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Opportunistic Behaviors of Credit Rating Agencies and Bond Issuers 

 

ABSTRACT 

 

Using credit rating data from the three credit rating agencies (CRAs) in Korea, we examine 

whether bond issuers and CRAs engage in rating shopping and catering. First, we find that 

Korean bond issuers, who are required by law to receive two or more ratings, tend to fire or 

switch from CRAs that assign lower ratings than other CRAs. Second, when a bond issuer hires 

an additional CRA, the new CRA assigns a higher rating than incumbent CRAs. Lastly, we see 

that increased competition, which is measured by the number of CRAs hired by a given bond 

issuer, affects the likelihood of an upgrade occurring. Although CRAs often upgrade ratings 

when their rivals assign higher ratings, our findings show that higher competition further 

increases the likelihood that CRAs will upgrade ratings when there are rating disagreements. 

These results imply that bond issuers and CRAs engage in opportunistic behaviors that 

undermine the quality of credit ratings. 

 

Keywords: rating shopping, rating catering, credit rating agency, competition 

JEL: G24, G30, G34, M40  
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Opportunistic Behaviors of Credit Rating Agencies and Bond Issuers 

 

 

I. Introduction 

Credit rating information helps creditors make lending decisions by reducing 

information asymmetry about debtors’ ability to pay back (Camanho et al. 2012; White 2010). 

However, information users may not be able to make effective decisions if the information is 

not reliable (Akerlof 1995). When this happens, some potential creditors may give up on a 

lending decision or increase risk premiums due to the adverse selection problem. In the 

lending process, credit rating agencies (CRAs, hereafter) play a key role in monitoring bond 

issuers by providing high-quality credit rating information. Bond issuers and CRAs, however, 

have incentives to engage in opportunistic behaviors that undermine rating quality. Bond 

issuers want to obtain higher ratings, as credit ratings have significant influences not only on 

the cost of debt but also on capital structures and stock prices (Hand et al. 1992; Kisgen 2006; 

Tang 2009; Kraft 2015). Given that bond issuers prefer higher ratings, CRAs may want to 

maintain their business or increase their market share by giving favorable ratings to bond 

issuers, who pay rating fees (Skreta and Veldkamp 2009; Mathis et al. 2009; Bar-Isaac and 

Shapiro 2010; Bolton et al. 2012; Griffin et al. 2013). 

Although several researchers have studied rating shopping and catering, it is worth 

investigating opportunistic behaviors using Korean credit rating data because the Korean 

market provides a unique environment different from that of other countries. In Korea, bond 

issuers are required by law to acquire two or more ratings for their corporate bonds.1 This 

requirement provides researchers with a sufficient number of observations to compare ratings 

                                           
1 Article 4-63 of the Regulation on Financial Investment Business in Korea prohibits issuing unsecured 

corporate bonds that have not been assessed by two or more credit rating agencies. Thus, bond issuers in Korea 

must choose at least two CRAs among the following three possible CRAs: the Korea Investors Service, Inc., 

NICE Investors Service, Co., and Korea Ratings, Inc. 
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and prevents the self-selection problem when multiple ratings are not required.2 Just as 

studies of auditor switching show that companies change auditors for opinion shopping 

(Chow and Rice 1982; Simon and Francis 1988; Krishinan 1994; Lennox 2002), we 

demonstrate that bond issuers fire CRAs that give lower ratings than other CRAs for rating 

shopping. Conversely, CRAs are less likely to be fired when they give better ratings than 

other CRAs. 

This firing behavior may result in competition in the credit rating market, inducing 

CRAs to cater to their clients to increase the market share or maintain business. For instance, 

when a bond issuer hires an additional CRA, the issuer may put pressure on the new CRA to 

give higher ratings than those given by the incumbent CRAs. Alternatively, if the new CRA 

wants to increase the market share, the CRA may initiate contracts and provide higher ratings 

to attract clients. We therefore also investigate whether new CRAs cater to bond issuers. Our 

results show that new CRAs assign higher ratings than incumbent CRAs. Lastly, we show 

that increased competition, which is measured by the number of CRAs hired by a given bond 

issuer at, affects the likelihood of an upgrade occurring. Consistent with the results of studies 

on the convergence of credit ratings (Güttler 2011; Lugo et al. 2015), we find that a CRA is 

likely to upgrade a rating when its rival is giving a higher rating; conversely, the CRA is less 

                                           
2 In circumstances where double ratings are not required, companies engage in rating shopping, choosing the 

highest rating among multiple ratings. As this paper requires companies to have at least two ratings for 

comparison purposes, issuers that receive only one rating are not included in the sample. This is problematic 

because companies engaging in rating shopping would obviously hire the CRA that gives the best rating 

(Benmelech and Dlugosz 2010). In such cases, issuers that self-select to receive multiple ratings are less likely 

to fire a CRA for rating shopping. Therefore, the norm of double ratings solves the self-selection problem, as 

companies engaging in rating shopping must, by law, receive two ratings; these have been included in the 

sample. Although U.S. companies are not required to receive two or more credit ratings, according to Mählmann 

(2009), most U.S. companies receive double ratings from Moody’s and S&P. Because the double rating is a 

norm in the U.S. as well, U.S. companies engaging in rating shopping may also decide to receive double ratings 

because deviation from the norm would be noticed by investors. In such cases, the self-selection problem 

mentioned above may be minimal. However, issues related to switching and firing do not occur in the U.S. 

because U.S. companies usually choose to receive a third rating from Fitch in addition to the double ratings 

from Moody’s and S&P. They are not likely to replace S&P with Fitch or other CRAs, although Fitch also has a 

substantial market share, which ranges from 10.9 to 25 percent across rating categories as of 2015 according to 

the SEC (2016). Therefore, the Korean rating market provides an appropriate environment to investigate the 

firing and replacing behaviors of bond issuers. 
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likely to upgrade the rating in the opposite case. Our findings show that higher competition 

further increases the likelihood of an upgrade when a CRA assigns a lower rating than its rivals. 

Moreover, the effect of competition persists even when CRAs assign higher ratings than their 

rivals. These findings are consistent with those of Becker and Milbourn (2011), Camanho et 

al. (2012), and Griffin et al. (2013). 

This paper offers several contributions. First, we provide additional evidence of 

rating shopping in the form of firing or replacement, as observed in the Korean credit market. 

To the best of our knowledge, no study has investigated whether bond issuers fire or replace 

their incumbent CRAs selectively for rating shopping purposes. Second, this paper elucidates 

the specific circumstances in which CRAs cater to bond issuers: bond issuers hire an 

additional CRA and the number of rivals increases. Unlike the mixed findings in prior studies 

using the market share of Fitch as a proxy for market competition (Becker and Milbourn 2011 

and Bae et al. 2015), we use a direct proxy for increased competition measured by the 

number of CRAs that evaluate a given bond issuer. Third, we provide an additional finding to 

complement the rating convergence literature. When competitive pressure is high, CRAs are 

likely to upgrade ratings not only when they assign a lower rating, but also when they assign 

a higher rating than their rivals. Lastly, this paper provides useful information to regulators 

and investors, as it shows specific circumstances under which bond issuers and CRAs are 

likely to engage in opportunistic behaviors.3 

 

II. Literature Review and Hypothesis Development 

2.1 Literature Review 

                                           
3 The Financial Supervisory Service, which corresponds to the U.S. Securities and Exchange Commission 

(SEC), released a plan for the advancement of the credit rating market on September 21, 2016. The plan requires 

that the Korea Financial Investment Association (KFIA) disclose detailed information on the performance of 

CRAs, which includes default rates, rating trends of bankrupt companies, and the names of companies that 

experience rapid changes in ratings. 
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Researchers have conducted studies on rating shopping and rating catering. Klein and 

Leffler (1984) provide a theoretical statement that sellers lack the incentive to provide high-

quality products when customers do not know their quality before they buy them. However, 

as the sellers and customers gain experience with each other, customers begin to recognize 

the quality of the product from previous purchases. Klein and Leffler (1984) conclude that 

sellers maintain a good reputation by supplying high-quality products to guarantee future 

income. Most studies on rating inflation develop their logic based on this theory. They find 

equilibrium between obtaining short-term benefits by inflating ratings and enjoying long-term 

benefits by maintaining reputation. 

Mathis et al. (2009) argue that CRAs are more likely to give favorable ratings to 

clients with complex bond structures because it is difficult for investors to detect such 

opportunistic behaviors. Bar-Isaac and Shapiro (2010) show that rating accuracy decreases 

when a business cycle is in a good state because the probability of a bond defaulting 

decreases and because of the difficulty of retaining and hiring analysts. Camanho et al. (2012) 

maintain that CRAs pursue short-term income from rating inflation rather than long-term 

revenue from maintaining reputation, especially when they experience competitive pressure. 

Bolton et al. (2012) also show that the reputation incentive fails when there is keen 

competition and when investors tend to trust ratings. Spatt and Sangiorgi (2011) explain that 

rating inflation occurs when investors do not know whether a bond issuer received a rating 

from a credit rating agency. Under these conditions of opacity, the issuer can choose not to 

publish poor ratings, choosing instead to disclose only satisfactory ratings. Skreta and 

Veldkamp (2009) find that the complexity of issuers' assets affects the tendency toward rating 

shopping. For issuers with simple assets structures, the variation of ratings given by CRAs is 

small. In this case, the issuer has little chance to buy a favorable rating. On the other hand, for 

issuers with complex assets structures, CRAs’ ratings may vary. Skreta and Veldkamp (2009) 
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argue that the issuer has a greater chance to buy a favorable rating under this circumstance. In 

general, theoretical papers conclude that information asymmetry and competition among 

CRAs increase rating inflation. 

However, empirical studies show mixed results on rating inflation. Bongaerts et al. 

(2012) find that Fitch acts as a tiebreaker when ratings determined by S&P and Moody's are 

split into two different categories: investment groups and high-yield groups. They show that 

the additional rating from Fitch pulls bonds into the investment category. 

Benmelech and Dlugosz (2010) show that ratings of structured finance securities 

determined by only one CRA are more likely to be downgraded than those determined by 

multiple CRAs. They demonstrate that issuers select the best rating among multiple ratings 

when only one rating is disclosed. However, Griffin et al. (2013) argue that the default 

probability of a collateralized debt obligation with multiple ratings is higher than that with 

one rating and that CRAs use lenient assumptions in their evaluations and give favorable 

ratings to issuers when other CRAs provide inflated ratings. Griffin et al. (2013) explain that 

their results are different from the results of Benmelech and Dlugosz (2010) because they test 

the default probability of structured bonds, while Benmelech and Dlugosz (2010) analyze the 

performance of the collateral underlying collateralized debt obligations. 

Becker and Milbourn (2011) show that the increase in the market share of Fitch 

induces S&P and Moody's to give favorable ratings to issuers. However, Bae et al. (2015) 

argue that CRAs are unlikely to assign higher ratings when industry effects are considered; 

they use the model of Becker and Milbourn (2011). We also investigate the effect of 

competition in the credit rating market. However, we utilize a direct proxy for increased 

competition by focusing on cases in which bond issuers hire more CRAs than required. Our 

test results show that the probability that CRAs upgrade ratings when there are rating 

disagreements increases with the competition. Thus, our results counter those of Bae et al. 
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(2015), partly supporting the argument of Becker and Milbourn (2011). 

Güttler (2011) shows that Moody’s are more likely than S&P to adjust ratings to 

converge when S&P changes ratings. Lugo et al. (2015) show that rating updates of Moody’s 

and S&P affect the timing of Fitch rating updates, while a downgrade on Fitch does not affect 

ratings on Moody’s and S&P. Although our results on the likelihood of an upgrade are related 

to the findings of Güttler (2011) and Lugo et al. (2015), they are new in that we show the 

effect of competition measured by the number of CRAs providing rating service to a given 

bond issuer. 

 

2.2 Hypothesis Development 

Bond issuers prefer higher ratings because of their positive effects not only on the 

cost of debt but also on capital structures and stock prices (Hand et al. 1992; Kisgen 2006; 

Tang 2009). Hand et al. (1992) show that unexpected upgrades and downgrades of credit 

ratings affect stock prices as well as bond prices. Kisgen (2006) argues that ratings determine 

the capital structures of companies, as institutional investors are usually restricted from 

investing in bonds with speculative grades. These effects provide bond issuers with an 

incentive to shop for ratings under the current rating system, under which bond issuers select 

CRAs and pay rating fees (Skreta and Veldkamp 2009; Mathis et al. 2009; Bar-Isaac and 

Shapiro 2010; Bolton et al. 2012). 

Studies on audit opinion shopping provide insights into the issue of rating shopping 

because the credit rating market and audit market are similar in structure. Like a bond issuer, 

an audit client chooses an auditor and pays audit fees to that auditor. Although auditors must 

be impartial and objective, auditor independence can be impaired under this system, as clients 

have the freedom to switch auditors (Chow and Rice 1982; Simon and Francis 1988; 

Krishinan 1994; Lennox 2002). Chow and Rice (1982) show that the probability of switching 
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auditors increases when a firm receives a qualified opinion. Consistent with this finding, 

Lennox (2002) shows that companies make switching decisions that minimize the likelihood 

of obtaining unfavorable audit reports by predicting audit opinions that firms would have 

received if they had made other decisions. These results imply that firms switch auditors for 

opinion shopping purposes. We argue that bond issuers behave similarly to audit clients 

because bond issuers select CRAs and pay fees like audit clients. 

Unlike Lennox (2002), we directly test whether issuers fire or switch CRAs by 

comparing actual ratings given by multiple CRAs without estimating the probability of 

obtaining unfavorable ratings from each CRA. If an issuer fires a CRA with the intention of 

rating shopping, it follows that the issuer fires an incumbent CRA that gives lower ratings 

than other CRAs. Hypothesis 1 is therefore stated as follows: 

Hypothesis 1: A CRA’s probability of getting fired is higher than that of other CRAs when 

the CRA gives lower ratings than other CRAs. 

 

As bond issuers prefer to receive higher ratings, CRAs may cater to them by 

providing a higher rating than their rivals to maintain business or increase their market share 

(Griffin et al. 2013). In addition, prior studies argue that reputation incentive fails to prevent 

CRAs from catering to issuers due to various factors such as the business cycle, competition, 

complexity of the assets structure, and lack of investor savvy (Skreta and Veldkamp 2009; 

Mathis et al. 2009; Camanho et al. 2012; Bar-Isaac and Shapiro 2010; Bolton et al. 2012). To 

find additional evidence of catering to bond issuers, we observe a specific circumstance in 

which bond issuers hire an additional CRA. 

Under this circumstance, the new CRA may provide a higher rating than incumbent 

CRAs for two reasons. First, it is possible that the issuer may pressure the new CRA to give 

higher ratings than those given by incumbent CRAs. Second, if a new CRA initiates the 

contract to increase the market share, it follows that the new CRA would suggest a higher 
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rating than that of incumbent CRAs. By doing so, the CRA gives the issuer an incentive to 

sign an additional contract. Hypothesis 2 is therefore stated as follows: 

Hypothesis 2: When a bond issuer hires an additional CRA, the latter gives a higher rating 

than that given by incumbent CRAs. 

 

CRAs are more likely to cater to bond issuers as competitive pressure increases 

(Camanho et al. 2012; Griffin et al. 2013; Becker and Milbourn 2009). Although Bae et al. 

(2015) argue that there is no association between increased competition and rating inflation, 

they utilize the market share of Fitch as a proxy for competition, which is an indirect measure. 

In this paper, we use a direct proxy for competition measured by counting the 

number of CRAs providing rating service to the bond issuer. Although bond issuers are not 

required to receive triple ratings, some bond issuers voluntarily choose to receive a third 

rating. Mählmann (2009) provides a rationale behind this decision that some bond issuers can 

reduce credit spread by receiving more ratings. However, it is possible that bond issuers fire 

CRAs that assign a poor rating when the benefits of receiving a third rating are minimal or 

the costs of doing so are too high. 

Under this circumstance, the firing decision may be more attractive to issuers 

receiving triple ratings than the switching decision is to issuers receiving double ratings. 

While switching from one CRA to another CRA involves switching costs, such as the cost of 

negotiation with another CRA and writing off the cost of the initial rating, firing one CRA 

does not incur such costs. Therefore, CRAs feel greater competitive pressure when bond 

issuers hire more CRAs than required. 

According to convergence theory, CRAs upgrade or downgrade ratings when there 

are rating disagreements, although there are differences in the likelihood of doing so across 

CRAs (Güttler 2011; Lugo et al. 2015). Although CRAs tend to upgrade (downgrade) ratings 

when they issue a lower (higher) rating than their rivals, we posit that competitive pressure 
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affects the likelihood of upgrade rating due to the reasons mentioned above. Hypothesis 3 is 

therefore stated as follows: 

Hypothesis 3: The greater the number of rivals is, the greater the probability of a rating 

upgrade. 

 

III. Research Design 

3.1 Empirical Models 

3.1.1 Measures of Firing 

The first hypothesis argues that bond issuers selectively fire CRAs that give lower 

ratings than other CRAs. We use dummy variables that indicate firing of a CRA as the 

dependent variable to test Hypothesis 1. The variable takes a value of one if CRA i (Korea 

Ratings, or KR, NICE Investors Service, or NICE, or the Korea Investors Service, or KIS) 

evaluates firm j at period t, but does not do so at period t+1. Otherwise, the variable takes a 

value of zero (KRFirejt, NICEFirejt, and KISFirejt). We exclude cases in which bond issuer j’s 

contracts with all CRAs expire.4 

To check whether bond issuers selectively fire CRAs that give lower ratings than 

other CRAs, we use differences between ratings provided by CRA i and average ratings given 

by the other CRAs at period t (CRAidiff1jt). To obtain these variables, we first quantify credit 

ratings by assigning the numbers from one to 20 to actual ratings that range from D to AAA 

(CRAiratingjt). To offset the potential bias in CRAidiff1jt, which reflects data from only one 

period, we also use an alternative variable, the difference between the average ratings given 

by CRA i from period t-3 to t and the average ratings given by the other CRA(s) during the 

same period (CRAidiff2jt). The following probit regression model (1) is used to test 

Hypothesis 1. The model controls issuers’ financial states and performances, which may 

                                           
4 Appendix C provides a detailed explanation of our way of measuring firing and hiring. 
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affect firing decisions. We predict a negative value of β1 under Hypothesis 1. 

 

CRAifirejt = β0 + β1 CRAidiff1jt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt  

+ β7 AGEjt + β8 NoRjt + ΣYEAR + ΣIND + εi
jt     (1) 

Definitions of variables 

CRAifirejt = takes a value of one if CRA i (KR, NICE, or KIS) gives a rating to 

firm j at period t, but does not do so at period t+1, while at least 

one CRA assesses firm j at period t+1, and zero, otherwise; 

CRAidiff1jt = the difference between CRAiratingjt and the average rating of the 

other CRA(s) at period t; 

SIZEjt = natural logarithm of total assets of firm j at period t; 

LEVjt = total debt divided by total assets of firm j at period t; 

CFjt = EBITDA divided by total assets of firm j at period t; 

PROFjt = return on assets of firm j at period t; 

Tangiblejt = property, plant, and equipment divided by assets of firm j at period 

t; 

AGEjt = elapsed years from the foundation date of firm j at period t; 

NoRjt = the number of CRAs evaluating firm j at period t; 

ΣYEAR = year dummy variable; and 

ΣIND = industry dummy variable. 

 

3.1.2 Measures of Hiring 

To test Hypothesis 2, CRAidiff1jt is used as a dependent variable to observe whether 

CRA i as an additional CRA assigns a higher rating than incumbent CRAs. The dummy 

variable takes a value of one if firm j has incumbent CRAs and additionally signs a contract 

with CRA i at period t, and zero otherwise (CRAihirejt). The following equation (2) is used to 

test Hypothesis 2. We predict a positive value of β1 under Hypothesis 2. 

 

CRAidiff1jt = β0 + β1 CRAihirejt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt  

+ β7 AGEjt + β8 NoRjt + ΣYEAR + ΣIND + εi
jt    (2) 

 

Definitions of variables 

CRAidiff1jt = the difference between CRAiratingjt and the average rating of the other 

CRA(s) at period t; 

CRAihirejt = takes a value of one if firm j, which does not obtain a rating from CRA i 

but does so from other CRAs at period t-1, obtains a rating from CRA i at 

period t, and zero otherwise; 

SIZEjt = natural logarithm of total assets of firm j at period t; 

LEVjt = total debt divided by total assets of firm j at period t; 
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CFjt = EBITDA divided by total assets of firm j at period t; 

PROFjt = return on assets of firm j at period t; 

Tangiblejt = property, plant, and equipment divided by assets of firm j at period t; 

AGEjt = elapsed years from the foundation date of firm j at period t; 

NoRjt = number of CRAs evaluating firm j at period t; 

ΣYEAR = year dummy variable; and 

ΣIND = industry dummy variable. 

 

To test how the number of CRAs affects the probability of an upgrade, we use a 

dummy variable as a dependent variable that indicates an upgrade of the rating given by CRA 

i one year after quarter t (CRAiUpjt). We use additional dummy variables that show whether 

CRA i provides a higher rating than its rivals (CRAidiffPjt) and whether CRA i provides a 

lower rating than its rivals (CRAidiffNjt). Our model also includes a dummy variable that takes a 

value of one if the number of CRAs providing ratings is three, and zero otherwise (Comjt), and 

interaction terms between CRAidiffPjt and Comjt (CRAidiffP*Comjt) and between CRAidiffNjt and 

Comjt (CRAidiffN*Comjt) to test for effects of Com on the likelihood of an upgrade.5 The 

following equation (3) is used to test Hypothesis 3. 

CRAiUpjt = β0 + β1 CRAidiffPjt + β2 CRAidiffNjt + β3 CRAidiffP*Comjt + β4 CRAidiffN* Comjt  

+ β5 Comjt + β6 SIZEchgjt + β7 LEVchgjt + β8 SIZEjt + β9 LEVjt+ β10 CFjt + β11 PROFjt  

+ β12 Tangiblejt + β13 AGEjt + ΣYEAR + ΣIND + εi
jt     (3) 

 

Definitions of variables 

CRAiUpjt = takes a value of one if CRA i gives a higher rating to firm j at 

quarter t+4 than quarter t, and zero otherwise; 

CRAidiffPjt = takes a value of one if CRA i gives a higher rating to firm j than 

the average rating of the other CRAs, and zero otherwise;  

CRAidiffNjt  = takes a value of one if CRA i gives a lower rating to firm j than the 

average rating of the other CRAs, and zero otherwise; 

Comjt = takes a value of one if the number of CRAs providing ratings is three, 

and zero otherwise; 

CRAidiffP* Comjt = an interaction term between CRAidiffPjt and Comjt; 

CRAidiffN* Comjt = an interaction term between CRAidiffNjt and Comjt; 

SIZEchgjt = (SIZEjt+4 – SIZEjt) / SIZEjt; 

LEVchgjt = (LEVjt+4 – LEVjt) /LEVjt; 

SIZEjt = natural logarithm of total assets of firm j at period t; 

                                           
5 In our setting, NoR can take a value of two or three because double ratings are required and only three CRAs 

are allowed to rate corporate bonds in Korea. To make our interpretation convenient, we utilize Com, which has 

the same information as NoR because it is calculated by subtracting two from NoR. 
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LEVjt = total debt divided by total assets of firm j at period t; 

CFjt = EBITDA divided by total assets of firm j at period t; 

PROFjt = return on assets of firm j at period t; 

Tangiblejt = property, plant, and equipment divided by assets of firm j at period 

t; 

AGEjt = elapsed years from the foundation date of firm j at period t; 

ΣYEAR = year dummy variable; and 

ΣIND = industry dummy variable. 

 

3.2 Sample Selection 

This paper uses rating data from Data Guide, which provides detailed financial 

information on Korean companies.6  It includes rating evaluation dates and ratings on 

corporate bonds given by KR, NICE, and KIS. To compare the ratings provided by these 

different CRAs to a given bond issuer, we use rating data of all CRAs from 2000 to 2015. In 

addition, firm-quarter data instead of firm-year data is used, which allows us to focus on 

specific moments of firing or hiring.7 We utilize the last rating if there are multiple ratings 

provided by a CRA to a bond issuer within a given quarter. Although no data is collected at 

the bond level, ratings on secured bonds, subordinated bonds, and structured bonds are not 

included because these ratings may have different implications from those of ratings on 

common corporate bonds (uncollateralized public corporate bonds).8 We exclude withdrawn 

and unsolicited ratings from our sample as well.9 

Table 1 provides detailed information on the samples. Panel A shows that the KR, 

NICE, and KIS samples have data for 10,918, 10,191, and 10,034 firm quarters, respectively. 

                                           
6 As the rating data from Data Guide includes some errors such as typos and issuer credit ratings, and we want 

to avoid double ratings, we double-checked all data to eliminate error and issuer ratings by comparing our 

sample data with data from KISLINE, which provides detailed information on companies. 
7When firm-year data is used, we include in our tests only the last credit ratings of each year, ignoring various 

ratings given by CRAs at other times of the year. This causes a potential bias for two reasons. First, the ratings 

from different CRAs may be temporarily equal to or different from each other. Second, the last rating of the year 

may not reflect the effect of a firing or hiring because of the timing of such events, which may be distant from 

the moment at which CRAs give the last rating of the year. 
8 Cornaggia et al. (2013) argue that credit ratings have different meanings across asset classes. They also show 

that different asset classes have different evaluation standards. Therefore, default risks also differ across asset 

classes, even when two different assets have the same rating grade. 
9 Bannier et al. (2010) show that unsolicited ratings are generally lower than solicited ratings, as CRAs tend to 

evaluate unsolicited ratings conservatively. 
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When we combine the samples, there are 12,973 firm quarters, which are composed of 7,776 

double-rating quarters and 5,197 triple-rating quarters. The number of bond issuers included 

in our sample is 571, and the numbers of companies evaluated by KR, NICE, and KIS are 

493, 468, and 472, respectively. Panels B and C show that the observations are not 

concentrated in a specific year or quarter except for 2010 when observations temporarily 

decreased due to the financial crisis late in the first decade of the new millennium. 

********************* 

Insert Table 1 about here 

********************* 

 

IV. Results of the Empirical Analysis 

4.1 Descriptive Statistics 

In Table 2, Panels A, B, and C provide descriptive statistics for the KR, NICE, and 

KIS samples, respectively. KRrating, NICErating, and KISrating, quantified values of credit 

ratings given by each CRA, have similar values. The median value of KRrating, NICErating, 

and KRrating is 15, which corresponds to actual rating A. The mean and median values for 

the CRAidiff1 and CRAidiff2 are close to zero. These findings indicate that the three CRAs 

give similar ratings to issuers in general. Likewise, financial data of bond issuers is similar 

across samples. This result implies that the clients of these three CRAs are similar to each 

other. 

In Panel D, we provide detailed information on firing. The table shows that 205 of 

571 bond issuers in our sample have fired a CRA at some point during this study period. As 

some of them fired a CRA multiple times, we have 288 firing cases in our sample. When 

examining the cases by CRA, KR, NICE, and KIS were fired 110, 102, and 76 times, 

respectively. In 15, 10, and 7 cases, respectively, these three Korean CRAs each assigned a 

better rating than the other CRA(s) before getting fired. On the other hand, in 33, 29, and 24 
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cases, respectively, the opposite situation occurred in which KR, NICE, and KIS assigned a 

lower rating before they were fired. In addition, untabulated correlations between CRAidiff1 

and CRAifire are -0.0374, -0.0590, -0.0734 for KR, NICE, and KIS, respectively with a 1 

percent significance level. These statistics provide a hint that bond issuers select CRAs that 

assign lower ratings than other CRAs when they fire a CRA. 

Panel E of Table 2 reports detailed information on the ratings of additional CRAs 

compared to incumbent CRAs. In the sample, 183 of 571 bond issuers hire an additional 

CRA; however, 242 additional hiring cases are included in our sample, as some companies 

hire an additional CRA more than once. KR, NICE, and KIS were each hired 73, 88, and 81 

times as an additional CRA, respectively. In 15, 15, and 19 cases, respectively, KR, NICE, 

and KIS assign a higher rating than that of incumbent CRAs. On the other hand, in 3, 5, and 4 

cases, respectively, KR, NICE, and KIS assign a lower rating than that of incumbent CRAs. 

In addition, untabulated correlations between CRAidiff1 and CRAihire are 0.0339, 0.0211, and 

0.0417 for KR, NICE, and KIS, respectively with a 1 percent significance level. These 

findings indicate that new CRAs are more likely to assign a higher rating than to give a lower 

rating. 

Panel F of Table 2 shows cases of rating disagreement when KR, NICE, and KIS 

each make an upgrade or downgrade decision one year after the disagreement. Although 

CRAs assigned a higher rating than those of their rivals, KR, NICE, and KIS upgrade ratings 

148, 179, and 201 times, respectively. However, KR, NICE, and KIS upgrade ratings 320, 

389, and 293 times, respectively when they assigned a lower rating than those given by rivals. 

In contrast, KR, NICE, and KIS downgrade ratings 113, 100, and 106 times, respectively 

when they assigned a higher rating than those of their rivals. When they assigned a lower 

rating than those given by rivals, KR, NICE, and KIS downgrade ratings 16, 41, and 32 times, 
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respectively. This tendency shows that CRAs are likely to upgrade (downgrade) ratings rather 

than downgrade (upgrade) ratings when they gave a lower (higher) rating than their rivals, 

which is consistent with the convergence theory. 

********************* 

Insert Table 2 about here 

********************* 

 

4.2 Regression Results 

4.2.1 Effects of Differences in Credit Ratings among CRAs on Firing Decisions 

Panel A of Table 3 presents the results of probit regression Model (1). Columns (1), 

(2), and (3) show the results for each CRA. The coefficients of CRAidiff1 have negative values 

ranging from -0.4063 to -0.5463 with a 1 percent significance level. We estimate probabilities 

that KR, NICE, and KIS are fired given that all explanatory variables are set to their mean 

values except for CRAidiff1. When CRAidiff1 is zero, the probabilities that KR, NICE and 

KIS are fired are 0.0029, 0.0025, and 0.0014, respectively. When CRAidiff1 is one (i.e., CRA i 

gives a rating one grade higher than that of other CRAs), the probabilities that KR, NICE, 

and KIS are fired are 0.0006, 0.0006, and 0.0002, respectively.10 We investigate whether 

these results are robust by testing using a random effects model in Columns (4) – (6) of Panel 

A. The coefficients of CRAidiff1 are similar to those of the non-random effects model. These 

results reveal that CRAs are less likely to be fired by clients when they assign higher ratings than 

their rivals. 

In Panel B of Table 3, we use an alternative measure for rating differences among CRAs 

because CRAidiff1 may capture only temporary differences or because bond issuers may make 

                                           
10 Although the estimated probabilities are small, they are natural results because the number of firing cases is 

relatively small to that of non-firing cases. Moreover, the proportion of the firing case becomes smaller as we 

utilize quarter observations. However, 205 of 571 bond issuers in our sample have experience of firing a CRA at 

some point during the study period of 2000-2015. To show the significance of the rating difference effects on the 

firing clear, we repeated the same procedure using a subsample where at least one CRA is fired. The results are 

discussed in section 4.3.1. 
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firing decisions a few quarters before a CRA is fired. Thus, we compare averages of ratings for 

the past year (CRAidiff2). In Columns (1) – (3), the coefficients of CRAidiff2 are similar to those 

in Panel A because CRAs do not usually upgrade or downgrade ratings quickly. The results are 

similar when the results of the random effects model are considered. In Columns (4) – (6), all 

coefficients of CRAidiff2 are negative at a 1 percent significance level. The results discussed 

above generally support Hypothesis 1. 

********************* 

Insert Table 3 about here 

********************* 

 

4.2.2 Effects of Hiring an Additional CRA on Credit Ratings 

Table 4 shows the results of the regression analysis testing whether additionally hired 

CRAs assign higher ratings than those given by incumbent CRAs. In Columns (1), (2), and 

(3), the coefficients of CRAihire range from 0.0706 to 0.1274, which are significant and 

positive at the 1 or 5 percent levels. When we consider the fact that mean and median values 

of rating difference variables are zero with small variance, the coefficients are significant. 

Although this test does not detect whether the additional CRA or the bond issuer initiates 

rating inflation, the result shows that new CRAs tend to offer higher ratings compared to 

those of incumbent CRAs. The results presented in Table 4 support Hypothesis 2. 

********************* 

Insert Table 4 about here 

********************* 

 

Table 5 presents the results for the last regression model. Columns (1), (3), and (5) 

show how disagreements in ratings affect the likelihood of an upgrade. For the coefficient of 

CRAidiffP, KR and NICE have negative values of -0.6155 and -0.2793, respectively at the 

significance levels of 1 and 5 percent, respectively, whereas KIS shows a non-significant 

figure of -0.1651, which is still negative. Conversely, KR, NICE, and KIS show positive 
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coefficients of CRAidiffN ranging from 0.6791 to 1.1245, which are significant at the 1 percent 

level. These coefficients suggest that CRAs are less likely to upgrade ratings when they assign 

a lower rating than their rivals and more likely to upgrade ratings in the opposite case, which 

is consistent with the results of previous studies on convergence theory (Güttler 2011; Lugo 

et al. 2015). 

In Columns (2), (4), and (6), Table 5, we additionally include the proxy for 

competition (Com) and the interaction terms with rating disagreements (CRAidiffP*Com and 

CRAidiffN*Com) to test whether competition has any effect on the probability of an upgrade. 

Although the coefficients of Com for KR, NICE, and KIS are not significant, KR and NICE have 

a positive coefficient for CRAidiffP*Com with values of 0.9171 and 0.4901, respectively at 

significance levels of 1 and 5 percent, respectively. Moreover, KR and KIS show significantly 

positive values of 0.5390 and 0.6893 for CRAidiffN*Com at the 1 percent level. These values 

indicate that CRAs with more rivals are more likely than CRAs with fewer rivals to upgrade 

ratings when their rating was lower than that of their rivals, although a higher number of rivals 

itself does not induce CRAs to upgrade ratings. In addition, KR and NICE with more rivals are 

likely to upgrade ratings even when they have already assigned a higher rating than that given by 

their rivals.  

Like the analysis we conducted for Hypothesis 1, we estimated probabilities that KR, 

NICE, and KIS upgrade ratings conditional on the number of rivals and the assignment of a 

higher or lower rating than rival(s) while other explanatory variables are set to their mean values. 

Given that KR, NICE, and KIS assigned a higher rating than their rival(s), the estimated 

likelihood of upgrade is 0.0110, 0.0474, and 0.0808, respectively, when Com is 0, and 0.0801, 

0.1140, and 0.1266, respectively, when Com is 1. Similarly, given that KR, NICE, and KIS 

assigned a lower rating than their rival(s), the estimated likelihood of upgrade is 0.4197, 0.4970, 

and 0.2298, respectively when Com is 0, and 0.6205, 0.5447, and 0.4965, respectively when Com 
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is 1. Regardless of whether a CRA assigned a higher or lower rating than rivals, the probability of 

an upgrade increases with the number of competitors. The finding generally supports that CRAs 

tend to cater more under competitive pressure. 

********************* 

Insert Table 5 about here 

********************* 

 

4.3 Robustness Tests 

4.3.1 Effects of Differences in Credit Ratings among CRAs on Firing Decisions 

For Equation (1) used to test Hypothesis 1, we run logit regression models to check if 

there is any difference between the results of the probit and logit models. Panel A of Table 6 

presents the results of the logit regression models. The coefficients of CRAidiff1 have negative 

values ranging from -0.8578 to -1.4756 with a 1 percent significance level. Using the results of 

Columns (1) – (3) in Panel A, we estimate the probabilities that KR, NICE, and KIS are fired 

given that all explanatory variables are set to their mean values except for CRAidiff1. When 

CRAidiff1 is zero, the probabilities that KR, NICE, and KIS are fired are 0.3895, 0.3559, and 

0.2761, respectively. When CRAidiff1 is one, the probabilities that KR, NICE, and KIS are 

fired are 0.0381, 0.0590, and 0.0397, respectively. The difference shows a significant effect 

of CRAidiff1 on CRAifire. The coefficients of CRAidiff2 in Panel B are similar to those in Panel 

A. In Columns (1) – (6), all coefficients of CRAidiff2 are negative at a 1 percent significance level. 

These results indicate that the results of the probit and logit models are qualitatively the same. 

********************* 

Insert Table 6 about here 

********************* 

 

As CRAifire takes a value of one in a small number of cases, the variation of the 

predictor is low, which may mean that our estimated coefficients for Equation (1) are 

imprecise. Thus, we conduct additional tests using a subsample. We choose cases in which at 
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least one of the three CRAs is fired. Table 7 presents the results of the probit regression 

model using the subsample. In Columns (1) – (6) of Panel A, the coefficients of CRAidiff1 

have negative values with a 1 percent significance level. In Panel B, the coefficients of CRAidiff2 

have negative values with a 1 or 5 percent significance level as well. The additional test shows 

that the results of the full sample presented in Table 3 and the subsample test are qualitatively 

the same. 

********************* 

Insert Table 7 about here 

********************* 

 

4.3.2 Effects of Hiring an Additional CRA on Credit Ratings 

As CRAihire takes a value of one in a small number of cases, the variation of the 

predictor is low. Thus, we investigate whether these results are robust by testing Hypothesis 2 

in a subsample. The variance of CRAihire is sufficient in the subsample under which at least 

one of the three CRAs is hired as an additional CRA (i.e., either KRhire, NICEhire, or 

KIShire takes a value of one). Table 8 presents the results of the subsample test. In Columns 

(1) – (3), the coefficients of CRAihire are positive with a 1 or 5 percent significance level. 

While the results of Table 4 and Table 8 are qualitatively the same, the magnitude of the 

coefficients increases significantly from 0.1274, 0.0706, and 0.0885 in Table 4 to 0.2719, 

0.3156, and 0.2245 in Table 8. 

********************* 

Insert Table 8 about here 

********************* 

 

V. Conclusion 

In this study, we observe periods of firing and hiring that are probably associated 

with rating shopping or rating catering. We find evidence that rating shopping and catering 

occur in the Korean rating market. The test results show that bond issuers tend to fire CRAs 
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that give lower ratings than other CRAs. In addition, when an issuer with incumbent CRAs 

hires an additional CRA, the newly hired CRA tends to assign higher ratings than those given 

by incumbent CRAs. We also find evidence that competition affects the probability that 

CRAs upgrade ratings when there are rating disagreements. These results are consistent with 

the results of prior theoretical and empirical studies, which demonstrate that competition 

among CRAs reduces rating quality (Becker and Milbourn 2011; Camanho et al. 2012; 

Griffin et al. 2013). 

This paper offers several contributions. First, it provides additional evidence of rating 

shopping in the form of selective firing. To the best of our knowledge, no study has 

investigated whether bond issuers fire their incumbent CRAs selectively for rating shopping 

purposes. Second, this paper provides additional evidence that increased competition in the 

rating market reduces credit quality in some cases. Unlike prior studies that provide mixed 

results using the market share of Fitch as a proxy for market competition (Becker and 

Milbourn 2011 and Bae et al. 2015), we use the number of rivals as a proxy for competition 

among CRAs. Using this proxy, we find that greater competition leads to higher ratings, 

which is consistent with the findings of Becker and Milbourn (2011), Camanho et al. (2012), 

and Griffin et al. (2013). Third, we add a finding to the literature on rating convergence. 

Unlike Güttler (2011) and Lugo et al. (2015), our finding suggests that competitive pressure 

has an additional effect on the likelihood that CRAs upgrade ratings when they assigned 

lower ratings than those of their rivals. Moreover, this competitive pressure also increases the 

probability that CRAs upgrade their ratings even when they assigned a higher rating than that 

of their rivals. These results provide useful information for regulators, justifying their 

regulations by providing empirical evidence. For instance, the FSS has released a plan for the 

advancement of the credit rating market which outlines regulations for CRAs and a new CRA 

selection method under which a third party requests rating services instead of a bond issuer. 
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The findings of this study suggest that these regulations are justified, as is the decision to 

defer the introduction of a fourth CRA in Korea, which may increase both competition among 

CRAs and rating catering. In addition, our results inform investors of possible risks when 

they utilize rating information that may or may not reflect true default risk. 

Lastly, this study has the following limitation: it exclusively refers to unsecured 

bonds. We do not consider possible effects of ratings on subordinated bonds, secured bonds, 

and structured bonds. Also, no bond-level data is included; including such data would allow 

for a more sophisticated analysis of CRA firing. Future research may expand the sample by 

considering other types of bonds and increase our understanding of rating shopping and 

catering. 
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APPENDIX A 

Definitions of Variables 

 

Variable  Definitions 

KRratingjt = a quantified version of an actual credit rating given by Korea 

Ratings to firm j at period t. It ranges from 1 to 20, which 

corresponds to ratings from D to AAA. See Appendix C for the 

definitions of ratings in Korea; 

NICEratingjt = a quantified version of an actual credit rating given by NICE 

Investors Service to firm j at period t. It ranges from 1 to 20, which 

corresponds to ratings from D to AAA. See Appendix C for the 

definitions of ratings in Korea; 

KISratingjt = a quantified version of an actual credit rating given by the Korea 

Investors Service to firm j at period t. It ranges from 1 to 20, which 

corresponds to ratings from D to AAA. See Appendix C for the 

definitions of ratings in Korea; 

KRdiff1jt = difference between KRratingjt and the average of NICEratingjt and 

KISratingjt; 

KRdiff2jt = difference between the average of KRratingj from period t-4 to t and 

the average of NICEratingj and KISratingj for the same period; 

NICEdiff1jt = difference between NICEratingjt and the average of KRratingjt and 

KISratingjt; 

NICEdiff2jt = difference between the average of NICEratingj from period t-4 to t and 

the average of KRratingj and KISratingj for the same period; 

KISdiff1jt = difference between KISratingjt and the average of NICEratingjt and 

KRratingjt; 

KISdiff2jt = difference between the average of KISratingj from period t-4 to t and 

the average of NICEratingj and KRratingj for the same period; 

KRfirejt = takes a value of one if KR assigns a rating to firm j at period t, but 

not at period t+1, while at least one CRA assesses firm j at period 

t+1, and zero otherwise; 

NICEfirejt = takes a value of one if NICE assigns a rating to firm j at period t, but 

not at period t+1, while at least one CRA assesses firm j at period 

t+1, and zero otherwise; 

KISfirejt = takes a value of one if KIS assigns a rating to firm j at period t, but 

not at period t+1, while at least one CRA assesses firm j at period 

t+1, and zero otherwise; 

KRhirejt = takes a value of one if firm j does not obtain a rating from KR, but 

obtains ratings from other CRAs at period t-1 and a rating from KR 

at period t, and zero otherwise; 

NICEhirejt = takes a value of one if firm j does not obtain a rating from NICE, 

but obtains ratings from other CRAs at period t-1 and a rating from 

NICE at period t, and zero otherwise; 

KIShirejt = takes a value of one if firm j does not obtain a rating from KIS, but 

obtains ratings from other CRAs at period t-1 and a rating from KIS 

at period t, and zero otherwise; 

KRUpjt = takes a value of one if KR gives a higher rating to firm j at quarter 

t+4 than quarter t, and zero otherwise; 

NICEUpjt = takes a value of one if NICE gives a higher rating to firm j at quarter 
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t+4 than quarter t, and zero otherwise; 

KISUpjt = takes a value of one if KIS gives a higher rating to firm j at quarter 

t+4 than quarter t, and zero otherwise; 

KRdiffPjt = takes a value of one if KR gives a higher rating to firm j than the 

average rating of the other CRAs at period t, and zero otherwise;  

KRdiffNjt  = takes a value of one if KR gives a lower rating to firm j than the 

average rating of the other CRAs at period t, and zero otherwise; 

NICEdiffPjt = takes a value of one if NICE gives a higher rating to firm j than the 

average rating of the other CRAs at period t, and zero otherwise;  

NICEdiffNjt  = takes a value of one if NICE gives a lower rating to firm j than the 

average rating of the other CRAs at period t, and zero otherwise; 

KISdiffPjt = takes a value of one if KIS gives a higher rating to firm j than the 

average rating of the other CRAs at period t, and zero otherwise;  

KISdiffNjt  = takes a value of one if KIS gives a lower rating to firm j than the 

average rating of the other CRAs at period t, and zero otherwise; 

Comjt = takes a value of one if the number of CRAs providing ratings is three 

at period t, and zero otherwise; 

KRdiffP*Comjt = an interaction term between KRdiffPjt and Comjt; 

KRdiffN*Comjt = an interaction term between KRdiffNjt and Comjt; 

NICEdiffP*Comjt = an interaction term between NICEdiffPjt and Comjt; 

NICEdiffN*Comjt = an interaction term between NICEdiffNjt and Comjt; 

KISdiffP*Comjt = an interaction term between KISdiffPjt and Comjt; 

KISdiffN*Comjt = an interaction term between KISdiffNjt and Comjt; 

SIZEjt = natural logarithm of total assets of firm j at period t; 

SIZEchgjt  (SIZEjt+4 – SIZEjt) / SIZEjt; 

LEVjt = total debt divided by total assets of firm j at period t; 

LEVchgjt  (LEVjt+4 – LEVjt) / LEVjt; 

CFjt = EBITDA divided by total assets of firm j at period t; 

PROFjt = return on assets of firm j at period t; 

Tangiblejt = property, plant, and equipment divided by assets of firm j at period t; 

AGEjt = elapsed years from the foundation date of firm j at period t; 

NoRjt = the number of CRAs evaluating firm j at period t; 

ΣYEAR = year dummy variable; and 

ΣIND = industry dummy variable. 
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APPENDIX B 

Measures of Firing and Hiring 

 

Firm j 
 

CRA1 CRA2 CRA3 

2000 1Q 
   

 
2Q 

 

  

 
3Q BBB+ * 

 
BBB+ * 

 
4Q BBB+ 

 
BBB 

2001 1Q BBB+ 
 

BBB 

 
2Q BBB+ 

 
BBB 

 
3Q BBB  BBB** BBB- 

 
4Q BBB BBB BBB- 

2002 1Q BBB BBB BBB- 

 
2Q BBB BBB BBB- *** 

 
3Q BBB- BBB 

 

 
4Q BBB- BBB- 

 
2003 1Q BBB- BBB- 

 

 
2Q BBB**** BBB**** 

 

 
3Q 

   

 
4Q 

   
 

This example shows how we measure firing and hiring in this study. In this example, firm j 

issues 2-year maturity straight bonds (SB1 and SB2) in the third quarters of 2000 and 2001. 

Firm j requests CRA1 and CRA3 to evaluate SB1. The ratings within the squares with the 

solid line are given to SB1. CRA1 and CRA3 both give BBB+ to SB1 at first. However, in 

the last quarter of 2000, CRA3 downgrades the rating, while CRA1 gives the same rating. In 

the third quarter of 2001, firm j issues a new bond, SB2, and requests evaluations from CRA1 

and CRA2. The ratings within the square with the dotted line are given to SB2. As the 

maturity date of SB2 is at the end of the second quarter of 2003, there is no rating after this 

period. 

 

There is a problem from the third quarter of 2001 to the second quarter of 2002 because our 

data set shows only one rating given by CRA1, although it evaluates SB1 and SB2 at the 

same time. During this period, it is not clear whether the ratings from CRA1 are given to SB1 

or SB2. This problem happens because Data Guide, a financial database in South Korea, 

provides only the last rating given to a company in each quarter. If CRA1 assigned BBB- to 

SB1 on September 29 and BBB to SB2 on September 30, the data would show only the rating 

given to SB2 (BBB). Then, the comparison between the rating given by CRA1 and that given 

by CRA3 in the third quarter of 2001 would be absurd because the BBB rating in the third 

quarter of 2001 is not the SB1 rating, which must be compared to a rating given by CRA3 to 

SB1. We can avoid this problem only when CRA1 assigns the same rating to both SB1 and 

SB2. Thus, we double-checked all data to eliminate split rating cases. Fortunately, CRAs give 

the same ratings when they assess multiple bonds of a firm because companies issue bonds 
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with similar contractual terms and because ratings for structured bonds and subordinated 

bonds, which may have significantly different contractual terms and rating standards, are not 

included. Thus, multiple ratings from one CRA for firm j are almost the same in any given 

period. 

 

Based on the definitions of the variables in Appendix A, the values for the hiring and firing 

variables in the above example are shown in the table below. In the third quarter of 2000, 

firm j hires CRA1 and CRA3. However, as we want to observe cases in which the bond issuer 

hires an additional CRA although it has incumbent CRAs, CRA1hire and CRA3hire take 

values of zero in the third quarter of 2000. In the third quarter of 2001, CRA2hire takes a 

value of one as CRA2 is hired as an additional CRA. In the second quarter of 2002, CRA3 

gives its last rating and does not evaluate firm j in the third quarter of 2002, while other 

CRAs continue to evaluate firm j. Therefore, CRA3fire takes a value of one in the second 

quarter of 2002. However, in the second quarter of 2003, CRA1fire and CRA2fire take values 

of zero because firm j has no more outstanding bonds. 

 

* CRA1hire=0 CRA2hire=0 CRA3hire=0 

** CRA1hire=0 CRA2hire=1 CRA3hire=0 

*** CRA1fire=0 CRA2fire =0 CRA3fire =1 

**** CRA1fire=0 CRA2fire =0 CRA3fire =0. 
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APPENDIX C 

Definitions of Ratings 

 

Rating Definitions 

AAA Capacity for timely payment is extremely strong; 

AA Capacity for timely payment is very strong but somewhat less than AAA; 

A 
Capacity for timely payment is strong, but somewhat susceptible to external 

changes in the future; 

BBB 
Capacity for timely payment is adequate, but is more likely to be weakened by 

future market changes; 

BB 
Capacity for timely payment faces no immediate problems, but is speculative in its 

future stability; 

B Capacity for timely payment is poor and speculative; 

CCC Contains the possibility of default; 

CC Contains more possibility of default; 

C Highly likely to default; and 

D In default at present. 

 

Notes: This list of rating definitions comes from Korea Ratings, one of the three Korean 

CRAs. Other CRAs have almost the same rating list and use similar phrases. Ratings from 

AA to B may be modified with a plus (+) or minus (-) sign to show relative standing within 

the major rating categories. The only difference among CRAs is that the NICE rating system 

allows CCC to be modified with a plus or minus sign. However, there are very few firm 

quarters that receive CCC+ or CCC- ratings. This paper regards CCC+ and CCC- as CCC for 

comparison. 
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Table 1 Sample Selection and Distribution 

This table reports the process of sample selection for KR, NICE, and KIS in Panel A and the 

distribution by year and quarter in Panel B and Panel C, respectively. 

 

Panel A. Sample Selection Criteria 
 KR NICE KIS 

Total number of firm-quarter entries 14,457 13,651 13,154 
(less firms with insufficient financial data) (3,539) (3,460) (3,120) 

Size of samples used for testing 10,918 10,191 10,034  
 

Panel B. Sample by Year 

Year 
KR NICE KIS 

# firms % # firms % # firms % 

2000 521 4.77 477 4.68 427 4.26 

2001 698 6.39 657 6.45 595 5.93 

2002 584 5.35 549 5.39 481 4.79 

2003 630 5.77 575 5.64 541 5.39 

2004 671 6.15 628 6.16 619 6.17 

2005 710 6.50 619 6.07 651 6.49 

2006 729 6.68 619 6.07 655 6.53 

2007 770 7.05 683 6.70 703 7.01 

2008 803 7.35 723 7.09 727 7.25 

2009 777 7.12 718 7.05 716 7.14 

2010 119 1.09 98 0.96 101 1.01 

2011 666 6.10 617 6.05 631 6.29 

2012 718 6.58 666 6.54 677 6.75 

2013 883 8.09 874 8.58 856 8.53 

2014 909 8.33 942 9.24 906 9.03 

2015 730 6.69 746 7.32 748 7.45 

Total 10,918 100 10,191 100 10,034 100  
 

Panel C. Sample by Quarter 

Quarter 
KR NICE KIS 

# firms % # firms % # firms % 

1 2,347 21.50 2,176 21.35 2,149 21.42 

2 2,906 26.62 2,701 26.50 2,663 26.54 

3 2,885 26.42 2,705 26.54 2,656 26.47 

4 2,780 25.46 2,609 25.60 2,566 25.57 

Total 10,918 100 10,191 100 10,034 100 
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Table 2 Descriptive Statistics 

This table reports the descriptive statistics for firms included in the analysis. Panels A, B, and 

C provide descriptive statistics for the KR, NICE, and KIS samples, respectively. Each 

column of Panel D reports the numbers and percentages for each CRA that assigned a higher 

rating than that of rivals, that assigned the same rating as that of its rivals, and that assigned a 

lower rating than that of its rivals when the CRA was fired. Panel E and Panel F, respectively, 

provide information on the numbers and percentages of additional hiring and upgrades and 

downgrades in the same way as Panel D. 
 

Panel A. Korea Ratings 

Variable N Mean S.D. Min Median Max 

KRrating 10,918 14.56 3.58 12 15 20 

KRfire 10,918 0.01 - 0 0 1 

KRdiff1 10,918 0 0.29 0 0 3 

KRdiff2 10,918 0.01 0.26 0 0 3 

KRhire 10,918 0.01 - 0 0 1 

SIZE 10,918 21.41 1.74 20.17 21.35 25.84 

LEV 10,918 62.76 18.28 51.08 63.6 96.5 

CF 10,918 1.73 1.86 0.56 1.5 7.6 

PROF 10,918 2.2 7.87 0.1 2 23.11 

Tangible 10,918 0.32 0.25 0.07 0.32 0.87 

AGE 10,918 31.41 17.67 17 32 105 

NoR 10,918 2.48 0.50 2 2 3 
 

Panel B. NICE Investors Service 

Variable N Mean S.D. Min Median Max 

NICErating 10,191 14.58 3.6 1 15 20 

NICEfire 10,191 0.01 - 0 0 1 

NICEdiff1 10,191 -0.01 0.33 -5 0 3 

NICEdiff2 10,191 -0.01 0.29 -5 0 3 

NICEhire 10,191 0.01 - 0 0 1 

SIZE 10,191 21.44 1.75 17.35 21.38 25.84 

LEV 10,191 62.95 18.16 19.16 63.35 96.5 

CF 10,191 1.69 1.85 -4.22 1.48 7.6 

PROF 10,191 2.13 7.9 -37.96 2 23.11 

Tangible 10,191 0.31 0.25 0 0.31 0.87 

AGE 10,191 32.63 18.55 0 33 94 

NoR 10,191 2.51 0.49 2 2 3 
 

Panel C. Korea Investors Service 

Variable N Mean S.D. Min Median Max 

KISrating 10,034 14.82 3.54 1 15 20 

KISfire 10,034 0.01 - 0 0 1 

KISdiff1 10,034 0 0.35 -6 0 5 

KISdiff2 10,034 0.01 0.32 -4.5 0 5 

KIShire 10,034 0.01 - 0 0 1 

SIZE 10,034 21.4 1.74 17.35 21.33 25.84 

LEV 10,034 62.09 18.74 19.16 62.69 96.5 
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CF 10,034 1.79 1.87 -4.22 1.55 7.6 

PROF 10,034 2.44 7.72 -37.96 2.16 23.11 

Tangible 10,034 0.32 0.25 0 0.32 0.87 

AGE 10,034 32.09 18.59 0 32 105 

NoR 10,034 2.52 0.50 2 3 3 

 

Panel D. Detailed Information on Firing 

CRA rating before 

getting fired 

KR NICE KIS 

# % # % # % 

> Others’ ratings 15 13.64 10 9.80 7 9.21 

= Others’ ratings 62 56.36 63 61.76 45 59.21 

< Others’ ratings 33 30.00 29 28.43 24 31.58 

Total 110 100 102 100 76 100 

 

Panel E. Detailed Information on Additional Hiring 

CRA rating when 

hired 

KR NICE KIS 

# % # % # % 

> Others’ ratings 15 20.55  15 17.05  19 23.46  

= Others’ ratings 55 75.34  68 77.27  58 71.60  

< Others’ ratings 3 4.11  5 5.68  4 4.94  

Total 73 100 88 100 81 100 

 

Panel F. Detailed Information on Upgrades and Downgrades 

 KR NICE KIS 

# % # % # % 

Upgrades > Others’ ratings 148 4.09 179 5.21 201 6.18 

= Others’ ratings 3,152 87.07 2,866 83.46 2,758 84.81 

< Others’ ratings 320 8.84 389 11.33 293 9.01 

 Total 3,620 100.00 3,434 100 3,252 100 

        

Downgrades > Others’ ratings 113 15.21 100 14.08 106 15.47 

= Others’ ratings 614 82.64 569 80.14 547 79.85 

< Others’ ratings 16 2.15 41 5.77 32 4.67 
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 Total 743 100 710 100 685 100 
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Table 3 Result of Probit Regression Testing Effects of Differences in Credit Ratings among CRAs on Firing Decisions 

This table presents coefficient estimates from the probit regression of equation (1). The dependent variable is CRAifirejt, a dummy variable that 

indicates whether firm j fires CRA i after period t. In Panel A, the independent variable of interest is CRAidiff1jt, the difference between 

CRAiratingjt and the average rating of a given CRAs’ rivals. In Panel B, the independent variable of interest is CRAidiff2jt, the difference between 

the average of CRAiratingjt from period t-4 to t and the average rating of the rivals for the same period. In each panel, Columns (1), (2), and (3) 

show the results of the test without random effects at the bond issuer level, while Columns (4), (5), and (6) show those with random effects. SIZE is 

natural logarithm of total assets of firm j. LEV is total debt divided by total assets of firm j. CF is EBITDA divided by total assets of firm j. 

PROF is return on assets of firm j. Tangible is property, plant, and equipment divided by assets of firm j. AGE is elapsed years from the 

foundation date of firm j. NoR is the number of CRAs evaluating firm j. Z-statistics are in parentheses using robust standard errors clustered by 

firm for the non-random effects model. ***, ** and * denote significance at the 1 percent, 5 percent, and 10 percent levels, respectively. Pseudo-R2 and 

log-likelihood (LL) are reported for the non-random and random effects models, respectively. 

 

CRAifirejt = β0 + β1 CRAiDiff1jt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt + β7 AGEjt + β8 NoRjt +ΣYEAR + ΣIND + εi
jt 

 

Panel A. CRAidiff1 

 Pred. 
Sign 

Dependent Variable 

Variables KRfire NICEfire KISfire KRfire NICEfire KISfire 

  (1) (2) (3) (4) (5) (6) 

Intercept  0.0805  -0.8932  -1.3927  0.1113  -0.8934  -1.3927  

  (0.11)  (-0.92)  (-1.47)  (0.12)  (-1.03)  (-1.3)  

CRAdiff1 - -0.4648  -0.4063  -0.5463  -0.4960  -0.4064  -0.5465  

   (-2.85) *** (-3.87) *** (-4.17) *** (-3.64) *** (-3.94) *** (-4.48) *** 

SIZE - -0.2106  -0.1880  -0.1982  -0.2240  -0.1880  -0.1982  

  (-5.74) *** (-3.9) *** (-3.82) *** (-4.59) *** (-4.31) *** (-3.57) *** 

LEV + 0.0007  0.0071  0.0060  0.0008  0.0071  0.0060  

   (0.22)  (1.99) ** (1.58)  (0.23)  (1.91) * (1.23)  

CF + 0.0072  0.0520  0.1231  0.0074  0.0520  0.1232  

  (0.22)  (1.46)  (2.96) *** (0.19)  (1.38)  (2.79) *** 

PROF + 0.0109  -0.0084  -0.0097  0.0112  -0.0084  -0.0097  

  (1.14)  (-1.24)  (-1.31)  (1.29)  (-1.03)  (-1.02)  

Tangible - -0.3716  -0.1846  0.1022  -0.4003  -0.1846  0.1022  
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  (-1.43)  (-0.61)  (0.35)  (-1.22)  (-0.57)  (0.29)  

AGE - 0.0005  0.0023  0.0013  0.0008  0.0023  0.0013  

  (0.17)  (0.67)  (0.36)  (0.22)  (0.65)  (0.31)  

NoR + 0.5356  0.6153  0.8515  0.5775  0.6152  0.8515  

   (4.4) *** (4.0) *** (4.46) *** (4.22) *** (4.74) *** (5.16) *** 

Year Fixed Effects Y Y Y Y Y Y 

Industry Fixed Effects Y Y Y Y Y Y 

Issuer Random Effects N N N Y Y Y 

Model Fit Pseudo-R2= 0.1058 Pseudo-R2=0.1498 Pseudo-R2=0.2081 LL = -334.2642 LL = -301.4965 LL = -202.71 

Sample Size 10,918 10,191 10,034 10,918 10,191 10,034 

 

Panel B. CRAidiff2 

CRAifirejt = β0 + β1 CRAiDiff2jt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt + β7 AGEjt + β8 NoRjt +ΣYEAR + ΣIND + εi
jt 

 

 Pred. 
Sign 

Dependent Variable 

Variables KRfire NICEfire KISfire KRfire NICEfire KISfire 

  (1) (2) (3) (4) (5) (6) 

Intercept  0.1176  -0.9199  -1.5903  0.1395  -0.9201  -1.5903  

  (0.16)  (-0.94)  (-1.71) * (0.16)  (-1.06)  (-1.5)  

CRAdiff2 - -0.4703  -0.4060  -0.5107  -0.4913  -0.4060  -0.5106  

  (-2.68) *** (-3.65) *** (-3.74) *** (-3.17) *** (-3.73) *** (-3.8) *** 

SIZE - -0.2106  -0.1880  -0.1960  -0.2205  -0.1880  -0.1960  

  (-5.76) *** (-3.88) *** (-3.85) *** (-4.66) *** (-4.31) *** (-3.55) *** 

LEV + 0.0007  0.0071  0.0076  0.0007  0.0071  0.0076  

   (0.19)  (1.96) ** (1.99) ** (0.19)  (1.89) * (1.57)  

CF + 0.0092  0.0516  0.1268  0.0098  0.0516  0.1268  

  (0.29)  (1.46)  (3.08) *** (0.25)  (1.37)  (2.87) *** 

PROF + 0.0104  -0.0082  -0.0115  0.0105  -0.0082  -0.0115  

  (1.09)  (-1.21)  (-1.6)  (1.22)  (-1)  (-1.2)  

Tangible - -0.3729  -0.1980  0.1223  -0.3950  -0.1981  0.1223  

  (-1.42)  (-0.65)  (0.42)  (-1.22)  (-0.61)  (0.35)  

ACCEPTED MANUSCRIPT



ACCEPTED M
ANUSCRIPT

 

38 

AGE - 0.0006  0.0023  0.0016  0.0008  0.0023  0.0016  

  (0.2)  (0.66)  (0.43)  (0.23)  (0.65)  (0.37)  

NoR + 0.5349  0.6295  0.8552  0.5671  0.6293  0.8551  

   (4.42) *** (4.06) *** (4.59) *** (4.25) *** (4.84) *** (5.22) *** 

Year Fixed Effects Y Y Y Y Y Y 

Industry Fixed Effects Y Y Y Y Y Y 

Issuer Random Effects N N N Y Y Y 

Model Fit Pseudo-R2=0.1017 Pseudo-R2=0.1476 Pseudo-R2=0.1931 LL = -335.9426 LL = -302.2854 LL = -206.5375 

Sample Size 10,918 10,191 10,034 10,918 10,191 10,034 
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Table 4 

Results of Regression Testing Effects of Hiring an Additional CRA on Additional Ratings 

This table presents coefficient estimates from the probit regression model (2). The dependent 

variable is CRAidiff1, the difference between CRAiratingjt and the average rating of the rivals. 

The independent variable of interest is CRAihirejt, a dummy variable indicating whether bond 

issuer j hires an additional CRA at period t. SIZE is natural logarithm of total assets of firm j. 

LEV is total debt divided by total assets of firm j. CF is EBITDA divided by total assets of 

firm j. PROF is return on assets of firm j. Tangible is property, plant, and equipment divided 

by assets of firm j. AGE is elapsed years from the foundation date of firm j. NoR is the 

number of CRAs evaluating firm j. Z-statistics are in parentheses using robust standard errors 

clustered by firm. A fixed effects model was chosen following the results of the Hausman test. ***, 
** and * denote significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 

 

CRAidiff1jt = β0 + β1 CRAihirejt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt + β7 

AGEjt + β8 NoRjt +ΣYEAR + ΣIND + εi
jt  

 

 Pred. 
Sign 

Dependent Variable 

Variables KRdiff1 NICEdiff1 KISdiff1 

  (1) (2) (3) 

Intercept  0.4170  -0.0660  0.4280  

  (2.64) *** (-0.35)  (2.0) ** 

CRAhire + 0.1274  0.0706  0.0885  

   (3.62) *** (2.01) ** (2.23) ** 

SIZE - -0.0189  0.0009  -0.0265  

  (-2.26) ** (0.09)  (-2.32) ** 

LEV + 0.0008  0.0005  -0.0008  

   (2.49) ** (1.35)  (-1.93) * 

CF +/- 0.0001  -0.0028  -0.0018  

  (0.05)  (-1.03)  (-0.6)  

PROF +/- -0.0002  -0.0010  0.0021  

  (-0.33)  (-1.72) * (3.38) *** 

Tangible - 0.0738  -0.0328  -0.0018  

  (1.95) * (-0.77)  (-0.04)  

AGE - -0.0035  -0.0012  0.0060  

  (-2.67) *** (-0.8)  (3.43) *** 

NoR + 0.0192  0.0357  -0.0194  

  (2.16) ** (3.38) *** (-1.76) * 

Year Fixed Effects Y Y Y 

Industry Fixed Effects Y Y Y 

Issuer Fixed Effects Y Y Y 

Adj-R2 0.2488 0.2579 0.2386 

Sample Size 10,918 10,191 10,034 
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Table 5 Results of Regression Testing Effects of the Number of Rivals on the Likelihood of Upgrades 

Columns (1), (3), and (5) present coefficient estimates from the probit regression model without interaction terms among CRAidiffP(or CRAidiffN) 

and Com dummy variables; the other columns include the interaction terms. The dependent variable is CRAiUp, a dummy variable that indicates an 

upgrade of the rating in a given year. The independent variables are: CRAidiffP as a dummy for rating disagreements (1 if CRAirating is higher than 

the average of the ratings given by the rivals, 0 otherwise), CRAidiffN as another dummy for rating disagreements (1 if CRAirating is lower than the 

average of the ratings given by the rivals, 0 otherwise), Com as a dummy for competition (1 if the number of CRAs providing ratings is three, 0 

otherwise), CRAidiffP*Com as an interaction term between CRAidiffP and Com, and CRAidiffN*Com as an interaction term between CRAidiffN and 

Com. SIZEchg is the rate of increase in Size. LEVchg is the rate of increase in Lev. SIZE is natural logarithm of total assets of firm j. LEV is total 

debt divided by total assets of firm j. CF is EBITDA divided by total assets of firm j. PROF is return on assets. Tangible is property, plant, and 

equipment divided by assets of firm j. AGE is elapsed years from the foundation date of firm j. Z-statistics are in parentheses using robust 

standard errors clustered by firm. ***, ** and * denote significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 

CRAiUpjt = β0 + β1 CRAidiffPjt + β2 CRAidiffNjt + β3 Comjt + β4 CRAidiffP*Comjt + β5 CRAidiffN*Comjt + β6 SIZEchgjt + β7 LEVchgjt + β8 SIZEjt + 

β9 LEVjt+ β10 CFjt + β11 PROFjt + β12Tangiblejt + β13 AGEjt + ΣYEAR + ΣIND + εi
jt 

 

 Pred. 
Sign 

Dependent Variable 

Variables KRUp KRUp NICEUp NICEUp KISUp KISUp 

  (1) (2) (3) (4) (5) (6) 

Intercept  -1.9974  -1.9348  -1.0519  -1.0406  -0.8900  -0.8346  

  (-3.29) *** (-3.22) *** (-1.66) * (-1.65) * (-1.42)  (-1.34)  

CRAdiffP - -0.6155  -1.2244  -0.2793  -0.5943  -0.1651  -0.2914  

   (-4.6) *** (-5.79) *** (-2.33) ** (-2.75) *** (-1.35)  (-1.42)  

CRAdiffN + 1.1245  0.8648  1.1403  1.0691  0.6791  0.3687  

  (9.42) *** (5.63) *** (10.49) *** (6.68) *** (5.02) *** (1.98) ** 

Com + 0.0353  -0.0297  0.0060  -0.0249  0.0981  0.0414  

  (0.47)  (-0.39)  (0.08)  (-0.31)  (1.3)  (0.52)  

CRAdiffP* Com +   0.9171    0.4901    0.2159  

    (3.64) ***   (1.98) **   (0.9)  

CRAdiffN* Com +   0.5390    0.1448    0.6893  

    (2.31) **   (0.66)    (2.78) *** 

SIZEchg + 0.0028  -0.0096  -0.0601  -0.0646  0.1836  0.1550  

  (0.02)  (-0.07)  (-0.49)  (-0.52)  (1.21)  (1.03)  
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LEVchg - -0.0084  -0.0082  -0.0067  -0.0067  -0.0102  -0.0100  

  (-2.92) *** (-2.92) *** (-3.8) *** (-3.84) *** (-2.45) ** (-2.4) ** 

SIZE - -0.0048  -0.0049  -0.0159  -0.0160  -0.0238  -0.0242  

  (-0.16)  (-0.16)  (-0.51)  (-0.52)  (-0.81)  (-0.82)  

LEV + 0.0087  0.0086  0.0088  0.0090  0.0056  0.0054  

   (3.47) *** (3.43) *** (3.35) *** (3.43) *** (2.26) ** (2.2) ** 

CF + 0.1196  0.1196  0.1169  0.1176  0.0974  0.0975  

  (5.21) *** (5.15) *** (4.96) *** (5) *** (4.15) *** (4.23) *** 

PROF + 0.0083  0.0085  0.0085  0.0088  0.0099  0.0101  

  (1.92) * (1.97) ** (1.71) * (1.79) * (2.04) ** (2.09) ** 

Tangible - 0.3631  0.3370  0.4210  0.4086  0.0527  0.0388  

  (1.67) * (1.55)  (1.99) ** (1.94) * (0.25)  (0.18)  

AGE - 0.0037  0.0034  0.0028  0.0027  0.0036  0.0034  

  (1.52)  (1.4)  (1.19)  (1.16)  (1.62)  (1.55)  

Year Fixed Effects Y Y Y Y Y Y 

Industry Fixed Effects Y Y Y Y Y Y 

Model Fit Pseudo-R2=0.1493 Pseudo-R2=0.1536 Pseudo-R2=0.1483 Pseudo-R2=0.1494 Pseudo-R2=0.1117 Pseudo-R2=0.1149 

Sample Size 8,917 8,917 8,290 8,290 8,204 8,204 
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Table 6 Robustness Check for Testing of H1 (Logit Model) 

This table presents coefficient estimates from the logit regression of equation (1). The dependent variable is CRAifire, a dummy variable that 

indicates whether firm j fires CRA i after quarter t. In Panel A, the independent variable of interest is CRAidiff1, the difference between CRAirating 

and the average rating of the rivals. In Panel B, the independent variable of interest is CRAidiff2, the difference between the average of CRAirating 

from period t-4 to t and the average rating of the rivals for the same period. In each panel, Columns (1), (2), and (3) show the results of the test 

without random effects at the bond issuer level, while Columns (4), (5), and (6) show those with random effects. SIZE is natural logarithm of total 

assets of firm j. LEV is total debt divided by total assets of firm j. CF is EBITDA divided by total assets of firm j. PROF is return on assets of 

firm j. Tangible is property, plant, and equipment divided by assets of firm j. AGE is elapsed years from the foundation date of firm j. NoR is 

the number of CRAs evaluating firm j. Z-statistics are in parentheses using robust standard errors clustered by firm for non-random effects model. 
***, ** and * denote significance at the 1 percent, 5 percent, and 10 percent levels, respectively. Pseudo-R2 and log-likelihood (LL) are reported for the 

non-random and random effects models, respectively. 

CRAifirejt = β0 + β1 CRAiDiff1jt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt + β7 AGEjt + β8 NoRjt +ΣYEAR + ΣIND + εi
jt 

 

Panel A. CRAdiff1 

 Pred. 
Sign 

Dependent Variable 

Variables KRfire NICEfire KISfire KRfire NICEfire KISfire 

  (1) (2) (3) (4) (5) (6) 

Intercept  1.1263  -0.9228  -1.6443  1.1510  -0.9229  -1.6442  

  (0.53)  (-0.32)  (-0.63)  (0.48)  (-0.38)  (-0.58)  

CRAdiff1 - -1.2094  -0.8578  -1.4756  -1.2691  -0.8578  -1.4756  

   (-3.21) *** (-3.87) *** (-5.39) *** (-3.85) *** (-3.9) *** (-5.17) *** 

SIZE - -0.5490  -0.5324  -0.5862  -0.5805  -0.5324  -0.5862  

  (-5.45) *** (-3.9) *** (-3.74) *** (-4.63) *** (-4.46) *** (-3.93) *** 

LEV + 0.0028  0.0191  0.0152  0.0034  0.0191  0.0152  

   (0.29)  (1.81) * (1.4)  (0.36)  (1.9) * (1.2)  

CF + 0.0307  0.1667  0.3121  0.0301  0.1667  0.3121  

  (0.35)  (1.76) * (2.93) *** (0.3)  (1.75) * (2.95) *** 

PROF + 0.0262  -0.0266  -0.0199  0.0270  -0.0266  -0.0199  

  (0.93)  (-1.45)  (-1.16)  (1.19)  (-1.31)  (-0.93)  

Tangible - -0.8945  -0.4310  0.0597  -0.9872  -0.4313  0.0597  

  (-1.27)  (-0.54)  (0.08)  (-1.17)  (-0.52)  (0.07)  
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AGE - 0.0021  0.0087  0.0047  0.0023  0.0087  0.0047  

  (0.23)  (0.9)  (0.44)  (0.24)  (0.92)  (0.41)  

NoR + 1.4819  1.8867  2.4979  1.5614  1.8867  2.4979  

   (4.33) *** (4.3) *** (4.54) *** (4.48) *** (5.3) *** (5.65) *** 

Year Fixed Effects Y Y Y Y Y Y 

Industry Fixed Effects Y Y Y Y Y Y 

Issuer Random Effects N N N Y Y Y 

Model Fit Pseudo-R2=0.1017 Pseudo-R2=0.1476 Pseudo-R2=0.1931 LL = -335.3848 LL = -299.9311 LL = -199.2618 

Sample Size 10,918 10,191 10,034 10,918 10,191 10,034 

 

CRAifirejt = β0 + β1 CRAiDiff2jt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt + β7 AGEjt + β8 NoRjt +ΣYEAR + ΣIND + εi
jt 

 

Panel B. CRAdiff2 

 Pred. 
Sign 

Dependent Variable 

Variables KRfire NICEfire KISfire KRfire NICEfire KISfire 

  (1) (2) (3) (4) (5) (6) 

Intercept  1.3037  -0.9190  -2.4422  1.3210  -0.9191  -2.4425  

  (0.63)  (-0.31)  (-0.95)  (0.56)  (-0.38)  (-0.87)  

CRAdiff2 - -1.1711  -0.8170  -1.3389  -1.1829  -0.8169  -1.3389  

  (-2.72) *** (-3.68) *** (-4.02) *** (-3.17) *** (-3.65) *** (-4.46) *** 

SIZE - -0.5478  -0.5377  -0.5649  -0.5685  -0.5377 
 -0.5649  

  (-5.46) *** (-3.87) *** (-3.69) *** (-4.68) *** (-4.48) 
*** (-3.83) *** 

LEV + 0.0019  0.0188  0.0208  0.0022  0.0188 
 0.0208  

   (0.21)  (1.76) * (1.93) * (0.24)  (1.86) 
* (1.66) * 

CF + 0.0358  0.1693  0.3224  0.0379  0.1693 
 0.3224  

  (0.4)  (1.8) * (3.09) *** (0.38)  (1.78) 
* (3.05) *** 

PROF + 0.0244  -0.0261  -0.0254  0.0242  -0.0261 
 -0.0254  

  (0.86)  (-1.44)  (-1.54)  (1.07)  (-1.29) 
 (-1.17)  

Tangible - -0.8821  -0.4867  0.1775  -0.9364  -0.4869 
 0.1775  

  (-1.23)  (-0.61)  (0.23)  (-1.12)  (-0.59) 
 (0.21)  

AGE - 0.0025  0.0087  0.0046  0.0026  0.0087 
 0.0046  

  (0.27)  (0.89)  (0.43)  (0.27)  (0.92) 
 (0.4)  
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NoR + 1.4715  1.9336  2.4471  1.5275  1.9336 
 2.4472  

   (4.37) *** (4.33) *** (4.57) *** (4.5) *** (5.4) 
*** (5.61) *** 

Year Fixed Effects Y Y Y Y Y Y 

Industry Fixed Effects Y Y Y Y Y Y 

Issuer Random Effects N N N Y Y Y 

Model Fit Pseudo-R2=0.0975 Pseudo-R2=0.1516 Pseudo-R2=0.2015 LL = -337.4613 LL = -300.8593 LL = -204.3895 

Sample Size 10,918 10,191 10,034 10,918 10,191 10,034 
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Table 7 Robustness Check for Testing of H1 (Subsample) 

This table presents coefficient estimates from the regression of equation (1) using a subsample in which at least one of the three CRAs is fired. The 

dependent variable is CRAifire, a dummy variable that indicates whether firm j fires CRA i after quarter t. In Panel A, the independent variable of 

interest is CRAidiff1, the difference between CRAirating and the average rating of the rivals. In Panel B, the independent variable of interest is 

CRAidiff2, the difference between the average of CRAirating from period t-4 to t and the average rating of the rivals for the same period. In each 

panel, Columns (1), (2), and (3) show the results of the probit model, while Columns (4), (5), and (6) show the results of the logit model. SIZE is 

natural logarithm of total assets of firm j. LEV is total debt divided by total assets of firm j. CF is EBITDA divided by total assets of firm j. 

PROF is return on assets of firm j. Tangible is property, plant, and equipment divided by assets of firm j. AGE is elapsed years from the 

foundation date of firm j. NoR is the number of CRAs evaluating firm j. Z-statistics are in parentheses using robust standard errors clustered by 

firm. ***, ** and * denote significance at the 1 percent, 5 percent, and 10 percent levels, respectively. 

CRAifirejt = β0 + β1 CRAiDiff1jt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt + β7 AGEjt+ β8 NoRjt +ΣYEAR + ΣIND + εi
jt 

 

Panel A. CRAdiff1 

 Pred. 
Sign 

Dependent Variable 

Variables KRfire NICEfire KISfire KRfire NICEfire KISfire 

  (1) (2) (3) (4) (5) (6) 

Intercept  5.6962  1.9419  1.1679  9.2931  -4.8515  2.0777  

  (3.48) *** (0.71)  (0.69)  (3.3) *** (-1.77) * (0.71)  

CRAdiff1 - -0.8235  -0.4780  -0.5609  -1.3449  -0.7982  -0.9687  

   (-4.77) *** (-3.06) *** (-3.29) *** (-4.48) *** (-2.8) *** (-3.12) *** 

SIZE - -0.1681  0.1503  -0.0858  -0.2725  0.2488  -0.1479  

  (-2.2) ** (2.07) ** (-1.1)  (-2.09) ** (2.02) ** (-1.1)  

LEV + 0.0010  0.0048  -0.0014  0.0009  0.0074  0.0022  

   (0.19)  (0.84)  (-0.24)  (0.09)  (0.75)  (0.23)  

CF + 0.0306  -0.0330  0.0165  0.0529  -0.0488  0.0490  

  (0.49)  (-0.53)  (0.29)  (0.49)  (-0.44)  (0.53)  

PROF + 0.0143  0.0092  -0.0137  0.0235  0.0139  -0.0155  

  (1.23)  (0.76)  (-1.13)  (1.15)  (0.63)  (-0.79)  

Tangible - -0.3724  -0.4969  0.4295  -0.6042  -0.8182  0.5538  

  (-0.63)  (-0.84)  (0.75)  (-0.59)  (-0.78)  (0.58)  

AGE - 0.0114  -0.0086  0.0018  0.0187  -0.0146  -0.0003  
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  (1.74) * (-1.26)  (0.27)  (1.68) * (-1.21)  (-0.03)  

NoR + -0.7105  -0.5185  -0.0002  -1.1500  -0.8589  -0.0732  

   (-3.6) *** (-2.33) ** (0)  (-3.45) *** (-2.27) ** (-0.2)  

Year Fixed Effects Y Y Y Y Y Y 

Industry Fixed Effects Y Y Y Y Y Y 

Model Probit Probit Probit Logit Logit Logit 

Pseudo-R2 0.1852 0.2012 0.1222 0.1824 0.1990 0.1229 

Sample Size 288 288 288 288 288 288 

 

CRAifirejt = β0 + β1 CRAiDiff2jt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt + β7 AGEjt+ β8 NoRjt +ΣYEAR + ΣIND + εi
jt 

 

Panel B. CRAdiff2 

 Pred. 
Sign 

Dependent Variable 

Variables KRfire NICEfire KISfire KRfire NICEfire KISfire 

  (1) (2) (3) (4) (5) (6) 

Intercept  5.7338  -2.9144  1.0694  9.4005  -4.7930  1.9396  

  (3.46) *** (-1.8) * (0.63)  (3.27) *** (-1.74) * (0.64)  

CRAdiff2 - -0.8730  -0.5921  -0.5899  -0.5515  -0.9896  -1.0228  

  (-4.5) *** (-3.31) *** (-3.2) *** (-2.02) ** (-3.05) *** (-3.01) *** 

SIZE - -0.1659  0.1440  -0.0854  -0.2726  0.2412  -0.1440  

  (-2.15) ** (1.96) ** (-1.09)  (-2.06) ** (1.92) * (-1.03)  

LEV + 0.0012  0.0047  -0.0013  0.0012  0.0071  -0.0022  

   (0.22)  (0.81)  (-0.21)  (0.13)  (0.71)  (-0.23)  

CF + 0.0250  -0.0262  0.0143  0.0448  -0.0416  0.0307  

  (0.41)  (-0.42)  (0.25)  (0.43)  (-0.38)  (0.31)  

PROF + 0.0149  0.0095  -0.0136  0.0246  0.0145  -0.0211  

  (1.28)  (0.78)  (-1.12)  (1.2)  (0.65)  (-0.93)  

Tangible - -0.3681  -0.5143  0.4004  -0.5889  -0.8438  0.6140  

  (-0.62)  (-0.86)  (0.7)  (-0.58)  (-0.8)  (0.62)  

AGE - 0.0110  -0.0085  0.0017  0.0181  -0.0146  0.0035  

  (1.69) * (-1.24)  (0.26)  (1.64)  (-1.2)  (0.31)  

NoR + -0.6920  -0.5261  0.0104  -1.1207  -0.8729  -0.0005  
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   (-3.5) *** (-2.36) ** (0.05)  (-3.35) *** (-2.29) ** (0)  

Year Fixed Effects Y Y Y Y Y Y 

Industry Fixed Effects Y Y Y Y Y Y 

Model Probit Probit Probit Logit Logit Logit 

Pseudo-R2 0.1809 0.2054 0.1213 0.1782 0.2036 0.122 

Sample Size 288 288 288 288 288 288 
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Table 8 Robustness Check for Testing of H2 (Subsample) 

This table presents coefficient estimates from the probit regression model (2) using a subsample 

in which at least one of the three CRAs is hired as an additional CRA. The dependent variable is 

CRAidiff1, the difference between CRAirating and the average rating of the rivals. The 

independent variable of interest is CRAihire, a dummy variable indicating whether bond issuer j 

hires an additional CRA at period t. SIZE is natural logarithm of total assets of firm j. LEV is 

total debt divided by total assets of firm j. CF is EBITDA divided by total assets of firm j. 

PROF is return on assets of firm j. Tangible is property, plant, and equipment divided by 

assets of firm j. AGE is elapsed years from the foundation date of firm j. NoR is the number 

of CRAs evaluating firm j. Z-statistics are in parentheses using robust standard errors clustered 

by firm. ***, ** and * denote significance at the 1 percent, 5 percent, and 10 percent levels, 

respectively. 

 

CRAidiff1jt = β0 + β1 CRAihirejt + β2 SIZEjt + β3 LEVjt + β4 CFjt + β5 PROFjt + β6 Tangiblejt + β7 

AGEjt + β8 NoRjt +ΣYEAR + ΣIND + εi
jt  

 

 Pred. 
Sign 

Dependent Variable 

Variables KRdiff1 NICEdiff1 KISdiff1 

  (1) (2) (3) 

Intercept  -1.8387  -0.0980  1.6543  

  (-1.4)  (-0.06)  (1.5)  

CRAhire + 0.2719  0.3156  0.2245  

   (3.15) *** (3.27) *** (2.52) ** 

SIZE - 0.0165  -0.0091  -0.0205  

  (0.41)  (-0.22)  (-0.58)  

LEV + 0.0062  -0.0048  -0.0017  

   (1.36)  (-0.91)  (-0.5)  

CF +/- 0.0100  -0.0757  0.0423  

  (0.37)  (-1.72) * (1.21)  

PROF +/- 0.0238  0.0051  -0.0227  

  (1.22)  (0.28)  (-1.8) * 

Tangible - 0.2835  0.2502  -0.2996  

  (1.1)  (0.93)  (-1.34)  

AGE - 0.0019  -0.0082  0.0069  

  (0.72)  (-2.35) ** (2.27) ** 

NoR + 0.2385  -0.0201  -0.1558  

  (1.77) * (-0.1)  (-1.04)  

Year Fixed Effects Y Y Y 

Industry Fixed Effects Y Y Y 

Adj-R2 0.2115 0.1645 0.1995 

Sample Size 242 242 242 
***, ** and * denote significance at the 1 percent, 5 percent, and 10 percent levels, respectively. See 

Appendix A for definitions of variables. 
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Highlights 
 

 Korean bond issuers tend to fire or switch CRAs that assign lower ratings.  

 With an additional CRA, the new CRA assigns a higher rating than incumbent CRAs.  

 Increased competition affects the likelihood of an upgrade occurring. 
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