 1986, 

http://lpdaac.usgs.gov/
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1991, 1993, 1998, 2002, 2007, 2008 and 2014. We focused on the period from end-April to 

early-July (post-harvest period) as all trees in the study area are still in full leaf then, while 

grass and crops are in the senesce stages thereby making it easier to isolate and explain the 

impact of land use/land cover changes (Matawa et al., 2016; Sibanda and Murwira, 2012). 

Vegetation greenness was estimated using the Normalised Difference Vegetation Index 

(NDVI). We calculated average NDVI based on available Landsat TM, ETM and OLI imagery 

between day 110 and day 199 of each year. We selected years with at least two or more images 

for the analysis (Matawa et al., 2016).  

Ensemble Modelling 

We used the Biomod2 toolkit in the R statistics software to develop a stable and temporary 

dynamic tsetse distribution model using the ensemble mean and the ensemble weighted mean 

modelling techniques. Our initial model (Matawa et al., 2016) was developed based on the 

Maximum Entropy technique (Phillips et al., 2006). We used remotely sensed NDVI, an 

indicator of vegetation productivity and greenness as a temporally dynamic variable, and 

topographic variables (i.e., altitude and TPI) as temporally stable variables (Matawa et al., 

2016). The model was developed based on tsetse observation data and NDVI of 1998. The 

model was applied to years with available NDVI data (i.e. 1986, 1991, 1993, 2002, 2007, 2008 

(Matawa et al., 2016) and 2014). Our ensemble model considered all models which produced 

an AUC greater than 0.7 and had a consistent relationship between AUC and TSS based on 

five runs. We selected a model with at least four data points falling in the bounding box in the 

top right corner of the scatterplot (Figure 2). In this case we selected the Maximum Entropy 

(Maxent), Generalized Linear Model (GLM), Random Forest (RF) and Flexible Discriminant 

Analysis (FDA) models to build the ensemble. The models were combined based on the 

following weights: Maxent (0.255), GLM (0.255), FDA (0.237) and RF (0.252). 
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Figure 2: Relationship between AUC and TSS used to select models for inclusion into the 

Ensemble model. 

Evaluating model accuracy 

We evaluated model performance based on the AUC (Peterson et al., 2007; Phillips and Dudik, 

2008) and TSS (Allouche et al., 2006), using independent test datasets to validate the models 

(30% of the species observation data (Matawa et al., 2016, 2012). AUC can be classified as 

insufficient (0.50–0.60); poor (0.60–0.70); average (0.70–0.80); good (0.80–0.90) and 

excellent (0.90–1) (Parolo et al., 2008). TSS ranges from −1 to +1, where +1 indicates perfect 

agreement and values of zero or less indicate a performance no better than random (Allouche 

et al., 2006). 

Table 1 shows that the Ensemble models have an AUC value greater than 0.9 and a TSS value 

greater than 0.7. The model performed better than random suggesting our model based on 

elevation, TPI and NDVI can be used to model and track changes in the spatial temporal 

distribution of suitable tsetse habitat. 

Table 1: Testing the accuracy of different models 

Algorithm/ 

Statistic 

Ensemble weighted mean Ensemble mean 
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 Statistic Sensitivity Specificity Statistic Sensitivity Specificity 

TSS 0.771 78.571 98.3 0.771 78.571 98.5 

AUC 0.936 78.571 98.6 0.936 78.571 98.6 

 

Evaluation of spatial-temporal trends in suitable habitat between 1986 

and 2014 

To test whether there was a significant monotonic downward trend in tsetse habitat suitability 

between 1986 and 2014, we applied the Mann-Kendall trend test in R to the time-series data. 

Prior to calculating the Mann-Kendall statistic, we tested whether the suitable habitat values 

were serially correlated (autocorrelation and partial autocorrelation). We wanted to determine 

whether or not to use the Mann-Kendall test with block bootstrapping to account for serial 

correlation present in the modelled suitable habitat time-series data. In this research, we applied 

the Mann-Kendall test without block bootstrapping as our data did not show significant 

autocorrelation and partial autocorrelation. The assumption is that if most of the vertical spikes 

produced are within the lower and upper limit there is no autocorrelation and partial 

autocorrelation and, therefore, there may be no need to correct for autocorrelation. 

The Mann-Kendall test is formulated as follows: 

𝑇 =
𝑆

𝐷
 

Where 𝑆 = ∑ (𝑠𝑖𝑔𝑛(𝑥[𝑗] − 𝑥[𝑖]) ∗ 𝑠𝑖𝑔𝑛(𝑦[𝑗] − 𝑦[𝑖]))𝑖<𝑗  

  𝐷 = 𝑛 (𝑛 − 1) 2⁄  

S is the score and D is the denominator (the maximum possible value of S) (Best and Gipps, 

1974; Kendall, 1976). The Mann–Kendall test is ideal for trend analysis because it is robust to 

departures from normality (Blain, 2013) and is less sensitive to outliers (Hamed, 2008). 

Analysing the pattern of trypanosomiasis prevalence in the study area 

Livestock blood samples were taken at each dip tank in the project area to screen for 

trypanosomiasis parasites. We calculated the prevalence rate as the number of infected 

livestock divided by the total number of livestock screened at each dip tank. Goat and cattle 
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prevalence was analysed separately. We also overlayed the suitable habitat with locations of 

dip tanks to establish their spatial relationship. In addition, we calculated the Euclidean distance 

from each patch of suitable tsetse fly habitat and related it to the location of trypanosomiasis 

infections in cattle. Firstly, we tested whether the trypanosomiasis prevalence and distance 

from patches of suitable habitat data were normally distributed and found the distance data to 

be non-normally distributed. We then used Spearman's rank correlation coefficient to test the 

relationship between the two variables. This was done to establish whether or not there is a 

dependence between the spatial pattern of trypanosomiasis and suitable tsetse fly habitat in the 

Mukwichi communal lands. 

Results 

Trends in suitable habitat between 1986 and 2014 

We observed that the amount of suitable G. pallidipes habitat decreased between 1986 and 

2014, associated with a decrease in woody vegetation cover (Figure 3). The results (Table 2) 

illustrate a significant decrease in the amount of suitable habitat as shown by negative Tau 

values based on the results of the ensemble mean and ensemble weighted mean (Tau = -0.571, 

p = 0.048). 

We observed that although there is slight increase in the amount of suitable tsetse habitat 

between 2007 and 2014 based on the results of the ensemble mean and ensemble weighted 

mean model (Figure 3), the positive trend is not statistically significant (Tau = 0.333; p = 

0.602). Instead, we observed that there was a decrease in the amount of suitable habitat in the 

Mukwichi communal area between 1986 and 2014.  



10 

 

 

Figure 3: Change in suitable habitat (y-axis) through time (x-axis) for G. pallidipes based on 

the results of the ensemble modelling technique. 

Table 2: The estimated trend in suitable tsetse habitat over time based on the Mann-Kendall 

Test. 

Model/ value tau P-value 

Ensemble Mean -0.571 0.048* 

Ensemble Weighted mean -0.571 0.048* 

* statistically significant monotonic downward trend between 1986 and 2014 

The agreement between the Ensemble Mean and Ensemble Weighted Mean models ranges 

between 99.71% and 99.95% (Table 3), thereby, showing that they were modelling almost 

similar pixels as suitable G. pallidipes habitat. 

Table 3: Agreement between the ensemble mean and ensemble weighted mean models (%). 

Model Ensemble weighted mean 

E
n

s

em b
le

 

m
e

a
n

 Year 1986 1991 1993 1998 2002 2007 2008 2014 
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1986 99.71        

1991  99.87       

1993   99.84      

1998    99.94     

2002     99.93    

2007      99.95   

2008       99.92  

2014        99.92 

Pattern of trypanosomiasis prevalence in the study area 

Positive trypanosomiasis infections were detected from cattle and goat blood samples collected 

at dip tanks namely Chingwena (10% of cattle were infected with Trypanosomiasis brucei (n 

= 40)), Chitindiva (7.5% of cattle were infected (n = 40, evidence of T. brucei and 

Trypanosomiasis vivax)), Mafuwa (13% of cattle (n = 23) and one goat was identified with a 

dual infection), Mayamba (1.25% of cattle (n = 80) were infected with T. vivax) and Village 

22 (5% of cattle (n = 40, evidence of T. brucei and T. vivax) in 2014 (Figure 4 and Figure 5). 

Our results show that Mafuwa, with the highest prevalence rate (13%), falls within a patch of 

suitable tsetse fly habitat. This indicates that tsetse flies and the trypanosomiasis they transmit 

still persist in the communal areas south of the game fence although the prevalence rates are 

low.  There is no statistically significant negative correlation between trypanosomiasis 

prevalence rates in cattle and Euclidean distance from patches of suitable tsetse fly habitat (r = 

-0.309, p = 0.304).  
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Figure 4: Time-series variation in the amount of suitable tsetse habitat based on the ensemble 

weighted mean algorithm between 1986 and 2014. 
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Figure 5: Time-series variation in the amount of suitable tsetse habitat based on the ensemble 

mean algorithm between 1986 and 2014. 
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Discussion 

Results in this study indicate a general and statistically significant decreasing trend in suitable 

G. pallidipes habitat in the Zambezi valley between 1986 and 2014. The decreasing trend in 

suitable habitat is consistent with the hypothesis that there was a decrease in suitable tsetse 

habitat between 1986 and 2014. The results are consistent with the findings of Matawa et al., 

(2016) and Scoones et al., 2017 that there was a decrease in suitable tsetse habitat associated 

with a decrease in vegetation cover due to the expansion of settlement and agriculture. Thus, 

we confirm that loss of woody vegetation cover due to expansion of settlement and agriculture 

across time has resulted in a significant decrease in the amount of suitable tsetse fly habitat. 

The decrease in suitable tsetse habitat due to expansion of agriculture explains the low 

trypanosomiasis prevalence in livestock in the Mukwichi communal lands. Most of the dip 

tanks did not record positive trypanosomiasis infections in livestock with the highest 

prevalence rate being 13% (Mafuwa, n = 23). AAT was evident in cattle blood samples and 

one goat blood sample taken from dip tanks in the Muckwichi communal lands. Our results 

indicate that there is no statistically significant relationship between trypanosomiasis 

prevalence rates in cattle and distance from patches of suitable tsetse fly habitat. Thus, our 

results indicate that high trypanosomiasis prevalence rates are not clustered around patches of 

suitable tsetse fly habitat. The pattern of distribution in relation to patches of suitable tsetse fly 

habitat suggest ‘incidental’ or ‘by chance infection’ associated with situations where livestock 

are bitten by tsetse flies when they come into contact with tsetse flies in suitable habitats such 

as tsetse-infested protected wildlife zones as suggested by Van Den Bossche et al. (2010). Most 

sites are within the 250 m distance from suitable patches of tsetse habitat which can be covered 

by a tsetse fly in a single day (DeVisser et al., 2010). Thus, the infections and prevalence rates 

can be explained by livestock and tsetse fly movement across patches of suitable habitat. 

Our study differs from earlier studies in that we used ensemble models built based on objective 

criteria, to track changes in suitable tsetse habitat over a long period (i.e. 28 years from 1986 

to 2014; with eight individual years spanning the 28-year period), making the results reliable. 

In addition, we used remotely sensed 30 m resolution NDVI as the dynamic variable to track 

and evaluate the trend in suitable tsetse habitat between 1986 and 2014 using ensemble models. 

We used NDVI as the only dynamic variable in the model to isolate and explain the role of 

vegetation cover in shaping the distribution of tsetse habitat (Matawa et al., 2016). 
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The results can inform tsetse control planning initiatives where we recommend that tsetse fly 

control initiatives be more target, for example, targeting a buffer zone along the game fence 

and in patches of modelled suitable tsetse habitat in the communal areas to reduce the chance 

of trypanosomiasis infection in livestock. Monitoring traps can be placed in patches of suitable 

habitat to so that reinvasion can be detected at an earlier stage.  

Our results allow a better understanding of the relationship between tsetse presence and 

decrease in woody vegetation cover measured using remotely sensing and the impact of the 

decrease in woody vegetation cover on trypanosomiasis prevalence. In addition, the results are 

reliable such that they can inform targeted vector control as evidenced by the consistence of 

the results thereby optimizing vector control. 
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