
Using P4 to Enable Scalable Intents
in Software Defined Networks

Benjamin Lewis
Lancaster University

Lancaster, UK
b.lewis@lancaster.ac.uk

Lyndon Fawcett
Lancaster University

Lancaster, UK
l.fawcett1@lancaster.ac.uk

Dr. Matthew Broadbent
Lancaster University

Lancaster, UK
m.broadbent@lancaster.ac.uk

Prof. Nicholas Race
Lancaster University

Lancaster, UK
n.race@lancaster.ac.uk

Abstract—When designing Software Defined Networks (SDNs),
there is a risk that the additional abstractions available can result
in reduced scalability and performance. One such abstraction,
intents, are a way in which network administrators can express
policies rather than having to define specific forwarding rules.
This provides a benefit to administrators in allowing automatic
network reconfiguration and fault tolerance. In this paper,
we highlight the performance overheads associated with the
intents framework from a popular SDN controller, ONOS. We
propose a novel prototype that leverages source-based routing
and programmable data planes using P4 in order to reduce the
overheads of intent-based forwarding.

Index Terms—P4, SDN, OpenFlow, ONOS, intents

I. INTRODUCTION

Intents are a mechanism network operators can use to pro-
vide policy-based routing, treating the network as an abstract
series of direct connections between hosts, rather than as
individual, interconnected forwarding devices. The role of
an intent is in translating high-level policy into installable
forwarding rules [1]. Due to intent processing complexity
having an intrinsic relationship with the size of the network,
intent computation time increases with network scale.

Current implementations of intents, such as those used
in ONOS [2] take advantage of OpenFlow’s control plane
flexibility. However, this flexibility is bound by OpenFlow’s
fixed function data plane. The key element in our approach
to scaling intents is the use of a programmable data plane
provided by the P4 Language [3].

This paper studies the performance of the ONOS intent
framework. It then goes on to propose a P4-based approach us-
ing Source Based Routing. Finally, we evaluate our approach,
highlighting the performance benefits in intent installation time
compared with OpenFlow-based solutions.

II. ONOS INTENT PERFORMANCE ANALYSIS

Despite being an abstraction of the forwarding plane, intents
are still ’compiled’ into a set of forwarding rules, which may
ultimately need to be installed onto every switch.

Initial tests were performed with ONOS to measure the
time elapsed between sending an intent request and the asso-
ciated installation (this was achieved using the ONOS metrics
application, included within the core ONOS project). Tests
were performed on an Intel Core i7 8700k (hex-core) CPU @

3.7GHz running on an Ubuntu 16.04 host with ONOS v1.13
and the network emulation tool Mininet [4].

The tests were conducted to determine the impact on intent
installation time when: a) adding additional controllers to an
existing cluster and b) adding additional switches to a single
controller.

Our analysis highlights a significant change in the intent
installation time relative to the number of switches and con-
trollers. Figure 1 shows that as the number of controllers in-
creases, the installation time for a single intent also increases.
This is due to the overhead of distributed state replication.

Figure 2 highlights the increase in intent installation time
with the size of the network. This upwards trend in latency
is due to a combination of increased path computation com-
plexity with network size, and the increase in the number of
forwarding devices that need to be communicated with.

III. P4 SOURCE ROUTING DESIGN

Source Based Routing is seen as an enabler to routing
abstraction [5]. By using data available to the source host or
switch, decisions about the desired path through the network
can be made, and the packet will be forwarded according to
rules appended to the packet header. Implementations have
thus far used OpenFlow, coupled with specially crafted packet
headers. In these cases, each packet contains the full route to
the destination, with intermediate switches simply forwarding
the packet according to the next hop (as contained in the packet
header). However, this relies on the entire network state being
known to the source.

This paper proposes the use of P4 [3] to overcome this lim-
itation. For our experiments, we run the simple switch grpc
of the P4 behavioural model. This enables P4Runtime support,
a platform-independent API for programming P4 switches or
their software based simulators. In this example, each switch
has an independent controller, with each only needing to be
aware of neighbouring switches and their available paths.

This approach separates the responsibility of maintaining
information on links between source and destination switches,
and instead relies on each switch’s own controller to change
its own forwarding rules to handle link failures or network
congestion.

The packet processing pipeline (available as an implemen-
tation at [6]) operates as follows: The packet is received by



0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

I
n
t
e
n
t
 I
n
s
t
a
l
l
a
t
io
n 
T
i
m
e
 (
m
s
)

Number of Controllers

Fig. 1. ONOS intent installation time: multiple
distributed controllers

R² = 0.9935

0

10

20

30

40

50

60

70

10 50 100

I
n
t
e
n
t
 I
n
s
t
a
l
l
a
t
io
n 
T
i
m
e
 (
m
s
)
 

Number of Switches

Fig. 2. ONOS intent installation time: Single con-
troller

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100

I
n
t
e
n
t
 I
n
s
t
a
l
l
a
t
io
n 
T
i
m
e
 (
m
s
)

Number of Switches

Fig. 3. P4 intent installation time

the switch and parsed to determine whether it is a normal
Ethernet packet or has a specific forwarding header. In the
case of the latter, the switch checks whether it is the destination
specified, else it forwards the packet on to the next hop. This
is determined by its own forwarding table.

In the case that the packet has a Layer 2 Ethernet header, it
is checked against a match-action table to determine whether
it should be treated as part of a host-to-host intent, at which
point, a new header is added to the packet, with the destination
set as the final destination switch for the intent. This is
determined by the original rule installed by the controller.

Destination Switch D

Source Switch S 

Intermediate Switch I1

Intermediate Switch I2

Intermediate Switch I3

D is via Switch I1

D is via Switch I3 

D is via Switch I2 

Switch ControllerSwitch Controller 

Switch Controller 

Fig. 4. P4 Source Based Routing overview

IV. P4 INTENT PERFORMANCE ANALYSIS

We tested the performance by timing the installation of
an intent to forward a packet from an initial switch (switch
0) to switch N (where switch N is the last switch in the
chain of interconnected virtual switches). These tests were
performed on the same machine described previously, using
version 1.11.0-de8f08b0 of the behavioural model.

Performance figures collected show that the time taken to
install a new rule does not significantly increase with the
number of switches. This is because the only switch requiring
a rule insertion is the source switch. In a worst case scenario,
the destination switch may need a rule installed to return

traffic, but it is possible to do this autonomously at the
controller level. There is a small variation in the time to install
a rule in the magnitude of ±0.1ms and this can be attributed
to system scheduling time.

A. Limitations of Source Routing

Whilst we provide a solution to the intent installation time,
we do not yet offer an automated solution to link discovery
or updates when link failures occur. These should only need
to be handled directly on the links that have failed.

There is a small packet overhead added by the source
routing header, but the header is only extended by 14 bytes,
or approximately 1% of the MTU of an Ethernet frame.

V. CONCLUSION AND FUTURE WORK

This paper has presented an alternative approach to policy-
based intents in ONOS by using the P4 data plane program-
ming language. Preliminary results show how this solution can
scale without a significant performance overhead. Future work
will include further analysis, incorporating network discovery,
failover, and exploring our approach with tiered controllers to
further improve scalability of SDN based solutions.

REFERENCES

[1] M. Santuari. (2017) ONOS domain intent. [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Domain+Intent

[2] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on Hot
topics in software defined networking. ACM, 2014, pp. 1–6.

[3] P. Bosshart and Daly, “P4: Programming protocol-independent
packet processors,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2656877.2656890

[4] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 19:1–19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

[5] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Source
routed forwarding with software defined control, considerations and
implications,” in Proceedings of the 2012 ACM conference on CoNEXT
student workshop. ACM, 2012, pp. 43–44.

[6] B. Lewis. (2018) Github - p4 source routing. [Online]. Available:
https://github.com/BenRLewis/P4-Source-Routing


