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Abstract

This paper proposes a multivariate stochastic volatility model where shifts in volatility are en-

dogenously driven by large return shocks. The proposed model generalizes the univariate stochastic

volatility model of Dendramis et al. (2015) to a multivariate context. Allowing for multivariate de-

pendence permits the volatility of common return factors to jointly affect individual stock returns

volatility. The model is further extended to allow for endogenous thresholds that depend on covari-

ates. Model-selection priors are introduced and the new techniques are applied using data from the

FTSE-100.
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1 Introduction

Stochastic volatility modeling is becoming commonplace in applied econometrics due to the wide avail-

ability of Markov Chain Monte Carlo (MCMC) methods and the use of scalable and modular techniques

provided by Chib et al. (2006). Although multivariate stochastic volatility (MSV) models are less widely

used, they continue to be developed; see Lopes and Carvalho (2007) and Chib et al. (2009) and the

references therein. Dendramis et al. (2015) proposed a univariate stochastic volatility model which allows

for breaks in volatility that are driven by large stock return shocks and where the shocks are identified

using threshold parameters. The model is important as it allows inferences in stochastic volatility models

when market news arrive exogenously, thus requiring no prior assumptions on the part of the user. The

role of large shocks on volatility has also been examined in Kapetanios and Tzavalis (2010) in relation

to changes in parameters of linear models. Important studies in the MSV field include Harvey et al.

(1994),Aguilar and West (2000), Liesenfeld and Richard (2003), Gouriéroux et al. (2009), Chan et al.

(2005),Chib et al. (2006), Philipov and Glickman (2006) and Asai and McAleer (2009). See, Asai et al.
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(2006) and Yu and Meyer (2006a) for a review and Clark (2011) and Clark and Ravazzolo (2015) for

applications of MSV to macroeconomics forecasting. Also see Loddo et al. (2011) where the George and

McCulloch (1997) stochastic search variable selection approach is applied to MSV models.

The contribution of this paper is to extend the univariate model in Dendramis et al. (2015) to the mul-

tivariate case along the following dimensions. First, we consider a factor model for returns: the model is

based on a factor structure which is quite popular in many financial applications such as the construction

of optimal portfolios. The factors are dynamic and characterised by stochastic volatility and differential

effects of large positive and negative shocks. Second, in our set-up, it is not only individual large shocks

that matter for the dynamic factors, but the large shocks present in all the other factors. Given a large

number of returns, a parsimonious model for their multivariate volatility is provided by the assumption

that each return’s volatility depends on its own past and that of the volatilities factors. To allow for

this, we adopt model-selection priors to deal with the proliferation of parameters when the number of

stocks is large. Third, we allow for endogeneity of large shocks so that they depend on certain covariates.

We also allow factor volatility to have an impact on return volatility, so as to capture dynamics in the

correlations. We also demonstrate that systematic model selection, using predictive Bayes factors, can

be performed by comparing various special cases of the MSV model. Our empirical framework relies on

Bayesian methods using the particle filtering MCMC methodology to perform the computations.

Our model can be viewed as i) an extension of Dendramis et al. (2015) to the multivariate case, and

ii) an extension of multivariate stochastic volatility models to allow for endogenously driven structural

breaks. We argue that both are important extensions in modelling multivariate financial time series.

First, MSV models abstract from structural breaks and fail to distinguish between the impact of large

and moderate shocks. For state of the art modelling breaks in MSV models see Chib et al. (2009).

Second, univariate models as in Dendramis et al. (2015) cannot be used with multiple time series that

are driven by common factors. Regarding the first point, we argue that it is important to extend MSV

models to allow for structural breaks, with a distinction between large and moderate shocks as well as

endogenous thresholds that are explained by certain covariates. As is true for Dendramis et al. (2015),

shifts in volatility are stochastic which distinguish the model from Markov-chain and threshold volatility

models with fixed magnitude breaks in volatility. Moreover, threshold volatility models assume a known

value of the threshold parameter. Dendramis et al. (2015) allow for both negative and positive shocks

to be estimated from the data. We follow their approach for the multivariate case whereby we allow for
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both types of shocks. We also allow for the thresholds values to be estimated from the data.

The rest of this paper unfolds as follows. Section 2 outlines the model and its generalisation to the

multivariate case.Sections 3 and 4 outline the priors and the posterior. Section 5 outlines the modified

model specification which accommodates endogenous shocks with variable magnitudes. Sections 6 and

7 present both simulation and empirical evidence. Section 8 provides a discussion on the generalised

impulse response functions. Section 9 concludes. Technical appendices that outline the particle filtering

approach and the particle Metropolis adjusted Langevin filters are provided in technical appendices A and

B while robustness analysis to demonstrate the insensitivity of posterior results is presented in Figures

of Appendix A.

2 The model

Suppose we have a vector time series of returns yt = (yt1, yt2, . . . , ytp), t = 1, . . . , T . Following standard

practice, e.g. Chib et al. (2006), we adopt a factor model of the form:

yt = Bft + ut, (1)

where ft = (ft1, . . . , ftk)′ are unobserved factors, B is a p × k matrix of coefficients subject to the

identification restrictions bij = 0, i < j and bii = 1, and ut is a vector of innovations. We assume:

[
ut
ft

] ∣∣∣∣∣Vt, Dt ∼ Np+k
(

0,

[
Vt 0
0 Dt

])
. (2)

The elements of Vt and Dt are:

Vt = diag{exp(ht1), . . . , exp(htp)},

Dt = diag{exp(ht,p+1), . . . , exp(ht,p+k)},
(3)

Each element follows an autoregressive process:

htj = µj + φj(ht−1,j − µj) + ηtj , ηtj

∣∣∣σj ∼ i.i.d. N (0, σ2
j ), j = 1, . . . , p+ k. (4)

To this point, this is a standard multivariate stochastic volatility (MSV) model, see Kim et al. (1998).

To extend Dendramis et al. (2015) we first assume that:

htj = µtj + φj(ht−1,j − µtj) + ηtj , ηtj

∣∣∣σj ∼ i.i.d. N (0, σ2
j ), j = 1, . . . , p+ k, (5)

and

µtj = µt−1,j + Itjζtj , ζtj |σζj ∼ i.i.d. N (0, σ2
ζj ), j = 1, . . . , p+ k, (6)
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where:

Itj =

{
1, if ηtj > ηR or ηtj < ηL,

0, otherwise, j = 1, . . . , p+ k.
(7)

Here ηR and ηL represent threshold values which determine whether we have a “large shock” in the

volatility of returns and the factors. When shocks are moderate, we have µtj = µt−1,j , but when they

exceed the thresholds we have µtj = µt−1,j + ζtj . One feature of the model in Dendramis et al. (2015)

is that no distinction is made between shocks that exceed ηR and shocks that are below ηL. Thus, we

modify the shock process as follows:

µtj = µt−1,j + IRtjζ
R
tj + +ILtjζ

L
tj ,

ζLtj

∣∣∣σ2
ζLj ∼ i.i.d. N (0, σ2

ζLj), ζ
R
tj

∣∣∣σ2
ζRj ∼ i.i.d. N (0, σ2

ζRj), j = 1, . . . , p+ k,
(8)

where:

IRtj =

{
1, if ηtj > ηR,

otherwise, j = 1, . . . , p+ k,
(9)

ILtj =

{
1, if ηtj < ηL,

otherwise, j = 1, . . . , p+ k.
(10)

For shocks that exceed ηR we have: µtj = µt−1,j + ζRtj . For shocks that are below the threshold ηL we

have: µtj = µt−1,j + ζLtj , where the innovations ζLtj , ζRtj are allowed to have different variances, viz. σ2
ζLj

and σ2
ζRj . We impose the restriction:

ηR > ηL. (11)

In this model, we have common thresholds ηR, ηL for all volatilities of returns and factors. Three modi-

fications are possible, the third of which is substantive:

1. We can adopt different threshold values ηRj , ηLj , j = 1, . . . , p+ k.

2. Returns and factor volatilities can fall into G groups which have common thresholds ηRg , ηLg , g =

1, . . . , G, G < p+ k.

3. Treating volatilities of returns and their factors symmetrically is not of much use. Specifically, it

makes sense to argue that it is the volatility of the common factors that affects the volatility of

returns and their threshold values.

Note that j = 1, ..., p refers to return volatility and j = p+ 1, ..., p+ k to factor volatility. This involves
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a substantive modification of (4) in the following form:

return volatility : htj = µtj + φj(ht−1,j − µtj) +

k∑
i=1

γij(ht,p+i − µt,p+i) + ηtj ,

ηtj |σj ∼ i.i.d. N (0, σ2
j ), j = 1, . . . , p.

(12)

factor volatility : htj = µtj + φj(ht−1,j − µtj) + ηtj , ηtj |σj ∼ i.i.d. N (0, σ2
j ), j = p+ 1, . . . , p+ k.

(13)

In the above model, current period volatility of the factors (viz. ht,p+i, i = 1, . . . , k) has a direct effect on

the volatility of returns. In addition, new parameters γij are introduced. The volatilities of factors follow

autoregressions whose means, like the means of returns assuming they exist, follow the process in (8).

The significant characteristic of this model is the introduction of dependence in the volatility of returns.

Introducing dependence in multivariate stochastic volatility models or multivariate GARCH-type models

has always proven problematic. One of the innovations of this paper is to show that if there are indeed

a few factors that explain stock returns, then the volatility of these factors should be informative for

conditional variances. Jungbacker and Koopman (2006) proposed a model with a single volatility fac-

tor, that is given a vector of returns yt parametrized as yt|ht, where ht follows a standard univariate

stochastic volatility model. Their motivation was, for the most part, computational convenience, as they

used importance sampling to implement maximum likelihood estimation. See also Quintana and West

(1987). The models featured in their paper are based on those developed by Pitt and Shephard (1999a)

who followed Kim et al. (1998). The models are based on yt|ft, ht where ft is a vector of factors and

ht contains log volatilities of both returns and factors. Their model appears in equations (2) and (3)

of our paper except that the elements of ht follow independent stochastic volatility process instead of a

full VAR specification.The novel feature here is the formulation of µ,ts as in (6), with the definitions of

(7)-(10) which accommodate Dendramis et al. (2015). Moreover, the factors are dynamic. Our model

in (12) additionally accommodates factor volatility to have an effect on returns. As mentioned in Creal

and Tsay (2015), “A factor structure reduces the number of parameters to estimate and provides simple

expressions for the inverse and determinant of relevant matrices. This makes computations feasible in

high-dimensions”. Therefore, although we begin with univariate stochastic volatility models, we modify

this in (12) by introducing dependence through the introduction of factor volatilities in each univariate

process. In addition, making the threshold values depend on factor volatility is a reasonable approach as

making them function of volatilities of all returns would be somewhat excessive. The question of whether

we need this, can be answered by looking at the large number of parameters implied by unrestricted

multivariate stochastic volatility (SV) models. Although there are efficient MCMC procedures to access
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the posterior distribution, this does not mean that a simplification (dependence of univariate process on

volatilities of a number of factors) would not provide a substantial improvement in terms of statistical

efficiency. This has been our main motivation as it is a good compromise between (i) fully unrestricted

multivariate SV models, and (ii) univariate SV models.

The γ,ijs are weights (factor loadings) that determine how factor volatilities impact stock volatility. As in

vector autoregressive models these parameters lack structural interpretation. However, they determine

impulse response functions which can be easily interpreted. “Since γ21 can be different from zero, the

volatility of the second asset is allowed to be Granger caused by the volatility of the first asset. Conse-

quently, both the returns and volatilities are cross-dependent. However, the cross-dependence of volatili-

ties is realized via Granger causality and volatility clustering jointly. Furthermore, when both γ12 and γ21

are nonzero, a bilateral Granger causality in volatility between the two assets is allowed” (Yu and Meyer,

2006b, page. 365). To generalize this model, we adopt the specification in (8) for the factor volatilities:

factors : µtj = µt−1,j + IRtjζ
R
tj + +ILtjζ

L
tj ,

ζLtj |σ2
ζLj ∼ i.i.d. N (0, σ2

ζLj), ζ
R
tj |σ2

ζRj ∼ i.i.d. N (0, σ2
ζRj), j = p+ 1, . . . , p+ k.

(14)

As the number of factors is not expected to be large, we allow for factor-specific thresholds, ηLj and ηRj :

IRtj =

{
1, if ηtj > ηRj ,

otherwise, j = p+ 1, . . . , p+ k,
(15)

ILtj =

{
1, if ηtj < ηLj ,

otherwise, j = p+ 1, . . . , p+ k.
(16)

For the volatility of returns, the model can be generalized so that we have idiosyncratic and factor-specific

shocks. Conditional on ζRti , ζLti , i = p+ 1, . . . , p+ k we have:

returns : µtj = µt−1,j + IRtjζ
R
tj + +ILtjζ

L
tj +

∑k
i=1 δ

R
ijI

R
t−1,p+iζ

R
ti +

∑k
i=1 δ

L
ijI

L
t−1,p+iζ

L
ti ,

ζLtj |σζLj ∼ i.i.d. N (0, σ2
ζLj), ζRtj |σζRj ∼ i.i.d. N (0, σ2

ζRj), j = 1, . . . , p.
(17)

In this model, factor volatility shocks that breach either the upper threshold or the lower threshold

have a direct effect on µtj for all returns (j = 1, . . . , p) through the parameters δRij and δLij . The model

requires the introduction of additional 2pk parameters. We also examine a model where return-specific

thresholds ηLj , ηRj , j = 1, . . . , p are allowed.

3 Priors

As the model involves a large number of parameters, we must carefully design our priors. For example,

given that factor-specific large shocks are allowed in (17) it is unlikely that we may need return-specific
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large shocks. Of course, this is an empirical matter, but the implication of adopting it is that ηLtj =

ηL, ηRtj = ηR, j = 1, . . . , p. The following accommodates this belief:

ηLtj |ωη, ηL ∼ N (ηL, ω2
ηs

2), j = 1, . . . , p.
ηRtj |ωη, ηR ∼ N (ηR, ω2

ηs
2), j = 1, . . . , p.

(18)

where the parameter ωη = 1, s denotes the sample median of the standard deviation of returns, and

we impose the restriction in (11). Parameters φj and σ2
j in (12) are likely to be similar for returns

(j = 1, . . . , p). Parameters δLij and δRij for returns (j = 1, . . . , p, i = 1, . . . , k) are potentially too

many when there are large number of returns. Denote these parameters generically by δij . We adopt a

model-selection prior, as in George and McCulloch (1993, 1997); see also Ntzoufras et al. (2000) of the

form:

δij = 0, with probability P .
δij |ωδ, P ∼ N (0, ω2

δ ), with probability 1− P , (19)

where P is a Bernoulli random variable with parameter P = 1
2 . This setting is justified given our prior

ignorance about this parameter and its likely values.

For parameters γij in (12) we adopt exactly the same prior. For parameters φj we assume:

φj |φ̄, ωφ ∼ N (φ̄, ω2
φ), 0 ≤ φj < 1, j = 1, . . . , p+ k. (20)

where φ̄ = 0.9. That value is motivated from previous studies on stochastic volatility models and the fact

that we expect substantial persistence on prior grounds. The parameter ω2
φ controls prior concentration

about this central value. For scale parameters, σ2
j , we assume:

Q̄

σ2
j

∼ χ2(n̄), j = 1, . . . , p+ k. (21)

where n̄ = 1 and Q̄ = 0.001, which is close to being “flat” but proper. We set ωφ = ωδ = 1. This choice

is motivated by the need for informative but reasonably flat priors. As φ′s are expected to be between

(0 and 1) and the choice ωφ = ωδ = 1, implies priors that are diffuse relative to the likelihood / posterior.

With φ̄ = 0.9 the φ′s are expected to be between −1.1 and 2.9 with prior probability 95%. This choice

allows for priors that are informative and flexible. Finally for the different, non-zero elements of B which

are collected into the vector β we assume β|ωβ ∼ N(0, ω2
βI) where ωβ = 10.

4 Posterior

In this section, we present the posterior of the model under the most general assumptions, viz. we

have return-specific thresholds ηLj , ηRj , j = 1, . . . , p and, of course, factor-specific thresholds ηLj , ηRj , j =
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p+ 1, . . . , p+ k. We denote all unknown “structural” or “deep” parameters of the model by θ ∈ Θ ⊆ <D,

where D is the dimensionality of the parameter space. This parameter vector includes β, i.e. the non-zero

elements of B, σ2
j , σ

2
ζLj
, σ2

ζRj
, δLij , δRij , and the thresholds ηLj and ηRj . In order to facilitate Sequential Monte

Carlo as µtjs are stochastic and time-varying, we change (14) and (17) as follows:

factors : µtj = µt−1,j + IRtjζ
R
tj + +ILtjζ

L
tj + ξtj , j = p+ 1, ..., p+ k. (22)

returns : µtj = µt−1,j + IRtjζ
R
tj + +ILtjζ

L
tj +

k∑
i=1

δRijI
R
t−1,p+iζ

R
ti +

k∑
i=1

δLijI
L
t−1,p+i + ξtj , j = 1, ..., p, (23)

where ξtj |σξ ∼ N (0, σ2
ξ), j = 1, ..., p + k, and σ2

ξ is a constant set equal to 10−5. This constant value is

common to all factors and returns, and facilitates writing the posterior in standard form. To proceed,

let Y = [y1, ..., yT ] denote the data and Σt =

[
Vt 0
0 Dt

]
where these elements are defined in (3). Under

these assumptions, the posterior distribution of the model can be expressed in the following form:

p
(
θ,ht,µt, ζ

L, ζR, IRt , I
L
t |Y

)
∝ p (θ) ·∏T

t=1|Σt|−1/2exp
{
− 1

2 (yt −Bft)′Σ−1
t (yt −Bft)

}
·∏p+k

j=1 σ
−T/2
j · exp

{
− 1

2

∑T
t=1

∑p+k
j=p+1

1
σ2
j

(
htj − µtj − φj(ht−1,j − µtj)−

∑k
j′=1 γij′(ht,p+i − µt,p+i)

)2
}
·

exp
{
− 1

2

∑T
t=1

∑p
j=1

1
σ2
j

(htj − µtj − φj(ht−1,j − µtj))2
}
·
∏T
t=1

∏p+k
j=1 h

−1
tj ·∏p+k

j=p+1

∏
{t:ILtj=1}Φ

(
ηLj −htj−µtj−φj(ht−1,j−µtj)−

∑k
j′=1

γij′ (ht,p+i−µt,p+i)
σj

)
·∏p

j=1

∏
{t:IRtj=1}

{
1− Φ

(
ηRj −htj−µtj−φj(ht−1,j−µtj)

σj

)}
·∏p+k

j=1

[
σ
−T/2
ζLj

σ
−T/2
ζRj

· exp

{
− 1

2σ2
ζLj

∑T
t=1(ζLtj)

2 − 1
2σ2
ζRj

∑T
t=1(ζRtj)

2

}]
·

σ
−Tk/2
ξ exp

{
− 1

2σ2
ξ

∑T
t=1

∑p+k
j=p+1

(
µtj − µt−1,j − IRtjζRtj − ILtjζLtj

)2} ·
σ
−Tp/2
ξ exp

{
− 1

2σ2
ξ

∑T
t=1

∑p
j=1

(
µtj − µt−1,j − IRtjζRtj − ILtjζLtj −

∑k
j′=1 δ

R
ij′I

R
t−1,j′ζ

R
t,j′ −

∑k
j′=1 δ

L
ij′I

L
t−1,j′ζ

L
t,j′

)2
}
.

(24)

In (24) ht,µt, ζ
L, ζR, IRt , I

L
t each denote a vector that respectively contains {htj}, {µtj}, {ζLj }, {ζRj },

{IRtj , ILtj}; and where p(θ) is the prior of the “structural” or “deep” parameters of the model as defined in

the previous section. In the second line, we have the likelihood contribution of the factor model. In the

third and fourth lines we have the likelihood contributions of the stochastic volatility terms. In the fifth

and sixth lines we have the probabilities of error terms ηtj either exceeding Rj or being below Lj . In the

seventh line we have the likelihood contributions of errors in ζtj that are associated with mean shifts,

µtj . In the final two lines, we have the likelihood contributions from mean shifts in (22) and (23). The

indicator functions IRtj and ILtj are defined in (15) and (16).

Our MCMC procedure works through the following steps:

1. Integrate out µt and ht using the Auxiliary Disturbance Particle Filter (ADPF) of Hall et al. (2014),
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see Technical Appendix, part B1.

2. Draw ILt and IRt from their respective posterior conditional distributions.

3. Draw θ using the procedure for “structural parameters” following (B.5) in the Technical Appendix,

part B.

The particle filter in step 1, draws {µtj , t = 1, ..., T} and {htj , t = 1, ..., T} jointly and is applied separately

for each j = 1, ..., p + k. This is not a problem in high-end computing clusters where all p + k latent

variables (of each type) can be allocated to different cores, and where the final results can be considered

jointly to form (24)2.

5 A New Model: Endogenous magnitude of shocks

In the absence of large shocks, it is possible for the MSV model to produce large volatilities which,

given the considerable uncertainty, cannot be parameterized without allowing for structural breaks. The

question we address in this section is as follows: ‘Is it possible to improve the model by allowing for an

endogenous explanation of thresholds?’ If the answer is positive, the model is capable of forecasting to

some extent, whether a change in the structure is forthcoming.

The idea of endogenous thresholds is, as indicated below, equivalent to the notion that the probability of

exceeding the lower or upper threshold depends on a vector of variables, zt. In our case this means that

information about factors and volatilities may be useful for predicting large absolute returns. To cater for

this, we endogenize extreme movements in returns, otherwise market news must be treated exogenously.

A similar approach has been used by Peracchi and Rossetti (2013) and Taylor and Yu (2016). An

alternative interpretation is provided in the discussion following equation (26). The new model presented

in this section is as follows.

Consider (16) and (15) and define the latent variables:

ILt =

{
1, L∗t ≥ 0,

0, otherwise,
IRt =

{
1, R∗t ≥ 0,

0, otherwise.
(25)

1For robustness, we have also used the Particle Matropolis Adjusted Langevin Filter, see Nemeth and Fearnhead (2014),
Technical Appendix, Part C. Using the same number of particles per iteration we obtained almost identical results.

2Computations were performed at the High End Computing Cluster (HEC) of Lancaster University. The combined
facility offers over 5,000 CPU cores, 23 TB aggregate of memory, 70TB of high performance filestore and 1.5PB of medium
performance filestore. A number of nodes offer Nvidia GPU cards, which support CUDA and OpenCL applications. The
cluster operating system is Scientific Linux, with job submission handled by Son of Grid Engine (SoGE). All computations
were performed using fortran77 with extensive use of subroutines from the IMSL library and additional software from
netlib. In our dataset, computation took, approximately, 22 minutes of CPU time.
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We parameterize the latent variables as follows:

L∗t = z′tψL − εLt, εLt ∼ N (0, 1),
R∗t = z′tψR − εRt, εRt ∼ N (0, 1),

(26)

where z′t = [ft, ft−1, ht−1, h
f
t−1], ht = p−1

∑p
j=1 htj is average volatility across all p stock returns, and

hft is the average factor volatility (hft := k−1
∑k
i=1 ht,p+i). For the new parameters, we assume a prior:

[ψ′L, ψ
′
R]′|ωψ ∼ N (0, ω2

ψI), and we set ωψ = 10. The probability that the lower and upper threshold are

exceeded is Φ(z′tψL) and Φ(z′tψR), respectively.

As the use of particle filter MCMC allows considerable flexibility, the model can be estimated using

the techniques outlined earlier. Our interest focuses on the improvement afforded in terms of marginal

likelihood or the recursive (predictive) Bayes factor. The evidence is provided in Figure 1. Although the

Bayes Factor3 is an established tool for model comparison and hypothesis testing Geweke (2007), the

approach suffers from a number of drawbacks. Not only it is sensitive to the priors (Kass and Raftery

(1995)), the Jeffreys-Lindley’s paradox (Poirier (1995); Robert (2001)) is also a concern, especially when

we test a point null against a general alternative. In our case, the use of the Bayes Factor is justified

by its application; i.e. to quantify the support for one model over another, rather than for point null

hypothesis testing.

6 Simulation evidence

In this section simulation evidence is presented for the model with endogenous thresholds, as introduced

in the previous section. With Simulation A, our objective is to examine the effectiveness of the par-

ticle MCMC Metropolis-Hastings algorithm (PMCMC) approach. This leads to discussion: (i) on the

convergence of the PMCMC approach and (ii) on the choice of the number of particles and iterations.

Simulation A adopts previously stated prior specifications, which are relatively flat in comparison with

the likelihood. This implies that the data dominate the priors. Simulation B is a further exercise to

show the effect of the prior on the inference results. Simulation B is conditional on the choice of the

number of particles and iterations, where we examine different priors in a systematic way. In both Simu-

lations A and B we specify the data generating process by setting the parameters at certain values. The

specification is as follows:

3The Bayes Factor approach requires the evaluation of the marginal likelihood of the problem, which often proves
to be a quite difficult problem to solve in itself and is not always easy to compute (Li et al. (2015)).Indeed, for an
excellent presentation of a number of alternative strategies and the development of a new test statistic, which could be seen,
asymptotically, as the Bayesian alternative to the Lagrange multiplier test, see Li et al. (2015) and the references therein.
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i) We set p = 100 for the number of time series and k = 1 for the number of factors. We specify

different values of T as 500, 1,000, 2,000 and 4,000.

ii) For the different non-zero elements of matrix B in (1) we assume that they are generated indepen-

dently from a uniform distribution in the interval (0.1, 0.8).

iii) We then specify Parameters in (12)-(17). In relation to (12): parameters γij , i = 1, ..., k, j = 1, ..., p

are drawn randomly and independently from a N (0.1, 1) distribution; parameters σj , j = 1, ..., p+ k are

drawn independently from a uniform distribution in the interval (0.1, 0.5); parameters φj , j = p+1, ..., p+k

are drawn independently from a uniform distribution in the interval (0.2, 0.9).

iv) In (14) parameters σ2
ζLj and σ

2
ζRj (j = 1, ..., k) are set to 0.1.

v) In (15) and (16) parameters ηLj and ηRj (j = p + 1, ..., p + k) are generated according to the

endogenous threshold model (25) and (26), see step (vii).

vi) Parameters δLij and δRij from (17) are generated independently from a N
(
0, 0.12

)
distribution.

vii) Elements of parameter vectors ψL and ψR from (25) and (26) are generated independently from

a N
(
0, 0.32

)
distribution.

Our simulation results are presented in Table 1. Our primary interest is with the mean-squared-error

(MSE) of the parameters. As parameter estimates, we take the posterior means of draws from PMCMC.

The reason we consider the MSE is to examine whether it is reduced by approximately half when the

sample size is doubled (which is the reason we selected the particular time horizons T ). As p and k are

large, we report the maximum value of MSE as a conservative (worst case) scenario for the behaviour

of parameters. The numbers reported in Table 1 show no difference in results between NP = 106 and

NP = 107. As such we can safely use NP = 106 and NI = 40, 000, where NI is the number of PMCMC

iterations.

For Simulation B in Table 2, we change the baseline prior in a systematic way to examine sensitivity to

prior assumptions. Using NP = 106, we examine sensitivity of posterior means when the scale parameters

ω are changed. Specifically, the baseline values are scaled by 1
4 ,

1
2 , 2 and 4. We run MCMC for each new

set of hyperparameters, recording the new posterior means and posterior standard deviations. We then

compare these with the posterior means in the baseline model. We report only the maximum percentage

change in posterior means and posterior standard deviations (where full results are available on request).

Table 2 presents a concise summary of the results, where the maximum absolute percentage changes in

posterior means and posterior standard deviations are, respectively, 0.53% and 0.33%. Where there are
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differences, these are not substantial, so implying that posterior results from the baseline specification

are robust to changes in the prior.

7 Data and Results

We consider all daily returns of the FTSE100 index4 from the Bloomberg’s database for the period

01/03/2005 to 06/26/2015. First, we report predictive Bayes factors corresponding to our various models

for different time periods. The predictive Bayes factors are computed from the predictive likelihoods of

the particle filtering procedure5. The results are reported in Table 2. For simplicity in presentation, we

maintain k = 1 factors throughout. As the evidence for the existence of a larger number of factors is

quite weak, this assumption turns out to be inconsequential in the light of the data.

Regarding Predictive Bayes factors we have proceeded as follows. Conditional on the data yt, the pre-

dictive distribution is

p(yt+1|yt) =

∫
Θ

p(yt+1|y1:t, θ)p(θ|y1:t)dθ. (27)

We use the notation y1:t to denote data available up to and including period t. Moreover, the parameter

space is denoted by Θ. Of course, access to the posterior predictive is precluded as the integral can be

high-dimensional and unavailable in closed form (θ also includes latent variables but we omit the time

index for simplicity.) If an ergodic sample from the posterior p(θ|y1:t) is available, and we denote it by{
θ(s), s = 1, ..., S

}
, then it is clear that we can approximate the posterior predictive in (27) as follows:

Given a draw θ(s) from its posterior (p(θ|y1:t)), a draw from the posterior predictive is: y(s)
t+1|y1:t, θ

(s) ∼

yt+1|y1:t, θ
(s)), s = 1, ..., S. This distribution conditions on all parameters and latent variables and in

many models, including ours, it is amenable to straightforward simulation, see Geweke and Amisano

(2010). The posterior predictive distribution takes parameter uncertainty into account and, of course, it

also accounts for uncertainty with respect to the unobserved value yt+1. Therefore, the approximation

is:

p(yt+1|y1:t) ∼= S−1
S∑
s=1

p(yt+1|y1:t, θ
(s)

). (28)

For the entire data set, y1:T , the marginal likelihood or "evidence" is:

p(y1:T ) =

∫
L(θ; y1:T )p(θ)dθ, (29)

4For a description please see London Stock Exchange.
5For alternatives see Omori et al. (2007).
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viz. the normalizing constant of the posterior distribution, where L(θ; y1:T ) is the likelihood function and

p(θ) is the prior. One can define a marginal likelihood using data only up to period t, which we denote

by p(yt+1|y1:t).

So far our discussion has considered a single model. Suppose however we have modelsM1, ...,MM and

the posterior predictive for each model is denoted by p(yt+1|y1:t,Mm),m = 1, ...,M . In (27) the relevant

posterior of parameters is p(θ|y1:t,Mm),m = 1, ...,M , and the posterior predictive is denoted by:

p(yt+1|yt,Mm) =

∫
Θm

p(yt+1|y1:t, θm,Mm)p(θ|y1:t,Mm)dθm,m = 1, ...,M. (30)

The same changes have to be made in (28). The different models are allowed to have different parameters

and, therefore different parameter spaces. Evidently, we also have:

p(y1:T |Mm) =

∫
Θm

L(θm; y1:T ,Mm)p(θm|Mm)dθm,m = 1, ...,M, (31)

where p(θm|Mm) is the prior for the parameters of modelMm,m ∈ {1, ...,M}. The expression in (31)

can be accurately approximated using:

p(y1:t+1|Mm) = S−1
S∑
s=1

p(yt+1|y1:t, θ
(s),Mm),m = 1, ...,M. (32)

However, in this expression, θ(s) is drawn from the posterior of θ conditional on y1:t so multiple MCMC

runs must be executed. In general, however, we are not interested in the computation of posterior predic-

tive densities for the whole sample but for only a few in-sample observations and/or a few observations

in a hold-out sample. The predictive Bayes factor for two competing models, using data available only

up to date t, is defined as follows:

PBFm:m′

t+1 =
p(yt+1|y1:t,Mm)

p(yt+1|y1:t,Mm′)
,m 6= m′ ∈ {1, ...,M}. (33)

Since marginal likelihood is available from the standard output of particle filtering, accurate approxi-

mations to (33) can be computed. Extensions to multi-step forecasting and predictive distributions are

straightforward (Geweke and Amisano (2010), equations (10)-(12)). Finally, it is sufficient to compare

predictive Bayes factors relative to a benchmark, as we can easily show that:

PBFm:m′

t+1 =
PBFm:m′

t+1

PBFm:m′′
t+1

·
PBFm:m′′

t+1

PBFm:m′
t+1

,m 6= m′ 6= m′′ ∈ {1, ...,M}. (34)

All our computations are based on 120,000 MCMC iterations, the first 20,000 of which are discarded to

mitigate possible start-up effects. The particle filter is implemented using 106 particles. The algorithm
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we use is the PMCMC procedure which filters out the unobserved volatilities and then exploits MCMC

to draw from the conditional posterior distribution of parameters like φj , γij , δij . σ2
j . See Technical

Appendix A for further details. Convergence is tested (successfully) using Geweke (1992) diagnostics.

In particular, we use the Hall et al. (2014) filter described in (A.6)-(A.7) of Appendix A along with a

Metropolis Adjusted Langevin Approach procedure to validate the results. We summarize our models in

Table 3.

In Figures 2a-2b, we report the marginal posterior densities6 of φj , γij , δRij . Marginal posterior densities of

δRij and δLij are reported in panels (a) and (b) of Figure 3. To conserve space we report marginal posterior

densities for i = 1 and j = 1, ..., 20 in the different sub-panels. The stocks were randomly selected as there

are 10, 000 parameters in [δLij ] and [δRij ]. For other stocks the results were qualitatively and quantitatively

the same. As expected, persistence parameters (φj) are close to unity. Due to model-selection priors, the

marginal posterior densities of γij , δRij and δLij are bimodal (or highly asymmetric) with a mode around

zero. Evidently, asymptotic Gaussian inference would be misleading in these cases.

In the left panel of Figure 3a, we report marginal posterior densities of δRij for randomly selected 20 stocks.

In the right panel we report marginal posterior densities of δLij . Evidently, most of them are randomly

selected bimodal. Moreover, with high potential probability these parameters assume reasonable values

for posterior densities of δLij and δRij . For the remaining 80 stocks see, the figures Appendix.

Next, we report the results for average stochastic volatility (ASV) and average correlation coefficients

(ACC). These are computed using non-overlapping windows of size N = 20. Filtered volatility is com-

puted in a similar fashion for each MCMC draw, and is then averaged. The results are reported in

Figure 4. Note that the sub-prime crisis period is from 01/12/2007 to 30/06/2009.

Clearly, the MSV model with large shocks provides a superior in-sample fit for volatility (Figure 4) as it

tracks better the 20-day-window sample volatility. Not only is this direct evidence in favour of the new

model, it is impressive how well it tracks in-sample volatility during the sub-prime crisis (observations 40

to 60 roughly, as in Figure 4). The MSV model without large shocks shows a jump in volatility with a

significant lag of about 20 days; and it features artificial spikes after the sub-prime crisis which contradicts

the pattern of in-sample volatility.

6Detailed posterior statistics for all model parameters are available as a separate Appendix on request.
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As in Table 3, the Bayes factors (BFs) for the MSV model with large shocks and unlike those of the

MSV model without large shocks, favor the first model; especially so during the crisis period, see Figure 1.

Bayes factors favoring endogeneity are reported in Figure 5 where we observe considerable improvement,

particularly during the turmoil that was generated from the sub-prime crisis and overall. This shows that

endogeneity improves substantially in the MSV model with exogenous large shocks. Moreover, the BFs

are higher for the model with endogenous shocks during the sub-prime crisis. Predictive BFs against an

MSV model without large shocks reported in Figure 1 favor the model which allows for large shocks.

Specifically, from Figure 5, the predictive BFs favors the new model by a factor of 10 to 40, particularly

during the sub-prime crisis. From Figure 5 endogeneity is favored by a factor of 40 to 50 on average. It

is noteworthy that predictive BFs against the simple MSV model follow the general pattern of in-sample

volatility after scaling as in Figure 1. The BFs are typically 10 times larger during periods of tranquillity,

but 40 times higher during the turmoil. The higher predictive BFs during the crisis indicate the superi-

ority of the proposed model. This implies that new information has an impact on volatility kept arriving

post 2008 and that the proposed model is capable of capturing such effects 7.

Table 4 presents the sensitivity analysis of the BFs with respect to the prior. We examine 10,000 dif-

ferent priors: Given the baseline prior, parameters are multiplied by constants cj ∈ (10−5, 105) which

are generated, randomly from independent uniform distributions. Posterior analysis using PMCMC is

conducted for each of the priors and the BFs are computed using the marginal likelihood. The results

show, again, that the BFs favor the MSV with large shocks. The results also show that the BFs in favour

of endogeneity are quite robust in terms of the prior.

In Figure 6 we report the marginal posterior densities of the threshold parameters ηL and ηR. In the

MSV model with common thresholds, we report their marginal density. For the MSV model with different

thresholds, ηLj and ηRj , we report the marginal posterior density of the average across all FTSE100 stocks,

generated from each iteration. The two MSV models differ substantially in terms of posterior estimates

of the thresholds. This is a consequence of the different assumptions used (i.e. whether the thresholds

are common or different among shocks in the MSV models). Posterior densities of the thresholds for the

7Such pieces of information include, but are not limited, to announcements of the ECB and Euro Working Group,
following the economic developments in southern Europe.
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factor are also substantively different as illustrated in Figure 7.

In Table 5 we report BFs corresponding to different number of factors (n = 1, ..., 10). The BFs strength

favour a model with k = 5 factors (BFs being 12.75, 14.61, 16.71) relative to a model with n = 1 factor.

Remarkably, Bayes factors increase over the period 12/05/2008 up to 22/10/2009. These increases can be

attributed, naturally, to the sub-prime crisis and the increase of turbulence and volatility in the markets.

Clearly, BFs always favour model V against all other models.

Finally, we report posterior statistics for certain parameters of the model in Table 7 8. A notable

feature of the results is that inefficiency factors (IF, defined as IF= 1 +
∑∞
s=1 %s where %s is the sample

autocorrelation at lag s of MCMC draws for a given parameter) are generally lower than those reported

in Dendramis et al. (2015).

8 Generalized impulse response functions

Part of the attraction of the newly modified model is that allows the effect of moderate and large shocks

to be analysed through the Generalized Impulse Response Function (GIRF) on volatility, see Koop et al.

(1996) and Pesaran and Shin (1998). The GIRF is defined as:

GIRFj(N, ut, st) = E(hj,t+N |ut, st)− E(hj,t|st), (35)

where st is the state vector. In the computation of this function, there are a number of differences

relative to Dendramis et al. (2015). First, computing E(hj,t+N |ut, st) is a natural by-product of the

particle filtering algorithm as we average across MCMC draws. Second, computing the term E(hj,t|st)

requires some care as we cannot draw ut from its prior in (2) and average E(hj,t+N |ut, st) over the draws

of ut. In fact, we have to draw from the conditional distribution ut|st which is revealed if we follow the

auxiliary particle filtering procedure of Hall et al. (2014) described in the Appendix. This approach is

particularly convenient as the states are available in analytic form. Third, as we cannot fix the threshold

values at their posterior means, we have to take into account this uncertainty. The same is true for

all static parameters involved in the computation of the term E(hj,t|st). Our results are presented in

Figure 8 for large positive shocks, and in Figure 9 for large negative shocks.

From the posterior means of return thresholds in Figure 6, we notice that (when we allow for different

thresholds) these are, approximately, (-0.06 and 0.07) or (-6% and 7%). For the factors they are, approxi-

8Posterior statistics for all other parameters are available upon request as a separated Appendix.
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mately (-7% and 8%). Large negative and large positive shocks have quite different effects in terms of the

GIRFs reported in Figures 8 and 9. Both are quantitatively and statistically important up to an horizon

of N = 60 days. For horizons of N = 1 to N = 10 days the negative shock shows significantly more

persistence which is numerically important even after N = 40 or N = 60 days. The effect of positive

shocks (Figure 9) is practically zero after N = 60 days. In addition, the posterior densities of large

positive and large negative shocks are quite different in shape, suggesting that important asymmetric

effects are present in returns.

Regarding the GIRFs of the ordinary positive and negative shocks (Figures 10 and 11), these are

heavily concentrated around zero in terms of their posterior densities. So, it appears unlikely for ordinary

shocks to have important effects on the volatility of stock returns. Furthermore, the fact that the effects

are not the same provides additional motivation for the application of our model i.e., one should, indeed

allow for a differential effect of moderate shocks versus large positive and large negative shock (the later

being differential as well). Indeed, the positive impact of large negative shocks ‘bad news’ on volatility

gives confirmation to the leverage hypothesis. Although that same conclusion is reached in Dendramis

et al. (2015), the advantage of our method is in at least two areas: (i) It forecasts volatility in multivariate

stock return time series in a more precise way; (ii) It allows for a more effective construction of portfolios

using multivariate data.

9 Conclusion

In this paper, we propose a multivariate stochastic volatility model (MSV) that generalizes the univariate

stochastic volatility model of Dendramis et al. (2015), where the emphasis is placed on the impact of

large shocks or structural breaks in volatility. In MSV models this mechanism is absent. Univariate models

cannot be used where multiple time series are driven by common factors. MSV models that abstract from

structural breaks and fail to distinguish between large and moderate shocks are inadequate in representing

the data. In a generalized model where we allow for endogenous shocks, we find that Bayes factors for

the MSV model with large shocks provide strong evidence that the new model is superior to MSV models

that do not allow for large and moderate shocks. This is especially evident during the sub-prime crisis

period.
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Tables

Table 1: Results for Simulation A. T denotes the sample size, NP denotes the number of particles and
NI the number of iterations

NP NI γij σ2
j φj σ2

ζLj&σ
2
ζRj δLij&δRij ψL&ψR γij σ2

j φj σ2
ζLj&σ

2
ζRj δLij&δRij ψL&ψR

T = 500 T = 1000

103

5000 0.292 0.277 0.245 0.233 0.189 0.263 0.213 0.187 0.200 0.179 0.135 0.174
10000 0.287 0.261 0.220 0.217 0.177 0.244 0.185 0.172 0.182 0.182 0.177 0.166
20000 0.231 0.222 0.215 0.201 0.163 0.231 0.177 0.144 0.144 0.144 0.12 0.182
40000 0.231 0.222 0.215 0.201 0.163 0.23 0.177 0.144 0.144 0.145 0.12 0.183

104

5000 0.290 0.262 0.232 0.228 0.170 0.242 0.211 0.185 0.204 0.175 0.130 0.171
10000 0.283 0.255 0.218 0.215 0.165 0.233 0.182 0.171 0.183 0.181 0.116 0.162
20000 0.230 0.219 0.208 0.198 0.151 0.216 0.175 0.142 0.141 0.142 0.118 0.179
40000 0.230 0.219 0.208 0.198 0.151 0.216 0.175 0.142 0.141 0.142 0.118 0.179

106

5000 0.266 0.244 0.219 0.232 0.166 0.217 0.257 0.272 0.188 0.190 0.155 0.192
10000 0.244 0.232 0.202 0.206 0.144 0.202 0.231 0.244 0.200 0.188 0.132 0.188
20000 0.215 0.202 0.185 0.173 0.132 0.188 0.203 0.133 0.084 0.092 0.085 0.105
40000 0.215 0.203 0.187 0.173 0.132 0.185 0.206 0.133 0.085 0.091 0.085 0.104

107

5000 0.266 0.244 0.219 0.232 0.166 0.217 0.257 0.272 0.188 0.190 0.155 0.192
10000 0.244 0.232 0.202 0.206 0.144 0.202 0.231 0.244 0.200 0.188 0.132 0.188
20000 0.215 0.202 0.185 0.173 0.132 0.188 0.203 0.133 0.084 0.092 0.085 0.105
40000 0.215 0.203 0.187 0.173 0.132 0.185 0.206 0.133 0.085 0.091 0.085 0.104

T = 2000 T = 4000

103

5000 0.181 0.121 0.144 0.101 0.119 0.115 0.109 0.083 0.144 0.089 0.073 0.087
10000 0.174 0.118 0.132 0.092 0.105 0.092 0.104 0.081 0.132 0.074 0.062 0.073
20000 0.103 0.094 0.091 0.095 0.095 0.104 0.089 0.077 0.091 0.082 0.091 0.093
40000 0.103 0.094 0.091 0.095 0.095 0.103 0.089 0.077 0.091 0.081 0.092 0.092

104

5000 0.172 0.119 0.137 0.098 0.103 0.089 0.108 0.08 0.135 0.081 0.071 0.081
10000 0.165 0.112 0.129 0.091 0.098 0.097 0.103 0.077 0.121 0.068 0.067 0.077
20000 0.101 0.091 0.084 0.087 0.091 0.094 0.084 0.073 0.087 0.078 0.087 0.088
40000 0.101 0.091 0.084 0.088 0.091 0.094 0.084 0.073 0.086 0.078 0.086 0.088

106

5000 0.233 0.232 0.172 0.177 0.147 0.115 0.182 0.155 0.166 0.122 0.122 0.103
10000 0.212 0.214 0.184 0.104 0.122 0.115 0.177 0.133 0.161 0.082 0.092 0.098
20000 0.124 0.092 0.071 0.072 0.065 0.083 0.071 0.061 0.044 0.055 0.051 0.062
40000 0.124 0.091 0.071 0.072 0.066 0.083 0.072 0.061 0.044 0.055 0.051 0.062

107

5000 0.233 0.232 0.172 0.177 0.147 0.115 0.182 0.155 0.166 0.122 0.112 0.103
10000 0.212 0.214 0.184 0.104 0.122 0.115 0.177 0.133 0.161 0.082 0.092 0.098
20000 0.124 0.092 0.071 0.072 0.065 0.083 0.071 0.061 0.044 0.055 0.051 0.062
40000 0.124 0.091 0.071 0.072 0.066 0.083 0.072 0.061 0.044 0.055 0.051 0.062
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Table 2: Results for Simulation B. MAPCPM stands for "maximum absolute percentage change in
posterior means". MAPCPSD stands for "maximum absolute percentage change in posterior s.d."

Change ωs MAPCPM MAPCPSD

1/4 0.53% 0.25%
1/2 0.22% 0.12%
2 0.14% 0.33%
4 0.40% 0.42%

Table 3: Alternatives Models

Model Description Equations

I Simple MSV without thresholds (5), (6), (7)
II Common thresholds for factor and return volatility (9), (10)
III Different thresholds for factor and return volatility (14), (12)
IV Alternative MSV model with common thresholds (12)
V Alternative MSV model with different thresholds Variation of (12)
VI Alternative MSV model with grouped thresholds Variation of (12)

Table 4: Prior Sensitivity of Bayes Factors

Bayes Factor % Deviation from baseline

median minimum maximum

In favour of MSV with large
1.24% 0.42% 3.21%shocks and against MSV

without large shocks

In favour of endogeneity 0.77% 0.32% 1.44%

Table 5: Bayes factors for different numbers of factors. Results in red suggest that we should proceed
with k = 5 common factors.

Model k = 1 k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

IV 1.00 1.81 2.35 3.44 12.77 3.31 1.05
V 1.00 1.27 1.81 2.82 14.61 4.45 2.20
VI 1.00 2.35 3.44 4.77 16.71 3.12 2.44
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Table 6: Bayes factor for alternatives models.

Model Description 1/1/2005 - 11/05/2008 12/05/2008 - 21/10/2009 22/10/2009 - 24/6/2015

I Simple MSV 1 1 1without thresholds

II Common thresholds for 3.717 6.212 6.553factor and return volatility

III Different thresholds for 8.218 12.251 11.334factor and return volatility

IV Alternative MSV model 17.356 21.515 18.817with common thresholds

V Alternative MSV model 23.716 35.988 35.585with different thresholds

VI Alternative MSV model 21.453 17.554 19.425with grouped thresholds

Table 7: Posterior Statistics. The results refer to equations (26). Posterior means are reported with
posterior standard deviations in parentheses. IF is the inefficiency factor based on 2,500 lags. When IF=1
it means we have i.i.d sampling from the posterior. IF is defined as IF= 1+

∑∞
s=1 %s where %s is the sample

autocorrelation at lag s of MCMC draws for a given parameter. We have ht = p−1
∑p
j=1 htj which is

average volatility across all p stock returns, and hft is the average factor volatility (hft := k−1
∑k
i=1 ht,p+i).

For ψL and ψR, we assume a prior: [ψ′L, ψ
′
R]′ ∼ N (0, ω2

ψI), and we set ωψ = 10. The probability that
the lower threshold is exceeded is Φ(z′tψL) and the probability that the upper threshold is exceeded is,
similarly, 1− Φ(z′tψR).

L∗t R∗t

constant
0.012 0.023
(0.0017) (0.0012)

IF = 5.15 IF = 7.47

ft

0.014 0.017
(0.0025) (0.002)

IF=12.32 IF=8.45

ft−1

0.0015 0.0021
(0.0002) (0.0004)

IF=3.15 IF=2.88

ht−1

0.022 0.0014
(0.0013) (0.0003)

IF=5.38 IF=4.34

hft−1

0.0017 0.0012
(0.0002) (0.0003)

IF=2.81 IF=3.77
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Figure 4: Average volatility from different models
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Figure 5: Predictive Bayes factors in favor of endogeneity
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Figure 6: Marginal posterior densities of thresholds (returns)
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Figure 7: Marginal posterior densities of thresholds (factor). Case A: Common thresholds in returns.
Case B: Grouped thresholds in returns. Case C: Different thresholds in returns. In Case B, from the
overall marginal likelihood of the model, three different groups are selected.

Figure 8: GIRF, large negative shocks. GIRF is average of GIRFs for individual stocks from the MSV
model allowing for stock-specific thresholds. The figure shows the effect (GIRF) of shocks on volatility.
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Figure 9: GIRF, large positive shocks. GIRF is average of GIRFs for individual stocks from the MSV
model allowing for stock-specific thresholds. The figure shows the effect (GIRF) of shocks on volatility.

Figure 10: GRF, ordinary positive shocks. GIRF is average of GIRFs for individual stocks from the MSV
model allowing for stock-specific thresholds. The figure shows the effect (GIRF) of shocks on volatility.
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Figure 11: GIRF, ordinary negative shocks. GIRF is average of GIRFs for individual stocks from the MSV
model allowing for stock-specific thresholds. The figure shows the effect (GIRF) of shocks on volatility.
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TECHNICAL APPENDIX

A Particle filtering

The particle filter methodology can be applied to state space models of the general form:

yT ∼ p(yt|xt), st ∼ p(st|st−1), (A.1)

where st is a state variable. For general introductions see Gordon (1997), Gordon et al. (1993), Doucet

et al. (2001) and Ristic et al. (2004).

Given the data Yt the posterior distribution p(st|Yt) can be approximated by a set of (auxiliary) particles{
s

(i)
t , i = 1, ..., .N

}
with probability weights

{
w

(i)
t , i = 1, ..., N

}
where

∑N
i=1 w

(i)
t = 1. The predictive

density can be approximated by:

p(st+1|Yt) =

∫
p(st+1|st)p(st|Yt)dst '

N∑
i=1

p(st+1|s(i)
t )w

(i)
t , (A.2)

and the final approximation for the filtering density is:

p(st+1|Yt) ∝ p(yt+1|st+1)p(st+1|Yt) ' p(yt+1|st+1)

N∑
i=1

p(st+1|s(i)
t )w

(i)
t . (A.3)

The basic mechanism of particle filtering rests on propagating
{
s

(i)
t , w

(i)
t , i = 1, . . . , N

}
to the next

step, viz.
{
s

(i)
t+1, w

(i)
t+1, i = 1, . . . , N

}
but this often suffers from the weight degeneracy problem. If

parameters θ ∈ Θ ∈ <k are available, as is often the case, we follow Liu and West (2001) parameter

learning takes place via a mixture of multivariate normals:

p(θ|Yt) '
N∑
i=1

w
(i)
t N (θ|aθ(i)

t + (1− a)θ̄t, b
2Vt), (A.4)

where θ̄t =
∑N
i=1 w

(i)
t θ

(i)
t , and Vt =

∑N
i=1 w

(i)
t (θ

(i)
t − θ̄t)(θ

(i)
t − θ̄t)′. The constants a and b are related to

shrinkage and are determined via a discount factor δ ∈ (0, 1) as a = (1−b2)1/2 and b2 = 1− [(3δ−1)/2δ]2.

See also Casarin et al. (2009).

Andrieu and Roberts (2009), Flury and Shephard (2011), and Pitt et al. (2012) provide the Particle

Metropolis-Hastings (PMCMC) technique which uses an unbiased estimator of the likelihood function

p̂N (Y |θ) as p(Y |θ) is often not available in closed form.

Given the current state of the parameter θ(j) and the current estimate of the likelihood, say Lj =

p̂N (Y |θ(j)), a candidate θc is drawn from q(θc|θ(j)) yielding Lc = p̂N (Y |θc). We then set θ(j+1) = θc with
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the Metropolis - Hastings probability:

A = min

{
1,

p(θc)Lc

p(θ(j)Lj
q(θ(j)|θc

q(θc|θ(j))

}
, (A.5)

otherwise we repeat the current draws:
{
θ(j+1), Lj+1

}
=
{
θ(j), Lj

}
.

Hall et al. (2014) propose an auxiliary particle filter which rests upon the idea that adaptive particle

filtering (Pitt et al. (2012)) used within PMCMC requires far fewer particles than the standard particle

filtering algorithm to approximate p(Y |θ). From Pitt and Shephard (1999b) we know that auxiliary

particle filtering can be implemented easily once we can evaluate the state transition density p(st|st−1).

Whenever this is not possible, Hall et al. (2014) present a new approach when, for instance, st = g(st−1, ut)

for a certain disturbance. In this case we have:

p(yt|st−1) =

∫
p(yt|st)p(st|st−1)dst, (A.6)

p(ut|st−1; yt) = p(yt|st−1, ut)p(ut|st−1)/p(yt|st−1). (A.7)

If it ia possible to evaluate p(yt|st−1) and simulate from p(ut|st−1; yt) the filter would be fully adapt-

able (Pitt and Shephard (1999b)). A Gaussian approximation can be used for the first-stage pro-

posal g(yt|st−1) by matching the first two moments of p(yt|st−1). So in some way we find that the

approximating density p(yt|st−1) = N (E(yt|st−1),V(yt|st−1)). In the second stage, we know that

p(ut|yt, st−1) ∝ p(yt|st−1, ut)p(ut). For p(ut|yt, st−1) we know it is multimodal so suppose it has

M modes are ûmt , for m = 1, . . . ,M . For each mode we can use a Laplace approximation. Let

l(ut) = log [p(yt|st−1, ut)p(ut)]. From the Laplace approximation we obtain:

l(ut) ' l(ûmt ) + 1
2 (ut − ûmt )′2l(ûmt )(ut − ûmt ). (A.8)

Then we can construct a mixture approximation:

g(ut|xt, st−1) =

M∑
m=1

λm(2π)−d/2|Σm|−1/2exp
{

1
2 (ut − ûmt )′Σ−1

m (ut − ûmt
}
, (A.9)

where Σm = −
[
∇2l(ûmt )

]−1 and λm ∝ exp {l(umt )} with
∑M
m=1 = 1. This is done for each particle sit.

This is known as the Auxiliary Disturbance Particle Filter (ADPF).

An alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms a proposal

for st directly from the measurement density p(yt|st) although as Hall et al. (2014) indicate, the state
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equation can be very informative.

In the standard particle filter of Gordon et al. (1993) particles are simulated through the state density

p(sit|sit−1) and they are re-sampled with weights determined by the measurement density evaluated at

the resulting particle, viz. p(yt|sit).

The ADPF is simple to construct and rests upon the following steps:

For t = 0, . . . , T − 1 given samples skt ∼ p(st|Y1:t) with mass πkt for k = 1, ..., N .

1) For k = 1, . . . , N compute ωkt|t+1 = g(yt+1|skt )πkt , π
k
t|t+1 = ωkt|t+1/

∑N
i=1 ω

i
t|t+1 .

2) For k = 1, . . . , N draw s̃kt ∼
∑N
i=1 π

i
t|t+1δ

i
st(dst).

3) For k = 1, . . . , N draw ukt+1 ∼ g(ut+1|s̃kt , yt+1) and set skt+1 = h(skt ;ukt+1).

4) For k = 1, . . . , N compute

ωkt+1 =
p(yt+1|skt+1)p(ukt+1)

g(yt+1|skt )g(ukt+1|s̃kt , yt+1)
, πkt+1 =

ωkt+1∑N
i=1 ω

i
t+1

. (A.10)

It should be mentioned that the estimate of likelihood from ADPF is:

p(Y1:T ) =

T∏
t=1

(
N∑
i=1

ωit−1|t

)(
N−1

N∑
i=1

ωit

)
. (A.11)
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B Particle Metropolis adjusted Langevin filters

Nemeth and Fearnhead (2014) provide a particle version of a Metropolis adjusted Langevin algorithm

(MALA). In Sequential Monte Carlo we are interested in approximating p(st|Y1:t, θ).

Given that:

p(st|Y1:t, θ) ∝ g(yt|xt, θ)
∫
f(st|st−1, θ)p(st−1|y1:t−1, θ)dst−1, (B.1)

where p(st−1|y1:t−1, θ) is the posterior as of time t − 1. If at time t − 1 we have a set set of par-

ticles
{
sit−1, i = 1, . . . , N

}
and weights

{
wit−1, i = 1, . . . .N

}
which form a discrete approximation for

p(st−1|y1:t−1, θ) we have the approximation:

p̂(st−1|y1:t−1, θ) ∝
N∑
i=1

wit−1f(st|sit−1, θ). (B.2)

See Andrieu et al. (2010) and Cappé et al. (2005) for reviews. From (B.2) Fearnhead (2008) makes

the important observation that the joint probability of sampling particle sit−1 and state st is:

ωt =
wit−1g(yt|st, θ)f(s|sit−1, θ)

ξitq(st|sit−1, yt, θ)
, (B.3)

where q(st|sit−1, yt, θ) is a density function amenable to simulation and

ξitq(st|sit−1, yt, θ) ' cg(yt|st, θ)f(st|sit−1, θ), (B.4)

and c is the normalizing constant in (B.1).

In the MALA algorithm of Roberts and Rosenthal (1998),9 we form a proposal:

θc = θ(s) + λz + λ2

2 ∇logp(θ(s)|Y1:T ), (B.5)

where z ∼ N (0, I) which should result in larger jumps and better mixing properties, plus lower autocor-

relations for a certain scale parameter λ. Acceptance probabilities are:

a(θc|θ(s)) = min

{
1,

p(Y1:T |θc)q(θ(s)|θc)
p(Y1:T |θ(s))q(θc|θ(s))

}
. (B.6)

Using particle filtering it is possible to create an approximation of the score vector using Fisher’s identity:

∇ log p(Y1:T |θ) = E [∇ log p(s1:T , Y1:T |θ)|Y1:T , θ] , (B.7)

9The benefit of MALA over Random-Walk-Metropolis arises when the number of parameters n is large. This happens
because the scaling parameter λ is O(n−1/2)for Random-Walk-Metropolis but it is O(n−1/6) for MALA, see Roberts et al.
(1997) and Roberts and Rosenthal (1998)
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which corresponds to the expectation of:

∇ log p(s1:T , Y1:T |θ) = ∇ log p(|s1:T−1, Y1:T−1|θ) +∇ log g(yT |sT , θ) +∇ log f(sT |s|T−1, θ),

over the path s1:T . The particle approximation to the score vector results from replacing p(s1:T |Y1:T , θ)

with a particle approximation p̂(s1:T |Y1:T , θ) . With particle i at time t-1 we can associate a value

αit−1 = ∇ log p(si1:t−1, Y1:t−1|θ) which can be updated recursively. As we sample κi in the APF (the index

of particle at time t− 1 that is propagated to produce the ith particle at time t) we have the update:

αit = aκit−1 +∇ log g(yt|sit, θ) +∇ log f(sit|sit−1, θ). (B.8)

To avoid problems with increasing variance of the score estimate ∇ log p(Y1:t|θ) we can use the approxi-

mation:

αit−1 ∼ N(mi
t−1, Vt−1). (B.9)

The mean is obtained by shrinking αit−1 towards the mean of αt−1 as follows:

mi
t−1 = δαit−1 + (1− δ)

N∑
i=1

wit−1α
i
t−1, (B.10)

where δ ∈ (0, 1) is a shrinkage parameter. Using Rao-Blackwellization one can avoid sampling αit and

instead use the following recursion for the means:

mi
t = δmκi

t−1 + (1− δ)
N∑
i=1

wit−1m
i
t−1 +∇ log g(yt|sit, θ) +∇ log f(sit|s

κi
t−1, θ), (B.11)

which yields the final score estimate:

∇ log p̂(Y1:t|θ) =

N∑
i=1

witm
i
t. (B.12)

As a rule of thumb Nemeth and Fearnhead (2014) suggest taking δ = 0.95. Furthermore, they show

the important result that the algorithm should be tuned to the asymptotically optimal acceptance rate of

15.47% and the number of particles must be selected so that the variance of the estimated log-posterior

is about 3. Additionally, if measures are not taken to control the error in the variance of the score vector,

there is no gain over a simple random walk proposal.

Of course, the marginal likelihood is:

p(Y1:T |θ) = p(y1|θ)
T∏
t=2

p(yt|Y1:t−1, θ), (B.13)

where

p(yt|Y1:t−1, θ) =

∫
g(yt|st)

∫
f(st|st−1, θ)p(st−1|Y1:T−1, θ)dst−1dst, (B.14)

provides, in explicit form, the predictive likelihood.
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A APPENDIX FIGURES

In this Appendix we provide marginal posterior densities of parameters δRij and δLij for all stocks j =

1, ..., 100 and five randomly selected stocks i ∈ {2, ..., 100}. The reason is that all possible cases are

10,000 and visual presentation is rather difficult.

For i = 1 representative marginal posterior densities of these parameters have been presented in Figures

A.3 for i = 1, ..., 20 randomly selected stocks.

In Figures A.1-A.5 we present posterior densities of parameters δRij for randomly selected stock i but all

stocks j = 1, ..., 100.

In Figures A.6-A.10 we present posterior densities of parameters δLij for (the same) randomly selected

stock i but all stocks j = 1, ..., 100.

Qualitatively and quantitatively, these marginal posterior densities are essentially like Figures 3a and 3b

although the positive and negative posterior means of δRij and δLij , respectively, are more pronounced,

reinforcing the findings in the paper.
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