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Summary statement: Little is known about how organisms perceive and respond to changes in 

nutrient availability, and this paper provides evidence for a novel role of Drosophila Acer in 

behavioural and metabolic responses to diet.  
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Abstract 

Drosophila Acer (Angiotensin-converting enzyme-related) encodes a member of the angiotensin-

converting enzyme (ACE) family of metallopeptidases that in mammals play roles in the endocrine 

regulation of blood homeostasis.  ACE is also expressed in adipose tissue where it is thought to play 

a role in metabolic regulation. Drosophila Acer is expressed in the adult fat body of the head and 

abdomen and is secreted into the haemolymph. Acer null mutants have previously been found to 

have reduced night time sleep and greater sleep fragmentation. Acer may thus be part of a signalling 

system linking metabolism with sleep. To further understand the role of Acer in response to diet, we 

measured sleep and other nutrient-responsive phenotypes in Acer null flies under different dietary 

conditions.  We show that loss of Acer disrupts the normal response of sleep to changes in nutrition. 

Other nutrient sensitive phenotypes, including survival and glycogen storage, were also altered in 

the Acer mutant but lipid storage was not.  Although the physiological substrate of the Acer 

peptidase has not been identified, an alteration of the normal nutrient dependent control of 

Drosophila insulin-like peptide 5 protein in the Acer mutant suggests insulin/IGF-like signalling as a 

candidate pathway modulated by Acer in the nutrient-dependent control of sleep, survival and 

metabolism.  
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Introduction 

Mammalian angiotensin I-converting enzyme (ACE) is a dipeptidyl carboxypeptidase, which 

plays a key role in the renin-angiotensin system (RAS) by converting angiotensin I into the 

vasoconstrictor angiotensin II.  ACE therefore plays a key role in the regulation of blood homeostasis 

(Corvol and Soubrier, 2004) and ACE inhibitors are widely prescribed to treat hypertension and other 

cardiovascular diseases (Hoogwerf, 2010, Slagman et al., 2010).  ACE, and other components of the 

RAS, have also been shown to be present in adipose tissue where a role in body fat deposition, 

glucose clearance and energy expenditure has been suggested (de Kloet et al., 2009, de Kloet et al., 

2010, Segura and Ruilope, 2007, Jayasooriya et al., 2008, Santos et al., 2008, Weisinger et al., 2009). 

ACE knockout mice have reduced body mass, despite normal food intake, and increased lipid 

metabolism compared to control littermates (Jayasooriya et al., 2008).  Studies with transgenic mice 

have shown that increasing the ACE gene dosage decreases fat deposition on a high fat diet 

(Heimann et al., 2005) and that under fasting conditions these mice have reduced adiposity 

compared to animals with a single ACE gene per haploid genome (Fonseca-Alaniz et al., 2017).  The 

apparently contradictory results from knockout and over-expression studies may be explained in 

part by the diversity of roles of the RAS, the ability of ACE to both activate and inactivate regulatory 

peptides, and secondary effects caused by loss of renal function in the knockout model (Fonseca-

Alaniz et al., 2017).   

The first invertebrate ACE was identified in 1994 in the house fly, Musca domestica 

(Lamango and Isaac, 1994).  Shortly thereafter, genes encoding homologues of mammalian ACE 

were identified in Drosophila melanogaster (Cornell et al., 1995, Tatei et al., 1995, Taylor et al., 

1996) and other insects (Burnham et al., 2005, Yan et al., 2017).  Genome sequencing has since 

revealed ACE-like genes throughout the animal kingdom and in a small number of bacterial species 

(Riviere et al., 2007) but, so far, none have been identified in protists, fungi or plants.  Where 

biochemical studies have been undertaken the enzymes encoded by these genes have been found to 

have similar catalytic activity to mammalian ACE (Houard et al., 1998, Riviere et al., 2007).  Humans 

and other vertebrates have a single ACE gene which codes for a somatic form of the enzyme with 

two catalytic domains and a testicular form with a single domain.  ACE2 is a related enzyme but with 

catalytically distinct carboxypeptidase activity (Donoghue et al., 2000, Tipnis et al., 2000).  In 

contrast, invertebrates usually have multiple ACE-like genes which can be grouped into distinct 

families according to sequence similarity (Isaac et al., 2007).  Gene duplication in some cases has 

also led to tandem clusters of ACE-like genes; for example Anopheles gambiae has a cluster of six 

ACE-like genes on chromosome 3 (Burnham et al., 2005).  Drosophila melanogaster has six ACE-like 

genes, two of which (Ance and Acer) encode catalytically active enzymes (Coates et al., 2000).  The 
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proteins encoded by the other four genes (Ance-2, Ance-3, Ance-4 and Ance-5) lack essential active 

site amino acids and are predicted to be catalytically inactive (Coates et al., 2000).  Despite the 

conservation of the ACE family across the animal kingdom, little is known about the function of ACE-

like proteins in invertebrates and no in vivo substrates have been identified, although there are a 

number of candidates from in vitro studies (Siviter et al., 2002).   

In situ hybridisation and immunolocalisation studies have shown that Drosophila Ance is 

expressed in adult male reproductive tissues (Hurst et al., 2003, Rylett et al., 2007) but no fat body 

expression has been reported.  Acer, on the other hand, is expressed strongly in adipose tissue (fat 

body) of the adult head and abdomen, and is secreted into the haemolymph (Carhan et al., 2011).  

Acer null mutants have been found to have reduced night time sleep and greater sleep 

fragmentation (Carhan et al., 2011), but little is known about the mechanism by which Acer 

modulates sleep. Sleep is a process that is conserved across the animal kingdom and studies on fruit 

flies, rodents and humans have demonstrated the importance of sleep to maintain a healthy 

existence (Cirelli and Tononi, 2008, Killgore, 2010). Sleep in Drosophila is thought to be regulated by 

at least some of the biochemical pathways known to affect sleep in mammals (for review see 

(Bushey and Cirelli, 2011)) and the fly has thus become a principal model organism to investigate the 

mechanisms of sleep. Numerous systems including diet (Broughton et al., 2010, Catterson et al., 

2010b, Yamazaki et al., 2012, Linford et al., 2012)  and the nutrient sensing insulin/IGF-like signalling 

(IIS) pathway (Metaxakis et al., 2014, Cong et al., 2015) modulate sleep in flies. Similarly to humans, 

sleep patterns in flies are sexually dimorphic and sex-specific sleep is controlled by the central 

nervous system and by the fat body (Khericha et al., 2016).  The fat body also plays an important role 

in nutrient sensing and communication with insulin-like peptide (ILP) neurosecretory cells (Rajan and 

Perrimon, 2012, Delanoue et al., 2016).  The fat body of the fly is an important, multifunctional 

organ involved in metabolism and hormone secretion with functional similarities to vertebrate liver 

and adipose tissue (Liu et al, 2009). Co-expression of Acer with dilp 6, Clk and Cyc in this organ 

suggests a potential role for Acer in the regulation of sleep by nutrition and/or IIS (Xu et al., 2008, 

Santos et al., 2009). It is possible that Acer functions in the fat body or haemolymph to process fat 

body-derived signalling peptides. 

To investigate further Acer’s role in sleep and other nutrient-sensitive responses we 

measured phenotypes including sleep, longevity and nutrient storage in response to changes in diet 

in Acer null flies.  Dietary restriction (DR) is an evolutionarily conserved intervention that extends 

lifespan in many organisms from yeast to mammals  (Jiang et al., 2000, Lin et al., 2000, Houthoofd et 

al., 2003, Klass, 1977, Lakowski and Hekimi, 1998, Kaeberlein et al., 2006, Magwere et al., 2004, Mair 

et al., 2003, Masoro, 2005). In Drosophila, DR is achieved by dilution of yeast in the food medium 
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such that lifespan peaks at an intermediate concentration of yeast (DR diet) and decreases at a high 

yeast concentration (Fully Fed (FF) diet) (Bass et al., 2007). At lower food levels, lifespan decreases 

because of starvation. The response of Acer null flies to lifespan extending Dietary Restriction and to 

mild and complete starvation diets was determined.  

We show that loss of Acer disrupts the normal response of sleep, survival and glycogen 

storage to changes in nutrition. Although the substrate of the Acer peptidase has not been 

identified, an alteration of the normal nutrient dependent control of Drosophila insulin-like peptide 

5 protein in the insulin-like peptide-producing cells (IPCs) in the brain of the Acer mutant suggests 

insulin/IGF-like signalling as a candidate pathway modulated by Acer in the nutrient-dependent 

control of sleep, survival and metabolism.  We suggest that ACE may play an evolutionarily 

conserved role in adipose tissue as a mediator of nutrient signalling pathways. 

 

Materials and Methods 

Fly Stocks and Maintenance  

The AcerΔ168 deletion (Carhan et al., 2011) was backcrossed 6 times into the whiteDahomey outbred 

backgrounds, as previously described (Broughton et al., 2005). Stocks were maintained and 

experiments conducted at 25˚C on a 12h:12h light:dark cycle at constant humidity. Flies for all 

analyses were raised on standard sugar/yeast medium (Bass et al., 2007) before transfer to the 

appropriate diet, as described later. Flies for all experiments were reared at standard larval density 

on standard sugar/yeast food, as previously described (Broughton et al., 2005). Eclosing adults were 

collected over a 12 hour period and mated for 48 hours before sorting into single sexes.  

 

Dietary manipulations 

The dietary manipulations were: Starvation (0% sugar and yeast), Low (1% sugar and yeast), Dietary 

Restriction (DR = 5% sugar and yeast) and Fully Fed (FF= 5% sugar and 20% yeast). Standard food for 

maintenance of stocks and rearing experimental flies contained 5% sugar and 10% yeast. Recipes for 

all diets are shown in Table 1. Dietary restriction was achieved using an optimised regime with sugar 

at a constant 5% as described in (Bass et al., 2007). Mild starvation was achieved using 1% sugar and 

yeast (Low diet) (Broughton et al., 2010). Complete starvation (0) was achieved using 1.5% agar 

medium.   
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Acer expression analysis 

Following backcrossing to the wDah genetic background, the presence of the AcerΔ168 deletion was 

confirmed by PCR and Western blot. Single fly genomic PCR was performed using screening primers, 

as described in (Carhan et al., 2011). The primer sequences were: Forward 

TGTCCGGAATGCGGGTGTTCC and Reverse: TCGATCATGGCCTGGCGATTC. Protein was extracted from 

5 bodies per sample and Western blots performed using the protocol described in (Broughton et al., 

2008) using 10% SDS gels and an anti-Acer antibody (Carhan et al, 2011)_at 1/2000 dilution.   

 

Lifespan  

Lifespan analyses were carried out as described in (Clancy et al., 2001) and (Mair et al., 2003). 

Lifespan was measured in once-mated female and male flies kept at 10 ⁄ vial on the indicated food 

medium and transferred to new food three times a week. Deaths were scored 5–6 times in every 7 

days. 

 

Sleep 

Flies were generated as for lifespan experiments on standard food and entrained at 25°C in a 12:12h 

light/dark cycle. Flies were transferred to Low, DR or FF diets at 5 days old in groups of 10 flies/vial, 

and maintained under the same conditions for 2 days.  At 7 days old individual flies (n=12-18) were 

placed in Trikinetics Drosophila Activity Monitors in tubes (5mm x 65 mm made of polycarbonate 

plastic) containing the appropriate food medium and activity was monitored in 1 minute bins for 3 

days at 25°C in a 12h light/dark cycle.  Sleep was defined as 5 minutes of inactivity, as described in 

(Shaw et al., 2000), and activity and sleep parameters calculated using BeFLY! Analysis Tools v7.23 

(Ed Green) in Excel. Analyses were performed using data collected from days 2-3.   

 

RNA Extraction and cDNA synthesis 

RNA was extracted from 20 heads of 10 day old flies following 48-h feeding on the indicated diet, 

with three to six independent head RNA extractions performed per genotype per diet. RNA was 

extracted using Tri Reagent (Sigma), in 1.7mm Zirconium Bead Ribolyser tubes (OPS DIAGNOSTICS), 

according to the manufacturer’s instructions. mRNA in total RNA was reverse transcribed using 

oligo(dT) primers and Superscript III First-Strand Synthesis System (Invitrogen). 
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QPCR 

dilp5 transcript levels were measured by QPCR using SYBR Green (Sigma), and dilp5 expression was 

normalised to 3 reference genes: actin5C (Broughton et al. 2005), tubulin and Rpl32 (Ponton et al., 

2011). QPCR reactions were performed in 20 µl total volumes with 2 µ of cDNA, 100 nM of each 

primer and SYBR Green master mix (Sigma) in 96-well optical plates (Bio-Rad). The cycling conditions 

were: incubation at 95°C for 2 min, followed by 40 cycles of 95°C for 30s, 58°C for 30s and 72°C C for 

30s. QPCR relative expression values were determined by the 2-∆∆CT method, following confirmation 

of PCR efficiency. 

 

 

Immunohistochemistry 

Immunohistochemical analysis of DILP5 protein in whole mount brains of 10-day-old females 

following 48-h feeding on the indicated food was performed as described in (Lee et al., 2000). Anti-

DILP5 primary antibody (Broughton et al., 2010) was used at a dilution of 1:50 followed by a 

Fluorophor 488 labelled anti-rat secondary antibody (Molecular Probes) at 1:500 dilution. Confocal 

imaging of Fluorophor 488 fluorescence was carried out on an LSM 880 confocal microscope using 

the same settings for each sample. Confocal image stacks were converted to projections and relative 

quantifications of DILP5 levels in the Insulin-producing cells (IPCs) were performed in Image J (NIH, 

Bethesda, MD, USA) by measuring integrated density over a defined area encompassing the IPC 

cluster in each brain image examined. 

 
Lipid and Glycogen analysis 

The glycogen and lipid content of individual, adult female flies were measured in 10 day old flies as 

described in (Broughton et al., 2005). Data are expressed relative to the fresh body weight of each 

fly. 

 

Feeding Assay 

Direct quantification of food consumption (brilliant blue dye quantification), was carried out as 

described in (Wong et al., 2009).  

 

Statistics 

All statistical analyses were performed using JMP (version 8) software (SAS Institute Inc., Cary, NC, 

USA), p<0.05. Lifespan data were subjected to survival analysis (Log Rank tests). Other data 

(glycogen, lipid, QPCR, sleep, feeding and DILP levels) were tested for normality using the Shapiro-
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Wilk W test on studentised residuals (Sokal & Rohlf, 1998) and found to be normally distributed. 

Analyses of variance (ANOVA) were performed to test for significant effects (diet and genotype), 

P<0.05. Planned comparisons of means were made using Tukey–Kramer HSD.  

 

 

 

Results 

The Acer deletion Δ168 (Carhan et al., 2011) was backcrossed six times into the wDah genetic 

background, and PCR and Western blot analyses confirmed the presence of the deletion in the 

wDah;AcerΔ homozygote following backcrossing (Fig. S 1 and Fig. S2). We then investigated how loss 

of Acer affects sleep and other phenotypes that are responsive to changes in diet.  

 

Loss of Acer disrupts the normal dietary modulation of sleep.   

Activity and sleep were measured in 7 day old wDah;AcerΔ and wDah male and female flies 

following transfer to Low, DR and FF diets 2 days prior to testing.  

As expected diet had a significant effect on total activity and total sleep over a 24 hour 

period in control wDah female flies (Fig. 1, Table S1), which displayed significantly lower activity (Fig. 

1A) and longer sleep duration (Fig. 1B, Table S1) on the FF diet compared to the Low diet. This 

response of total sleep duration to diet was due to a similar effect of diet on day and night sleep 

duration – control wDah females slept longer during both the day and night periods on the FF diet 

compared to the Low diet  (Fig. 1E,F, Table S1). The longer sleep duration of wDah control females on 

FF food compared to Low food was predominantly due to a significantly longer mean sleep bout 

length on FF compared to Low and DR diets (Fig. 1D, Table S1). The number of sleep bouts of 

controls responded less strongly to diet, with a significant difference between Low and DR diets (Fig. 

1C, Table S1). wDah;AcerΔ females, however, did not show the normal response of total activity, total 

sleep and day time sleep to diet (Fig. 1A, B and F, Table S1). wDah;AcerΔ females were less active and 

slept more than wDah controls on the Low diet, but behaved similarly to control wDah females on DR 

and FF diets. Night sleep duration did respond significantly to diet in wDah;AcerΔ females with 

significantly  longer sleep duration on the FF diet compared to the DR and Low diets (Fig. 1E and 

Table S1). However, although night sleep duration in wDah;AcerΔ females showed a normal change in 

response to diet, wDah;AcerΔ females slept significantly longer than wDah controls on the Low and FF 

diets (Fig. 1F). Thus, underlying the observed lack of a dietary response of total sleep duration over a 

24 hour period in wDah;AcerΔ females was a differential effect of  loss of Acer on day and night time 
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sleep duration. Sleep bout parameters in wDah;AcerΔ females showed an altered response to diet 

compared to wDah controls (Fig. 1C-F, Table S1). Number of sleep bouts per day was significantly 

altered by diet in wDah;AcerΔ females between Low and DR diets and between DR and FF diets (Table 

S1), but wDah;AcerΔ females did not show the same response as wDah controls, performing fewer 

bouts of sleep than wDah controls on the FF diet (Figure 1C). The mean sleep bout duration of 

wDah;AcerΔ females responded to diet (Figure 1D, Table S1), but again displayed a different response 

than wDah controls with wDah;AcerΔ females displaying longer sleep bouts than controls on Low and FF 

diets. These data indicate that: (1) wDah;AcerΔ females sleep longer than wDah controls on Low food 

due to an increase in sleep bout duration; and (2) the apparently normal total 24 hour sleep 

behaviour of wDah;AcerΔ females on the FF diet (Figure 1B) was the result of wDah;AcerΔ females 

performing fewer, but longer bouts of sleep than wDah controls on this diet (Figure 1C and D).  

 The effect of diet and Acer deletion on sleep and activity in male flies was similarly analysed. 

In contrast to wDah control females, sleep and activity parameters in wDah control males were less 

responsive to diet (Fig. 2). Only the number of sleep bouts per day responded significantly to diet, 

with wDah males displaying fewer sleep bouts on FF food compared to Low and DR foods (Fig. 2C, 

Table S2). All sleep and activity parameters, including number of sleep bouts per day, did not 

respond significantly to diet in wDah;AcerΔ males (Fig. 2A-F). In addition, compared to wDah   control 

males,  wDah;AcerΔ males performed significantly fewer and longer total sleep bouts per day and slept 

longer during the night.  

Together, these data indicate that Acer is involved in the normal dietary modulation of sleep 

and activity in male and female Drosophila.   

 

Loss of Acer alters the dietary modulation of lifespan. 

 The disruption of the diet responsiveness of sleep in wDah;AcerΔ flies led us to consider the 

effect of loss of Acer on other diet responsive phenotypes, and we next measured the effect of the 

Acer deletion on the dietary modulation of lifespan.  

The survival of wDah;AcerΔ  female flies compared to controls on starvation, Low, DR and FF 

diets in 2 independent experiments is shown in Figure 3. Dietary restriction (DR) is known to extend 

lifespan compared to full feeding (FF diet), and the wDah control females showed the expected 

response of lifespan to these diets. That is, DR significantly extended the lifespan of wDah females 

compared to the FF diet (Fig. 3 A and B), and wDah females were short lived on starvation and Low 

diets (Fig. 3 C and D). wDah;AcerΔ flies responded normally to Dietary Restriction, with extended 
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lifespan on DR compared to FF (Fig. 3 A and B), but they showed an altered response to the Low diet 

compared to controls. wDah;AcerΔ females were short-lived compared to wDah control females on the 

Low diet in both replicate experiments (Fig. 3 C and D).  

The survival of wDah;AcerΔ  male flies compared to controls on starvation, low, DR and FF 

diets in 2 independent experiments is shown in Figure 4A-D. wDah control males showed the 

expected response of lifespan to these diets, as wDah control males responded to DR with a small but 

significant lifespan extension, and were short lived on low and starvation diets (Fig. 4A-D). wDah;AcerΔ 

males responded normally to DR with extended lifespan on DR compared to FF diets (Fig. 4A-B). In 

contrast to the effect of loss of Acer in females, wDah;AcerΔ males were longer lived than controls on 

the DR diet (Fig. 4A-B). Similarly to females, wDah;AcerΔ males were shorter lived than controls on the  

Low diet (Fig. 4C-D). 

 These data show that Acer is not required for extension of lifespan due to dietary restriction 

(DR) in both males and females, but Acer does modulate the effect of DR in males. The data further 

indicate that Acer influences the response of lifespan to nutrient stress (Low diet) in both sexes.  

 

Loss of Acer alters the dietary modulation of glycogen storage. 

Stored levels of lipid and glycogen in Drosophila are known to respond to dietary intake of 

sugar and yeast (Skorupa et al., 2008). Levels of these stored energy sources, as well as fly weight, 

were measured in wDah;AcerΔ and wDah control flies following transfer to starvation, Low, DR  and FF 

diets 2 days prior to testing. 

Glycogen levels in wDah control females and males displayed a significant response to diet 

after 2 days of feeding (Fig. 5 A and B). In control females, glycogen levels increased with increasing 

dietary intake of sugar and yeast between starvation and DR diets but then showed a decrease on 

the FF diet (Fig. 5 A). In wDah control males, glycogen levels increased with increasing dietary intake 

between starvation and FF diets (Fig. 5 B). wDah;AcerΔ males and females had normal levels of 

glycogen on the starvation diet compared to controls but displayed significantly lower levels of 

glycogen than controls on DR and FF foods (Fig. 5 A and B). The response of wDah;AcerΔ flies to 

increasing dietary intake was therefore weakened compared to controls, indicating that Acer is 

involved in the normal dietary modulation of stored glycogen. 

The effect of diet on lipid levels in wDah control males and females is shown in Figure 5C and 

D. In contrast to the effect on glycogen storage, loss of Acer in wDah;AcerΔ flies had no effect on the 

normal nutrient responsive control of lipid levels (Fig. 5 C and D). The weights of wDah;AcerΔ males 
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and females compared to wDah controls showed a normal increase from starvation to FF diets (Fig. 5E 

and F), but female wDah;AcerΔ flies were significantly heavier than controls after 2 days of starvation 

(Fig. 5E). 

 

 

Loss of Acer alters the dietary modulation of Drosophila insulin-like peptide 5 (Dilp5). 

The data presented indicate that Acer plays a role in specific nutrient responsive 

phenotypes, but the mechanism of its action is unknown. Given that Acer is expressed in the fat 

body (Carhan et al., 2011) and is involved in the dietary modulation of sleep, lifespan and glycogen 

storage, we speculated that Acer may modulate Drosophila insulin-like peptides (Dilps) in response 

to nutrition. Transcription of the 8 dilps in adult Drosophila respond in different ways to varying the 

protein:carbohydrate ratio in the diet (Post and Tatar, 2016). A previous study analysed the response 

of dilps 2, 3 and 5 produced in the IPCs (insulin-producing cells) of the fly brain to varying diet 

(Broughton et al., 2010) using a similar dietary regime to that used here. In control female adult flies 

in the wDah genetic background, it was found that dilp 5 (both transcript and protein) was modulated 

by diet (Broughton et al., 2010). Therefore, we measured the effect of diet on dilp5 transcript and 

protein levels in wDah;AcerΔ flies to determine if this nutrient responsive phenotype is modulated by 

Acer.  

Similarly to the previous study (Broughton et al., 2010), dilp5 transcript levels in heads of 

wDah control flies were low under starvation and Low diet conditions and increased significantly on 

the FF diet (Fig. 6A). In wDah;AcerΔ flies, levels of dilp5 transcript responded to diet in a similar way – 

levels were low under starvation and low diet conditions and showed a significant increase on the FF 

diet (Fig. 6A). Thus, Acer is not required for the dietary control of dilp5 transcription. 

However, Dilp5 protein levels in the brain IPCs of wDah;AcerΔ flies did not respond to diet in 

the same way as controls. Dilp5 protein levels in wDah control IPCs were low under Low food 

conditions and increased significantly under DR and FF feeding (Fig. 6B and C, Fig. S2). Under 

starvation conditions, wDah control flies showed the expected high levels of Dilp5 protein in the IPCs, 

despite low transcription of the gene. However, Dilp5 protein levels in wDah;AcerΔ IPCs did not show a 

significant dietary response across Starvation, Low, DR and FF diets (Fig. 6B and C, Fig. S3). 

Interestingly, under starvation conditions, wDah;AcerΔ flies had significantly lower levels of Dilp5 in 

the IPCs compared to controls (Fig. 6B and C). These data show that Acer is not required for the 

normal response of dilp5 transcription to diet but is involved in the normal dietary control of Dilp5 

protein levels in adult IPCs. 
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Loss of Acer disrupts the dietary response of feeding behaviour in females but not males. 

Feeding behaviour in Drosophila is influenced by nutritional needs as well as food 

palatability and quality (Dus et al., 2011, Broughton et al., 2010).  Feeding was therefore measured 

in 7 day old wDah;AcerΔ  and wDah males and females on low, DR and FF diets. As expected, the feeding 

of wDah control females and males responded to diet, with control flies eating more of the lower 

quality Low diet than the higher quality FF diet (Fig. 7A and B). wDah;AcerΔ males ate a similar amount 

of each diet as controls and showed a normal response to diet (Fig. 7 B). These data show that Acer 

in males is not required for the normal response of feeding to diet, and indicate that the defective 

dietary responses of other phenotypes in wDah;AcerΔ males were not due to differences in the 

quantity of each food consumed. The feeding of female wDah;AcerΔ  flies, however, did not respond to 

diet in the same way as controls (Fig. 7A). wDah;AcerΔ  females ate a similar quantity of Low food as 

controls but they did not decrease their feeding on the DR and FF diets.  

 

 

Discussion 

 Previous research has shown that Drosophila Acer is involved in the control of night time 

sleep (Carhan et al., 2011).  The data presented here support this role in sleep regulation and further 

reveal that Acer is in fact involved in the normal response of both day and night time sleep to 

changes in nutrition. Other nutrient-responsive phenotypes are altered in the Acer mutant indicating 

that Acer is part of a wider nutrient-responsive mechanism that may involve regulation of the 

Drosophila insulin-like peptide (Dilp)-producing neurosecretory cells (IPCs) in the fly brain. Little is 

known about how organisms perceive and respond to changes in nutrient availability, and the data 

presented here provide evidence of a novel role for Acer in behavioural and metabolic responses to 

diet.  

Carhan et al (2011) measured sleep and activity in flies on a 5% sucrose diet and found that 

Acer null mutants had reduced night time sleep and increased sleep fragmentation compared to 

controls. The effect of loss of Acer in the present study was to generally increase sleep duration and 

decrease fragmentation. However, the diets used here containing varying concentrations of both 

sugar and yeast (1% to 20%) are not comparable to that used in (Carhan et al., 2011) which 

contained only sugar. Yeast in the diet is a source of protein, levels of which greatly influence 

lifespan and sleep (Linford et al., 2012, Broughton et al., 2010). Given the role of Acer identified here 
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in responding to dietary levels of sugar and yeast, the apparently contrasting effect of the Acer 

mutation on sleep between the two studies is likely due to the different diets used. It is also possible 

that the different genetic backgrounds of the flies in the two studies contributed to the differences 

in sleep patterns.  

Diet has been shown to play an important role in the modulation of sleep in Drosophila 

(Catterson et al., 2010a, Takahama et al., 2012, Linford et al., 2012). Interestingly, the IPCs, which 

are known to promote sleep as part of a neural circuit regulating sleep and arousal (Yurgel et al., 

2015), have been suggested to be involved in mediating the response of night time sleep to low food 

intake (Broughton et al., 2010).  IPC-ablated flies on Low food are more active and display less night-

time sleep than control flies (Broughton et al., 2010). The role of Acer identified here in the dietary 

regulation of Dilp5 protein levels in the IPCs identifies Acer as a novel regulator of these cells and 

raises the possibility that Acer modulates sleep in response to diet via this regulation of the IPCs. 

These data further raise the question of why Dilp5 protein levels in Acer IPCs did not respond 

normally to diet. The low levels of dilp5 transcript but high levels of Dilp5 protein in the IPCs under 

starvation conditions may indicate that Acer flies are defective in releasing Dilp5 protein. However, 

further research is needed to determine if the IPCs in Acer flies have defects in the dietary 

modulation of dilp5 translation and/or storage.  

Starvation resistance has been found to be linked to an increase in sleep in flies (Masek et 

al., 2014) potentially suggesting that longer sleep favours starvation resistance. Acer female flies 

showed an increase in night sleep duration on Low and FF diets and wDah;AcerΔ males showed an 

increase in night sleep duration on DR and FF diets. Although not consistent across all diets, the 

increased night time sleep of Acer mutants may have influenced their survival under nutrient stress. 

However, wDah;AcerΔ males and females were shorter lived than controls on the mild starvation 

(Low) diet (1% sugar and yeast) and survived similarly to controls under complete starvation 

indicating that in Acer null flies sleep quality does not correlate with nutrient stress resistance.  

Further research is needed to understand Acer’s mechanism of action but we can speculate 

that Acer’s influence on Dilp5 in the IPCs may also be involved in other diet-responsive phenotypes 

including DR lifespan extension. Dietary Restriction without malnutrition is an evolutionarily 

conserved intervention that extends lifespan and modulates ageing in model organisms (for review 

see (Fontana et al.).  The dietary regime used in this study (DR vs FF) is a well-established means of 

achieving DR lifespan extension in Drosophila (Wong et al., 2009, Grandison et al., 2009, Broughton 

et al., 2010). The mechanisms by which DR extends lifespan and improves health in model organisms 

are not fully understood but a number of neuronal, systemic, cell autonomous and tissue specific 
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mechanisms are thought to be involved (Fontana et al.).  In particular, the modulation of nutrient-

sensing signalling pathways such as the Insulin/IGF-like (IIS) and TOR network are closely linked to 

the lifespan effects of DR in flies (Piper and Partridge, 2007). Interestingly, the IPCs in the brain are 

required to mediate the response of lifespan to full feeding (FF diet) (Broughton et al., 2010). 

Although both wDah;AcerΔ males and females showed a normal lifespan extension on the DR diet 

compared to the FF diet, male wDah;AcerΔ flies were consistently longer lived than controls on the DR 

diet. Thus, although Acer is not required for lifespan extension by DR it does have a novel, sex-

dependent effect on the dietary modulation of ageing that we speculate may be mediated via 

regulation of the IPCs. The IPCs exist in the pars intercerebralis (PI) region of the fly brain, an area 

which is known to control sexually dimorphic locomotory behaviour (Belgacem and Martin, 2006, 

Gatti et al., 2000).  

Although Acer plays a role in only a subset of diet responsive phenotypes, it was possible 

that altered feeding behaviour could have been involved in the altered dietary responses of 

wDah;AcerΔ flies. The feeding of wDah;AcerΔ males, however, showed a normal response to diet, 

indicating that the altered responses of sleep, glycogen storage and survival in males were not due 

to differences in the quantity of each diet consumed. In females, although the response of feeding to 

diet in wDah;AcerΔ  flies was different to controls, the lack of response to diet did not correlate with 

the defects in other diet responsive phenotypes. For example, despite eating more than controls on 

DR and FF diets, wDah;AcerΔ  females stored less glycogen than controls and showed no difference in 

weight, lipid  and Dilp5 levels on these diets.  In addition, wDah;AcerΔ  females ate the same quantity 

of Low food as controls, but showed higher levels of Dilp5 in IPCs on this diet. Thus, it is unlikely that 

the altered dietary responses of wDah;AcerΔ  females were due to their altered feeding. Of particular 

interest in this respect is the effect of the Acer deletion on glycogen storage. wDah;AcerΔ  flies stored 

less glycogen than controls on DR and FF foods, but stored normal levels on Low and starvation 

diets. Glycogen levels in the fat body, along with hemolymph levels of trehalose and glucose, have 

been shown to decrease after prolonged starvation, which in turn triggers an internal taste-

independent metabolic sensing pathway controlling food preferences (Dus et al., 2011). The fat body 

(where Acer is expressed) and the IPCs have been suggested to be involved in this regulation of 

feeding behaviour (Erion and Sehgal, 2013, Xu et al., 2008). It is possible that the lower levels of 

glycogen in wDah;AcerΔ  females compared to controls on DR and FF diets were sufficient to trigger a 

metabolic response to increase feeding, in turn suggesting that the altered feeding in wDah;AcerΔ  

females is an indirect effect due to their lowered glycogen storage. 
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The demonstrated substrate specificity of the dipeptidyl peptidase activity of the purified 

enzyme (Houard et al., 1998, Siviter et al., 2002) suggests that Acer performs its role in modulating 

diet-sensitive responses by cleaving at the carboxy terminus of a small peptide substrate, leading to 

either activation or inactivation of the peptide by altering its affinity for its receptor.  Acer is made 

by the fat body and secreted into the haemolymph so it could potentially act within the secretory 

pathway to process a peptide made by the fat body itself but it could also act on peptides secreted 

by the fat body or other tissues into the haemolymph.  Our results suggest that a substrate, or 

product, of Acer modulates Dilp5 production and/or secretion from the IPCs in response to diet.  Of 

the known fat body signals that are known to act on the IPCs, the Unpaired2, Stunted and Eiger gene 

products are too large to be likely Acer substrates.  CCHamide2 (GCQAYGHVCYGGHamide) is unlikely 

to be cleaved by Acer owing to the blocked C-terminus and the cyclic nature resulting from the 

disulphide bond between the cysteines.  Another fat body signal that controls Dilp release from the 

IPCs in response to diet is Dilp6.  Starvation leads to increased Dilp6 release from the fat body which 

signals to the IPCs in the brain, repressing dilp2 and dilp5 (Slaidina et al., 2009).  Dilp6, however, is 

also unlikely to be a direct target of Acer owing to its size and disulphide bonds.  Although none of 

the identified fat body signals is likely to be an Acer substrate, Acer may play an upstream regulatory 

role in the release of one or more of these signals, or another unidentified signal, from the fat body 

or another tissue.  Another possibility is that Acer itself acts as a secreted signal from the fat body.  

Interestingly, the 'ACE' protein of the nematode C. elegans lacks enzyme activity but still plays a vital 

role in development (Brooks et al., 2003). The low activity of Drosophila Acer against most peptides 

tested in vitro (Siviter et al., 2002) may indicate that its enzyme activity is irrelevant to its function in 

modulating diet responses.  

The presence of ACE or ACE-like enzymes in adipose tissue of both vertebrates and insects 

and the requirement of these enzymes for appropriate responses to changes in diet, suggests a 

conserved, and possibly ancient, function for ACE.  If this were the case, ACE-like enzymes should be 

present in the adipose tissue of other invertebrates.  Our analysis of sequenced insect genomes 

reveals that Acer homologues are only present in the Brachyceran suborder of the Diptera (data not 

shown); however insects have multiple ACE-like enzymes and it is possible that Acer’s role is fulfilled 

by another enzyme in insects outside the Brachycera.  The lepidopterans, Bombyx mori and 

Spodoptera littoralis have both been shown to possess an ACE that is expressed in fat body (Yan et 

al., 2017, Lemeire et al., 2008). The evolution of Acer in the Brachycerans may be a consequence of 

mutation and loss of function of an ACE previously fulfilling the diet-response role. 
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Summary 

Drosophila Acer modulates a subset of behavioural and metabolic responses to diet.  

Although the mechanism of its action is currently unknown, its role in the normal dietary control of 

Dilp5 protein suggests that Acer may be involved in modulating some nutrient responsive 

phenotypes via regulation of the Drosophila insulin-producing neurosecretory cells. 
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Figures 

 

 

Figure 1. Activity and sleep behaviour of wDah;AcerΔ females compared to wDah controls under Low, 

DR and FF diets. (A) Total 24hr activity duration (mins/day). (B) Total 24hr sleep duration 

(mins/day). (C) Mean number of sleep bouts per day. (D) Mean sleep bout duration per day 

(mins/bout). (E) Night sleep duration (mins/12hrs). (F) Day sleep duration (mins/12hrs). N=18 for 

wDah on each food and wDah;AcerΔ on DR diet. N=15 for wDah;AcerΔ  on FF diet and N=12 for wDah;AcerΔ  

on Low diet. Data are presented as means ±SEM. Data were analysed by two-way ANOVA (genotype 

and diet effects) and planned comparisons of means performed using Tukey HSD. ANOVA found that 

diet was a significant effect (p<0.05) for all activity and sleep parameters, and planned comparisons 

of means for the effect of diet on each genotype were performed using Tukey HSD (p values are 

given in Table S1). ANOVA found that genotype was a significant effect (p<0.05) for total and night 

sleep duration, and mean sleep bout length.  * indicates significant differences (p<0.05) for planned 

comparisons of means of these parameters between wDah;AcerΔ  and wDah control genotypes on each 

diet.   

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

 

Figure 2. Activity and sleep behaviour of wDah;AcerΔ males compared to wDah controls under Low, 

DR and FF diets. (A) Total 24hr activity duration (mins/day). (B) Total 24hr sleep duration 

(mins/day). (C) Mean number of sleep bouts per day. (D) Mean sleep bout duration per day 

(mins/bout). (E) Night sleep duration (mins/12hrs). (F) Day sleep duration (mins/12hrs). N=18 for 

wDah on each diet and wDah;AcerΔ on DR and FF diet. N=14 for wDah;AcerΔ  on Low diet. Data are 

presented as means ±SEM. Data were analysed by ANOVA (genotype and diet effects) and planned 

comparisons of means performed using Tukey HSD. ANOVA found that diet was a significant effect 

(p<0.05) for mean number of sleep bouts per day, and planned comparisons of means for the effect 

of diet on each genotype were performed using Tukey HSD (p values are given in Table S2). ANOVA 

found that genotype was a significant effect (p<0.05) for number of sleep bouts, mean sleep bout 

length, and night sleep duration.  * indicates significant differences (p<0.05) for planned 

comparisons of means of these parameters between wDah;AcerΔ  and wDah control genotypes on each 

diet. 

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

 

Figure 3. Survival of female wDah;AcerΔ compared to wDah controls under starvation, Low, DR and FF 

diets in 2 replicate experiments. (A-B) Survival of once mated females under DR and FF diets. (A) 

Replicate experiment 1. Median lifespans and sample sizes were: wDah;AcerΔ  DR = 69 days, N=97; 

wDah;AcerΔ  FF = 53 days, N=96; wDah DR = 64 days, N=94; and wDah FF = 58 days, N=98. Both 

wDah;AcerΔ and wDah females showed an increased survival from FF to DR diet (Log rank test, P<0.05). 

wDah;AcerΔ was shorter lived than wDah on the FF diet (Log rank test, P=0.0139). (B) Replicate 

experiment 2. Median lifespans and sample sizes were: wDah;AcerΔ  DR = 54 days, N=93; wDah;AcerΔ  

FF = 31 days, N=98; wDah DR = 54 days, N=95; and wDah FF = 38 days, N=97. Both wDah;AcerΔ and wDah 

females showed an increased survival from FF to DR diet (Log rank test, P<0.05). (C-D) Survival of 

once mated females under starvation and Low diets. (C) Replicate experiment 1. Median lifespans 

and sample sizes were: wDah;AcerΔ  Starvation = 8.5 days, N=100; wDah;AcerΔ  Low = 13.5 days, N=124; 

wDah Starvation = 8.5 days, N=100; and wDah Low = 17 days, N=123. wDah;AcerΔ was shorter lived than 

wDah on the Low diet (Log rank test, P<0.0001). (D) Replicate experiment 2. Median lifespans and 

sample sizes were: wDah;AcerΔ  starvation = 9.5 days, N=100; wDah;AcerΔ  Low = 13 days, N=101; wDah 

Starvation = 8.5 days, N=100; and wDah Low = 13 days, N=99. wDah;AcerΔ was longer lived than wDah on 

the starvation diet (Log rank test, P=0.0025). wDah;AcerΔ was shorter lived than wDah on the Low diet 

(Log rank test, P=0.0081). 
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Figure 4. Survival of male wDah;AcerΔ compared to wDah controls under starvation, Low, DR and FF 

diets in 2 replicate experiments. (A-B) Survival of males under DR and FF diets. (A) Replicate 

experiment 1. Median lifespans and sample sizes were: wDah;AcerΔ  DR = 64 days, N=100; wDah;AcerΔ  

FF = 50.5 days, N=92; wDah DR = 50.5 days, N=104; and wDah FF = 43 days, N=98. Both wDah;AcerΔ and 

wDah males showed an increased survival from FF to DR diet (Log rank test, P<0.05). wDah;AcerΔ was 

longer lived than wDah on the DR diet (Log rank test, P=0.0002) and the FF diet (Log rank test, 

P=0.003). (B) Replicate experiment 2. Median lifespans and sample sizes were: wDah;AcerΔ  DR = 68 

days, N=100; wDah;AcerΔ  FF = 56.5 days, N=97; wDah DR = 61 days, N=97; and wDah FF = 54 days, N=94. 

Both wDah;AcerΔ and wDah males showed an increased survival from FF to DR diet (Log rank test, 

P<0.05). (C-D) Survival of males under Starvation and Low diets. (C) Replicate experiment 1. Median 

lifespans and sample sizes were: wDah;AcerΔ  Starvation = 8.5 days, N=100; wDah;AcerΔ  Low = 10.5 

days, N=101; wDah Starvation = 8.5 days, N=98; and wDah Low = 12 days, N=99. Both wDah;AcerΔ and 

wDah males showed an increased survival from DR to FF diet (Log rank test, P<0.05). wDah;AcerΔ was 

longer lived than wDah on the starvation diet (Log rank test, P<0.001). wDah;AcerΔ was shorter lived 

than wDah on the Low diet (Log rank test, P<0.001). (D) Replicate experiment 2. Median lifespans and 

sample sizes were: wDah;AcerΔ  Starvation = 8.5 days, N=100; wDah;AcerΔ  Low = 15.5 days, N=121; 

wDah Starvation = 7 days, N=100; and wDah Low = 26.5 days, N=120. wDah;AcerΔ was longer lived than 

wDah on the starvation diet (Log rank test, P<0.001). wDah;AcerΔ was shorter lived than wDah on the 

Low diet (Log rank test, P<0.001).  
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Figure 5. Glycogen and lipid levels and weights of 10 day old wDah;AcerΔ flies compared to wDah 

controls after 2 days feeding on Starvation, Low, DR and FF diets. (A) Mean glycogen levels of 

wDah;AcerΔ  and wDah females. (B) Mean glycogen levels of wDah;AcerΔ and wDah males. (C) Mean lipid 

levels of wDah;AcerΔ  and wDah females. (D) Mean lipid levels of wDah;AcerΔ  and wDah males. (E) Mean 

weight of wDah;AcerΔ  and wDah females. (F) Mean weight of wDah;AcerΔ and wDah males. Data are 

shown as means of 10 flies (N = 10) ± SEM. Data were analysed by ANOVA and, for glycogen storage, 

both genotype and diet were significant effects (p<0.05). Planned comparisons of means were 

performed using Tukey HSD.  *indicates significant difference between indicated genotypes, P<0.05, 

for each genotype.  

  
Jo

ur
na

l o
f E

xp
er

im
en

ta
l B

io
lo

gy
 •

 A
cc

ep
te

d 
m

an
us

cr
ip

t



 

 

Figure 6. Dilp5 transcript and protein levels of wDah;AcerΔ flies compared to wDah controls after 2 

days feeding on Starvation, Low, DR and FF diets. (A) Relative mRNA abundance of dilp5 from adult 

heads of 10 day old wDah;AcerΔ  and wDah females following 48 h treatment with Starvation (0), Low, 

DR and FF diets was measured by quantitative RT-PCR and normalised to the abundance of actin5C, 

tubulin and Rpl32. Data are shown as means of 3-6 independent experiments,  ± SEM. Sample sizes 

were: Starvation N= 5, Low N=3, DR N=6, FF N=6. Data were analysed by two-way ANOVA (diet and 

genotype) and only diet was found to be a significant effect (p<0.0001), with no effect of genotype 

(p=0.27). Planned comparisons of means by diet were performed for each genotype using Tukey HSD 

(p<0.05) and in both wDah;AcerΔ  and wDah the abundance of dilp5 on FF diet was significantly greater 

than on Low and Starvation diets. (B) Immunohistochemical analysis of DILP5 protein in wDah;AcerΔ  

and wDah 10 day old female brains following 48 h treatment with Starvation (0), Low, DR and FF diets. 

Sample sizes for wDah were: Starvation N= 8, Low N=13, DR N=11, FF N=8. Sample sizes for wDah;AcerΔ 

were: Starvation N= 6, Low N=9, DR N=9, FF N=11. Quantification of Dilp5 levels were performed 

using Image J on the confocal microscope images shown in Supplementary Figures S2 and S3. Data 

are shown as mean relative fluorescence ± SEM. Data were analysed by ANOVA and diet was found 

to be a significant effect, with a significant interaction with genotype (p<0.05). Planned comparisons 

of means by genotype on each diet were performed by Tukey HSD and *indicates significant 

difference between genotypes, P < 0.05.  (C) Representative images of anti-DILP5 staining. wDah 

control (See Supplementary Fig. S2 for images of all wDah brains examined). wDah;AcerΔ (See 

Supplementary Fig. S3 for images of all wDah;AcerΔ brains examined).   
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Figure 7. The effect of diet on feeding in male and female wDah;AcerΔ  flies. Relative quantity of food 

consumed by (A) Female and (B) Male flies of the indicated genotype after 30 mins feeding on Low, 

DR and FF diets containing blue dye. Direct quantification of Brilliant Blue dye consumed was carried 

out by colour spectrophotometry. The data are presented as mean µg of food consumed per mg of 

fly, ± SEM, N = 33-35 (vials of five flies) per genotype, per food. ANOVAs were performed and food, 

genotype and sex were significant effects. Diet had a significant effect on the quantity of food 

consumed by control wDah males and females and by wDah;AcerΔ males (p<0.05). There was no 

significant effect of diet on the quantity of food consumed by wDah;AcerΔ female flies (p=0.99). 
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Tables 

Table 1: Dietary manipulations. 

 Standard  Starvation  Low 

 

Dietary 

Restriction 

(DR) 

Fully Fed 

(FF) 

Agar (g/L) 15 15 15 15 15 

Sugar (g/L) 50 0 10 50 50 

Yeast (g/L) 100 0 10 50 200 
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Supplementary Figure 1 

A 

 B C 

Figure S1: (A) PCR analysis of the Acer deletion in the wDah background. Lane M: marker. 
Lane 1: The AcerΔ168 deletion homozygote with a strong band at 850 bp. Lane 2: The Acer 

Δ168 deletion heterozygote with a strong band at 850 bp and a weaker band at 1,150 bp. 
Lane 3: The wDah control background with a strong band at 1,150 bp. (bp = base pairs). (B-C) 
Western blot analysis of the Acer Δ168 deletion in the wDah background showing absence of 
Acer protein in wDah;AcerΔ males and females. Four independent protein extractions per 
genotype and sex were performed using 5 flies per sample. (B) Females. (C) Males.  

M   1   2   3

wDah wDah wDah;AcerΔ wDah;AcerΔ 

Journal of Experimental Biology: doi:10.1242/jeb.194332: Supplementary information
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Supplementary Figure 2

Starvation Low DR FF

Figure S2. Immunohistochemical analysis of DILP5 protein in wDah 10 day old 
female brains following 48 h treatment with Starvation, Low, DR and FF diets. 

Journal of Experimental Biology: doi:10.1242/jeb.194332: Supplementary information
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Supplementary Figure 3

Starvation Low DR FF

Figure S3. Immunohistochemical analysis of DILP5 protein in wDah;AcerΔ 10 day old 
female brains following 48 h treatment with Starvation, Low, DR and FF diets. 

Journal of Experimental Biology: doi:10.1242/jeb.194332: Supplementary information
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Table S1: Statistical analysis of female sleep data presented in Figure 1. P values of planned 

comparisons of means for the effect of diet on sleep parameters in wDah;AcerΔ  and wDah females, 

performed using Tukey HSD. Numbers in bold indicate significant differences (p<0.05). 

Genotype 
Food 
comparison Activity/day 

Total 
Sleep/day 

Day-
time 
sleep 

Night-
time 
sleep 

Number 
of 
bouts 

Bout 
duration 

wDah 
Low-DR 0.3932 0.2001 0.1636 0.4309 0.0102 0.9681 
Low-FF 0.0152 0.0004 0.0003 0.0212 0.2113 0.0019 
DR-FF 0.2641 0.054 0.0497 0.2823 0.3849 0.0039 

wDah;AcerΔ  
Low-DR 0.9714 0.6333 0.7747 0.9997 0.0053 0.0529 
Low-FF 0.1709 0.0799 0.6831 0.0054 0.8687 0.014 
DR-FF 0.0702 0.3109 0.9793 0.0026 0.0016 <0.0001 

Table S2: Statistical analysis of male sleep data presented in Figure 2. P values of planned 

comparisons of means for the effect of diet on sleep parameters (Number of bouts) in wDah;AcerΔ  

and wDah males, performed using Tukey HSD. Numbers in bold indicate significant differences 

(p<0.05). 

Genotype 
Food 
comparison 

Number 
of bouts 

wDah 
Low-DR 0.025 
Low-FF 0.0392 
DR-FF 0.9738 

wDah;AcerΔ  
Low-DR 0.8802 
Low-FF 0.8953 
DR-FF 0.9991 

Journal of Experimental Biology: doi:10.1242/jeb.194332: Supplementary information
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