
 1 

Mechanism-based modeling of solute strengthening: application to 

thermal creep in Zr alloy  

Wei Wen, Laurent Capolungo, Carlos N. Tomé 

Materials Science and Technology Division, Los Alamos National Laboratory 

Los Alamos, NM 87545 

Abstract 

In this work, a crystallographic thermal creep model is proposed for Zr alloys that 

accounts for the hardening contribution of solutes via their time-dependent pinning 

effect on dislocations. The core-diffusion model proposed by Soare and Curtin (2008a) 

is coupled with a recently proposed constitutive modeling framework (Wang et al., 

2017, 2016) accounting for the heterogeneous distribution of internal stresses within 

grains. The Coble creep mechanism is also included. This model is, in turn, embedded 

in the effective medium crystallographic VPSC framework and used to predict creep 

strain evolution of polycrystals under different temperature and stress conditions. The 

simulation results reproduce the experimental creep data for Zircaloy-4 and the 

transition between the low (n~1), intermediate (n~4) and high (n~9) power law creep 

regimes. This is achieved through the dependence on local aging time of the 

solute-dislocation binding energy. The anomalies in strain rate sensitivity (SRS) are 

discussed in terms of core-diffusion effects on dislocation junction strength. 

The mechanism-based model captures the primary and secondary creep regimes 

results reported by Kombaiah and Murty (2015a, 2015b) for a comprehensive set of 

testing conditions covering the 500 to 600oC interval, stresses spanning 14 to 156 

MPa, and steady state creep rates varying between 1.5·10-9s-1 to 2·10-3s-1. There are 

two major advantages to this model with respect to more empirical ones used as 

constitutive laws for describing thermal creep of cladding: 1) specific dependences on 

the nature of solutes and their concentrations are explicitly accounted for; 2) accident 

conditions in reactors, such as RIA and LOCA, usually take place in short times, and 

deformation takes place in the primary, not the steady-state creep stage. As a 

consequence, a model that accounts for the evolution with time of microstructure is 

more reliable for this kind of simulation. 

1 Introduction  

Zirconium alloys have been used as nuclear core materials in light water reactors 

(LWRs) over the past 50 years. These alloys show low thermal neutron absorption 

rate, excellent creep strength under high-temperature environments, and superior 

corrosion resistance, which have effectively prolonged the service life and enhanced 

the accident tolerance of the reactors. During in-reactor operation, the material is 

exposed to temperature, pressure and irradiation conditions, which leads to 

dimensional changes induced by irradiation creep, irradiation growth, and thermal 
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creep. While thermal creep effects are regarded as minor during normal in-reactor 

operation conditions, they become relevant under abnormal or accident conditions 

leading to abrupt temperature increases. Therefore it is essential to understand the 

thermal creep mechanisms in Zr alloy and their relationship to the mechanical 

properties. 

The experimental studies of the creep behavior of Zr alloy can be traced back to 

the work of Rosinger et al. (1979) and Garde et al. (1978), who performed tensile 

creep tests on Zircaloy-2 and Zircaloy-4. Recently, Kombaiah and Murty (2015a, 

2015b) conducted tests on Zircaloy-4 within the temperature range of 500oC-600oC, 

and the results provide a valuable database to understand mechanisms during thermal 

creep. Fig. 1 summarizes the steady-state creep rates reported in Kombaiah and Murty. 

It shows that the creep rates vary by more than six orders of magnitude within the 

temperature and stress intervals involved. According to Kombaiah and Murty, results 

can be classified into three regimes. At low stress (<40MPa), the reported creep rates 

show a linear dependence on the creep stresses, which implies the creep behavior in 

this regime is mainly controlled by diffusional creep mechanisms, such as the 

Nabarro-Herring creep and Coble creep. At higher stresses creep is consistent with a 

power law relationship, but with two sub-regimes of power 4n   at moderate stress 

and 9n   at high stress. Notice that similar behavior (transition between moderate 

and high stress regimes with different power n ) has also been observed in earlier 

works of Zr-Nb alloys (Charit and Murty, 2008; Murty et al., 2005; Pahutová et al., 

1976). Although the values of n  vary with the chemical composition of the 

materials, the transition between the two regimes always occurs in the creep rate 

interval of 
7 6 110 10 s− − −: . In addition, anomalous strain rate sensitivity (SRS) has 

also been observed in Zr alloy. Graff (2006) performed tensile tests on Zr702 and 

Zr-Hf and determined their SRSs at different temperatures. The results show a dip of 

SRS at around 400oC. Such low or even negative SRSs is usually associated with the 

dynamic strain aging (DSA) induced by the diffusion of solute atoms to dislocations.  

 

Fig. 1. Experimental steady-state creep rate reported in Kombaiah and Murty 

(2015a, 2015b). 
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To interpret and predict the experimental evidence in Zr alloys mentioned above, 

it is necessary to understand the mechanisms activated during the creep tests. In the 

1960s Barrett and Nix (1965) proposed a steady-state theory assuming that the glide 

of the jogged screw dislocations is limited by the motion of jogs. During deformation, 

screw dislocations in prismatic planes tend to cross-slip and form jogs on the basal 

planes. These jogs are edge in character and can move conservatively on the basal 

planes and non-conservatively (climb) in the perpendicular direction. The motion of 

these jogged screw dislocation is affected by many factors. Depending on the stress 

and the jog status, they may be either pinned at the jogs, or bow-out and continue to 

glide. In the theory of Barrett and Nix (1965), the creep rate is governed by the climb 

of the jogs, which is diffusion controlled and driven by the line tension of the 

dislocation pinned between the jogs. Later, based on the same assumption, 

Viswanathan et al. (2002, 1999) adapted the formulation of Hirth and Lothe (1983) to 

account for the actual processes associated with the jog height and spacing. Morrow et 

al. (2013) utilized this modified jogged-screw model to predict the creep behavior of 

Zircaloy-4 for temperature between 260oC and 427oC. However, the application of 

this model may be limited to a certain temperature range since the formation of jogs is 

temperature dependent. For the microstructure characterization at a higher 

temperature (500oC-600oC) (Kombaiah and Murty, 2015a, 2015b), the jog density 

was reported to be very low, implying the creep behavior is dominated by some other 

mechanisms. The disappearance of the jogs at high temperature has also been reported 

elsewhere (Ecob and Donaldson, 1985). Moreover, the jogged-screw theory is 

challenged by a recent in-situ TEM study (Caillard et al., 2015) done at similar 

temperature (250oC-450oC) as Morrow et al. (2013), where the climb of jogs is not 

observed. 

While the jog density is very low at higher temperatures, fully formed subgrain 

boundaries have been detected by Kombaiah and Murty (2015a, 2015b), consisting of 

pure edge dislocations and the special ‘honeycomb’ wall structure. The ‘honeycomb’ 

boundary, also recognized as Frank network (Hayes et al., 2002; Poirier, 1976), is 

reported in Kombaiah and Murty (2015a) as a 2-D structure on the basal plane. 

According to Kombaiah and Murty (2015a, 2015b), its formation starts with the 

interaction between the screw dislocations on different prismatic planes, followed by 

cross-slip. The incoming dislocations will repeat this process. As a result, the 

‘honeycomb’ network is formed. In addition to this basal plane boundary, another 

‘honeycomb’ structure located on the plane perpendicular to the 1123  direction is 

reported by Kombaiah and Murty (2015a, 2015b). Kombaiah and Murty indicated that 

this type of boundary is composed of dislocations lying on the intersection of the 

prismatic plane and the wall plane. These dislocations are of a mixed type, and they 

may move on the wall plane through the climb process, which is necessary for the 

network formation. The ‘honeycomb’ boundaries are intensively formed at elevated 

temperatures due to the high activity of both climb and cross-slip. Notice that they are 

also detected at lower temperatures but in an incomplete form (Moon et al., 2006; 

Morrow et al., 2013). 
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Solute dragging may also affect the creep response in Zr alloys. When a 

dislocation is traveling freely within the matrix, it will interact with the solutes around 

it and experience a dragging stress. This dragging stress is a function of solute atoms 

bulk diffusivity and depends linearly on the dislocation speed. According to Caillard 

et al. (2015), the velocity of free traveling dislocations is of order 10nm/s, while the 

dragging resistance is under 50MPa. However, it has been reported that high stresses 

will build up at a dislocation pinned for a long period at obstacles. When unpinned, it 

will achieve immediately a very high velocity until it reaches the next obstacle 

(Castany et al., 2007).  

Soare and Curtin (2008a, 2008b) developed a hardening law considering the 

effects of the diffusion of solutes in the dislocation core. This model is based on a 

series of atomistic and mesoscale simulations (Curtin et al., 2006; Olmsted et al., 

2006; Picu, 2004) aiming to study the Dynamic Strain Ageing (DSA) phenomenon. 

The core-diffusion theory suggests that when a clustered dislocation is immobilized, 

the surrounding impurities tend to diffuse within the dislocation core area and thus 

introduce an extra energy binding the dislocation to its current position. Therefore an 

extra stress is required for unpinning to take place. Moreover, the core-diffusion will 

also increase the effective dislocation-dislocation junction strength, which is 

suggested to be responsible for the anomalous SRS. Although the core-diffusion 

model, as well as the foundational atomic level simulations, focuses on the behavior 

of Al-Mg alloy, we believe the theory is applicable to Zr alloy due to the presence of 

solutes in both materials.  

In the present work, a physics-based thermal creep constitutive model is proposed 

based on the core-diffusion theory and is employed to predict the behavior of 

Zircaloy-4 under creep tests at various temperatures and stresses. In this model, the 

hardening equations of Soare and Curtin (2008a, 2008b) are coupled with a recently 

proposed framework accounting for the heterogeneous distribution of internal stresses 

within grains (Wang et al., 2016, 2017). This model, which is embedded in the 

crystallographic visco-plastic self-consistent (VPSC) framework (Lebensohn et al., 

2007; Lebensohn and Tomé, 1993), will be introduced in section 2. In section 3, the 

predicted thermal creep behavior is presented and compared with the experimental 

data given in Kombaiah and Murty (2015a, 2015b) for Zircaloy-4 under various 

temperatures and applied stresses. With the addition of Coble creep mechanism, this 

model is capable of reproducing the transition between the low, intermediate and high 

power n regimes. The role of core-diffusion of solutes on strain rate sensitivity is also 

discussed. 

2 Thermal creep model 

The constitutive model developed in this work aims to describe the thermal creep 

behavior of Zr alloy with randomly distributed solute atoms (Oxygen, Tin, etc.), and 

quantify the effects of each solute diffusion related mechanism occurring 
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simultaneously during the deformation. An extensive experimental characterization of 

the role of Oxygen upon thermal creep of Zircaloy-4 can be found in the work of 

Warda et al. (1973). In our model the creep strain is assumed to be accumulated 

through dislocation motion and Coble creep. These two mechanisms take place 

simultaneously during the plastic deformation. Therefore, the total strain rate in each 

grain is written as:  

  = +p d coble
 (1) 

2.1 Dislocation driven creep 

In the present work, the dislocation motion refers to conservative gliding on the 

slip planes. The exclusion of the climb mechanism will be discussed in the following 

sections. In this case, the dislocation motion induced strain rate 
d&  can be written as 

the sum of the mean shear rates on all active slip systems: 

 =d s s

ij ij

s

m  (2) 

where ( )
1

2

s s s= m n b  refers to the symmetric part of the Schmid tensor. s
n  and 

s
b  are the normal and Burgers vectors of slip system s. 

It is well-known that the stress distribution within a grain or subgrain is 

heterogeneous. As a consequence, some dislocations may be able to glide due to the 

high local stress state, whereas others may be immobilized if the local stress is 

insufficient to overcome the resistance. However, effective medium polycrystal 

models, such as the VPSC model employed in this study, assume that the stress and 

strain rate inside each grain are homogeneous. Therefore, it is necessary to express the 

mean mechanical response of the grain as an average over all sub-material points. 

Moreover, since the shear rate versus stress response in crystals is usually non-linear, 

such a treatment will also grant a better connection between the local atomistic-level 

simulations and the macroscopic performance. 

In this work, the proposed model uses as a framework the theory originally 

proposed by Wang et al. (2016, 2017) in which each material point (grain) is regarded 

as decomposed into an infinite number of sub-material points, each having its own 

stress state depending on the local microstructure. In Wang et al. (2016, 2017), the 

mean shear rate 
s&  in one material point (representing one grain) can be obtained as 

the integral of the local shear rates over all sub-material points. For dislocation glide, 

the mean shear rate of slip system s  is expressed as: 

( ) ( )     


−
= −

s s s s s sP d  (3) 

where 
s&  represents the shear rate in one sub-material point with local resolved 

shear stress 
s .  s s =σ : m  denotes the mean resolved shear stress in one grain, σ  
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is the deviatoric stress tensor. The probability distribution function ( )s sP −   in Eq. 

3 represents the volume fraction of sub-material points with s . The analysis of the 

internal stress fluctuation induced by dislocation arrangements can be traced back to 

the theory of Wilkens (1970) which predicts symmetric line broadening with a 

Gaussian center part and non-Gaussian tails in the line profile. In the case of restricted 

randomly dislocation distribution within a diffracting domain, the entire line profile 

can be accurately described with a Gaussian distribution. Later, the theory proposed 

by Groma and Bakó (1998) indicates that the tail of the probability distribution of the 

internal stress decays with the inverse third power of the stress. This theory has been 

discussed and verified by Groma and Székely (2000), Wilkinson et al. (2014) and 

Kalácska et al. (2017). In the constitutive modeling framework of Wang et al. (2016, 

2017), the internal stress distribution is assumed to be Gaussian. The rationality of 

this simplification can be justified as follows: the main purpose of incorporating the 

internal stress distribution in constitutive models is to connect the localized 

strain-stress response with bulk performance. In this case, one should only account for 

the stress fluctuations above the scale of the dislocation spacing and junction width, 

where the dislocation induced shear rate and the flow stress can be meaningfully 

defined. At this length scale, the averaged stress distribution, resulting from the 

superposition of stress fields of many dislocations, corresponds to the Gaussian 

central part in the theories of Wilkens and Groma. In addition, the power law tail 

induced by the high-stress regions near single dislocation cores should disappear. 
Therefore, following Wang et al. (2016, 2017), the internal stress distribution in the present 

work is given as a Gaussian function depending on the deviation of 
s  from 

s : 

( )
2

2

1
( ) exp

22

s s

s sP
VV

 
 



 −
 − = −
 
 

 (4) 

where V  is the distribution variance, which is different for each material point. As 

discussed in Wang et al. (2016), the intragranular stress dispersion (responsible for 

peak broadening) may be assumed to be a function of the total dislocation density in 

the grain, and V  is expressed as: 

V  =  (5) 

where   is the total dislocation density in one grain and 
710 MPa m −  is a 

scaling coefficient (Wang et al., 2016).  

In the present model, the local shear rate on system s  can be determined 

through the well-known Orowan’s equation: 

( )sign  = s s s s sb v  (6) 

where 
sb  is the magnitude of the Burgers vector, and sv  is the mean dislocation 

velocity. The latter is given by the mean spacing between obstacles (dislocation mean 
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free path 
s ) and the total time a dislocation spends in this process, which includes 

the time traveling within the free spacing 
s

tt  and the waiting time at obstacles before 

the bypass 
s

wt : 

s

s s

w

s

tt
v

t
=

+


 (7) 

In the present work, only the dislocations are considered as obstacles. The 

effective obstacle interspacing hinges on the nature of the barrier. For dislocation-type 

obstacle, it is associated with dislocation-dislocation interactions between slip systems. 

Thus, in this work, the law proposed by Franciosi and Zaoui (1982), and for which 

discrete dislocation dynamics simulations of Bertin et al. (2014) have demonstrated 

the statistical representativeness is used to express the dislocation mean free path in 

Eq. 8 as: 

' '1 ss s

s
s

 


=   (8) 

where 'ss  refers to the effective latent hardening matrix. The latter is essentially 

affected by the core-diffusion mechanisms, which will be introduced later in this 

section.  

The traveling time 
s

tt  is given by s s

t tt v= . Here tv  is the dislocation 

traveling velocity. It is assumed to be equal to the shear wave velocity 

0t sv C   =  (Austin and McDowell, 2011; Hirth and Lothe, 1983) where 

3

0 6520kg m −   is the mass density and 42518.52 22.185 MPaT(K)  −=  is the 

shear modulus for Zr (Moon et al., 2006). It is worth mentioning that the solute 

dragging mechanism may affect the traveling time of dislocations. However, since the 

correlation is uncertain, in this work solute dragging is not formulated in the travel 

time. Instead, its effect on the dislocation motion is accounted for within the waiting 

time term (see section 4). 

The bypass of dislocation-type obstacles corresponds to the bowing-out between the 

dislocation junctions with the assistance of thermal fluctuation. The waiting time for 

this thermally-activated process can be expressed using the Kocks-type activation 

enthalpy law (Austin and McDowell, 2011; Kocks et al., 1975; Lloyd et al., 2014): 

1

exp

s

s s

wt G

kT


=

 
 
 

 (9) 

where k  is Boltzmann constant; T  denotes the absolute temperature; 
s  is the 

attack frequency. It is suggested to be associated with the average length of the 
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vibrating dislocation segments between two pinning points (represented by the mean 

spacing between obstacles  s
) (Granato et al., 1964; Wang et al., 2017): 

s s

e sC  =  (10) 

e  is an entropy factor (of the order of 1); sC  represents the shear wave velocity 

(speed of sound). 
sG  in Eq. 9 is the activation energy, which is expressed in Kocks 

et al. (1975) as: 

0 1

0

q
p

s

eff s s

cs

c

s s

c

s
G if

G

if

τ  
 −  

  
  







 = 




 


 

 (11) 

with 0G  denotes the thermal activation energy without any external stress applied. 

p  ( 0 1p  ) and q  (1 2p  ) are parameters determining the shape of the 

obstacles resistance profile (Kocks et al., 1975). 
s

effτ  refers to the effective stress 

assisting the dislocation to overcome the barriers: it combines the applied resolved 

shear stress (
sτ ) as the driving stress and the added resistance to dislocation motion 

induced by the diffusion of solute atoms around the dislocation core. The 

core-diffusion will be introduced below. The kinetic of solute clustering is a classic 

topic since the 1940s (Cottrell, 1948; Cottrell and Jaswon, 1949). In the 2000s, a 

series of atomistic studies (Curtin et al., 2006; Olmsted et al., 2006; Picu, 2004; 

Zhang and Curtin, 2008) were carried out for the edge dislocations in FCC Al-Mg 

alloy, aiming to reveal the process of dynamic strain aging and anomalous strain rate 

sensitivity within a certain temperature interval. The proposed theory was later 

summarized and applied in a rate-dependent constitutive model (Soare and Curtin, 

2008a, 2008b). In the core-diffusion model, the solutes tend to diffuse around the core 

of pinned dislocation. The atomic level simulation performed by Curtin et al. (2006) 

shows that the binding energy of solutes around an edge dislocation varies between 

the two sides of the slip plane. The binding energy differential tends to drive the 

solutes to diffuse from one side of the slip plane to the other. As a consequence, the 

binding energy between the dislocation and its present position is increased. Denoting 

the average activation enthalpy for solute transitions as cH , then the transition rate 

from compression to tension side can be written as: 

( )2

0
cH W kT

c tΓ m e
−  −

− =  (12) 

where W  refers to the average binding energy difference. 0  is the attempt 

frequency for atomic motion. m denotes the number of neighbors that each site has on 

the other side of the slip plane. In the same way, the transition rate from tension to 

compression side is: 
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( )2

0
cH W kT

t cΓ m e
−  +

− =  (13) 

Therefore, the rate of the solute concentration change at time t  is given as: 

( ) ( )( ) ( )( )0 0exp 2 exp 2 = −  − − −  + t c cc t m H W kT m H W kT . Considering 

the initial condition that the solute concentrations on both sides are equal to the one in 

bulk ( 0c ), one can obtain: 

( ) ( )0 tanh 2 1 expt

d

t
c t c W kT

t

   
   =  − −      

 (14) 

with 

0
0

1 1
exp

2
2 cosh exp

2

c
d

c

H W
t

W H m kT
m

kT kT




 −  
=         −   

   

 (15) 

where dt  represents the scaling time for the core-diffusion process. The power   is 

equal to 1, which is derived from the calculation above assuming the solute diffusion 

enthalpy is uniform across the width of the core. According to Soare and Curtin 

(2008a), for any migration enthalpy distribution, an approximate solution can be 

obtained by using 1  . The change in the binding energy is then expressed as: 

( )(t)core

tE c t N W =    (16) 

Or, in a more common way: 

( ) 1 expcore core

d

t
E t E

t





   
   =  − −      

 (17) 

where ( )0 tanh 2coreE c N W W kT =    is the saturation value for the binding 

energy change. N  in Eq. 16 is the number of atoms for unit length of dislocation 

segment in a core of width w .  

In the core-diffusion model, the increase in the binding energy tends to affect the 

dislocation mobility by affecting both, the pinned and the pinning dislocations. In the 

former case, it will further bind the pinned dislocation to its current position, and an 

extra stress is required for the dislocation to unpin from the obstacles. This stress, 

denoted as 
s

m , is proportional to 
coreE  for an uniform distribution of migration 

enthalpy, but not necessarily so otherwise. However, Soare and Curtin (2008a) restore 

the proportional relationship for both cases for the sake of simplicity. Notice that the 

solute diffusion occurs while the dislocation is waiting at obstacles before the bypass. 

Thus aging time in this mechanism should refer to the local aging time, which 
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depends on the waiting time. Notice that the local aging time ,

s

a localt  should not 

exceed the current duration of the test (creep time 
ct ). Therefore: 

,

(if )

(if )

s s

s w w c

a local s

c w c

t t t
t

t t t

 
= 


 (18) 

and the 
s

m  term can be written as: 

( ) , ,

,

( )
1 exp

core s score
s s a local a local

m a local s s

d

E t tE
t

wb wb t



 
 

    
   = = − − 

     

 (19) 

where   is a coefficient accounting for the energy variation along the core. In the 

present work, 
s

m  and ,

s

a localt  are calculated for each sub-material point.  

The other effect of 
coreE  is that the effective junction strength will be increased. 

This mechanism was proposed by Picu (2004), where the junction strength 

(Lomer-Cottrell lock) between a mobile and a clustered forest dislocation is computed 

with different binding energies. Here 
coreE A  is considered as a normalized 

binding energy due to the core-diffusion process, where ( )23 4 1A b  = −  is the 

energy per unit length of edge dislocation segment, 0.34   denotes the Poisson 

ratio, and   is the shear modulus. The results show that the stress required for 

unpinning (
s

l ) increases linearly with 
coreE A , and remains constant after 

coreE A  reaches a certain value. The principle is that the forest dislocation tends to 

move from its original location to form a longer junction segment which will facilitate 

the unzipping process. However, this is impeded for a high value of the binding 

energy 
coreE A  value, in which case the forest dislocation remains at its original 

position at all stress levels, and the bypass mechanism switches from junction 

unzipping to mobile dislocation instability. It is essential to mention that this process 

depends on the aging of the dislocations that play the role of obstacle, not the dislocations 

attempting to unpin and glide. A moving dislocation may encounter any other 

dislocation with different aging history. Therefore the junction strength should be 

determined considering the aging effect in all the sub-material points. In the present 

work, the original formulation of Soare and Curtin (2008a) is adapted and the effect 

of 
coreE  is included in the effective latent hardening matrix for each sub-material 

point: 

( )'

2
'

,' 1

core s

a locass ss

loc l

l

a

E t

A


 

 
= + 

 
 

 (20) 

where   is a pre-factor linearly linking the binding energy to the junction strength. 
'ss  is the latent hardening matrix describing the dislocation-dislocation interaction 
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strength without any contribution from the core-diffusion process. '

,

s

a localt  denotes the 

local aging time of dislocations on slip system 's . Similar to Eq. 3, the effective 

latent hardening matrix in one grain can be calculated as a mean value: 

' ' ' ' '( )ss ss s s s

localP d    


−
= −  (21) 

The mean line tension resistance acting on a pinned dislocation is assumed to be 

inversely proportional to mean interspacing between obstacles. Therefore, we have: 

' 's ss

s

s

l

sb   =   (22) 

Notice that the solutes may also pin the dislocations (solute pinning) and thus affect 

the line tension. However, in the present work this effect is effectively considered in 

the Critical Resolved Shear Stress (CRSS) as shown later in Eq. 24. 

As described above, 
s

m  and 
s

l  are the resistances acting on a pinned 

dislocation. Therefore, the effective driving stress (
s

effτ , Eq. 11) for the bypass process 

is expressed as: 

s s s s

eff m lτ   = − −  (23) 

In Eq. 11, 
s

cτ  represents the Critical Resolved Shear Stress (CRSS). It is known that 

the dislocation core structure is a function of temperature. As a result, varying the 

temperature may affect the interaction between the dislocation and the obstacle, which 

leads to changes in the stress barrier to unpin. Therefore, in the present work 
s

cτ  is 

considered as temperature-dependent: 

0

s s

c sτ  = +  (24) 

where 0

s  is lattice friction at the creep temperature without the presence of solutes, 

which can be obtained from single crystal tests or atomistic simulations; s  is the 

contribution from the pinning of solute atoms. The temperature dependence of 0

s  

and s  will be discussed in section 3.  

2.2 Dislocation density evolution 

The dislocation density evolution plays a key role in the present thermal creep model. 

It is responsible for capturing the rate changes in the primary creep stage. It will also 

affect the variance in the stress distribution (Eq. 5) and hence the mean dislocation 

mobility. The law for the dislocation density evolution is introduced in this section. 

Notice that all dislocations in this thermal creep model are considered as mobile, with 

their actual mobility governed by the local stress state. The forest dislocations 
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reported in experiments are effectively immobilized due to the fact that local stresses 

are insufficient to overcome the resistance. The processes considered in this model for 

 s  are dislocation generation (
, +

g

s
) and dynamic recovery ( , −

a

s ). The evolution law 

is written as: 

, ,  + −= −s s s

g a  (25) 

The generation rate is related to the area swept by the traveling dislocations. The term 
, +s

g  is determined by a commonly used expression (Kitayama et al., 2013; Wen et al., 

2016, 2015):  

, 1 


+ =s s

g s s

k

b
 (26) 

Cross-slip and climb (Estrin, 1998; Nes, 1997) are suggested to be the essential 

mechanisms for the dynamic recovery process, through which one dislocation is able 

to move to another slip plane and annihilate with another dislocation with opposite 

Burgers vector. In the well-known Kocks-Mecking law (Beyerlein and Tomé, 2008; 

Estrin, 1998; Kocks and Mecking, 2003; Mecking and Kocks, 1981), the annihilation 

term is expressed as: 

,  − =s s

a f  (27) 

where f  is the recovery parameter which is a function of temperature and shear rate. 

Estrin (1998) suggested that the strain rate sensitivity of f  depends on the dominant 

annihilation mechanism. The general expression for f  proposed by Estrin (1998) is: 

0

1

0
2





 
=  

 

n

f k  (28) 

where 0n  is a strain rate sensitivity parameter and  refers to the reference strain 

rate. Notice that the values of 0n  and  are related to the temperature, as well as 

the relative activities of climb or cross-slip mechanisms (Estrin, 1998). 

2.3 Coble creep 

Besides the dislocation motion, the plastic deformation in polycrystals may take place 

by the mass transport of vacancies across the grain (Nabarro-Herring) or along the 

grain boundaries (Coble). These diffusional creep mechanisms are relevant at 

high-temperature and/or low-stress conditions, and dictate a creep regime with stress 

exponent close to 1. The competition between Nabarro-Herring creep and Coble creep 

is associated with the temperature and grain size. For the material and test conditions 

(500oC-600oC, 8.5μm of grain size) involved in the studies of Kombaiah and Murty 

(2015a, 2015b), Coble creep is the governing mechanism. The creep law proposed by 
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Coble (1963) is written as:  

3

 
 




=

gb gb gbcoble

ij ij

g

D

kT
 (29) 

where 148gb =  (Coble, 1963) is a constant; gb  denotes the grain boundary width; 

  is the atomic volume; g  refers to the grain size; gbD  is the grain boundary 

diffusion coefficient that can be expressed using the well-known Arrhenius relation: 

,0 exp
gb

gb gb

Q
D D

kT

 
= − 

 
 (30) 

with ,0gbD  and gbQ  denote the pre-exponential factor and the effective activation 

energy for grain boundary diffusion. Because some of the parameters that appear in 

the Coble creep law are affected by the presence of impurities and are not know for 

Zircaloy-4, here we adopt an empirical approach. We reduce Eqs. 29 and 30 to a 

simple form where the parameters 
cobleA  and gbQ  can be obtained by backfitting to 

the experimental data of Kombaiah and Murty (2015b) in the Coble creep regime: 

exp



 

= − 
 

coble

ij gbcoble

ij

A Q

T kT
 (31) 

3 Simulation conditions and parameter calibration 

3.1 Simulation conditions  

The parameters involved in the simulations are discussed in this section. The 

simulations mainly aim to reproduce the creep behavior of Zircaloy-4 at 500oC, 550oC 

and 600oC reported in Kombaiah and Murty (2015a, 2015b). The constant strain-rate 

tensile tests are carried out within the temperature interval of 200oC-600oC to analyze 

the anomaly in strain rate sensitivity. In this work, the affine interaction in the VPSC 

framework is chosen to describe the interaction between the grain and the surrounding 

effective medium (Lebensohn et al., 2007; Masson et al., 2000; Wang et al., 2010). A 

rolling texture of Zr alloy with 100 grains (Fig. 2) is used as input and the tensile tests 

are performed along the rolling direction to replicate the loading condition of 

Kombaiah and Murty (2015a, 2015b). 
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Fig. 2. Initial texture of rolled Zr alloy. RD and TD represent rolling and transverse 

directions, respectively.  

The slip systems considered in our simulations are prismatic <a>, basal<a>, 

pyramidal <a> and pyramidal <c+a>. The slip and twinning activities in Zr have been 

investigated in many works. Zr and its alloys are HCP metals with c/a ratio of 1.594. 

Generally, prismatic <a> type slip systems are favored, whereas the <c+a> type is 

only detected occasionally. Activation of basal slip is negligible at low temperature 

but has been observed above 800K (Akhtar, 1973a; Beyerlein and Tomé, 2008). 

Single crystal tests (Akhtar, 1975, 1973a) on pure Zr (impurity 120ppm ) show that 

the lattice friction stress for prismatic slip is less than 10MPa in the temperature 

interval of 800K-1100K while that for basal slip is slightly higher but within the same 

order of magnitude. Pyramidal <c+a> slip can also be activated but with critical stress 

10 to 20 times higher than the prismatic slip. Besides, pyramidal <a> is also 

considered in the simulations since cross-slip of screw segment from prismatic plane 

to pyramidal <a> and basal planes has been reported for Zr alloys (Caillard et al., 

2015; Onimus et al., 2013).  1012  tensile twinning and  1122  compressive 

twinning are excluded from this work as their activations are suppressed at elevated 

temperatures (Beyerlein and Tomé, 2008; Kanitpanyacharoen et al., 2012).  

3.2 Parameter calibration  

In the Zr alloy used for comparison, the initial dislocation density is reported to 

be low (of order 1012 m-2), and most of the dislocations are on the prismatic slip plane 

(Caillard et al., 2015; Kombaiah and Murty, 2015a, 2015b; Moon et al., 2006; 

Morrow et al., 2016, 2013). To comply with this observation, the initial dislocation 

density is set to be 2.4·1011 m-2 for each prismatic slip system and 0.14·1011 m-2 for 

each basal, pyramidal <a> and pyramidal <c+a> system. Therefore the total initial 

dislocation density is 1012 m-2. In Eq. 5, the scaling parameter   is set to be 

53.16 10 MPa m−  by back-fitting to the experimental data. As a result, the initial 

variance determined from Eq. 5 is 11.4MPaV  . The latent hardening matrix 
'ss  

for Zr is unknown from literature. Hence 
'ss  values reported in Wen et al. (2015) 



 15 

for HCP Mg are employed in this study. The parameters 0G , e , p  and q  are 

obtained by reverse-fitting to experimental data within reasonable ranges ( 1e   

(Wang et al., 2017); 0 1p   and 1 2p   (Kocks et al., 1975)).  

The dislocation density evolution parameters 1k , 2k  and 0n  are calibrated 

according to the experimental data. The annihilation parameter 2k  and the strain rate 

sensitivity parameter 0n  in the dislocation dynamic recovery term are dependent on 

the annihilation mechanisms (climb or cross-slip) (Estrin, 1998). 
0n  is suggested to 

be a constant (around 3-5) if climb is the dominant mechanism in dynamic recovery. 

Otherwise (cross-slip controlled process), its value should be higher. In this work, 
0n  

is chosen to be 20 and 2k  varies with temperature, implying that climb is not the 

dominant mechanism, which will be discussed in the following sections. The value of 

2k  is obtained by fitting to the experimental data of Kombaiah and Murty (2015a, 

2015b). The determined 2k  values are 24, 26 and 28 for 500oC, 550oC and 600oC, 

respectively. It appears that 2k  shows linear-dependent on temperature within this 

interval. Therefore, an empirical expression for 2k  is proposed as 

2 25K 6.92k T= − . The Coble creep related parameters A  and gbQ  (Eq. 31) are 

determined to be 8·104 K·Mpa-1·s-1 and 1.8eV respectively through back-fitting. All 

the parameters mentioned above are listed in Table 1.  

The parameters related to the core-diffusion mechanisms are listed in Table 2. It 

is worth mentioning that the primary aim here is to demonstrate that the general 

mathematic form of the core-diffusion model is capable of describing the behavior of 

Zircaloy-4. Determining accurately the parameters related to the core structure and 

solute diffusion would require atomistic analysis, which is out of the scope of this 

study. The dislocation core structure in HCP material is complex compared to the 

FCC Al-Mg alloy studied in Soare and Curtin (2008a) and the core diffusion process 

in Zircaloy-4 has not been analyzed in detail. In this case, the core-related parameters 

w , m  and N  are set to be 7.5b, 3 and 
22 3w b , which are the values for FCC 

materials (Curtin et al., 2006). In the present work, the solute concentration is set to 2% 



 16 

based on the chemical composition given in Kombaiah and Murty (2015a, 2015b). 

The reference core-diffusion time dt  is an essential variable in this work. The 

parameters involved in the calculation of dt  are calibrated with the experimental 

data. dt  controls not only where the transition between the power law regions occurs, 

but also at which temperature the anomalous SRS appears. The role of dt  will be 

discussed in the following sections. The power   is suggested to be 1 if the solute 

diffusion enthalpy is uniform across the width of the core and 1   if otherwise. 

1 =  is selected in this work due to the lack of information about core-diffusion in 

Zr alloys. 

Tab. 1. Parameters used for the Zircaloy-4 in this work 

Parameters Zircaloy-4  

bs (magnitude of Burgers vector) 

2.231·10-10 m (prismatic, basal and 

pyramidal<a>) 

6.077·10-10 m (pyramidal<c+a>) 

(Beyerlein and Tomé, 

2008)# 

μ (shear modulus) 42518.52MPa-T·22.185MPa/K (Moon et al., 2006) # 

  (scaling parameter) 1.14·10-5MPa/m  

0G  (zero-stress activation energy 

for dislocations) 
2.4 eV  

p  (exponent parameter) 0.8  (Kocks et al., 1975)* 

q  (exponent parameter) 1.1  (Kocks et al., 1975)* 

e  (entropy factor) 1 (Wang et al., 2017) # 

0

s  (initial dislocation density in 

the cell) 

2.4·1011 m-2 (prismatic) 

1.4·1010 m-2 (basal, pyramidal<a> 

and pyramidal<c+a>) 

(Moon et al., 2006; 

Morrow et al., 2013)* 

1k  (material constant) 0.001  

2k  (annihilation parameter) 2 25K 6.92k T= −   

0n  (annihilation strain rate 

sensitivity) 
20  

 (reference strain rate) 1 s-1  
cobleA  (Coble creep parameter) 8·104 K·Mpa-1·s-1  

gbQ  (Activation energy for grain 

boundary diffusion) 
1.8 eV  

# indicates the value of the parameter is taken from the given reference; * indicates the value of the 

parameter is estimated or back-fitted from experimental data within the range mentioned in the 

given reference; the remaining parameters are back-fitted from experimental data.  
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Tab. 2. Core-diffusion related parameters for Zircaloy-4 

Parameters Zircaloy-4 

m  3 

   1 

cH  1.9eV 

W  0.13eV 

0  1·1013s-1 

w  1.86 nm 

  20 

  1 

3.3 Temperature-dependence of the CRSS  

In the model introduced above, some parameters are temperature-dependent, such 

as the CRSS which includes the lattice friction without the presence of solute atoms 

on each slip system ( 0

s ) and the contribution from the pinning of solute atoms ( s ). 

The former can be determined from single crystal tests on pure Zr. In the present work, 

the values of 0

s  are expressed using simple mathematic expressions that roughly 

represent the single crystal test data summarized from literatures. For prismatic slip, 

Akhtar et al. (Akhtar, 1975; Akhtar and Teghtsoonian, 1971) reported the measured 

lattice friction from 300K to 1100K. The data are plotted in Fig. 3a. Notice that 0

s  

generally decreases with increasing temperature but a plateau appears between around 

600K and 800K. For the low-temperature regime, an empirical fitting is expressed as: 

0 21MPa exp
500K

pris T


 
=  − 

 
 (32) 

and for high-temperature regime: 

0 586MPa exp
183.4 K

pris T


 
=  − 

 
 (33) 

The empirical fittings are also plotted in Fig. 3a. For the intermediate temperature 

interval, 
0 6.3MPapris =  is assumed to describe the plateau (dash line).  

Measured 0

s  for basal slip are reported only above 820K (Akhtar, 1973b). For 

temperature lower than that, the values are obtained by empirical fitting assuming 0

s  
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decays exponentially with temperature (see Fig. 3b) as: 

0 25000MPa exp
115K

basal T


 
=  − 

 
 (34) 

This rough estimate may lead to inaccuracy in the lower temperature region. However 

this should not affect the simulation significantly since the basal slip is almost 

inactive below 800K (Akhtar, 1973a; Beyerlein and Tomé, 2008). 

0

s  for pyramidal <c+a> is measured in Akhtar (1973a) for temperature above 

850K through compression tests along the c-axis. For lower temperature, Beyerlein 

and Tomé (2008) proposed an exponential expression for 0

s  of pyramidal <c+a> 

below 450K based on the model estimates at certain temperatures. It can be seen that 

both sets of data (plotted in Fig. 3c) show an exponential decrease with the increasing 

temperature. However, there is a gap between 450K and 850K where the values of 

0

s  are not available. One may expect that a plateau exists as for prismatic slip. In this 

work, the data above 850K is empirical fitted using the expression: 

0 5100MPa exp , 850K
200K

pyra c a T
T  +   

=  −  
 

 (35) 

whereas the ones below 450K are given in Beyerlein and Tomé (2008) as: 

0 722.5MPa exp , 450K
200K

pyra c a T
T  +   

=  −  
 

 (36) 

From Eqs. 35 and 36, 0

pyra c a  + 
 is around 76MPa at both 450K and 850K. Therefore, 

for the sake of simplicity, the values of 0

pyra c a  + 
 are assumed to be equal to 76MPa 

in this interval (dash line in Fig. 3c). Pyramidal <a> slip mode is also accounted for in 

this study. As for basal slip, the activity of pyramidal <a> slip mode is low for the 

temperature range involved but cross-slip from prismatic planes are observed. Thus 

here the lattice friction for pyramidal <a> is simply treated as equal to basal mode. 
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Fig. 3. Dependence of lattice friction with temperature in pure Zr for: (a) prismatic 

slip, experimental data from Akhtar (1975) and Akhtar and Teghtsoonian (1971); (b) 

basal slip, experimental data from Akhtar (1973b); (c) pyramidal<c+a> slip, 

experimental data from Akhtar (1973a) and Garber et al (1963) 

The s  term in Eq. 24 represents the hardening contribution due to the pinning 

of dislocations by solute atoms. When a dislocation is traveling within the random 

field of solutes, it interacts with these point obstacles, which results in extra resistance 

for the dislocation to glide. Friedel (1956) analyzed this resistance for strong-pinning, 

which corresponds to the stress required for bowing out between the pinning points 

(Fleischer, 1966; J. Friedel, 1956). Derived from Friedel’s theory, Labusch (1970) 

proposed a law assuming that the strength of each solute alone is insufficient to pin 

completely the dislocation (Leyson and Curtin, 2013). Notice that laws proposed by 

Friedel and Labusch describe the solute strengthening at 0K. Many investigations 

have been carried out to study the temperature-dependence of solute pinning in Cubic 

materials (i.e. Leyson and Curtin, 2016; Zaiser, 2002). However, most of them focus 

on low and moderate temperature regimes. Moreover, the solute strengthening in 

Zircaloy-4 is rather complicated due to the presence of multiple types of impurity and 

the complex HCP core-structure. Detailed atomistic-level simulations are necessary to 

fully understand this process. In theory, s  should approach the value determined 

from the laws of Friedel or Labusch when the temperature is close to 0K, whereas it 

should vanish gradually when the temperature is increased to a value where the 
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solutes cannot pin the dislocations anymore. However, due to the lack of information 

on this subject, the value s  is assumed to be equal for all slip systems and 

determined by fitting the experimental data of Kombaiah and Murty (2015a, 2015b) 

for each temperature (148MPa, 127MPa and 110MPa for 500oC, 550oC and 600oC, 

respectively). s  values for the 200-500oC interval, which are needed for the 

analysis of strain rate sensitivity (SRS) in section 4, is obtained using an exponential 

expression fitted to values in the 500-600oC, as:  

3100MPa exp 40.5MPa
230K

s

T


 
=  − + 

 
 (37) 

The data calculated using Eq. 37 are plotted in Fig. 4.  

 

Fig. 4. s  values used in the simulations obtained using Eq. 37. 

4 Simulation results 

The steady stage creep rates are measured by Kombaiah and Murty (2015a, 2015b) at 

500oC, 550oC and 600oC, and the tensile stress ranges from 15MPa to 170MPa 

(summarized in Fig. 1). These results can be classified into three regions: low-stress 

zone with creep rates almost linearly dependent on the applied stress (Coble creep 

regime), intermediate stress zone obeying the power law relationship with 4n  , and 

high-stress zone with 9n  . Fig. 5 illustrates schematically how the proposed model 

captures the fast transient from 4n   to 9n   regime. In Fig. 5, the predicted 

initial creep rates (creep rate at the first step of simulation) using the core-diffusion 

model (solid lines) are compared to the results with 0s

m =  (no core-diffusion) and 

,

s s

m m   =   (saturated atmosphere around the core), respectively. First, it is worth 

mentioning that without any contribution from solute effects, the predicted creep rates 

are exponential functions of stress due to the incorporation of the classic Kocks-type 

activation enthalpy law (Eq. 9). Moreover, the aging time-controlled ( ),

s s

m a localt  

also plays an essential role here. Specifically, it allows for an accelerated increase in 

creep rate with imposed stress. At low stress the waiting time is high and the solutes 
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have sufficient time to diffuse around the core, resulting in a high unpinning 

resistance. According to Eq. 19, the ( ),

s s

m a localt  term is close to its maximum value. 

With increasing stress, the waiting time tends to decrease, which leads to a lower 

( ),

s s

m a localt . As shown in Fig. 5, this mechanism tends to further increase the 

‘effective’ power n at high stress, which seems to provide a behavior closer to the 

experimental data as illustrated in Fig. 6. Notice that the other core-diffusion related 

term, 
s

l , has a very limited effect on creep when 20=  due to the low 

dislocation density considered in the simulations (see section 5 for details).  

 
Fig. 5. Predicted initial creep rates at 500, 550 and 600oC demonstrating the role of 

the local aging time-dependent term 
s

m . Results from the core-diffusion model with 

( ),

s s

m a localt  (solid lines) are compared with using 0s

m =  (upper dash lines) and 

,

s s

m m   =   (lower dash lines) 

The steady-state creep rates, predicted using the core-diffusion theory, are presented 

in Fig. 6. The predicted results are the estimated saturation values from the creep 

rate-creep time curves. From Fig. 6 we can see that the experimental trends in all 

power law regimes are generally captured. The creep rates at lower stress are mainly 

controlled by Coble creep, which will be discussed below in detail. Kombaiah and 

Murty (2015a, 2015b) report creep rate and creep strain evolution for two tests: 500oC 

and 129MPa; 550oC and 60.6MPa. These results are captured well in the simulations 

as shown in Fig. 7. The predicted creep rate and creep strain curves for other cases are 

shown in Figs. 8-10 with the horizontal dash lines representing the measured 

steady-state creep rates. Results with and without considering Coble creep are also 

presented in some cases to analyze its effects. As expected, the relative contribution of 

the Coble creep mechanism is large and needs to be included in the low-stress regime, 

and becomes gradually less relevant with increasing stress. Notice that the parameters 

related to  coble
 do not vary significantly during the thermal creep process and hence 

the Coble creep rate remains quasi-constant. At low-stress ( 40MPa), the decrease of 

creep rate in the primary stage is dislocation driven creep. As the dislocation motion 
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induced creep rate decreases because the dislocation density decreases, a steady-state 

stage is achieved controlled by the Coble creep rate. This indicates that while the 

Coble creep dictates the steady-state creep rate at 1n   regime, the contribution of 

dislocation driven creep at primary stage should not be ignored. 

Although the steady-state creep behaviors in 4n   and 9n   regimes are well 

reproduced as illustrated in Fig. 6, some discrepancies are still apparent. Besides the 

inaccuracy in the parameter calibrations, one possible source of error is associated 

with the criterion of steady-state. In experiments, the identification of the steady state 

creep regime is rather ambiguous. The steady-state creep rate (also reported as 

minimum creep rate in some cases) is affected by material failure after certain amount 

of strain (Basirat et al., 2012; Gaffard et al., 2005), which are out of the scope of this 

work. In other word, while the predicted steady-state creep rates in Fig. 6 are achieved 

through the saturation of dislocation densities, the experimental ones result from 

various coupled mechanisms. To better understand the creep process, more creep rate 

vs. time curves are needed with a clear presence of the transition between primary 

creep and steady-state regimes. 

 
Fig. 6. Comparison between predictions and experimental data. Triangles represent 

the experimental steady-state creep rates in Kombaiah and Murty (2015a, 2015b); 

circles represent the predicted saturation creep rates. 

  

Fig. 7. Predicted creep rate and creep strain for Zircaloy-4 for 129MPa (500oC) and 

60.6MPa (550oC). Experimental data from Kombaiah and Murty (2015a, 2015b). 
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Fig. 8. Predicted creep rate and creep strain for Zircaloy-4 at 500oC for various 

stresses. Horizontal dash lines represent the measured steady-state creep rate in 

Kombaiah and Murty (2015a, 2015b).  
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Fig. 9. Predicted creep rate and creep strain for Zircaloy-4 at 550oC for various 

stresses. Horizontal dash lines represent the measured steady-state creep rate in 

Kombaiah and Murty (2015a, 2015b).  
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Fig. 10. Predicted creep rate and creep strain for Zircaloy-4 at 600oC for various 

stresses. Horizontal dash lines represent the measured steady-state creep rate in 

Kombaiah and Murty (2015a, 2015b).  
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5 Discussion 

Although the core-diffusion theory is capable of capturing the transition between 

moderate and high-stress regimes via ( ),

s s

m a locat , an alternative hypothesis can be 

posed related to the solute dragging mechanism. A dislocation traveling freely within 

the matrix will interact with the solutes around it and will experience a dragging stress 

as resistance to glide. The solute dragging stress has been studied by atomistic 

simulations, i.e. (Sills and Cai, 2015; Yoshinaga and Morozumi, 1971). It has been 

demonstrated that it increases almost linearly with the dislocation velocity, then 

reaches a maximum value after a short transient process, and starts to decrease 

afterward. The stresses acting on a moving dislocation include the applied resolved 

shear stress, lattice friction, solute dragging stress ( sd ) and the contribution from 

phonon dragging ( pd ). At quasi-static state, the dislocation can travel at a constant 

speed since the stresses are in balance as 0

s s

sd pd   − = + . The solute-dragged 

dislocations move at low velocity (of order 10 nm/s according to Caillard, 2015), 

which leads to a higher travel time mentioned in Eq. 7 and thus lower creep rate. At 

such speed, the phonon drag stress is negligible since the phonon damping coefficient 

is very low. However, if 0

s s −  exceeds the maximum solute dragging stress, the 

dislocation can accelerate until the balance is restored by the phonon drag stress. 

Resulting from the extreme low phonon damping coefficient (of order 1 MPa s/ m ), 

the dislocations need to reach around 1m/s velocity even if only 1 MPa of phonon 

drag stress is required. This ‘jump’ occurs at the sub-material point level. As a 

consequence, the creep rate in one material point and in the polycrystal may 

experience a fast increase at high-stress regime. However, it has been reported that a 

dislocation pinned for a long period of time will accumulate high pinning stresses. 

When unpinned, it will immediately achieve a very high velocity, until it is 

immobilized again by the next obstacle (Castany et al., 2007). Since this introduces 

some uncertainties in the effect of solute dragging on the dislocation motion, solute 

dragging is not accounted for explicitly in this work. Its effects are accounted for in 

the waiting time term, which may, in turn, introduce errors in the parameter 

calibrations. 

The 
s

l  term in Eq. 22 describes the junction strength change due to the 

core-diffusion of solutes. According to Soare and Curtin (2008a), this term is 

responsible for capturing the dip of SRS appearing at certain temperature intervals. 

The anomalous SRS in Zr alloys is analyzed in several works, i.e. (Graff, 2006; Lee et 

al., 2001). In Lee et al. (2001), the SRS of Zircaloy-4 is measured for strain rates of 

1.33·10-4 s-1, 6.67·10-4 s-1 and 3.33·10-3 s-1 at various temperatures, and the SRS 

anomaly appears around 600-700K depending on the strain rate. Although the 

experimental data are limited to a few strain rates, one may observe that the dips in 

SRS appear at higher temperature for higher strain rates.  

Following the definition of SRS in Lee et al. (2001), the SRS in this work is 

determined as follows: monotonic tensile tests are performed at strain rates of 1& 
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(target strain rate with values taken after Lee et al.) and 2 10.9 = . When the tests 

reach certain strain level SRS , the flow stresses are recorded, and denoted as 1  and 

2 , respectively. Such tests are repeated for various temperatures, and the SRS for 

each temperature is calculated as: 

1 2

1 2

ln ln

ln ln

 

 

−
=

−
SRS  (30) 

As mentioned in section 2, the effective dislocation-dislocation junction strength 
s

l  is a function of the aging time of the dislocations acting as obstacles. The 

principle for the anomalous SRS is that for lower strain rate the dislocation obstacles 

have more time to age before SRS  is achieved, which results in a higher junction 

strength and thus higher critical stress required to unpin. Therefore, a low SRS tends 

to appear when the aging time is approaching the reference diffusion time dt . 

According to Eqs. 20-22, the junction strength change is controlled by the aging time 

and the aging strength factor 
coreE A  =  . Using the parameters given in section 3, 

the SRSs for Zircaloy-4 are predicted with  =20, 100 and 500 at 3%SRS = , and the 

results for the three strain rates are plotted in Figs. 11a-c. It can be seen that the dips 

in the SRS are found for all strain rates but only with 500 = . For the most active 

prismatic slip, at 573K the aging strength factor is  0.132, 0.66 and 3.31 for 

=20, 100 and 500, respectively. For reference, using the parameters given in Soare 

and Curtin (2008a), the factor   at the same temperature for Al-5%Mg is about 

0.322. The reason for the required high   value is that the dislocation density in 

Zircaloy-4 is very low. The predicted line tension in the absence of solutes is around 

5.3MPa (prismatic slip) using the initial dislocation density given in section 3. Hence, 

for  =20, 100 and 500 the line tension resistance changes due to the core-diffusion 

is 0.7MPa, 3.5MPa and 17.5MPa, respectively. As presented in Fig. 11d, only at 

500 =  the 
s

l  term is strong enough to affect evidently the flow stresses at 3% 

strain. In Fig. 12, the predicted SRSs using 500 =  are compared with the 

experimental data. It shows that generally the model is able to capture the magnitude 

of SRS and the temperatures where the dips are presented. The results in Figs. 11 and 

12 indicate that 
s

l  affects the SRS in the way expected but it requires very high 

contribution of the solute core-diffusion on the junction strength to achieve an evident 

dip in SRS.  

The high value of the parameter  =500 compared to  =8.7 reported by Soare and 

Curtin (2008a) or  =20 derived in the previous sections may be attributed to several 

factors. First, in Soare and Curtin (2008a), the value  =8.7 is determined based on 

the linear relationship between coreE  and s

l  obtained from mesoscopic 

simulation of diffusion of substitutional Mg solutes around edge dislocations in FCC 

Al-Mg system. For HCP Zr alloy, the dislocation core structure and the 

dislocation-dislocation junctions are obviously different, and the effect of 
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core-diffusion mechanism on screw dislocations is unknown. The presence of 

interstitial solutes (Oxygen) may also affect the aging process and the resulting 

dislocation behavior. In addition, as discussed above, the low dislocation density used 

in the simulation is partly responsible for the high   required to achieve the 

experimental SRS reported by Lee et al. (2001). Notice that the parameters used in 

this work aim to capture the mechanical behaviors of recrystallized Zircaloy-4 

(Kombaiah and Murty, 2015a, 2015b) whereas Lee et al. performed the tests on 

cold-worked Zircaloy-4 tubes. Since the cold-worked material usually has a higher 

dislocation density, the   parameter may be overestimated. However, the 

dislocation density of the material is not reported in Lee et al.(2001). Therefore, while 

we have proven in this work that the general mathematical form of this model is 

capable of capturing the anomalous SRS, the prediction of the mechanical response 

for cold-worked Zircaloy-4 is outside the scope of the current work. Moreover, the 

dislocation density may also affect the available number of solutes for each unit 

length of dislocation segment. Without considering such factor, the local binding 

energy may be over or underestimated, and thus affect the calibration of the parameter 
 . Elucidating the core-diffusion process in Zr alloy and deriving the relevant (  ,

coreE ) parameters would require further atomistic analysis. 

  

  

Fig. 11. Predicted SRS at strain rates of (a) 1.33·10-4 s-1, (b) 6.67·10-4 s-1 and (c) 

3.33·10-3 s-1. (d) Predicted flow stress at 3% strain for strain rate of 3.33·10-3 s-1. 
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Fig. 12. Predicted SRS using 500 =  as function of temperature. Experimental data 

from Lee et al. (2001). 

In the present work, the dislocation climb mechanism is not included in the simulation 

because we assume that climb is inhibited by the presence of solutes. When an edge 

dislocation is clustered, the surrounding impurities tend to affect the stress field 

around the dislocation, which leads to an increase in the required driving stress for 

climb. Moreover, the solutes may also disturb the diffusion of point defects into the 

edge dislocations. In addition, the in-situ TEM study performed by Caillard et al. 

(2015) proved that the dislocation jogs, which are edge in character, never climb, even 

though they are under an extra driving force (besides the climb component of 

Peach-Koehler force): the line tension from the jogged screw segments.  

6 Conclusions and Perspectives 

In this work, a crystallographic thermal creep model is proposed for Zr alloys 

considering the hardening contribution of solutes. The core-diffusion model proposed 

by Soare and Curtin (2008a) is coupled with the transition state theory framework 

(Wang et al., 2016, 2017) accounting for the heterogeneously distributed internal 

stresses within material points. The simulation results show that this model, which is 

embedded in the crystallographic VPSC framework, is capable to reproduce the 

experimental creep data for Zircaloy-4, especially the transition between the power 

law creep regimes and the anomalous strain rate sensitivity. This is achieved through 

the dependence of the binding energy on waiting time through the core-diffusion of 

solutes.  

The increase in binding energy should also affect the junction strength, which is 

responsible for the anomalous strain rate sensitivity. Our analysis shows that a very 
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high contribution of the core-diffusion to the junction strength is required to 

substantially influence the SRS in Zircaloy-4. More experimental and atomistic-level 

simulation studies are necessary to verify this specific result in the future.  

Keeping in mind the challenges associated with performing creep experiments in 

general, and with determining steady state conditions in particular, the 

mechanism-based model reasonably captures results from a panoply of tests covering 

the 500-600oC interval, and stresses spanning 14 to 156 MPa. The corresponding 

experimental and predicted steady state creep rates vary between 1.5·10-9s-1 to 

2·10-3s-1, which represents an interval of about 6 orders of magnitude. Note that there 

may be uncertainties in the determination of steady-state stage in experiments, which 

will affect the accuracy of the data. The creep rate evolution curves, presenting both 

the primary and steady-state stages, are more reliable for the validation of this model. 
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FIGURE CAPTIONS 

Fig. 1. Experimental steady-state creep rate reported in Kombaiah and Murty (2015a, 

2015b). 

Fig. 2. Initial texture of rolled Zr alloy. RD and TD represent rolling and transverse 

directions, respectively. 

Fig. 3. Dependence of lattice friction with temperature in pure Zr for: (a) prismatic 

slip, experimental data from Akhtar (Akhtar, 1975) and Akhtar and Teghtsoonian 

(Akhtar and Teghtsoonian, 1971); (b) basal slip, experimental data from Akhtar 

(Akhtar, 1973b); (c) pyramidal<c+a> slip, experimental data from Akhtar (Akhtar, 

1973a) and Garber et al (Garber et al., 1963) 

Fig. 4. s  values used in the simulations obtained using Eq. 37. 

Fig. 5. Predicted initial creep rates at 500, 550 and 600oC demonstrating the role of 

the local aging time-dependent term 
s

m . Results from the core-diffusion model with 

( ),

s s

m a localt  (solid lines) are compared with using 0s

m =  (upper dash lines) and 

,

s s

m m   =   (lower dash lines) 

Fig. 6. Comparison between predictions and experimental data. Triangles represent 

the experimental steady-state creep rates in Kombaiah and Murty (2015a, 2015b); 

circles represent the predicted saturation creep rates. 

Fig. 7. Predicted creep rate and creep strain for Zircaloy-4 for 129MPa (500oC) and 

60.6MPa (550oC). Experimental data from Kombaiah and Murty (2015a, 2015b). 

Fig. 8. Predicted creep rate and creep strain for Zircaloy-4 at 500oC for various 

stresses. Horizontal dash lines represent the measured steady-state creep rate in 

Kombaiah and Murty (2015a, 2015b).  

Fig. 9. Predicted creep rate and creep strain for Zircaloy-4 at 550oC for various 

stresses. Horizontal dash lines represent the measured steady-state creep rate in 

Kombaiah and Murty (2015a, 2015b).  

Fig. 10. Predicted creep rate and creep strain for Zircaloy-4 at 600oC for various 

stresses. Horizontal dash lines represent the measured steady-state creep rate in 

Kombaiah and Murty (2015a, 2015b).  

Fig. 11. Predicted SRS at strain rates of (a) 1.33·10-4 s-1, (b) 6.67·10-4 s-1 and (c) 

3.33·10-3 s-1; Predicted flow stress at 3% of strain for strain rate of 3.33·10-3 s-1 (d). 

Fig. 12. Predicted SRS using 500 =  as function of temperature. Experimental data 

from Lee et al. (2001). 

Tab. 1. Parameters used for the Zircaloy-4 in this work 
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Tab. 2. Core-diffusion related parameters for Zircaloy-4 


