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ABSTRACT
With individual behaviour and lifestyle determining 30-50%
of people’s health, research and supportive technology for
affecting behaviour alteration remain urgently needed. Most
existing persuasive systems are designed to persuade a user
to change a finite set of behaviours to achieve a specific goal.
However, if the user’s situation or goal changes, such systems
cannot adapt to the changes. A much more robust type of
persuasive system is needed today to enable adequate health
navigation and to empower people to face and change their
own realities in terms of a large variety of health behaviours
and lifestyles. In this paper, we provide a perspective on
the impressive body of work contributed over the past 15
years, to better look into the future of persuasive health
and to the opportunities a broader theoretical framework
and practical methodologies may bring about. We present a
taxonomy that attempts to explain the contributions in this
field including health behaviour theory, cybernetic action-
behaviourmodels, social cognitive theory, and control theory.
We identify potentially promising approaches to advance
persuasive health’s efficacy in empowering individuals to
improve their own health outcomes.

CCS CONCEPTS
•Human-centered computing→Usermodels;HCI the-
ory, concepts and models; Interaction design theory,
concepts and paradigms; • Computing methodologies
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→ Computational control theory; • Applied comput-
ing→ Psychology; Sociology; Consumer health; Health in-
formatics; • Mathematics of computing → Differential
equations.
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1 INTRODUCTION
Health behaviours such as smoking, physical inactivity and
poor diet are major risk factors for a number of chronic
diseases including heart disease, type 2 diabetes, and some
cancers [56]. An unhealthy diet and a lack of physical ac-
tivity are the leading causes of avoidable illness and prema-
ture death in Europe [45]. Furthermore, over 30-50% of an
individual’s health is determined by lifestyle and health be-
haviour [5]. Despite this evidence, sedentary behaviour and
unhealthy eating habits are established in many societies.
In a survey of British adults, 76% did not eat enough fruit
and vegetables and 66% lack physical exercise [53]. There
is a need to motivate health behaviour change in order to
improve health.
Digital platforms such as smartwatches, wearables and

smartphones provide platforms that can be utilised to per-
suade health behaviour change. They incorporate sensing
capabilities via accelerometers, GPS, heart rate monitors
and microphones and can be used to provide timely support
as well as monitoring in real-time [6, 21, 33]. Advantages
of these platforms include their availability and accessibil-
ity, cost effective delivery, scalability, ability to personalise
content and the capability of providing real-time strategies
[6, 21].
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We have the platforms to support health behaviour change
[23]. Indeed, reviews of the literature indicate that persua-
sive technologies do seem to persuade people into various
behaviours [17, 37] (although more work is required to estab-
lish their long term effect). What is lacking is standardisation
in both the methods used to evaluate effectiveness and co-
herent theories to improve behaviours [17, 32, 37, 39, 56]. A
lack of theory limits our ability to better understand possi-
ble mechanisms of change and further improve behaviours.
It also makes it hard to answer how to adapt to changing
needs and individual behaviours. Theories are necessary to
effectively personalise digital health interventions [18] and
make use of the personal digital platforms that smartphones
and wearables provide us with.
The problem may be that current models and theories of

behaviour are inadequate for the needs of persuasive tech-
nologies. Most current models and theories of behaviour
change do not capture how behaviour changes over time,
making it hard to use them in digital health interventions
[18, 19, 32, 41, 45, 52]. In using existing models we are ef-
fectively trying to use a static model in a dynamic world.
There is growing recognition of the need to develop com-
putational models of behaviour that quantify interactions
between states and how these relationships vary over time
[15, 18, 41, 42].
In addition to a need for dynamic behavioural models,

there is a need to develop decision rules that use these mod-
els to make decisions that improve behavioural outcomes.
Control systems engineering (control theory) is concerned
with the behaviour of dynamical systems and the design
of closed loop systems. It provides a systematic way of de-
termining inputs in the presence of noise and uncertainty.
Techniques from control theory are increasingly being used
for interdisciplinary applications such as climate control,
economics, and for medical treatments [7, 29, 47, 57]. It has
been suggested that methods from control theory could help
determine rules for adaptive digital interventions [3, 10–
12, 30, 42–44, 55].

In this contribution, we review existing behavioural change
theories and look at how these can and have been used to de-
velop dynamic models of behaviour change.We describe how
control theory could provide the theoretical framework that
is currently lacking from persuasive technologies, highlight-
ing where these techniques have been used in the literature
as well as future research challenges. We hope to provide
some ideas of where we need to go next and how we might
get there in order to improve persuasion in persuasive health.

2 BEHAVIOURAL CHANGE THEORIES
There is a vast body of work within the social sciences on
behavioural change. This is exemplified by the book ABC
of behavioural change theories, which describes 83 models

of behavioural change [31]. Key behavioural change models
include the health belief model (HBM) [2], the health action
process approach (HAPA) [46], social cognitive theory (SCT)
[1], and the transtheoretical model (TTM) [40]. These models
provide an overview of the main pathways thought to drive
behaviour change [9]. Key themes from behavioural models
are that outcome expectations, risk perception, goals, self-
efficacy, impediments and planning can influence health
behaviour and cues to actions can activate health behaviour
when appropriate beliefs are held.

There is a need to incorporate theories for behavioural
change in developing more effective persuasive digital health
interventions [22, 32]. In practice few digital interventions
delivered via mobile applications provide a theoretical ba-
sis to the behaviour change [39]. Even where a theoretical
model is stated it can be hard to see how exactly the theory
maps onto the application [32, 56]. It is rare that hypothe-
sised theoretical connections are investigated systematically
[56]. With this disconnect between theory and practice, it is
difficult to disentangle where to attribute improvements in
behaviour. This makes it hard to develop methods to further
improve behaviours and does not help to answer how to
adapt to changing or individual requirements.

An action based behavioural model (ABM) was developed
to address some of the barriers in utilising behavioural the-
ory in persuasive technologies [27, 28]. ABM was developed
to: i) provide a behaviour change model, based on collec-
tive knowledge gained from social and behavioural science
theories, within a framework accessible to developers and
computer scientists, and ii) as a solution to the problem that
most current persuasive systems are designed to change a
finite set of behaviours and cannot adapt if the users situ-
ations and goals change. The ABM model is proposed as a
persuasion template, it partitions the telehealth system into a
cyber system and set of user actions (see Fig 1.). From ‘Start’,
the user steps through a set of actions from ‘Aware’ to ‘Act’.
Cyber Influences affect and help the user take each action
and Cyber Senses monitor the user actions. After acting, the
Cyber Action ‘Assess’ evaluates the achievements and ad-
vises the user on the next action. To measure compliance a
Situation-based Assess Tree (SAT) was developed alongside
the ABM [26]. This enabled the assessment of user behaviour
responsiveness and compliance to cyber influence.
ABM and SAT attempt to provide a framework for ad-

dressing the limitation that current behavioural models are
difficult for computer scientists and developers to interpret
and it is difficult to adapt to changing situations and goals.
However, this approach does not question why such models
are so difficult to interpret and use. The difficulty arises as
we are attempting to apply steady-state, static behavioural
models to a dynamic world [19, 32, 41, 45, 51, 52]. Most cur-
rent models and theories of behaviour change do not capture
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Figure 1: An action based behaviour model, from [26].

how behaviour changes over time, making it hard to use
them in digital health interventions. We now need to build
on existing theories to develop computational models of be-
haviour that not only specify relationships, but quantify how
relationships vary over time and in context, and then use
these to develop digital health interventions with a strong
theoretical basis.

3 DYMANIC MODELS OF BEHAVIOUR CHANGE
Historically, data collection methods such as face to face
interviews or paper questionnaires have only enabled sparse
collection of results. This has led to behavioural theories
that do not include time and simply provide a steady state
snapshot of factors that affect behaviours. Advantages of
using computers in persuasive systems include the fact they
can store large amounts of data and can be ubiquitous [14].
These advantages need to be exploited to obtain intensive
longitudinal data that can be used to inform new dynamic
behavioural models. The use of Ecological momentary as-
sessment (EMA) on mobile devices [48] and utilisation of
signals from wearables provide examples of how we can
obtain the necessary intensive longitudinal data to develop
dynamic models of behaviour change [18, 23].

Simple dynamic example model
In SCT self-efficacy is the key driver for behaviour change.
Bandura [1] identified four factors that influence SCT: mas-
tery experiences, vicarious experiences, verbal persuasion
and emotional and physiological states. We first motivate
the need for dynamic models of behaviour by using a sim-
ple model of self-efficacy in response to mastery, guided
by principles from Bandura’s SCT. A very simple linear dy-
namic model of how mastery may influence self-efficacy in
open-loop (the effect of feedback is not included) is,

ÛxSE = ku −
1
τ
xSE (1)

where xSE is self-efficacy, ÛxSE is the first derivative of self-
efficacyw.r.t time,u is mastery, andk and τ model parameters
that describe the gain and time constant respectively. This
demonstrates how a dynamic model of behaviour not only
defines the model structure (e.g., the idea that the mastery
drives self-efficacy), but also the magnitude and time-course
of response.
Simulated results using this model with τ = 5 and k = 1

are shown in Fig. 2. The simple model is able to capture
several phenomena: i) if mastery is short lived then self-
efficiency decays back to a baseline value, ii) if the experience
is negative then self-efficacy is also negative, iii) if mastery is
constant then the increase in self efficacy is greatest initially
and then reaches a steady state.
This example is intended to show how dynamic models

can provide rich predictions of how behaviour evolves over
time. To incorporate other more complex factors thought
to affect self-efficacy, such as the idea that self-efficacy is
less likely to be affected by a negative experience if prior to
the experience we have had a lot of positive experiences [1],
non-linearities could be included. Individual effects, such as
the idea that some individuals have higher self-efficacy that
is harder to deplete, could be incorporated by varying the
model parameters.

State of the art
There have been some attempts to develop dynamic mod-
els of behaviour. However, in comparison to work within
the social sciences on behavioural change theories, this field
remains in its infancy. Dynamical models of smoking cessa-
tion [4], alcohol consumption [24] and physical activity in
response to text message micro-interventions [49, 50] have
been developed.

The first attempts at developing a general behaviourmodel
have been made by Rivera et al. [30, 34, 43]. Early versions
of their dynamic behaviour model are based on the theory
of planned behaviour (TBP) [34], with later versions based
on SCT [30]. Their models have been applied to smoking
cessation [55], fibromyalgia pain [10], weight gain [13, 34],
and to physical activity [43]. Thus far the examples have
been quite simple with inputs and outputs that can easily be
quantified such as the number of steps walked [43].
The dynamical SCT model can be represented using a

state-space representation, where the system is modelled
as a set of input, output and state variables related via first
order differential equations. State-space models are widely
used in Control Systems Engineering and can be described
in general as
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Figure 2: The effect ofmastery on self efficacy. Top plots showmastery inputs and bottom plots the corresponding self-efficacy,
simulated using Eq. (1).

Ûx = Ax + Bu (2)
y = Cx + Du (3)

where x is a vector of states, u the inputs and y the out-
puts. In the dynamic SCT model there are eight inputs: skills
training (ς1), observed behaviour (ς2), perceived social sup-
port and verbal persuasion (ς3), internal cues (ς4), perceived
barriers and obstacles (ς5), intrapersonal states (ς6), environ-
mental context (ς7), external cues (ς8). There are six states:
self management skills (η1), outcome expectancies (η2), self-
efficacy (η3), behaviour (η4), behavioural outcomes (η5), cue
to action (η6). The outcomes of interest are often the be-
haviour and self-efficacy. In mapping the SCT model onto a
state-space representation the state matrix,
x =

[
η1 η2 η3 η4 η5 η6

] ′ is a vector of n = 6 states,
and the inputmatrixu =

[
ς1 ς2 ς3 ς4 ς5 ς6 ς7 ς8

] ′
a vector ofm = 8 input variables. If the outputs of interest
are self-efficacy and behaviour, then y =

[
η3 η4

] ′ is a vec-
tor of p = 2 output variables. The matrixes A, B and C are
state matrices which contain the model parameters,

A =



− 1
τ1

0 0 β14
τ1

0 0
β21
τ2

− 1
τ1

0 β25
τ2

0 0
β31
τ3

0 − 1
τ3

β34
τ3

0 0
0 β42

τ4
β43
τ4

− 1
τ4

β45
τ4

β46
τ4

0 0 0 β54
τ4

− 1
τ5

0
0 0 0 0 0 − 1

τ4


(4)

B =



γ11+1
τ1

0 0 0 0 0 0 0
0 γ22+1

τ1
0 0 0 0 0 0

0 γ32
τ3

0 0 −
γ35
τ3

γ36
τ3

0 0
0 0 0 1

τ4
0 0 0 0

0 0 0 0 1
τ5

0 γ57
τ5

0
0 0 0 γ64

τ6
0 1

τ6
0 γ66

τ6


(5)

C =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
(6)

where β , γ and τ are used to define the model parameters.
In practice when the model has been applied, it has been
simplified to consider fewer inputs. For example, in [30] a
two input model was considered, with skills training and
external cues chosen as the inputs which were measured by
the time spent reading tips and the number of reminders
sent to set a new goal respectively. In this case the outcomes
of interest were the behaviour and self-efficacy.

Unknown model parameters for human behaviour models
have been identified using system identification techniques
[15, 30, 42]. System identification involves testing the re-
sponse of a system to different inputs over time and using
this data to estimate model parameters, or refine models. It
is key to ensure that the inputs used can excite the system
dynamics adequately to ensure we are able to capture the
relevant range of dynamics. In applying these techniques to
estimate a dynamic human behaviour model we are limited
in how we can vary inputs. We can only really change inputs
using push factors (e.g., via cues to action, reminders, or
prompts) [23], which can add burden to the user. In order to
measure some of the internal states, for example outcome
expectancies, EMAs can be used [23]. Again, this can be
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burdensome to the individual. Careful thoughts needs to be
made to determine what exactly our data sets should contain,
for example we could include metrics on the environment,
the weather, how busy the person is, among other elements.
We have the capabilities to make these rich data sets [23],
but these data sets still do not exist. Creating them requires
very careful experimental design to ensure we can measure
meaningful data.

Modelling considerations
Using the two input model and illustrative parameters de-
fined in [30] (τ1 = 1, τ2 = 1, τ3 = 1, τ4 = 2, τ5 = 1, τ6 =
3,γ11 = 3,γ22 = 1,γ32 = 2,γ33 = 1,γ35 = 1,γ36 = 1,γ57 =
2,γ64 = 15,γ68 = 15, β21 = 0.3, β31 = 0.5, β42 = 0.3, β43 =
0.8, β45 = 0.1, β54 = 0.3, β24 = 0.2, β25 = 0.3, β14 = 0.23, β46 =
0.44) the effect of external cues on behaviour were simulated
to again demonstrate the importance of time. In the simu-
lation, a period of 20 days was considered and for each day
there was a random probability of one to five cues to action
occurring randomly throughout the time period 8am till 8pm.
A typical input where the cues to action are represented by
spikes at the times they occur is shown in Fig. 3a. The cues
to action could also be represented using the total number
of cues that occur on a typical day (Fig. 3b), the two inputs
produce very similar responses (Fig. 3c). An additional input,
busyness was next considered, we might expect that cues
to action that occur when someone is busy have no effect.
For illustrative purposes, a very simple input was used for
busyness which was equal to one when someone was busy
which was taken to be between 9am till 5pm on weekdays
(Fig. 3d). By representing the input cues to action as spikes
we are able to exclude the effect of any cues to action that
occur when busy, giving the behaviour seen in Fig. 3d. We
are unable to do this when the input is represented as the
total cues for the day. This demonstrates not only the impor-
tance of timing, but how we represent temporal information.
Careful thought needs to be given to what suitable sampling
frequencies for collecting data and modelling are.

The SCT dynamical model of behaviour change provides
a first step in developing a dynamic behaviour models. The
model is based on linear dynamic systems theory. Better
models, describing more complex behaviours, might be de-
veloped using models with state dependent parameters. In
these models the state of the system effects the model param-
eters [58]. This links to the idea of teachable moments, that
in certain states people are more likely to enact behavioural
change [25]. From a dynamic systems modelling perspective
the gain could be modelled as a function of states to be very
high under conditions (certain configurations of states) that
are considered to be teachable moments.

Whenmodelling there is always a trade-off betweenmodel
complexity and accuracy, any model should be parsimonious
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Figure 3: The importance of timing. a) Cues to action as
spike inputs, b) Cues to action as totals per day, c) Behaviour
when using both spikes and totals per day as inputs, d) Busy-
ness, e) Behaviour when busyness taken into account.

and capture the key dynamics of the system being modelled.
There are questions as to what complexity should be used
in developing dynamic models of behaviour. To answer this
and develop better dynamic models of behaviour we first
need better data sets which include model inputs, outputs
and state variables over time. Key questions in relation to
behaviour change models are what states, inputs and outputs
should be included in the models and over what time and
how frequently do we need to sample.

4 SYSTEMS AND CONTROL THEORY FOR
PERSUASION

In the previous sections we have discussed the need for better
computational models of behaviour change for persuasive
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health, we now consider how these models could be used to
make better decisions. We argue that control theory may be
useful in developing theories for how to persuade behaviour
change and describe some attempts in the literature where
control theory is being used to determine digital interven-
tions.

Control theory deals with the response of a dynamic sys-
tem (often referred to as the ‘plant’) over time. It is concerned
with designing control laws (referred to as ‘controllers’) that
will cause the system to respond in a desired manner [20].
The main concern is to ensure the controlled system behaves
well in the presence of model uncertainty, external distur-
bances and noise. Control systems are prolific within mod-
ern industries and technology, with applications including
aircraft control, temperature regulation, and robotics [20].
There are several biological functions which use feedback
control and control methodologies are increasingly being
used in non-standard applications [57]. These non-standard
applications include climate control [29], biological systems
[54], economics [47], resource management [35] and medical
treatments [7].

Where control theory has been used for non-standard ap-
plications, controllers have been based either on proportional-
integral-derivative (PID) feedback control (Fig. 4), or model
predictive control (MPC) [57]. In PID control, a feedback
loop is used to feed back the output of the system. This is
compared to a desired reference signal to give an error value
(e(t) = yd (t) − y(t)) where yd (t) is the desired output and
y(t) the actual output). The control signal is a sum of three
terms: one proportional to the error (P), one proportional
to the integral of the error (I) and one proportional to the
derivative of the error (D) [20]. MPC is a model based control
method that provides a method for optimising the perfor-
mance of constrained systems. At each time instant a MPC:
takes a measurement of the system state, computes a finite
horizon control sequence that uses an internal model to pre-
dict system behaviour, minimises some cost function, and
doesn’t violate any constraints. The first values of the control
sequence are then used as the next inputs to the system and
the process is repeated each time step.

P

I

D
Controller

Plant++

-
e(t)yd(t) y(t)

Figure 4: Schematic of a PID controller

An excellent introduction to the idea of using control
theory for digital health interventions is provided by Rivera
[43]. This gives a list of the required and desirable attributes
for a problem to be suited to using control theory (Fig. 5). In
addition to these considerations, applying control theory in
non-standard applications can bring other challenges [57]:
Measurements are likely to be highly noisy, and data may
be sparse, missing or irregular. An even greater challenge is
how we go about obtaining quantifiable measures for states
and inputs, which may be subjective or not well defined.

Required Desired

1) Inputs and outputs that                          

vary over time

2) Possible to modify inputs 

(intervention options are available)

3) Outcomes variables are measurable 

(or inferable)

4) A meaningful desired state exists    

1) Frequent decision points

2) Theory available to guide model 

development

3) Other feasibly important variables 

can be measured intesively 

4) Therorised dynamic relationships 

between inputs and outputs

Figure 5: Attributes of a problem that are well matched to
control engineering. Adapted from [43]

If these challenges can be overcome, control theory can
provide a framework for determining optimal inputs. It in-
herently allows for individualisation via data-driven opti-
misation. To illustrate this we return to the PID feedback
controller. The output signal is fed back and compared to
a reference signal to generate an error signal, the inputs
applied to the system are then determined from this error
signal. In effect the inputs vary dependent on what the out-
puts are. When applied to an individual we effectively have
an N-of-1 trial, as each set of inputs will differ, dependent
on how the system responds. To further personalise digital
health interventions there is the option of using adaptive
control, where the parameters of the controller are adapted
according to variations in the plant. These features have
motivated research into applying control theory in medical
treatments and to determine individualised treatments [8].

In addition to controlling the response of the system, con-
trol theory also enables us to study other aspects of the
system such as the controllability and observability. The
concept of controllability refers to the ability to manipulate
a system using admissible inputs. In particular, the ability
of an external input to move the internal state of a system
(x) from any initial state to any other final state [36]. The
concept of observability refers to the ability to see what is
going on inside the system and in particular how well the
internal states of a system can be inferred from knowledge
of its external outputs [36]. For a dynamical system model,
the controllability and observability can be calculated from
the state matricesA,B,C . There is the potential that certain
behaviours are not observable or controllable. This would be
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an interesting question to ask, but first requires a dynamical
model.

5 FUTURE CHALLENGES
Using systems and control theory provides an exciting av-
enue to providing a theoretical basis for persuasive health.
However, it also poses several questions and challenges that
need addressing. To utilise systems and control theory we
need to quantify inputs (including any constraints), outputs
and states over time. Although some behavioural related
measures are simple to quantify, such as the number and
timing of messages (cues to action). Other measures, such as
the content of the messages are more subjective and harder
to quantify. Only simple, easy to quantify variables have
been included in current dynamic systems models, or associ-
ated control based interventions. Key questions need to be
addressed as to how these more qualitative measures can be
quantified.
Control theory offers a framework for optimising inputs

to ensure that a system behaves in a certain way. However,
in the field of persuasion, we are unlikely to have complete
control over these inputs. For example, we could send a mes-
sage to motivate physical activity (cue to action), but we
have no way of guaranteeing when the message will be read.
This is not a common problem in control systems for engi-
neering applications, which tend to have guaranteed inputs.
Similar problems could arise in network control systems (e.g.
delay, packet loss), however, there are usually some bounds
on the delay [16]. Robustness to the fact that inputs cannot
be guaranteed needs to be built into the system.

Of course, when dealing with persuasion we also need to
consider ethics. There is a growing body of evidence that
shows algorithms alone do not automatically treat diverse
populations fairly [38]. Therefore, any control theory based
algorithms need to provide methodologies for including
ethics; these do not currently exist. Within a MPC frame-
work there are methods to constrain inputs, which could be
utilised to ensure unethical inputs are not used, but again we
run into the problem of how to represent complex qualitative
inputs numerically. Or, perhaps even more fundamentally
the question of if we should be attempting to quantify these
values. As well as a focus on developing a framework for
persuasion, there needs to be a focus on addressing ethical
questions. As well as those mentioned, there are also more
generally applicable problems of data and algorithmic bias,
misuse, liability, and unintended side effects of a successful
persuasion.
Even once we have dynamic behaviour models and rele-

vant controllers, we still need to ensure these can be utilised
by computer scientist and developers to produce better in-
terventions. We need something like the Action Behaviour
Model [26], but for these dynamical models. This requires

control systems engineers, behavioural scientists, computer
scientists, and developers to work together to drive the field
forward and come up with theory based persuasive technolo-
gies that will improve behaviours, and in turn health.

6 CONCLUSIONS
This paper has considered how ideas from systems and con-
trol theory could provide a theoretical framework that is cur-
rently lacking from persuasive technologies. It has reviewed
the state of the art in the area and highlighted problems
that need to be addressed in order to achieve this. We hope
to have motivated the need for theoretical frameworks and
better data sets, and installed the importance of capturing
time in terms of dynamic behavioural changes.
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