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Abstract

ARIMA is seldom used in supply chains in practice. There are several rea-
sons, not the least of which is the small sample size of available data, which
restricts the usage of the model. Keeping in mind this restriction, we discuss
in this paper a state space ARIMA model with a single source of error and
show how it can be efficiently used in the supply chain context, especially
in cases when only two seasonal cycles of data are available. We propose a
new order selection algorithm for the model and compare its performance
with the conventional ARIMA on real data. We show that the proposed
model performs well in terms of both accuracy and computational time in
comparison with other ARIMA implementations, which makes it efficient in
the supply chain context.

Keywords: Forecasting, state space models, ARIMA, supply chain
forecasting, order selection, model selection

1. Introduction1

ARIMA has always been considered as a statistically sophisticated and2

complicated model. Although several forecasting competitions showed that3

simpler methods perform at least as well as statistically sophisticated meth-4

ods and sometimes outperform ARIMA (Makridakis et al., 1982; Makridakis5

and Hibon, 1997, 2000; Athanasopoulos et al., 2011), its popularity among6

researchers has not declined over the years. ARIMA is considered to be a7

standard model in the statistical literature and is widely used for analytical8
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derivations in the supply chain literature (an extensive review of supply chain9

forecasting is given in Syntetos et al., 2016). Examples of the application of10

ARIMA in a supply chain context include Kim et al. (2003), Wang et al.11

(2010), Hosoda et al. (2008), Disney et al. (2006), Doganis et al. (2008),12

Svetunkov and Petropoulos (2018), van Gils et al. (2017) and Dellino et al.13

(2018).14

Nevertheless ARIMA is not as widely used in practice as simpler meth-15

ods, such as exponential smoothing and simple moving averages (Winklhofer16

et al., 1996; Weller and Crone, 2012). The reason is the complexity of the17

model. On the one hand it is not always simple to identify the appropriate18

orders of ARIMA and estimate the model. On the other hand, it is much19

harder to explain the model to supply chain managers than, for example, ex-20

ponential smoothing. Furthermore, it is very common for companies working21

in business to have small samples of data, because managers think that the22

older data is not useful and not relevant to recent history. As a result com-23

panies very often have at most 3 years of data. This makes seasonal ARIMA24

models hard to build, because of estimation problems. Indeed, in order to25

estimate the simplest conventional seasonal ARIMA, a forecaster needs at26

least 3 years of data, where the first year is sacrificed for initialisation of the27

model and the last two are needed for model fitting. Having less than 3 years28

means that the model will overfit the second season and inevitably will pro-29

duce poor forecasts. Furthermore, in order to include ARIMA in appropriate30

forecasting evaluation against simpler forecasting methods, the sample needs31

to be split into training and test sets. This further decreases the number of32

observations available for estimation purposes, making conventional seasonal33

ARIMA inapplicable.34

Having limited data in the training set also means that parametric sta-35

tistical tests may be inaccurate because of their low power on small samples.36

This additional complication means that unit root tests and tests for season-37

ality may be unreliable, which in turn leads to problems in the identification38

of the correct order of ARIMA.39

Finally, a typical forecasting task for the supply chain involves producing40

forecasts for a large dataset with thousands of Stock Keeping Units (SKUs).41

This means that the forecasting should be done automatically and fast, which42

is not always the case for ARIMA models, because each time series has its own43

structure, and the order of ARIMA needs to be selected individually. Order44

selection for ARIMA is in general slow, because it either implies analysis of45

Auto Correlation Functions (ACF and PACF), or applying several ARIMA46
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models of different orders to data and selecting the optimal one (using some47

criterion).48

All of this explains the lack of popularity of ARIMA models in applied49

supply chain forecasting. At the same time interest in ARIMA models has50

been recently rising, and overcoming the aforementioned limitations could51

allow using the flexibility of ARIMA for supply chain forecasting. However,52

this means that supply chain ARIMA should at least satisfy the following53

requirements:54

1. Order selection and model estimation should work with seasonal data55

on small samples with at least two years of data;56

2. Order selection should be done without statistical tests;57

3. The order selection algorithm should be fast.58

We propose using ARIMA in state space form with a Single Source of59

Error (originally proposed in Snyder, 1985), which allows meeting all the60

three requirements. First of all, state space models can be initialised in61

period zero, which saves some observations and may increase the number of62

degrees of freedom. Secondly, a state space model allows estimating ARIMA63

using likelihood and applying model selection based on information criteria64

for all the possible models without a need for hypotheses testing. The only65

issue that needs to be addressed is the order selection algorithm, which should66

be smart, choosing only those orders that are relevant to the data.67

In this paper we discuss state space ARIMA and the methodology of order68

selection and estimation of the model that satisfies all three requirements.69

The proposed implementation of ARIMA can be efficiently applied to a wide70

variety of data, and, as we show in the paper, performs well in terms of71

forecasting accuracy, given the computational time restriction observed in72

practical supply chains.73

2. State space ARIMA74

ARIMA in state space form has been known for at least 40 years. Harvey75

and Phillips (1979) discuss a state space model with multiple sources of76

errors (MSOE) underlying a general regression with ARMA errors. Pearlman77

(1980) uses their finding and proposes a modification of the state space model78

with a single source of error (SSOE). He points out that this model can be79

used when the AR order is greater than or equal to MA order, but he does80
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not investigate the model further. Snyder (1985) analyses the SSOE state81

space model and its connection with ARIMA in more detail. He discusses82

several basic ARIMA models, showing how the model can be formulated83

using measurement and transition equations. Snyder et al. (2001) discuss84

ARIMA in state space form and demonstrate how the prediction intervals85

can be constructed for this model. Finally, a more detailed explanation of86

the connection between ARIMA and SSOE state space models is given in87

(Hyndman et al., 2008, pp. 173 - 174). We use their derivations as the basis88

for our model.89

The general form of state space model with SSOE is (Hyndman et al.,90

2008):91

yt = w′vt−1 + εt
vt = Fvt−1 + gεt

, (1)

where vt is the vector of states, εt is the error term (usually assumed to be92

distributed normally with zero mean and variance σ2), F is the transition93

matrix, w is the measurement vector, w′ is the transposed w and g is the94

persistence vector. Hyndman et al. (2008) give general formulae, connecting95

ARIMA models with their state space counterparts. They derive the state96

space model for non-seasonal ARIMA without the constant term. Their97

derivations with minor modifications can be used in order to present the fol-98

lowing more general SARIMA(p, d, q)(P,D,Q)m model (where m is seasonal99

frequency) in state space form:100

φp(B)δd(B)ΦP (Bm)∆D(Bm)yt = θq(B)ΘQ(Bm)εt + β, (2)

where φp(B) is the non-seasonal AR, δd(B) is the non-seasonal difference,101

θq(B) is the non-seasonal MA, ΦP (Bm) is the seasonal AR, ∆D(Bm) is the102

seasonal differences and ΘQ(Bm) is the seasonal MA polynomials, β is the103

constant term, which in the case of non-zero order of differences acts as drift104

and B is the backshift operator. We need to note that all the MA polynomials105

are used in our formulation with a plus sign, while the AR polynomials use106

the minus sign. So, for example, we formulate ARIMA(1,1,1) as:107

(1− φ1B)(1−B)yt = (1 + θ1B)εt + β, (3)

where φ1 is AR(1) parameter and θ1 is MA(1) parameter. By working models108

in this way we do not cause the confusion with signs of the coefficients.109
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In order to write ARIMA in state space form, the polynomials in the110

model (2) need to be expanded:111 (
1−

K∑
j=1

ϕjB
j

)
yt =

(
1 +

K∑
j=1

ηjB
j

)
εt + β, (4)

where ϕj and ηj are the values of the coefficients for AR and MA polynomials112

respectively and K = max(p+d+P +D, q+Q). The max term means that,113

for example, if p+d+P+D > q+Q, then all the ηj for j > q+Q will be equal114

to zero. A similar property holds for the opposite situation. Regrouping the115

elements in (4) leads to:116

yt =
K∑
j=1

ϕjB
jyt−j +

K∑
j=1

ηjB
jεt−j + β + εt. (5)

After that the logic of derivation becomes exactly the same as in (Hyndman117

et al., 2008, pp. 173 - 174) with an exception for the first component of118

the state space model and an additional component for β. The state space119

ARIMA model proposed in this paper can be formulated in the following120

way:121

yt = v1,t−1 + εt
vj,t = ϕjv1,t−1 + vj+1,t−1 + vK+1,t−1 + (ϕj + ηj)εt, for j = 1
vj,t = ϕjv1,t−1 + vj+1,t−1 + (ϕj + ηj)εt, for 1 < j ≤ K
vK+1,t = vK+1,t−1,

(6)

where vj,t is the j-th component and vK+1,0 = β. Note that the first and the122

K + 1 components are calculated differently than in (Hyndman et al., 2008,123

pp. 173 - 174), because of the constant term β. If the constant is not needed124

for a time series, then vK+1,0 can be set to zero, and the ARIMA model in125

state space form (6) becomes equivalent to the one in (Hyndman et al., 2008,126

p. 174). The model (6) can be written in the compact form (1), with:127

vt =


v1,t
v2,t
...

vK,t

vK+1,t

 ,F =


ϕ1 1 0 . . . 0 1
ϕ2 0 1 . . . 0 0
...

...
...

. . .
...

...
ϕK 0 0 . . . 0 0
0 0 0 . . . 0 1

 ,w =


1
0
...
0
0

 ,g =


ϕ1 + η1
ϕ2 + η2

...
ϕK + ηK

0

 .

(7)
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So ARIMA in state space form has K + 1 components if the constant term128

is not equal to zero. In cases with seasonal models the matrices in (7) can129

become large, especially if the seasonality lag m is large and the seasonal130

orders are high.131

One of the advantages of the state space ARIMA model is that the ini-132

tialisation of the model (6) can be done on observation t = 0, which allows133

preserving observations for estimation purposes. The values of v0 can be134

estimated in different ways, the most popular of which are optimisation and135

backcasting. We propose using the backcasting technique in order to preserve136

degrees of freedom and minimise the required computations, because then we137

do not need to estimate all the K+1 initial values of the state vector; we only138

need to optimise the constant β which corresponds to the component vK+1,0139

and the parameters of the ARMA. Still before constructing the model some140

preset values for the initial state vector are needed. In order to speed up the141

convergence to the true value of the initial vector v0, we use the following142

heuristics derived from the model (6) (see Appendix A):143

v1,t−1 = yt, for t = {1, . . . , K}
v2,t−1 = v1,t − ϕ1yt − vK+1,0, for t = {1, . . . , K − 1}
vj,t−1 = vj−1,t − ϕj−1yt, for 2 < j ≤ K and t = {1, . . . , K − j + 1}

.

(8)

In this way, we define K(K+1)
2

elements of the first K state vectors. After that144

the model (6) is applied to the data starting from the t = 1 until the last145

observation T in the sample. Then the reverse state space model is applied:146

yt = w′vt+1 + εt
vt = Fvt+1 + gεt

(9)

until the observation t = 0. Then a new initial value of the state vector is147

obtained and used in the construction of the model using (1). The procedure148

is repeated several times, refining the initial values of the state vector. In the149

implementation that we discuss in Section 4, three iterations are sufficient150

for the initial states to converge.151

Having the state space model (6) also solves the problem with application152

of ARIMA to small samples. While in order to construct the conventional153

seasonal model it is necessary to have at least three seasonal cycles of data,154

the model (6) can be constructed even if only two seasonal cycles are avail-155

able. This is because the initialisation is done on the observation t = 0.156

For obvious reasons the estimates of the parameters on such a small sample157
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can be unreliable and the forecasts may be less accurate than they would158

be on large samples, but at least some estimates and some forecasts can be159

produced in this case.160

The other important advantage of the model (6), is that all the possible161

orders of the model can be compared directly with each other using infor-162

mation criteria. Note that ARIMA models in the conventional form can be163

compared with each other only for pre-specified differences, because taking164

differences decreases the sample size, automatically leading to incomparable165

values of information criteria. So there is no need to conduct preliminary166

unit root tests in order to determine if the time series is stationary or not167

with the state space ARIMA. There is also no need to test whether the se-168

ries is seasonal or not, because this can be done by comparing seasonal and169

non-seasonal ARIMA models in the state space form using an information170

criterion.171

However, taking into account that there are several possible orders in172

seasonal ARIMA for each of the components of the model, the search of the173

optimal order can become a cumbersome task. For example, if the maximum174

orders of the model correspond to SARIMA(3,2,3)(2,1,2)m for a fixed value of175

m, then there are 864 potential models. Checking whether the constant β is176

needed or not, doubles the number of models, giving a pool of 1728 SARIMA177

models. In order to find a good model that would produce adequate forecasts178

in a reasonable time, we need to use a smart algorithm for order selection.179

3. Order selection in state space ARIMA180

In order to select the most appropriate ARIMA, we propose using an in-181

formation criterion. For example, the Akaike Information Criterion (Akaike,182

1974) can be written as:183

AIC = 2k − 2`, (10)

where k is the number of estimated parameters and ` is the value of the184

log-likelihood function extracted from the model.185

We propose using the following stepwise order selection algorithm to allow186

the selection of a good model for the data:187

1. All the possible differences are checked with non-zero constant. This188

includes seasonal and non-seasonal counterparts. In cases of non-zero189

difference, the constant acts as a drift, allowing the capture of possible190

trends in time series and model multiplicative seasonality.191
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2. The residuals of the best model on the step (1) are extracted. All192

possible types of seasonal and non-seasonal MA are checked. The order193

is selected via a modified information criterion, where the number of194

parameters is set to be equal to the sum of all the parameters estimated195

on the current and the previous steps:196

AIC2 = 2(k1 + k2)− 2`2, (11)

where the index in the subscript stands for the step in the algorithm,197

so that the number of parameters in AIC2 is equal to sum of all the198

estimated parameters on step 2 and before. `2 is the value of the log-199

likelihood function for the model on step 2.200

3. The residuals of the best model on the step (2) are extracted. All201

possible types of seasonal and non-seasonal AR orders are checked.202

The information criterion on this step uses the sum of all the estimated203

parameters on steps (1), (2) and (3), substituting k1+k2 from (11) with204

k1 + k2 + k3 and `2 with `3, the value of log-likelihood function from205

the model on step 3.206

4. The model of the selected orders is re-estimated on the original data in207

order to remove a potential bias in estimates of parameters.208

5. The model (4) is compared with the same model without the constant.209

The model with the lowest information criterion is then selected for the210

forecasting purpose.211

Note that if some other criterion is preferred, then the formula (11) should212

be substituted by the desired formula, preserving the number of estimated213

parameters and using the value of the log-likelihood function extracted for214

each specific step.215

This algorithm allows for a substantial reduction in the pool of models.216

For example, in the case of SARIMA(3,2,3)(2,1,2)m only 31 models need to217

be checked instead of 1728. This does not guarantee that the selected model218

will have the lowest AIC among all the 1728 potential SARIMA models, but219

it gives a reasonable model, as will be demonstrated later in the paper, which220

should suffice for forecasting purposes.221

In order to further decrease the pool of the potential models, higher orders222

of AR or MA can be checked before the lower orders. In this case when the223

higher order leads to the higher information criterion, then there is no need224

to check lower orders, meaning that they can be skipped altogether. For225
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example, if the true model is AR(1) and we first compare AR(0) and AR(3),226

then the latter should have a lower information criterion, as the AR(3) model227

includes the correct order as a first element ϕ1yt−1. AR(2) in turn should228

be better than AR(3) in terms of information criterion, because it does not229

contain the redundant term ϕ3yt−3, and finally AR(1) is expected to have230

the lowest information criterion as it does not contain any redundant terms.231

If for some data we find that AR(2) has greater information criterion than232

AR(3), then the check of AR(1) can be skipped. This shortcut allows saving233

computational time further by decreasing the pool of models.234

4. Evaluation of state space ARIMA performance235

In order to see how the state space ARIMA performs, we test it in a real236

time series experiment.237

The state space ARIMA with the described order selection algorithm238

is implemented in auto.ssarima() function in smooth package version 2.1.1239

for R (Svetunkov, 2017). This model is denoted as “SSARIMA” in the experi-240

ment. The maximum order of the model was restricted to SARIMA(3,2,3)(2,1,2)m.241

This restriction is motivated by the following. The differences of the non-242

seasonal part should not exceed 2 because this might cause over-differencing243

with the corresponding loss of information (Box and Jenkins, 1976, p.175).244

Similarly, there is no point in going beyond the first difference of the sea-245

sonal part of the model. Given that we deal with short data, we restrict the246

maximum seasonal orders of AR and MA to 2, which corresponds to two247

years of data. Finally, the restriction of AR and MA to the maximum order248

of 3 should be sufficient for such short data (this is similar to Hyndman and249

Khandakar, 2008, who also investigated automatic model selection).250

We have also applied state space ARIMA with optimised initials using251

auto.ssarima() function (denoted “SSARIMA Opt”) in order to see the252

influence of different initialisation techniques on forecasting accuracy.253

In addition we used auto.ssarima() with backcasting and the switched254

off mechanism of skipping orders (controlled by workFast=FALSE parameter),255

discussed in the last paragraph of Section 3 in order to see if it improves the256

performance of the model or not (this is denoted as “SSARIMA NSO”).257

Furthermore, we have used the extensive search for state space ARIMA258

(“SSARIMA Ext”), applying models with all the possible orders and selecting259

the one with the lowest AIC. This took the most computational time, but260

allowed us to evaluate the proposed algorithm of order selection.261
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Finally we have also used a benchmark in the experiment – conventional262

ARIMA implemented in auto.arima() function from forecast v8.4 package263

for R (Hyndman and Khandakar, 2008), denoted as “ARIMA”. This imple-264

mentation allows selecting between seasonal and non-seasonal models using265

information criteria, but the model itself is formulated in the conventional266

way.267

In order to assess the accuracy of the proposed model, we use the data of268

an American retail company. This is typical supply chain data, containing269

4267 series with 36 monthly observations each. All the time series in the270

dataset can be categorised as shown in Table 1. The classification was done271

ex post, by applying the auto.arima() function to each of the time series272

and the whole 36 observations. We used the rule, according to which the273

time series is considered as seasonal, if seasonal AR, I or MA has non-zero274

order. If the resulting ARIMA model contained either a non-zero order of275

non-seasonal difference or a drift component, then the series was flagged as276

non-stationary. The categorisation in Table 1 is provided for information,

Non-seasonal Seasonal

Stationary 25.4% 23.5%
Non-stationary 17.4% 33.7%

Table 1: Categories of time series in the supply chain dataset.

277

showing the variety of different processes in the dataset, and it was not used278

for order selection or parameter evaluation.279

In order to assess the accuracy of models, we withheld the last 9 observa-280

tions, which leaves 27 observations in the training set. This is a small sample281

from a conventional ARIMA perspective, but typical for supply chains and282

sufficient for simpler forecasting models. We do fixed origin evaluation, pro-283

ducing one to nine steps ahead forecasts, and then calculating the following284

error measures:285

1. MPE – Mean Percentage Error, which assesses bias of forecasts:

MPE =
1

h

h∑
j=1

et+j

yt+j

,

where et+j is the j-steps ahead forecast error, and h = 9 is the fore-286

casting horizon, for this and all the other error measures.287
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2. MAPE – Mean Absolute Percentage Error, which assesses accuracy of
forecasts and is commonly used in practice:

MAPE =
1

h

h∑
j=1

|et+j|
yt+j

.

This is considered by many forecasters as a biased error measure as it288

encourages under-forecasting (Makridakis, 1993).289

3. MASE – Mean Absolute Scaled Error, measure proposed by Hyndman
and Koehler (2006), which is less biased than MAPE:

MASE =
1
h

∑h
j=1 |et+j|

1
t−1
∑t

i=2 |yi − yi−1|
;

4. sMAE – scaled Mean Absolute Error by Petropoulos and Kourentzes
(2015), which is similar to MASE, but has easier interpretation, close
to the one of MAPE:

sMAE =
1
h

∑h
j=1 |et+j|
ȳ

,

where ȳ = 1
t

∑t
i=1 yi.290

5. ARMAE – Average Relative Mean Absolute Error from Davydenko
and Fildes (2013) which was shown to be the least biased error measure
among (2) – (5):

ARMAE =
1
h

∑h
j=1 |e1,t+j|

1
h

∑h
j=1 |e2,t+j|

,

where e1,t+j is the j-steps ahead forecast error of the model under291

consideration and e2,t+j is the j-steps ahead forecast error of the Näıve292

method. Note that when ARMAE is aggregated over all the series, the293

geometric mean is used instead of arithmetic.294

The error measures have been calculated for each separate time series.295

After that the mean and the median values of each error measure across all296

the series have been calculated. The results are presented in Tables 2 and 3.297

The best values in the tables are shown in boldface; the second best values298

are in italic.299
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Model MPE MAPE MASE sMAE ARMAE

ARIMA -18.2 49.4 119.6 41.5 91.0
SSARIMA -15.4 48.4 119.2 41.3 90.0
SSARIMA NSO -14.8 48.1 119.2 41.3 89.9
SSARIMA Opt -15.1 48.8 120.2 41.2 89.9
SSARIMA Ext -11.4 50.9 126.5 44.0 95.2

Table 2: Mean error measures (percentages).

As can be seen from Table 2, SSARIMA with backcasting and the pro-300

posed order selection method performs better or at least not worse than more301

complicated SSARIMA models, including the one with the extensive search:302

the differences in performance of SSARIMA with the other versions of the303

model are very small.304

Similar conclusions can be drawn from the analysis of Table 3, where305

SSARIMA performed slightly better than the other models in terms of MASE306

and ARMAE. Note that SSARIMA performed better than the conventional307

ARIMA across all measures. This can be explained by the ability of the308

former to better identify seasonality on small samples.309

Model MPE MAPE MASE sMAE ARMAE

ARIMA -4.1 33.5 103.9 34.8 97.4
SSARIMA -1.9 32.5 100.0 34.4 92.9
SSARIMA NSO -2.1 32.7 100.6 34.4 93.2
SSARIMA Opt -1.0 32.4 102.8 34.0 96.7
SSARIMA Ext -0.5 35.0 105.0 35.8 95.8

Table 3: Median error measures (percentages).

It is worth noting that the extensive search of the optimal order does310

not improve upon the accuracy of SSARIMA model – although the order311

selected by SSARIMA is not optimal in the sense of AIC, it performs better312

in terms of forecasting accuracy. Furthermore, the optimisation procedure313

does not bring significant improvements and the SSARIMA NSO performs314

slightly worse than SSARIMA in many cases. In addition, the SSARIMA315

with the optimised initials outperforms SSARIMA with backcasting in some316

cases, but it does not demonstrate substantial improvement.317
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In order to further investigate the performance of SSARIMA versus ARIMA,318

we summarise the ARMAE error measures for the four categories from Table319

1. The results for the other error measures look similar, so we have decided320

to focus on ARMAE, as it is the least biased error measures of the ones in321

our pool (Davydenko and Fildes, 2013). These values are presented in Table322

4.323

Series type ARIMA SSARIMA

Non Seasonal, Stationary 0.798 0.824
Non Seasonal, Non Stationary 1.050 1.155
Seasonal, Stationary 0.872 0.817
Seasonal, Non Stationary 0.961 0.906

Table 4: ARMAE of ARIMA and SSARIMA for different categories of the data.

It can be noted from Table 4, that while ARIMA performs better than324

SSARIMA on non-seasonal time series, SSARIMA is much better on the325

seasonal data, thus showing the improvement in the overall forecasting ac-326

curacy. In fact, it seems that SSARIMA overfits the non-seasonal data,327

selecting wrongly the seasonal orders, while ARIMA underfits the seasonal328

data, not selecting the necessary orders. Given the prevalence of seasonal329

data in the dataset (57.2% according to Table 1), the summary value of the330

ARMAE for SSARIMA is lower than that of ARIMA.331

Finally, Table 5 summarises the computational time for each of the models332

for the whole dataset (calculated in serial on Intel Core i7 of 5th generation).333

Model Time in minutes

ARIMA 39.82
SSARIMA 47.86
SSARIMA NSO 309.67
SSARIMA Opt 289.68
SSARIMA Ext 17,989.72

Table 5: Time of computation for each model in minutes for all 4267 series.

Although SSARIMA could not outperform ARIMA in terms of time, the334

difference in their performance is not large. At the same time SSARIMA with335
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the proposed algorithm produced forecasts faster than any other implemen-336

tation, and in a practical time. As expected, SSARIMA with backcasting337

and the new order selection performed much faster than other SSARIMA338

algorithms. Note that the extensive search took almost 18 thousand min-339

utes of computational time, which is equivalent to 300 hours or 12.5 days.340

Nevertheless, it performed worse than the faster algorithms. So, although341

SSARIMA does not necessarily beat other models in forecasting accuracy, it342

is much more efficient and faster than its competitors. Taking into account343

the accuracy of the state space ARIMA and its speed of calculation, it can344

be concluded that the model in the proposed form can efficiently be used in345

a supply chain context, especially for seasonal data.346

5. Conclusions347

ARIMA is seldom used in a supply chain context because of the limita-348

tions of the data and general complexity of the model. We have discussed349

the state space form of ARIMA with a single source of error and showed that350

it overcomes some of the limitations of the conventional ARIMA. We have351

shown that the state space ARIMA simplifies some of the steps in forecasting352

and can be used even on data with a short history.353

All of the above allows using seasonal ARIMA on small samples, contain-354

ing at least 2 seasonal cycles, something that ARIMA in the conventional355

form cannot do. In addition the state space form permits comparing differ-356

ent models directly using information criteria, because they can be initialised357

in the zero period, making sample sizes for models with different orders of358

differences the same.359

We have also proposed an algorithm of order selection for state space360

ARIMA, which substantially decreases the pool of models under consider-361

ation. This algorithm does not employ hypothesis testing, an important362

feature in cases of small samples, which are very common in a supply chain363

context. We tested the state space ARIMA with the proposed order selec-364

tion algorithm on supply chain data and showed that it outperforms the365

implementation of the conventional ARIMA from forecast package for R366

in terms of accuracy and that it works fast. It seems to perform especially367

well on seasonal data. Furthre research is ongoing to find improvements in368

the algorithm for non-seasonal data.369

Furthermore, the practicality of our proposed approach is evidenced by its370

introduction into commercial software by the Demand Works company. The371

14



new software module, called ARIMA, is based on the SSARIMA model dis-372

cussed in this paper. However, it has been subject to several modifications373

and adjustments which cannot be disclosed because of confidentiality rea-374

sons. Nevertheless, we can report that the implemented SSARIMA module375

demonstrates further improvements in the accuracy and significant reduction376

in computational times in comparison with the implementations discussed in377

this paper. Furthermore, Demand Works software is used by over 400 corpo-378

rations, demonstrating that the approach discussed in this paper has reason-379

able commercial applicability. In summary, we can conclude that ARIMA in380

state space form is a practical and efficient option for supply-chain forecast-381

ing and, indeed, for any context, where the historical time series is limited382

with few complete seasonal cycles.383

The focus of this paper was on state-space ARIMA applied to supply384

chain data. However, this is not the only possible area of application, and385

we think that developing and exploring the efficient algorithms for ARIMA386

application in other business contexts is an interesting direction for future387

research. This means that as a future work, the state-space ARIMA should388

be tested on other datasets and compared with other popular forecasting389

methods. Finally, another interesting direction for future work would be to390

compare the performance of the proposed approach with the other approaches391

in terms of inventory measures, such as service level and costs of stocking,392

similar to the analysis by Syntetos and Boylan (2006).393
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Appendix A. Derivation of initial values of state vector398

We assume that εj = 0 for each j = 1, . . . , K , which gives us K estimates399

of the first component of the vector based on the measurement equation in400

(6):401

v1,0 = y1
v1,1 = y2

...
v1,K−1 = yK

. (A.1)
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This means that the state space model (6) simplifies to:402

yt = v1,t−1
v1,t = ϕ1v1,t−1 + v2,t−1 + vK+1,t−1, for j = 1
vj,t = ϕjv1,t−1 + vj+1,t−1, for 1 < j ≤ K
vK+1,t = vK+1,t−1

(A.2)

Every j+1 component for 1 < j ≤ K in (A.2) can be expressed the following403

way:404

vj+1,t−1 = vj,t − ϕjv1,t−1, (A.3)

meaning that it can be expressed using the values of the previous component405

and the very first one. The second component is expressed as:406

v2,t−1 = v1,t − ϕ1v1,t−1 − vK+1,t−1. (A.4)

Substituting values from (A.1) into (A.3) and (A.4) leads to the following407

system:408

v1,t−1 = yt, for t = {1, . . . , K}
v2,t−1 = v1,t − ϕ1yt − vK+1,t−1, for t = {1, . . . , K − 1}
vj,t−1 = vj−1,t − ϕj−1yt, for 2 < j ≤ K and t = {1, . . . , K − j + 1}

.

(A.5)
So the procedure of the initialisation of the state vector of state space ARIMA409

is iterative, the components are defined one after another, starting from the410

first and finishing with the K-th. The value of K + 1 component in this case411

is defined by the optimiser.412
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