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Abstract—This paper investigates the effect of imperfect chan-
nel state information on the performance of the cooperative
non-orthogonal multiple access (NOMA) transmission scheme,
in which the cell-center user acts as a decode-and-forward relay
to assist the information transmission. The cell-center user adopts
simultaneous wireless information and power transfer (SWIPT)
technique to harvest energy for information forwarding. Based on
two channel error models, a maximization problem is formulated
to jointly design the robust beamforming and the power splitting
ratio while satisfying the minimum data rate for the far user and
the successfully decoding requirement for the information of the
far user at the near user. For the worst-case design under the
deterministic error model, successive convex approximation and
the semidefinite relaxation technique are utilized to approximate
the non-convex problem to an iterative convex problem. For
the outage-constrained design under the stochastic error model,
Bernstein-type inequality-based and Large Deviation Inequality-
based approaches are used to safely approximate the probabilis-
tic constraints of the inner-level problem to the deterministic
constraints and golden section search algorithm is employed to
find out the optimal single variable of the outer-level problem.
Furthermore, the rank proof is provided to prove that the
relaxation is tight.

Index Terms—Non-orthogonal multiple access (NOMA), simul-
taneous wireless information and power transfer (SWIPT), robust
beamforming, successive convex approximation (SCA).

I. INTRODUCTION

RECENTLY, non-orthogonal multiple access (NOMA)
has been recognized as a promising technology for the

upcoming fifth generation (5G) network due to its ability to
improve the spectral efficiency (SE) and to provide massive
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connectivity [1]–[7]. In contrast to the conventional orthogo-
nal multiple access (OMA) scheme, NOMA is designed to
simultaneously serve two or more users at the same base
station in a single orthogonal resource block (e.g., time slot,
subcarrier, spreading code) based on the different power level.
By utilizing successive interference cancellation (SIC) at re-
ceivers, co-channel interference can be efficiently eliminated
in NOMA systems. In order to maintain user fairness, more
power is allocated to the user with the poor channel condition.
Hence, compared to the conventional OMA, NOMA not only
can provide more efficient utilization for scarce resources [2]–
[4] but also can improve user fairness [5], [6]. To further
enhance the performance of NOMA technique, the multi-
antenna technique [8]–[10] and deep learning technique [11]
have been integrated into NOMA system.

A. Related Works and Motivation

The spectral efficiency can be significantly enhanced by
using NOMA technology since all users are allowed to share
same resources. However, the performance of the cell-edge
users may be seriously affected by the co-exist cell-center
users. In order to improve reception reliability and to guarantee
the quality-of-service (QoS) of the cell-edge users, an efficient
cooperative NOMA transmission scheme was proposed, by
which the near users with better channel conditions are served
as relays to help the far users with poor channel conditions
[12]. The simulation results also indicated that cooperative
NOMA transmission outperforms non-cooperative NOMA
transmission in terms of outage probability and diversity gain
[12] . Based on the motivation of the cooperative NOMA
transmission in [12], the impact of the cooperative NOMA
with full-duplex relaying was investigated in [13] and the
impact of relay selection strategy for cooperative NOMA was
investigated in [14], [15].

Cell-center users may face a issue of energy scarcity since
they consume the energy not only to decode their informa-
tion but also to help information transmission of cell-edge
users. The increased energy consumption will cause harmful
effects on the energy-constrained devices. Building on the
advantages of SWIPT technique [16]–[19], a SWIPT-based
cooperative NOMA transmission strategy was proposed to
deal with the energy scarcity issue [20]. The simulation and
analytical results demonstrated that the application of SWIPT
in cooperative NOMA systems can significantly enhance the
system performance without decreasing the diversity gain
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for the cell edge users compared to the cooperative NOMA
without SWIPT [20]. In order to rich the results in [20], Do et
al. [21] proposed a best-near best-far (BNBF) user selection
scheme to investigate the effects of SWIPT based on three
cooperative protocols. The analytical results indicated that
the diversity gain of the BNBF scheme only depends on the
number of cell edge users. A novel SWIPT-based cooperative
NOMA transmission was proposed to investigate the effects
of beamforming on the system performance in a multi-antenna
system [22].

The investigation of the cooperative NOMA scheme in [12],
[14], [20]–[22] is based on the assumption that channel state
information (CSI) between the transmitter and all users is
perfectly known by the transmitter. However, the perfect CSI
assumption might not be valid due to the significant system
overhead and the existence of channel estimation errors and
quantization errors. Therefore, imperfect CSI scheme has been
widely investigated in the conventional NOMA systems [23]–
[26]. In [23], the authors studied the outage performance of
NOMA under the long- and short-term transmission cases
considering one-bit feedback. Based on the deterministic chan-
nel error model, the system outage performance of NOMA
was investigated in [24] and the robust beamforming design
for downlink NOMA multiple-input single-output (MISO)
systems was studied in [25], [26]. The simulation results in
[23]–[26] demonstrated that imperfect CSI at the transmitter
can significantly deteriorate the system performance.

According to the open literature, we know that the practical
imperfect CSI scenario causes the deterioration of system
performance. Hence, the proposed power allocation strategy
and beamforming algorithm in cooperative NOMA schemes
in [12], [14], [20]–[22] cannot be used in the imperfect CSI
scenarios. Motivated by this practical issue, we consider to
investigate the impact of imperfect CSI on the system perfor-
mance of the cooperative NOMA transmission scheme. The
main contributions are presented in the following subsection.

B. Contribution

In this paper, we consider a two-user cooperative NOMA
transmission scheme, in which the cell-center user acts as a
decode-and-forward (DF) relay to forward information of the
cell-edge user with the harvested energy. The power splitting
(PS) receiver is adopted at the cell-center user to implement
SWIPT. The system model considered in our work pertains
to that in [20]–[22], but we design the algorithms under a
practical channel model. Specifically, the designed protocols
and algorithms in [20]–[22] are based on the perfect CSI
assumption, which may cause the performance degradation
in practical scenarios. In this paper, we consider to design
the robust beamforming to improve the system performance
under two imperfect CSI models, namely, a deterministic error
model and a stochastic error model. The designed optimization
problems under the two channel error models are difficult to
solve compared to the perfect CSI model. In the following,
the novel contributions of this paper are summarized:

• The robust beamforming and PS ratio are jointly designed
through an optimization problem under the deterministic

error model. The aim of the proposed problem is to
maximize the data rate of the cell-center user while
satisfying the minimum data rate of the cell-edge user
and the successful decoding requirement of the cell-edge
user information at the cell-center user. This optimization
problem is non-convex and challenging to solve due to
the coupled variables, quadratic terms, and the uncer-
tainty channel errors in the objective function and the
constraints. Based on the semidefinite relaxation (SDR),
successive convex approximation (SCA), and two linear
matrix inequality (LMI) lemmas, the proposed problem
can be approximated to a semidefinite problem (SDP) at
each iteration. A novel iterative algorithm is proposed to
iteratively solve the approximated problem. Furthermore,
the tightness of SDR is proved by investigating the rank-
one property.

• An outage-constrained optimization problem is proposed
to maximize the data rate of the cell-center user while
satisfying the outage constraints of the cell-edge user
and the system. The main difficulty to solve the pro-
posed problem under the stochastic error model lies
on the probability constraints, which have no closed-
form expressions. We decompose the proposed problem
to a two-level optimization problem. First, the outer-
level problem is an one-variable problem, in which the
optimal variable can be obtained by using golden section
search (GSS)-based algorithm. Second, the inner-level
problem can be safely approximated to the deterministic
problem by using two conservative methods, namely that
of Bernstein-type inequality (BTI)-based and Large De-
viation Inequality (LDI)-based. Moreover, the tightness
of SDR used in the inner-level problem is also proved by
investigating the rank-one property.

• The computational complexity of the proposed algorithms
under the deterministic error model and the stochastic
error model is mathematically characterized. The BTI-
based approach is more complex than LDI-based ap-
proach since BTI-based approach involves more LMI
constraints.

• The simulation results show that the uncertainty channel
error causes the serious performance deterioration and
the proposed robust beamforming algorithm can provide
significant performance gains compared with the non-
robust design. Moreover, the proposed outage design
based on the stochastic error model can provide higher
robust compared to the worst-case design based on the
deterministic error model.

C. Organization and Notations

The rest of this paper is organized as follows. The system
model is presented in Section II. The worst-case design based
on the deterministic error model is examined in Section III.
Section IV presents the outage-constrained problem design and
solutions under the stochastic error model. The computational
complexity analysis for the proposed algorithms is given in
Section V. Simulation results and conclusions are presented
in Section VI and VII, respectively.
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Notation: Column vectors and matrices are denoted by
boldface lower case letters and capital letters, respectively. The
Hermitian conjugate transpose, transpose, vectorization, trace,
and rank of a matrix A are denoted by AH , AT , vec(A),
Tr(A), and rank(A), respectively. A � 0 denotes a positive
semidefinite matrix. CM×N and HN+ represent a M -by-N
dimensional complex matrix set and a N -by-N Hermitian
positive semidefinite matrix set, respectively. The Euclidean
norm of a vector and the absolute value of a complex scalar
are denoted by ‖·‖ and |·|, respectively. E[·] is the expectation
operator.

II. SYSTEM MODEL

Fig. 1: System model

A two-user cooperative NOMA transmission scheme is
considered, by which the transmitter is equipped with N
antennas and the two users are equipped with a single antenna,
as shown in Fig. 1. In order to make the proposed designs
and algorithms more suitable for practical scenarios, e.g.,
Internet of Things (IoT) or wireless sensor networks (WSN),
we assume that both users are energy-constrained devices,
which are fitted with the limited capacity battery. The battery
fitted on the devices is used to cover the energy consumption
of circuit operation and signal processing and needs to be
replaced regularly. We define that the near user is the cell-
center user and the far user is the cell-edge user. In order to
improve the reliability of the far user, the near user will act
as a friendly relay to forward information of the far user by
using the DF protocol. The aim of the fitted battery on the
device is to support circuit operation and signal processing,
if the near user uses the battery energy for forwarding the
information, the remained energy in the battery cannot support
this device for its normal operation until the next replacement.
Hence, we assume that the near user needs to use the harvested
energy to forward the information at the cooperative phase in
order to remain its lifetime. Each transmission block in the
proposed system has two phases. Without loss of generality,
it is assumed that the two phases have the same transmission
periods. Each transmission period is listed below.

A. Phase 1: Direct Transmission

In the direct transmission phase, the transmitter sends the
Superimposed signal x = wnsn + wfsf to the two users
by utilizing NOMA technique [2], where sn, sf ∈ C1×1 and
wn,wf ∈ CN×1 represent the information-bearing messages
delivered for the near and far users as well as the correspond-
ing transmit beamforming vector, respectively. Without loss
of generality, it is assumed that E[|s2n|] = E[|s2f |] = 1. The
observation at the far user is given by

y
(1)
f =

√
Psh

H
f (wfsf + wnsn) + n

(1)
f , (1)

where Ps denotes the transmit power at the transmitter,
hf ∈ CN×1 is the channel coefficient between the transmitter
and the far user, and n(1)f ∼ CN (0, σ2

f1
) is the additive white

Gaussian noise (AWGN) at the far user. The received signal-to-
interference-plus-noise-ratio (SINR) at the far user detecting
its own information is given by

γ
(sf )
f1

=
Ps|hHf wf |2

Ps|hHf wn|2 + σ2
f1

. (2)

It is assumed that the near user is capable to recharge and
store energy. Therefore, SWIPT can be implemented at the
near user by using power splitting [17], [27]. Supercapacitors
or short-term high-efficiency batteries can be fitted at the
devices to implement this assumption [28]. Based on the power
splitter at the near user, the received signal is divided into two
streams. One is used for information decoding and the other is
used for energy harvest. Then, the received signal at the near
user for information decoding can be expressed as

yIDn =
√
ρ
√
Psh

H
n (wnsn + wfsf ) + nn, (3)

where ρ ∈ (0, 1] is the power splitting coefficient, hn ∈ CN×1

is the channel coefficient between the transmitter and the near
user, and nn ∼ CN (0, σ2

n) is AWGN. Based on the linear EH
model assumption, the energy harvested at the near user is
given by

E = τξ(1− ρ)Ps(|hnwn|2 + |hnwf |2) (4)

where ξ ∈ (0, 1] is the energy conversion efficiency, and τ
denotes the time period for the direct transmission phase.
We assume the cooperative phase and the direct phase have
the same transmission duration, i.e., τ = 1

2 . Therefore, the
maximum transmit power at the near user can be expressed as
Pt = ξ(1− ρ)Ps(|hnwn|2 + |hnwf |2). The SIC technique is
applied at the near user to eliminate co-channel interference
based on the concept of NOMA [2]. Particularly, the near
user first decodes the information of the far user, and then
decodes its own information by subtracting the information of
the far user from its observation. Thus, the received SINR at
the near user for decoding the information of the far user can
be expressed as

γ
(sf )
n =

Psρ|hHn wf |2

Psρ|hHn wn|2 + σ2
n

. (5)

Note that the near user cannot decode its own information
if it false to decode the information of the far user. After
successfully decoding the information of the far user, the
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corresponding signal-to-noise-ratio (SNR) at the near user is
given by

γ(sn)n =
Psρ|hHn wn|2

σ2
n

. (6)

B. Phase 2:Cooperative Transmission

In this phase, the near user forwards the information to the
far user by using the harvested energy. The observation at the
far user is given by

y
(2)
f =

√
Ptgsf + n

(2)
f , (7)

where g is the channel coefficient from the near user to the far
user, and n(2)f ∼ CN (0, σ2

f2
) is the AWGN. Then, the received

SNR at the far user in the cooperative phase can be expressed
as

γ
(sf )
2 =

ξ(1− ρ)Ps|g|2(|hnwn|2 + |hnwf |2)

σ2
f2

. (8)

By using maximal-ratio combining (MRC), the received final
SINR at the far user is given by

γsf =γ
(sf )
1 + γ

(sf )
2

=
Ps|hHf wf |2

Ps|hHf wn|2+σ2
f1

+
ξ(1−ρ)Ps|g|2(|hnwn|2+|hnwf |2)

σ2
f2

(9)

The system designs in [12], [20]–[22] were based on the
assumption that CSI between the BS and the users is perfectly
known by the BS. However, it is not always possible for the
BS to obtain perfect CSI of the users in practical scenarios
due to channel estimations and quantization errors. Therefore,
in this paper, we consider a more practical scenario, in which
the transmitter only knows imperfect CSI of the two users.
Note that this paper mainly focuses on the channel estimation
errors at the multi-antenna transmitter. It is assumed that CSI
between the two single-antenna users is perfectly known by
the near user. Two different types of error model are adopted to
describe the channel estimation errors. One is the deterministic
error model, and the other is the stochastic error model. In the
following parts, the optimization problems based on the two
channel error models are designed.

III. WORST-CASE DESIGN BASED DETERMINISTIC ERROR
MODEL

In this section, a problem of robust beamforming design
is formulated based on the deterministic channel error model.
The aim of the system is to maximize the data rate of the near
user while satisfying the data rate requirement of the far user.

A. The Deterministic Error Model

In the deterministic uncertainty model, the estimated chan-
nel error is bounded by a constant value which is the edge
of the ellipsoid. This model has been widely applied in the
OMA system [29], [30] and NOMA system [25], [26]. The

actual channel between the transmitter and the two users can
be modelled as follows, respectively

hn = ĥn + en, eHn en ≤ ε2n, (10a)

hf = ĥf + ef , eHf ef ≤ ε2f , (10b)

where ĥn and ĥf denote the estimations of the corresponding
channels, en and ef represent the channel errors, εn and εf
represent the size of the bounded error region.

B. Robust Beamforming Design based SDR Approach

Note that maximizing the data rate of the near user is
equivalent to maximize its SINR. Hence, the proposed op-
timization problem can be defined as the following worst-
case maximization problem based on the bounded CSI error
model and on the definition of the positive semidefinite (PSD)
matrices Qn = wnwH

n and Qf = wfw
H
f ,

P1 : max
Qn,Qf ,ρ

Psρ(ĥn + en)HQn(ĥn + en)

σ2
n

(11a)

s.t. min
en

(ĥn+en)HQf (ĥn+en)

(ĥn+en)HQn(ĥn+en)+
σ2
n

Psρ

≥γ1, (11b)

min
en,ef

(ĥf + ef )HQf (ĥf + ef )

(ĥf + ef )HQn(ĥf + ef ) +
σ2
f1

Ps

+
(ĥn+en)H(Qn+Qf )(ĥn+en)

σ2
f2

ξ(1−ρ)Ps|g|2

≥γ1, (11c)

0 ≤ Tr(Qn + Qf ) ≤ 1, (11d)
Qn � 0, Qf � 0, (11e)
0 < ρ ≤ 1, (11f)
rank(Qn) ≤ 1, rank(Qf ) ≤ 1, (11g)

where γ1 = e2Rf − 1 is the minimum target SINR of the far
user. Among the constraints (11b)-(11g), the constraint (11b)
is imposed that the minimum SINR for successfully decoding
the far user information at the near user should be greater
than the threshold; (11c) is used to guarantee the minimum
data rate of the far user; the power of the beamformers and
the PS ratio is restricted by the constraint (11d) and (11f),
respectively; the rank constraints (11g) is used to guarantee
the optimality of solutions.

We remark that problem P1 is non-convex and is challenging
to solve mainly because of the coupling variables and the semi-
infinite programming in the objective function and constraints
[31]. To circumvent these issues, an equivalent formulation is
presented in the following proposition.

Proposition 1: The optimization problem P1 can be equiv-
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alently expressed as

P1-Equ : max
Qn,Qf ,ρ,u,x,t,v,a,b

u (12a)

s.t. v2 ≥ u, (12b)

t2 ≥ γ1 − x, (12c)

4a+ (b− x)2 ≥ (b+ x)2, (12d)

Tr((ĥf+ef )Qf (ĥf+ef )H) ≥ a, (12e)

Tr((ĥf+ef )Qn(ĥf+ef )H)+
σ2
f1

Ps
≤ b, (12f)[

Psρ
σ2
n

v

v (ĥn + en)HQn(ĥn + en)

]
� 0, (12g)[

(1−ρ) t

t
(ĥn+en)

H(Qn+Qf )(ĥn+en)
ξPs|g|2

]
� 0, (12h)

(11b), (11d)− (11g) (12i)

Proof: Please, refer to Appendix A.
Although problem P1-Equ is still non-convex, it can be solved
by applying S-Procedure lemma [31] to convert the non-
convex constraints into linear matrix inequality (LMI), which
includes finite number inequalities. They are detailed below.

Lemma 1: Define a function fm(x) = zHAmz +
2Re{umx}+ cm, m ∈ {1, 2}, where x ∈ CN×1, Am ∈ HN ,
um ∈ CN×1 and cm ∈ R. Then, the implication f1(x) ≤ 0⇒
f2(x) ≤ 0 holds if and only if there exists a λ ≥ 0 such that

λ

[
A1 u1

uH1 c1

]
−

[
A2 u2

uH2 c2

]
� 0 (13)

provided that there exists a point x̃ such that fm(x̃) < 0.
Based on Lemma 1, the non-convex constraints in (11b),

(12e) and (12f) can be converted into the following convex
LMI constraints, respectively

Tf
n=

[Qf

γ1
−Qn + λI (

Qf

γ1
−Qn)ĥn

ĥHn(
Qf

γ1
−Qn) ĥHn(

Qf

γ1
−Qn)ĥn− σ2

n

Psρ
−λε2n

]
�0, (14a)

Tf =

[
Qf + µI Qf ĥf

ĥHf Qf ĥHf Qf ĥf − a− µε2f

]
� 0, (14b)

Tn=

 θI−Qn −Qnĥf

−ĥHf Qn −θε2f−ĥHf Qnĥf−
σ2
f1

Ps
+ b

 � 0. (14c)

Then, we consider to solve the more challenging non-convex
constraints (12g) and (12h), in which the uncertainty error is
included in the PSD matrices. Since Lemma 1 only can be
used to tackle the uncertainty issue in the linear function, the
following Lemma is introduced to solve the uncertainty issue
in a quadratic matrix inequality (QMI).

Lemma 2: [32, Theorem 3.5] If there exists a PSD matrix
D � 0, the following robust block QMI[

H F + GX

(F + GX)H C + XHB + BHX + XHAX

]
� 0,

for all I−XHDX � 0 (15)

is equivalent to the following LMI with t ≥ 0 H F G

FH C BH

GH B A

− t
0 0 0

0 I 0

0 0 −D

 � 0. (16)

To proceed, we set X = en, D = 1/ε2nI, H = Psρ
σ2
n

, F = v,
G = 01×N , C = ĥHn Qnĥn, B = QH

n ĥn and A = Qn. By
applying Lemma 2, the constraint in (12g) is converted into
the following convex LMI

Dn =


Psρ
σ2
n

v 01×N

v ĥHn Qnĥn − α ĥHn Qn

0N×1 Qnĥn Qn + α
ε2n

I

 � 0. (17)

Similar to the constraint in (12g), the constraint in (12h) can
be modified to the following LMI by using Lemma 2

Df
n=

ξ(1−ρ)Ps|g|2 t 01×N

t ĥHn(Qn+Qf)ĥn−β ĥHn(Qn+Qf)

0N×1 (Qn+Qf)ĥn (Qn+Qf)+ β
ε2n

I

�0.

(18)

Next, we will address the remaining non-convex constraints
in (12b)-(12d). It obvious that the non-convexity of these three
constraints is caused by the quadratic term on the left side
of the inequality. Based on the SCA method [33], [34], we
consider to propose an iterative approach to deal with the
quadratic terms in (12b)-(12d). By performing the first-order
Taylor approximation around the Taylor points, the constraints
in (12e)-(12h) can be approximated as below

(vn)2 + 2vn(v − vn) ≥ u, (19a)

(tn)2 + 2tn(t− tn) ≥ γ1 − x, (19b)

4a+(bn−xn)2+2(bn−xn)(b−bn−x+xn)≥(b+x)2, (19c)

where vn, tn, bn and xn are the value of variable v, t, b, x at
the n-th iteration. Finally, the remaining obstacle for solving
the problem P1 lies the rank constraints in (11g). By using the
SDR method [35], problem P1 can be relaxed to the following
problem

max
Qn,Qf ,ρ,u,x,t,v,a,b,λ,µ,θ,α,β

u (20)

s.t. (11d)− (11f), (14), (17), (18), (19).

The objective function of the problem in (20) is a linear
function. The constraints in (11d)-(11f) are affine functions.
The constraints in (14),(17),(18) are LMIs, which can be
expressed by several linear inequality constraints. With the
given initial values vn, tn, bn, xn, the constraints in (19) are
also affine functions. Hence, based on the convex theory in
[31], we inform that the problem in (20) is convex at the n-th
iteration and can be solved efficiently by numerical solvers
such as CVX [36]. The algorithm to solve the problem in (20)
is summarized in Algorithm 1. The main component of the
proposed algorithm is the iterative procedure from step a) to
step c). With the feasible initial values v(1), t(1), b(1), x(1), u(1)

at the first iteration, the feasible solutions v
′
, t
′
, b
′
, x
′
, u
′

can be obtained by solving (20). Then, the initial values
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Algorithm 1: The SCA-based algorithm for P1.

1) Initialize: Set n = 1, the tolerance ε = 10−2, vn, tn, bn, xn, and
un;

2) Repeat:
a) Solving (20) by using CVX for the given initial values; ;
b) Update vn, tn, bn, xn, and un;
c) Update the iterative number n = n+ 1;

3) Until |un − un−1| ≤ ε
4) Output Qn and Qf .

v(1), t(1), b(1), x(1), u(1) can be updated by the the feasible
solutions v

′
, t
′
, b
′
, x
′
, u
′

at the end of the first iteration. This
procedure will repeat until the gap of the objective value
between two iterations belows the tolerance value. Since the
problem in (20) is a maximization problem, Algorithm 1
can generate a non-increasing sequence of objective value. It
means that the objective value of the problem in (20) converges
to at least a stationary point.

Note that the solutions Qn and Qf to the problem in (20)
are obtained by dropping the rank-one condition. If Qn and
Qf are the rank-one constraints, the optimal beamforming wn

and wf can be obtained by using eigenvalue decomposition
(EVD) for Qn and Qf , otherwise, Gaussian randomization
will be used to generate the suboptimal solutions [35]. In order
to obtain the optimal beamforming, the following theorem is
presented to guarantee the tightness of the relaxation.

Theorem 1: Suppose the problem (20) is feasible with the
given initial values, rank(Qf ) ≤ 1 and rank(Qn) ≤ 1 always
hold.

Proof: Please refer to Appendix B.

IV. ROBUST BEAMFORMING DESIGN BASED STOCHASTIC
ERROR MODEL

In this section, the robust beamforming is designed based
on the stochastic error model to maximize the near user rate
while satisfying the outage requirement of the far user.

A. The Stochastic Error Model

In the stochastic uncertainty model, the estimated channel
error satisfies the Gaussian distribution. This model has been
widely applied in the OMA system [19], [37], [38]. In this
case, the actual channel between the transmitter and the two
users can be respectively expressed as

hn = ĥn + en, en ∼ CN (0,Cn), (21a)

hf = ĥf + ef , ef ∼ CN (0,Cf ), (21b)

where ĥn and ĥf are the estimated CSI; en and ef denote the
corresponding error; Cn � 0 and Cf � 0 are the associated
error covariance.

B. Problem Formulation

Based on the aforementioned stochastic error model, the
outage-constrained maximization problem can be reformulated

as follows:

P2 :

max
Qn,Qf ,ρ

γn (22a)

s.t. Pr

{
Psρ(ĥn+en)HQn(ĥn+en)

σ2
n

≥γn

}
≥1−p, (22b)

Pr

{
(ĥn+en)HQf (ĥn+en)

(ĥn+en)HQn(ĥn+en)+
σ2
n

Psρ

≥γ1

}
≥1−pfn, (22c)

Pr

{
(ĥf+ef )HQf (ĥf+ef )

(ĥf + ef )HQn(ĥf + ef ) +
σ2
f1

Ps

+
(ĥn+en)H(Qn+Qf )(ĥn+en)

σ2
f2

ξ(1−ρ)Ps|g|2

≥γ1

}
≥1−p, (22d)

(11d)− (11g), (22e)

where p and pfn denote the maximum outage probabilities.
The constraints in (22b) and (22d) guarantee that both users
have at least a (1 − p) percent probability to reliably decode
their own messages under CSI errors. (22c) ensures that there
are (1 − pfn)% message sent to the far user can be reliably
decoded by the near user under the channel error model. P2

is non-convex due to the coupled optimization variables and
the channel errors [31]. In the sequel, we will introduce an
approach to efficiently overcome the challenges.

C. Outer-Level Line Search Method

In order to circumvent the non-convexity of P2, we first
decompose P2 to a two-level optimization problem by in-
troducing a slack variable z. For a given z, the inner-level
optimization problem can be formulated as

Φ(z) = max
Qn,Qf ,ρ

γn (23a)

s.t. Pr

{
z+

(ĥn+en)H(Qn+Qf )(ĥn+en)
σ2
f2

ξ(1−ρ)Ps|g|2

≥γ1

}
≥1−p,

(23b)

(ĥf+ef )HQf (ĥf+ef )

(ĥf + ef )HQn(ĥf + ef ) +
σ2
f1

Ps

≥z, (23c)

(22b), (22c), (11d)− (11g), (23d)

where Φ(z) is defined as the optimal value of the problem
(23). The outer-level single variable optimization problem can
be formulated as

max
z

Φ(z)

s.t. zmin ≤ z ≤ zmax, (24)

where zmin and zmax are the lower and upper bound of z,
respectively. It is clearly observed that the lower bound of z
can be set to zero, while the upper bound is calculated as

z ≤ (ĥf+ef )HQf (ĥf+ef )

(ĥf + ef )HQn(ĥf + ef ) +
σ2
f1

Ps

(a)

≤ PsTr(Qf )‖ĥf+ef‖2

σ2
f1

≤
PsTr(ĥf ĥ

H
f + Cf )

σ2
f1

, (25)
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where (a) follows from the fact that hHf Qfhf ≤
Tr(Qn)‖hf‖2 for any Qf � 0 [39]. Note that z plays an
important role for the power allocation. If we can obtain the
value of Φ(z) by solving (23) with a given z, the optimal
solutions to P2 can be obtained by using a search method
for (24). Hence, we will focus on solving the inner-level
optimization problem (23) in the sequel.

D. Inner-Level Approximation Method

The main difficulty for solving the inner-level optimization
problem (23) is the chance constraints in (22b), (22c), and
(23b), in which the closed-form expressions are difficult
to obtain. According to Challenge 1 provided in [37], an
efficient way to solve the chance constraints is developing
their computable upper bounds by using convex restriction
approaches. Hence, we first transform the chance constraints
to the following constraints by defining en = C

1/2
n vn,

vn ∼ CN (0, I)

(22b)⇔Pr{vHnC
1
2
nQnC

1
2
nvn+2R{vHnC

1
2
nQnĥn}+cn≥0}

≥1−p, (26)

(22c)⇔Pr{vHnC
1
2
n (

Qf

γ1
−Qn)C

1
2
nvn+2R{vHnC

1
2
n (

Qf

γ1
−Qn)ĥn}

+ dn ≥ 0} ≥ 1− pfn, (27)

(23b)⇔Pr{vHnC
1
2
n (Qn+Qf )C

1
2
nvn+2R{vHnC

1
2
n (Qn+Qf )ĥn}

+ bn ≥ 0} ≥ 1− pf , (28)

where cn = ĥHn Qnĥn − γnσ
2
n

Psρ
, dn = ĥHn (

Qf

γn
−Qn)ĥn − σ2

n

Psρ
,

and bn = ĥHn (Qf+Qn)ĥn−
(γ1−z)σ2

f2

ξ(1−ρ)Ps|g|2 . Based on the above
transformation, we find that constraints in (26)-(28) have the
same probability form as the following constraint

Pr{eHQe + 2R{eHr}+ s ≥ 0} ≥ 1− ρ, (29)

where e ∼ CN (0, I). The constraint (29) can be solved by
developing its safe approximation upper bound f(Q, r, s),
which satisfies f(Q, r, s) ≤ ρ. The safe approximation
means that the obtained solution based on the constraint
f(Q, r, s) ≤ ρ always satisfies the original constraint in (29).
In the following, we attempt to develop the safe upper bound
for the chance constraints in (26)-(28) by utilizing two convex
restriction approaches: the BTI-based approach and the LDI-
based approach.

1) BTI-Based Approach: Bernstein-type inequality is an
efficient convex restriction approach to transform a chance
constraint into a tractable constraint based on the following
large deviation inequality for complex Gaussian quadratic
functions [37].

Lemma 3: Consider the following outage constraint

Pr{xHAx + 2R{xHu}+ c ≥ 0} ≥ 1− ρ, (30)

where A ∈ CN×N is a complex Hermitian matrix, u ∈ CN×1,
x ∼ CN (0, I) and fixed ρ ∈ (0, 1]. With any slack variables λ
and µ, the outage constraint can be equivalently transformed

into the following three inequalities
Tr(A)−

√
−2 ln(ρ)λ+ ln(ρ)µ+ c ≥ 0,∥∥∥∥[vec(A)

√
2u

]∥∥∥∥ ≤ λ,
µIN + A � 0, µ ≥ 0.

(31)

Note that the three constraints in (31) are tractable determinis-
tic constraints. If the solution satisfies the constraints in (31), it
also satisfies the chance constraint in (30). Therefore, the safe
upper bound of the chance constraint in (26) can be expressed
as follows by using Lemma 3

Tr(C
1
2
nQnC

1
2
n )−

√
−2 ln(p)λ+ln(p)µ+cn≥0, (32a)∥∥∥∥[vec(C

1
2
nQnC

1
2
n )

√
2C

1
2
nQnĥn

]∥∥∥∥ ≤ λ, (32b)

µIN + C
1
2
nQnC

1
2
n � 0, (32c)

where λ, µ are the slack variables. Since γn
ρ included in cn

is non-convex term, we consider to approximate it to a linear
function. By performing the first-order Taylor approximation
around the Taylor points (γnn , ρ

n), γnρ can be approximated as

γn
ρ
≤ γnn
ρn
− γnn(ρ− ρn)

(ρn)2
= g(γn, γ

n
n , ρ, ρ

n). (33)

After replacing γn
ρ by g(γn, γ

n
n , ρ, ρ

n), the constraint in (32a)
is a linear function with the given γnn and ρn. Next, based on
Lemma 3, the chance constraints in (27) and (28) can be trans-
formed into the following tractable deterministic constraints,
respectively

Tr(C
1
2
n(

Qf

γ1
−Qn)C

1
2
n )−

√
−2 ln(pfn)α+ln(pfn)β+dn≥0,(34a)∥∥∥∥∥∥

vec(C
1
2
n (

Qf

γ1
−Qn)C

1
2
n )

√
2C

1
2
n (

Qf

γ1
−Qn)ĥn

∥∥∥∥∥∥ ≤ α, (34b)

βIN + C
1
2
n (

Qf

γn
−Qn)C

1
2
n � 0, (34c)

Tr(C
1
2
n(Qf+Qn)C

1
2
n )−

√
−2 ln(pf )ω+ln(pf )υ+bn≥0,(35a)∥∥∥∥∥∥

vec(C
1
2
n (Qf+Qn)C

1
2
n )

√
2C

1
2
n (Qf+Qn)ĥn

∥∥∥∥∥∥ ≤ ω, (35b)

υIN + C
1
2
n (Qf+Qn)C

1
2
n � 0, (35c)

where α, β, ω, υ are the slack variables. After solving (26)-
(28), we will focus on the constraint in (23c), in which the
channel error term cannot be solved by Lemma 3, because
there is no probability form in the constraint in (23c) and
the channel error is a Gaussian variable. In order to address
the uncertainty error term in (23c), we consider to employ
the Sphere Bounding method proposed in [37] to specify
the deterministic region for the channel error. The spherical
boundary ςf is chosen from the following outage probability
constraint Pr {‖vf‖ ≤ ςf} ≥ 1−p. This constraint means that
there are more than 1 − p portion of vf ’s realizations lies
in the sphere. Specifically, boundary ςf can be obtained by
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ςf =

√
F−1

2N (1−p)
2 , where F−12N (·) denotes the inverse cumu-

lative distribution function of a Chi-square random variable
with 2N degrees of freedom. Note that all realizations of vf
lied in sphere satisfy the constraint in (23c). Based on Lemma
1, the constraint in (23c) can be converted into the following
convex LMI with ϑ ≥ 0C 1

2

f(
Qf

z −Qn)C
1
2

f +ϑI C
1
2

f(
Qf

z −Qn)ĥf

ĥHf (
Qf

z −Qn)C
1
2

f ĥHf (
Qf

z −Qn)ĥf−
σ2
f1

Ps
−ϑζ2f

�0, (36)

where ϑ ≥ 0.
By using the SDR method and by replacing the constraints,

the inner level optimization problem can be approximated as

max
Qn,Qf ,ρ,γn,β,µ,υ,ϑ

γn

s.t. (32)− (36), (11d)− (11f). (37)

With a given slack variable z, the objective function of the
problem in (37) is a linear function. The constraints in (32)-
(36) consist of linear constraints, SOC constraints, and LMI
constraints. The constraints in (11d)-(11f) are all linear con-
straints. Therefore, the inner level problem in (37) is convex at
the n-th iteration with the given z and can be solved efficiently
by numerical solvers such as CVX. Since the solutions to
the problem in (37) are obtained by dropping the rank-one
constraints, the following theorem is presented to guarantee
the tightness of the relaxation.

Theorem 2: Suppose that the relaxed problem (37) is feasi-
ble with a given z. The relaxed problem (37) yields an optimal
solution satisfying rank(Qn) ≤ 1 and rank(Qf ) ≤ 1.

Proof: Please refer to Appendix C.
2) LDI-Based Approach: It is clearly shown that the prob-

lem (37) includes linear, second-order cone (SOC) and LMI
constraints, which are polynomial-time solvable [31]. How-
ever, if the size of the LMI constraint is sufficiently large,
it is time consuming to solve the problem in (37). Hence,
we will use LDI-based approach, which is also developed
based on the large deviation inequality for complex Gaussian
quadratic functions [37], to solve the inner problem (23).
The specification of LDI-based approach is illustrated in the
following lemma.

Lemma 4: Fixing the Gaussian random vector x ∼
CN(0, I), a matrix A ∈ Hn×n and a vector r ∈ Cn, if exist
any v > 1√

2
and ζ > 0, it has

Pr{xHAx + 2R{xHr} ≤ tr(A)− ζ}

≤


exp

(
− ζ2

4T 2

)
0 < ζ ≤ 2v̄vT

exp

(
− v̄vζ

T
+ (v̄v)2

)
ζ > 2v̄vT

, (38)

where v̄ = 1− 1
2v2 and T = v‖A‖+ 1√

2
‖r‖.

The technical derivation of Lemma 4 refers to Appendix B
in [37]. The merit of Lemma 4 is decomposing a sum of
dependent random variables into two parts, each of which is
a sum of certain independent random variables.

Next, we concentrate on deriving the safe upper bound of
(26) based on Lemma 4 in the following. According to Lemma

4, we first set

an = Tr(C
1
2
nQnC

1
2
n ) + cn, (39)

Tn = vn‖C
1
2
nQnC

1
2
n‖F +

1√
2
‖C

1
2
nQnĥn‖. (40)

The value of va can be obtained by solving the quadratic
equation v̄nvn = (1 − 1/(2v2n))vn =

√
ln(1/p). Note that

vn > 1/
√

2 must always exist, since equation (1−1/(2v2n))vn
is a monotonically increasing function of va within the interval
[1/
√

2,∞) and (1 − 1/(2v2n))vn = 0 is satisfied when
vn = 1/

√
2. Furthermore, if an = 2

√
ln(1/p)Tn is chosen

from the interval [2
√

ln(1/p)Tn, 2v̄nvnTn], exp(− a2n
4T 2

n
) = p,

which means that the constraint (26) will be satisfied with
an = 2

√
ln(1/p)Tn. Similarly, if we choose an > 2v̄nvnTn =

2
√

(1/p)Tn, the constraint can be still satisfied by instituting
a into (38). Based on the above analyses, we consider function
exp(−(Tr(C1/2

n QnC
1/2
n )+ cn)/4T 2

n) as the safe upper bound
of the chance constraint (26). Thus, the chance constraint (26)
can be satisfied if the following constraint is satisfied

Tr(C
1
2
nQnC

1
2
n ) + cn ≥ 2

√
ln(1/p)Tn. (41)

By introducing the slack variables α and β, constraint (41)
can be equivalently expressed as

Tr(C
1
2
nQnC

1
2
n ) + cn ≥ 2

√
ln(1/p)(α+ β), (42a)

va‖vec(C
1
2
nQnC

1
2
n )‖ ≤ α, (42b)

1√
2
‖C

1
2
nQnĥn‖ ≤ β. (42c)

Since the chance constraints in (26)-(28) have the same
probability form, constraints (27) and (28) can be converted
into the following constraints based on the same analysis,
respectively

Tr(C
1
2
n (

Qf

γ1
−Qn)C

1
2
n ) + dn ≥ 2

√
ln(1/pfn)(λ+ µ), (43a)

vfn‖vec(C
1
2
n (

Qf

γ1
−Qn)C

1
2
n )‖ ≤ λ, (43b)

1√
2
‖C

1
2
n (

Qf

γ1
−Qn)ĥn‖ ≤ µ, (43c)

Tr(C
1
2
n (Qn + Qf )C

1
2
n ) + bn ≥ 2

√
ln(1/pf )(ω + ν), (44a)

vf‖vec(C
1
2
n (Qn + Qf )C

1
2
n )‖ ≤ ω, (44b)

1√
2
‖C

1
2
n (Qn + Qf )ĥn‖ ≤ ν. (44c)

Based on the aforementioned analyses, the inner-level prob-
lem in (23) can be equivalently reformulated to the following
problem by using LDI-based approach

max
Qn,Qf ,γn,ρ,α,β,λ,µ,ω,ν,ϑ

γn

s.t. (36), (42)− (44), (11d)− (11f). (45)

Similar to the problem in (37), the problem in (45) is convex
at the n-th iteration with a given slack variable z. Since the
optimal solution to the problem in (45) is obtained by dropping
the rank-one constraints, we can use the method in Appendix
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Algorithm 2: GSS-based algorithm for solving P2.

1) Initialize: Set a = zmin, b = zmax and the tolerance ε = 10−2.
2) while b− a > ε do
3) Calculate c = a+ 0.382(b− a), d = a+ 0.618(b− a);
4) Obtain Φ(c) and Φ(d) by solving problem (37) (or (45) using SCA
5) to update variables);
6) if Φ(c) ≤ Φ(d) then
7) Update a = c.
8) else
9) Update b = d.

10) endif
11) end while
12) Output:The optimal solutions Qn and Qf can be obtained by solving

(37) (or (45)) with the optimal z = (a+ b)/2.

A, B to prove the optimality of the obtained solutions, and is
omitted for brevity.

Compared to the problem in (37), the problem in (45)
contains SOC constraints, which can be solved more efficiently
than LMI constraints. This means that the LDI-based approach
can achieve lower complexity compared with the BTI-based
approach. More analyses for the computational complexity
will be provided in the next section.

Based on the aforementioned approximation and transfor-
mation, the inner-level optimization can be converted into
the convex form. Hence, the optimal solution to P2 can be
obtained by using GSS-based algorithm. The detailed process
of solving P2 is summarized in Algorithm 2.

V. COMPUTATIONAL COMPLEXITY

In this section, the computational complexities of the pro-
posed schemes are mathematically characterized. We apply
standard interior-point methods (IPM) to solve the problem
in (20), (37), and (45) at each iteration step since these three
problems involves LMI and SOC constraints [40, Lecture 6].
According to [37], the complexity consists of two components,
namely, iteration complexity and per-iteration computation
cost. Specifically, the complexity is mainly determined by
the number of variables, the number and the size of LMI
constraints as well as the number and the size of the SOC
constraints and the size. We set k as the number of decision
variables, set Lworst, LBTI and LLDI as the SCA iteration
number for the worst-case method, the BTI-based approach
and the LDI-based approach and set QBTI , QLDI as the line
search number for the BTI-based approach and the LDI-based
approach.

1) Worst-case approach: problem in (20) has 2N2+1 design
variables and 11 slack variables, 3 LMI constraints of size
N+1, 2 LMI constraints of size N+2, 2 LMI constraints
of size N and 7 linear constraints.

2) BTI-based approach: problem in (37) has 2N2+1 design
variables and 5 slack variables, 5 LMI constraints of size
N , 1 LMI constraints of size N + 1, 3 SOC constraints
of size N2 +N + 1 and 11 linear constraints.

3) LDI-based approach: problem in (45) has 2N2+1 design
variables and 8 slack variables, 1 LMI constraints of size
N + 1, 2 LMI constraints of size N , 3 SOC constraints
of size N2 + 1, 3 SOC constraints of size N + 1 and 8
linear constraints.

The computational complexities of the proposed approaches
are presented in Table I. As shown in the table, the compu-
tational complexity of the BTI-based approach is greater than
that of the LDI-based approach, since the BTI-based approach
contains too many LMI constraints.

VI. NUMERICAL RESULTS

In this section, via numerical results, we evaluate the perfor-
mance of the proposed algorithms for a SWIPT-based cooper-
ative NOMA system. Throughout the simulation, we assume
that the two users are randomly deployed in a square area (10-
meter × 20-meter) and the transmitter is allocated at the edge
with a coordinate (0, 10-meter). The transmitter is equipped
with 3 antennas. We use the Euclidean distance d and path loss
exponent α to present the distance-dependent pass loss model
d−α. In order to distinguish the channel conditions of the two
user, we assume that α = 2 is for the near user and α = 4
is for the far user. For simplicity, it is assumed that the noise
power spectral density is σ2

f1
= σ2

f2
= σ2

n = −90 dBm/Hz,
the channel error covariance matrix is Cf = Cn = ζ2I, the
outage probability p = pfn = 0.01 and the available bandwidth
is 1 MHz. Without loss of generality, we use Rician fading
model to generate all channels, in which the Rician factor is
K = 3. All the simulation results are obtained by taking an
average over 1000 independent channel realizations.

In order to provide meaningful insights into the design of
the robust algorithm for the SWIPT-based cooperative NOMA
system, we introduce the perfect CSI and non-robust schemes
as two baselines. The performance of these two baselines is
obtained based on the presumed CSI ĥn and ĥf . Moreover, in
order to provide a fair performance comparison between the
deterministic error model and the stochastic error model, the
radiuses of the uncertainty regions in the deterministic error
model should be set as follows [37]:

εn = εf =

√
ζ2F−12N (1− p)

2
. (46)

Fig. 2 displays the convergence behavior of the Algorithm
1 for three approximative approaches. As shown in figure,
the proposed SCA iterative algorithms used in different cases
converge after several iterations. Notice that the convergence
speed of the proposed SCA algorithm depends on the initial
values. If the initial values are relatively closer to the optimal
solutions, the algorithm converges faster.

Fig. 3 presents the sum rate of the various designs versus the
transmission power P . As shown in the figure, the performance
gap between the perfect CSI case and imperfect CSI cases in-
creases as the transmit power increases, because the transmitter
needs more energy to overcome the negative effects caused
by the uncertainty channel errors. An interesting phenomenon
shows that the BTI- and LDI-based approaches yield almost
identical the sum rate whereas the worst-case-based approach
has noticeable degradation, because the worst-case approach
provides more conservative design for the imperfect CSI
system. In addition, the proposed NOMA designs achieve the
better performance than the OMA design, which indicates
that the NOMA strategy is more effective in improving the
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TABLE I: Computational Complexity Analysis

Methods Complexity Order (Ignoring ln(1/ε) in O(·), where ε is accuracy).
Worst-Case O(Lworst ·

√
7(N+2)·k·[3(N+1)3+2(N+2)3+2N3+k(3(N+1)2+2(N+2)2+2N2)+12(k+1)+k2]), where k = O(2N2+12)

BTI-based O(QBTI ·LBTI ·
√

6(N+3)·k·[5N3(N+k)+(N+1)2(N+k+1)+3(N2+1)2 + 11(k+1)+k2]), where k = O(2N2+6)

LDI-based O(QLDI ·LLDI ·
√

3(N+7)·k·[(N+1)2(N+k+1)+2N2(N+k) + 3((N2+1)2+(N+1)2)+8(k+1)+k2]), where k = O(2N2+9)
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Fig. 2: Convergence performance of the proposed SCA it-
erative algorithm with P = 25 dBm, Rf = 1 Mbps and
ζ2 = 0.01.
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Fig. 3: Sum rate performance comparison of the various
methods with Rf = 1 Mbps and ζ2 = 0.01.

system SE under the imperfect CSI case. Besides, we observe
a peculiar behavior that the non-robust scheme undergoes
severe performance degradation compared with the proposed
robust schemes, which means that the non-robust deign is
sensitive to CSI uncertainties. To better understand the impact
of imperfect CSI on the non-robust design, we show the
empirical cumulative density function (CDF) of the achieved
sum rate and set the target rate of the far user Rf to be 1.5
Mbps in Fig. 4. As shown in the figure approximately 7% of
the sum rate is below 2 Mbps for the proposed robust methods
whereas approximately 30% is for the non-robust method. This
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Fig. 4: The empirical CDF of sum rate with P = 25 dBm,
Rf = 1.5 Mbps and ζ2 = 0.01.

is because the non-robust method is designed based on the
presumed CSI not the actual CSI. Also, there is no additional
power can be used to overcome the channel uncertainty. The
results in Fig. 3 and Fig. 4 indicates that the proposed robust
methods can efficiently guarantee the sum rate compared to
the non-robust method in the presence of imperfect CSIs.
Moreover, the sum rate generated under the stochastic error
model (BTI- and LDI-based approach) is higher than that
under the deterministic error model (worst-case approach).
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Fig. 5: Feasibility performance of the various methods with
P = 25 dBm and ζ2 = 0.01.

Fig. 5 plots the feasible probability versus the target rate of
the far user with various methods. One can observe that the
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feasible probability of all schemes decreases as the target rate
of the far user increases. Remarkably, the feasible probability
of the perfect CSI scheme can achieve about 70% when the
target rate of the far user is 4 Mbps, whereas the best feasible
probability of the imperfect CSI schemes only can achieve
about 28%. In particular, the BTI-based method has the best
feasible probability performance followed by the LDI-based
method. The worst-case method under the deterministic error
model has the worst feasible probability performance. From
another perspective, with the same feasible probability, the
proposed NOMA strategy can support the higher data rate
for the far user under the imperfect CSI case compared to
the OMA strategy, which indicates that the proposed NOMA
strategy can significantly mitigate the negative effects caused
by the uncertainty channel.
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Fig. 6: Achievable rate performance of the near user versus
channel uncertainty ζ2 with Rf = 1 Mbps and P = 25 dBm.

Fig. 6 investigates the impact of channel uncertainties on the
system performance with different outage tolerance p. As the
figure shows, the sum rate of the system becomes worse when
the channel uncertainty range increases, because the portion
power used for information transmission is allocated to over-
come the impacts of the channel uncertainties. Remarkably,
the BTI- and LDI-based approaches can efficiently improve
the system performance compared to the worst-case method
in the presence of imperfect CSI. Furthermore, we find that
the stricter outage tolerance (p = 0.01) generates the higher
sum rate compared to the relaxed outage tolerance (p = 0.1).

Fig. 7 displays the rate tradeoff between the near user and
the far user with the different approaches. It is observed that
the achievable data rate of the near user decreases as the data
rate requirements for the far user for all schemes increase,
because the transmitter needs to allocate more power to satisfy
the data rate requirement of the far user. This figure also proves
that the non-robust method is more sensitive to uncertainty
channels. Moreover, the performance gap between the three
approaches under the imperfect CSI case becomes slightly
bigger when the target rate of the far user increase. The
BTI-based approach can provide more reliable transmission
compared to other two approaches no matter for the high or
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Fig. 7: Achievable rates tradeoff between the near user and far
user with P = 25 dBm and ζ2 = 0.01.

low data requirements of the far user.
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Fig. 8: Average runtimes of the various methods.

The average computation time of the various methods under
the imperfect CSI case is shown in Fig. 8. The analysis of
the computational complexity for the proposed approaches has
been provided in section V. The results are obtained by using
a desktop PC with 64-bit Intel(R) Core (TM) i7-7700HQ and
8 GB RAM. From the figure, we see that the computation
time significantly increases with increasing the number of the
transmit antenna. When the transmit antenna is greater than
4, the computation time of the worst-case method has a faster
increase compared to the other approaches, and the LDI-based
approach has the lowest computation time.

VII. CONCLUSION

In this paper, we have proposed a cooperative SWIPT-
aided NOMA transmission scheme to design an efficient
robust beamforming under two types of channel error mod-
els, namely, the deterministic error model and the stochastic
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error model. The worst-case data rate maximization problem
was proposed under the deterministic error model. By using
SDR and SCA, the non-convex maximization problem can
be iteratively solved. An outage-constrained maximization
problem was proposed to design the robust beamforming
under the stochastic error model. A two-level optimization
algorithm was introduced to solve the problem. For the inner-
level problem, BTI- and LDI-based approaches have been
used to convert the chance constraints into the trackable
deterministic constraints. The SCA method has been used to
update the variables. The GSS-based algorithm was proposed
to find the optimal single variable in the outer-level problem.
Furthermore, a tightness analysis for the relaxation used in
the two error models has been provided to prove the rank-
one optimality. The computational complexity analyses of
proposed approaches have also been provided. Finally, the
simulation results show that the proposed robust algorithm can
efficiently reduce the impacts of imperfect CSIs compared to
the non-robust algorithm. Moreover, the stochastic error model
has been shown more suitable for the imperfect CSI design
compared to the deterministic error model.

APPENDIX A
PROOF OF PROPOSITION 1

By introducing several auxiliary variables (u, x, t, v, a, b),
the problem P1 can be rewritten as

max
Qn,Qf ,ρ,u,x,t,v,a,b

u (47a)

s.t. v2 ≥ u, (47b)

t2 ≥ γ1 − x, (47c)

4a+ (b− x)2 ≥ (b+ x)2, (47d)

Tr((ĥf+ef )Qf (ĥf+ef )H) ≥ a, (47e)

Tr((ĥf+ef )Qn(ĥf+ef )H)+
σ2
f1

Ps
≤ b, (47f)

Psρ(ĥn + en)HQn(ĥn + en)

σ2
n

≥ v2, (47g)

(1−ρ)ξPs|g|2(ĥn + en)H(Qn + Qf )(ĥn + en) ≥ t2, (47h)
C3− C6. (47i)

We introduce the following lemma to convert the constraints
in (47g) and (47h) into a quadratic matrix inequality (QMI).

Lemma 5: [31, Schur complement] Let N be a complex
Hermitian matrix as

N = NH =

[
U1 U2

UH
2 U3

]
. (48)

N � 0 is satisfied if and only if U1 −UH
2 U−13 U2 � 0 with

U3 � 0, or U3 −UH
2 U−11 U2 � 0 with U1 � 0.

Based on Lemma (5), (47g) and (47h) can be expressed as[
Psρ
σ2
n

v

v (ĥn + en)HQn(ĥn + en)

]
� 0, (49)[

(1−ρ) t

t
(ĥn+en)

H(Qn+Qf )(ĥn+en)
ξPs|g|2

]
� 0. (50)

APPENDIX B
PROOF OF THEOREM 1

For ease of expression, we first rewrite Tf
n, Tf , Tn, Dn

and Df
n in (14),(17),(18) as

Tf
n = Γfn + HH

n

Qf

γ1
Hn −HH

n QnHn, (51)

Tf = Γf + HH
f QfHf , (52)

Tn = Γn −HH
f QnHf , (53)

Dn = Θn + H
H

n QnHn, (54)

Df
n = Θf

n + H
H

n QnHn + H
H

n QfHn, (55)
(56)

where Γfn =

[
λI 0

0 − σ2
n

Psρ
−λε2n

]
, Hn =

[
IN ĥn

]
,

Γf =

[
µλI 0

0 −a− µε2f

]
, Γn =

[
θλI 0

0 b− θε2f −
σ2
f1

Ps

]
.

Θn =


Psρ
σ2
n

v 01×N

v −α 01×N

0N×1 0N×1
α
ε2n

I

, Hf =
[
IN ĥf

]
, Θf

n =

ξ(1−ρ)Ps|g|2 t 01×N

t −β 01×N

0N×1 0N×1
β
ε2n

I

, Hn =
[
0N×1 ĥn IN

]
.

We denote Ξ as a collection of all the dual and primal variables
related problem (20). Then, the Lagrangian function of the
primal problem (20) is given by

L(Ξ) = Tr(Af
nΓfn)+

Tr(Af
nHH

n QfHn)

γ1
−Tr(Af

nHH
n QnHn)

+Tr(AfΓf )+Tr(AfH
H
f QfHf )+Tr(AnΓn)

−Tr(AnHH
f QnHf )+Tr(BnΘn)+Tr(BnH

H

n QnHn)

+Tr(Bf
nΘf

n)+Tr(Bf
nH

H

n QnHn)+Tr(Bf
nH

H

n QfHn)

+Tr(CnQn)+Tr(CfQf )−δ(Tr(Qn+Qf )−1)+Λ, (57)

where Λ denotes the collections of variables not related to
Qn and Qf . Af

n ∈ HN+1
+ , Af ∈ HN+1

+ , An ∈ HN+1
+ , Bn ∈

HN+2
+ , Bf

n ∈ HN+2
+ , Cn ∈ HN+ , Cf ∈ HN+ , and δ ∈ R+

are dual variables associated with Γfn � 0, Γf � 0, Γn � 0,
Dn � 0, Df

n � 0, Qn � 0, Qf � 0, and Tr(Qn + Qf ) ≤ 1,
respectively.

The KKT conditions relevant to the proof can be defined as

Cn = C
′

n −Hn(Bn + Bf
n)H

H

n , (58a)

Cf = C
′

f −HnBf
nH

H

n , (58b)

Af
nTf

n=0,AnTn=0,AfTf =0 BnDn=0, (58c)

Bf
nDf

n=0,CnQn=0,CfQf =0, (58d)

where C
′

n = δI + HnAf
nHH

n + HfAnHH
f and C

′

f = δI −
HnAf

nHH
n

γ1
−HfAfH

H
f . Since δ > 0, Af

n � 0, and An � 0,
we obtain C

′

n � 0. If Bn + Bf
n = 0, we obtain Cn � 0,

which indicates Qn = 0. It shows that Qn = 0 cannot be the
solution to the problem. Hence, Bn + Bf

n � 0 always holds.
Besides, since Bn � 0 and Bf

n � 0, Bn � 0 and Bf
n � 0
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always hold. Then, left-multiplying the two sides of (58a) by
Qn, we obtain

Qn(δI+HnAf
nHH

n+HfAnHH
f )=QnHn(Bn+Bf

n)H
H

n . (59)

We hold the following relation

rank(Qn)
(a)
= rank(Qn(δI+HnAf

nHH
n+HfAnHH

f )

(b)
= rank(QnHn(Bn+Bf

n)H
H

n )

(c)

≤ min{rank(Hn(Bn+Bf
n)H

H

n ), rank(Qn)}, (60)

where (a) is due to C
′

n � 0, (b) and (c) are based
on the rank inequality property [39]. If we can prove that
rank(Hn(Bn+Bf

n)H
H

n ) ≤ 1, we will obtain rank(Qn) ≤ 1.
Next, we consider the following two facts:

[0N×1 0N×1 IN ]H
H

n = IN , (61)

[0N×1 0N×1 IN ]Θn =
α

ε2n
(Hn − [0N×1 ĥn 0N×1]). (62)

Premultiplying [0N×1 0N×1 IN ] and postmultiplying H
H

n to
DnBn, we have

α

ε2n
(Hn−[0N×1 ĥn 0N×1])BnH

H

n +QnHnBnH
H

n =0

⇒ (
α

ε2n
I+Qn)HnBnH

H

n =
α

ε2n
[0N×1 ĥn 0N×1]BnH

H

n . (63)

Similarly, we have

(
β

ε2n
I+Qn+Qf )HnBf

nH
H

n =
β

ε2n
[0N×1 ĥn 0N×1]Bf

nH
H

n. (64)

Since α > 0 and β > 0 always hold, rank(HnBnH
H

n ) =

rank([0N×1 ĥn 0N×1]BnH
H

n ) and rank(HnBf
nH

H

n ) =

rank([0N×1 ĥn 0N×1]Bf
nH

H

n ). Furthermore, we have
rank(Hn(Bn + Bf

n)H
H

n ) = rank([0N×1 ĥn 0N×1](Bn +

Bf
n)H

H

n ) ≤ 1. Therefore, rank(Qn) ≤ 1.
Next, we introduce the following lemma to prove the rank

of Qf .
Lemma 6: Define X and Y as two matrices with the same

dimension. Then, rank(X+Y) ≥ rank(X)−rank(Y) always
hold.

Proof: Based on the rank inequality property [39],
we know that rank(X + Y) ≤ rank(X) + rank(Y) and
rank(−X) = rank(X). Replacing X by X + Y, we have
rank(X + −Y) + rank(Y) ≥ rank(X). Then, Lemma 6 is
proved.
Since Bf

n � 0 always holds, rank(Cf ) ≥ rank(C
′

f ) −
rank(HnBf

nH
H

n ) = rank(C
′

f ) − 1. In addition, we obtain
Cf is full rank matrix, C

′

f � 0. We have rank(Cf ) ≥ N−1.
If Cf is full rank, Qf = 0, which cannot be the solution to
the problem. Hence, we have rank(Cf ) = N − 1. According
to (58d), we can prove that rank(Qf ) ≤ 1 always holds.
Combining the rank analysis of Qn and Qf , the proof of
theorem 1 is completed.

APPENDIX C
PROOF OF THEOREM 2

In this part, we will prove the relaxation tightness of the
problem (37). First, we need to deal with the SOC constraints
in the problem (37). The SOC constraint (32b) can be approx-
imated as

(37)⇔
√
‖C

1
2
nQnC

1
2
n‖2F + 2‖C

1
2
nQnĥn‖22

(a)

≤
√
‖C

1
2
nQn‖2F (‖C

1
2
n‖2F + 2‖ĥn‖22)

(b)

≤
√

Tr(QnQH
n )

√
Tr2(Cn) + 2Tr(Cn)‖ĥn‖22

= Tr(QnQH
n ) ≤ l2 (65)

where l2 = λ2

Tr2(Cn)+2Tr(Cn)‖ĥn‖22
. Step (a) and (b) is due to

the property of the matrix norm [39]. Furthermore, (65) can
be rewritten as the following LMI

Tr(QnQH
n ) ≤ λ2

l2
⇒

[
lI Qn

QH
n lI

]
� 0, (66)

which can eventually rewritten as[
lI 0

0 lI

]
�

[
I

0

]
Qn

[
0 −I

]
+

[
0

−I

]
Qn

[
I 0

]
. (67)

Also, we know ‖Qn‖F ≤ l. Then, we introduce Nemirovski
lemma to further deal with (67).

Lemma 7: [41, Lemma 2] For a given matrices A = AH ,
B, and C, A � BHXC+CHXHB with ‖X‖ ≤ t is satisfied
if and only if the following LMI is satisfied with a real number
a ≥ 0 [

A− aCHC −tBH

−tB aI

]
� 0. (68)

By applying Lemma 7 to (67), the SOC constraint (32b) can
be finally converted into the following LMI constraint, which
does not involve Qn

[
lI 0

0 lI

]
− a

[
0

−I

] [
0 −I

]
−l

[
I

0

]
−l
[
I 0

]
aI

 � 0. (69)

Similarly, the SOC constraints (34b) and (35b) also can be
converted into the LMI constraints without the variables Qn

and Qf based on Lemma 7.
The Lagrangian function of the problem (37) is given by

L=−aTr(RQn)−Tr(ΠQn)−bTr(R(
Qf

γ1
−Qn))

−Tr(Ξ(
Qf

γ1
−Qn))−cTr(R(Qf+Qn))−Tr(ΦnQn)

− Tr(Ψ(Qf+Qn))−
Tr(GHH

f QfHf )

z
+Tr(GHH

f QnHf )

− Tr(ΦfQf )+δTr(Qf+Qn) + Λ (70)

where R = Cn + ĥnĥHn , Π = C
1
2
nAC

1
2
n , Ξ = C

1
2
nBC

1
2
n ,

Ψ = C
1
2
nDC

1
2
n . And A ∈ HN+ , B ∈ HN+ , D ∈ HN+ , Φn ∈ HN+ ,

Φf ∈ HN+ , G ∈ HN+1
+ , a, b, c, δ are dual variables associated
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with the constraints in (37). Note that Λ denotes the collections
of variables not related to Qn and Qf . Then, the relevant KKT
conditions can be defined as

δI + (
b

γ1
+ c)R +

Ξ

γ1
+ Ψ + Cf =

HfGHH
f

z
, (71a)

CnQn = 0, CfQf = 0, (71b)
δ(Tr(Qn + Qf )− 1) = 0, (71c)
Qn � 0, Qf � 0, Cn � 0, Cf � 0. (71d)

Left-multiplying the two sides of (71d) by Qf , we obtain

Qf (δI + (
b

γ1
+ c)R +

Ξ

γ1
+ Ψ + Cf ) =

HfGHH
f Qf

z
(72)

From the prove in Appendix B, we know that rank(Qf ) =
min{rank(HfGHH

f ), rank(Qf )} with δI+ ( b
γ1

+ c)R+ Ξ
γ1

+

Ψ + Cf � 0. The proof of rank(HfGHH
f ) ≤ 1 is similar

to the proof of rank(Bf
nDf

nH
H

n ) in Appendix B. Hence, we
can prove that rank(Qf ) ≤ 1 and rank(Qn) ≤ 1. The proof
is completed.
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