1	Water quality mediated resilience on the Great Barrier Reef
2	
3	M Aaron MacNeil ^a , Camille Mellin ^{b,c} , Sam Matthews ^{b,d} , Nicholas H. Wolff ^f , Timothy R.
4	McClanahan ^g , Michelle Devlin ^h , Christopher Drovandi ^{ij} , Kerrie Mengersen ^{ij} , and Nicholas AJ
5	Graham ^k
6	
7	
8	^a Department of Biology, Dalhousie University, Halifax NS B3H 4R2, Canada; ^b Australian
9	Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810, Australia; ^c The
10	Environment Institute and School of Biological Sciences, University of Adelaide, South Australia
11	5005, Australia; ^d ARC Centre of Excellence in Coral Reef Studies, James Cook University,
12	Townsville, QLD 4812, Australia; ^f Global Science, The Nature Conservancy, Brunswick, Maine
13	04011; ^g The Wildlife Conservation Society, Marine Programs, Bronx, New York, USA and
14	Marine Programs, Mombasa, Kenya; ^h Centre for Environment, Fisheries and Aquaculture
15	Science, Lowestoft Laboratory, Lowestoft, NR33 0HT, UK; ⁱ School of Mathematical Sciences,
16	Queensland University of Technology, Brisbane, QLD, Australia; ^j Australian Centre of
17	Excellence for Mathematical and Statistical Frontiers, Brisbane, QLD, Australia; ^k Lancaster
18	Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
19	

21 Threats from climate change and other human pressures have led to widespread concern for the future of Australia's Great Barrier Reef (GBR)¹, where increasingly 22 frequent and severe coral bleaching, fishing, and ongoing pollution are 23 undermining long-term persistence of coral-dominated reefs^{2,3}. Future resilience 24 25 of coral-dominated reefs within the GBR will be determined by their ability to 26 resist disturbances and to recover from coral loss, generating intense interest in management actions that can moderate these processes^{4–7}. Here we quantify the 27 effect of environmental and human drivers on the resistance and recovery of hard 28 29 corals to multiple disturbances within the southern and central GBR. Using a 30 composite index for water quality, we find that reefs exposed to poor water quality 31 recover from disturbance more slowly and are more susceptible to outbreaks of 32 crown-of-thorns starfish and coral disease while also being more resistant to 33 coral bleaching. Protection from fishing and increased herbivory were not 34 associated with substantially faster recovery from disturbance. Water quality 35 mediation of a tradeoff between resistance and recovery illustrates that, while 36 reefs in waters of chronically-poor quality contain corals with greater bleaching 37 resistance, there is a net negative impact on recovery and long-term hard coral 38 cover. Given these conditions, we find that 11-23% improvements in water quality 39 will be necessary to bring recovery rates in line with projected increases in coral 40 bleaching among contemporary inshore and mid-shelf reefs. However such 41 reductions are unlikely to buffer projected bleaching effects among outer-shelf

warming.

46

42

43

The Great Barrier Reef (GBR) has experienced unprecedented losses of hard coral cover ⁸. Most 47 coral loss on the GBR has been due to acute disturbances including storms^{9,10}, disease ¹¹, 48 outbreaks of crown-of-thorns starfish *Acanthaster* spp. (CoTS)⁹, and coral bleaching ⁸. Many of 49 these impacts are predicted to become more frequent or intense due to climate change ^{2,10,12–14}. 50 Key to long-term coral-dominance on reefs is whether coral communities can resist coral loss and 51 52 recover sufficiently quickly between successive disturbances to be resilient and sustain viable populations¹⁵. However, there are currently few process-based models for quantifying intrinsic 53 54 rates of increase that accurately characterize recovery. Some of the key drivers thought to influence coral cover recovery include rates of herbivory¹⁶, coral community composition^{17,18}, 55 water quality^{19–22}, and protection from fishing²³. While research into individual drivers is well 56 57 developed, how cumulative stressors may interact under climate change is not; the potential for 58 non-linear responses to novel ecosystem states creates considerable uncertainty in predicting future coral reef states²⁴. 59

GBR reefs dominated by fast growing, thermally sensitive corals, demonstrating

practical limits to local management of the GBR against the effects of global

60

A key question facing many reefs world-wide is the nature of the relationship between long-term
anthropogenic pollution loads and the resilience of coral reefs, which underpins millions of

dollars in public and private remediation investment ²⁵. Changes in water quality, such as 63 64 increases in dissolved nutrients and fine sediment associated with changes in land use have been linked to increases in algal densities²⁶, changes in coral community composition²¹, and outbreaks 65 of coral predators²⁷ and disease²⁸. Yet despite experimental²⁹ and observational evidence³⁰, the 66 potentially widespread role of deteriorating water quality in specifically regulating reef recovery 67 68 rates is not well known. Setting targets for specific water quality parameters such as sediments 69 and nutrient loads need to be appropriate to meet ecologically relevant targets that support 70 ecosystem objectives and untangle the effects of multiple sources of disturbance from associated 71 environmental and management drivers of reef resilience³¹.

72

73 To quantify the effects of varying disturbance and ecosystem properties on coral reef resilience, 74 we developed a Gompertz-based Bayesian hierarchical model for spatial coverage of hard coral cover ³² within the central and southern sectors of world's largest coral reef ecosystem, Australia's 75 76 GBR. Defining resilience as the sum of resistance (ability to limit coral loss due to acute disturbance) and recovery (rate at which coral returns to pre-disturbance levels)³³, we used 77 78 surveys of coral cover from 46 reefs between 1995 and 2017, that use replicate fixed-transects particularly suited to quantifying localized and long-term coral cover dynamics³⁴. Importantly, 79 80 during the time period under study, these reefs have been influenced by a number of major disturbances¹¹, including tropical cyclones¹⁰, CoTS outbreaks³⁵, coral diseases²⁸, and severe 81 bleaching⁸. These disturbances reduced coral cover by varying degrees, while subsequent 82 monitoring has captured reef recovery³⁶. Within four characteristic community types³⁷ (Extended 83

84 Data Fig 1) we quantified four key properties thought to influence resistance and recovery: 85 protection from fisheries, coral community composition, herbivore density, and water quality. 86 Herbivore density and coral community composition were estimated directly from the monitoring 87 data, while fisheries protection (both no-take or no-entry) was defined by the Great Barrier Reef Marine Park Zoning Plan³⁸. Water quality was defined as a metric that encompassed several 88 89 water quality issues including fine sediment associated turbidity and high nutrient waters 90 supporting high phytoplankton biomass measured as chlorophyll typically associated with the 91 input and extent of river plumes in the wet season. The "water quality" metric is captured as the 92 average frequency of exposure to river-influenced plumes (PF_C), which includes the average 93 frequency of highly turbid (primary), high chlorophyll-a (secondary), and colored dissolved organic matter (tertiary) water masses³⁹ (see Supplemental Methods). As such, PFc represents an 94 95 assessment of reduced water quality conditions in the wet season. Our approach is unique in 96 explicitly representing potential effects of a range of conditions on the recovery rate of corals 97 within a mechanistic population model. Thus, with a strong set of concurrent empirical data, we 98 were able to model the resilience history of a large portion of GBR and estimate how it can be 99 expected to respond to increasingly frequent thermal stress.

100

In 1995 and 2017, average coral cover was comparable (from 28% to 29%), with substantial
periods of decline and recovery (Fig 1) including expected average coral cover levels between
18% and 56% (Figs 1b, 2b). Among known disturbances at locations with long term monitoring
(*see* Extended Data), storms had the largest impact on coral cover (-0.22 [-1.84, 1.65]; posterior

105	median and 95% highest posterior density interval for standardized effect sizes) followed by
106	CoTS (-0.20 [-0.55, 0.08]), bleaching (-0.10 [-0.12, -0.08]), and coral disease (-0.02 [-0.03, -
107	0.0]), with evidence of more intense storm impacts along the outer shelf, and greater hard coral
108	losses from CoTS among Poritidae/Alcyoniidae and Acropora-dominated reefs (Fig 2e).
109	Resistance to disturbance was also adversely impacted by increasing exposure to the riverine
110	plume waters, measured by an increasing PF_C value and associated with greater hard coral loss
111	from both CoTS and disease (Fig 2f), strongly supporting the assumed role of elevated nutrients
112	increasing both CoTS larval survival ^{27,41} and disease prevalence ^{21,42} .

114 In addition to these adverse impacts of exposure to high nutrient, high turbidity riverine flood plumes, we also found that the frequency of exposure to river-influenced plumes has led to 115 116 increased coral resistance during thermal stress and bleaching events among inshore reefs. 117 Although bleaching on the GBR typically occurs during doldrum conditions when sediment 118 particles are likely to settle, high turbidity waters associated with riverine plume waters reduce 119 exposure to light stress and hence the probability of a bleaching response where corals expel their algal symbionts⁴³. In addition, the extreme environmental conditions characteristic of inshore 120 121 settings (e.g. chronic runoff exposure, fluctuating turbidity, light, and temperatures) have shifted coral community composition at some locations toward more disturbance-tolerant species⁴⁴, 122 allowing these communities to tolerate thermal anomalies better than those in the more stable 123 thermal conditions of offshore reefs^{45,46}. This increased resistance to bleaching appears to offset 124 125 some of the obvious negative impacts from elevated nutrient concentrations delivered in riverine

plume waters^{47,48}, although these effects are likely overwhelmed by the most extreme warming 126 127 conditions such as those observed in 2016/2017. The major coral bleaching and mortality event in 2015-2016 and 2016-2017 severely impacted reefs world-wide^{2,8}, with extensive losses of hard 128 129 coral that transformed coral reef assemblages across the northern (2015-2016) and central (2016-2017) Great Barrier Reef¹. Readers may therefore be surprised that coral bleaching did not 130 131 feature as the most prominent source of disturbance in our analysis. However this bleaching event 132 was unique in the recorded history of the GBR in that it occurred primarily in the northernmost sector, long considered the 'pristine' end of the reef¹ and where limited long-term monitoring 133 134 data exists.

135

136 Following disturbance, we found that coral recovery was most rapid among the Acroporadominated reefs that span the outer shelf (Fig 2a), where the per-unit-cover rate of increase 137 138 (hereafter recovery rate) among tabulate Acropora reefs (1.48 [1.36, 1.88]) was 30% to 41% 139 higher than on soft-coral dominated reefs (1.05 [0.97, 1.30]), mixed coral assemblage reefs (1.08 140 [0.97, 1.43]), and Poritidae/Alcyoniidae reefs (1.13 [1.01, 1.44]) in periods with no acute 141 disturbance (Fig 2a). This combined high intrinsic rate of increase and low density dependence 142 (Fig 2d) underlies the rapid recovery observed among Acropora-dominated reefs throughout the Indo-Pacific^{15,49,50}. Most striking however, was clear evidence of the strong, negative impact that 143 144 exposure to high nutrient and/or the high turbidity conditions associated with riverine plume 145 waters has on coral recovery rates across the GBR (Fig 2g), having a far greater influence than

protection from fishing, likely due, in part, to the relatively low levels of fishing pressure among
most GBR reefs⁵¹.

148

149 To understand the historical impact deleterious conditions associated with high sediment and 150 nutrient loads associated with riverine plume waters has had on hard coral recovery, we estimated maximum potential reductions in PFc that could be achieved given a theoretical return 151 152 to pre-European conditions (a 65% reduction in PFc), using the average estimated proportions of 153 anthropogenic contributions for dissolved inorganic nitrogen (DIN) and fine sediments from across the GBR⁵² (Extended Data Methods). Given these theoretical levels, we find that chronic 154 155 river-influenced plumes from anthropogenic influenced riverine loads have reduced recovery 156 rates among inshore Mixed and Poritidae/Alcyoniidae reefs and mid-shelf reefs by -12% [-14%, -157 10%] to -27% [-31%, -21%] (Supplemental Information). Given that the riverine plume metric 158 (PFc) represents the frequency of plume waters over a 14 year period during wet season 159 conditions (Nov to April), the modelling of a reduction in PFc, represents one of the first broad-160 scale estimate of the impact coastal agriculture and development has had on coral recovery on the 161 GBR. These negative effects are likely due to factors such as light attenuation from resuspension of fine sediment imported to the GBR via flood plumes causing reductions in coral growth^{40,53,54} 162 and symbiont photosynthesis⁵⁵, as well as from higher competition with algae that benefit from 163 nutrient enrichment¹⁹ limiting coral recruitment⁵⁶. 164

166 Given that water quality is the strongest management-related predictor of both reef resistance and 167 recovery, we assessed what reduction of riverine-plume frequency (measured as PFc) would be 168 necessary to counteract expected increases in thermal stress relative to 1995-2017 conditions. We 169 simulated future hard coral dynamics out to 2050 from our model given projected increases in thermal stress and bleaching potential under RCP 4.5¹³, now considered the most likely scenario 170 for future climate⁵⁷, as well as GBR-specific trends⁵⁸ and the most recent empirical rates of 171 172 observed thermal stress and bleaching² (Fig 3a). We find that, unless corals are able to rapidly 173 adapt to warming conditions, 11% to 23% improvements in the frequency of elevated sediments 174 and/or high wet-season nutrient plumes waters will be necessary to counteract future thermal 175 stress expected by 2050 among inshore and mid-shelf reefs, which are exposed to the greatest PFc levels (Fig 3b,d). While plumes themselves are not anthropogenic, high PFc values do 176 177 represent high frequency of brown or green waters that predominate in anthropogenic conditions. 178 These large-scale water quality improvements are within the scope of proposed targets for 179 sediment and nutrient loads under the State of Queensland's Draft Reef 2050 Water Quality Improvement Plan 2017-2022⁵⁹. However, given that the targets are not likely to be met (SCS 180 181 2017) and even with the positive effects of reduced probabilities of CoTS outbreaks accounted 182 for in our model, current water-quality management is unlikely to buffer projected thermal stress 183 among more intact Acropora-dominated reefs, due to the low exposure of offshore waters to land runoff and to resuspended sediment (Extended Data Fig 6). Given current trends^{2,58}, we find that 184 185 more than 65% reductions in PF_C would be needed to counteract predicted bleaching rates to 186 2050 among offshore Acropora reefs, levels that exceed the change since pre-European

187	conditions, making such an improvement likely impossible. The prospects for corals are much
188	better if they are able to adaptively respond to recent thermal stress through natural or assisted
189	evolution ⁶⁰ . Under 80-year rolling climatology adaptation conditions ¹³ , only modest (<5%) PF _C
190	improvements would be expected to close the predicted bleaching gap in all but the Acropora-
191	dominated reefs (Fig 3c).

193 Our results help to clarify the role catchment management actions could play in promoting reef 194 resilience where high nutrients, high productivity and high turbidity changes in the inshore reefs 195 dominates over fishing as the most pervasive driver of reef dynamics. Specifically, we find 196 evidence that closed areas and herbivory have less influence than particular aspects of water 197 quality (i.e turbidity) on coral recovery rates across the GBR (Fig 2g). In locations where fishing 198 pressure is greater than the GBR, herbivory and protected areas can have a greater role in resilience-based management of reefs⁶. Even on the GBR, protected areas have been shown to 199 increase resistance to disturbance, helping retain overall community structure⁶¹ that will become 200 201 increasingly important as climate stress increases. Our results do highlight the need to understand 202 the influence of water quality, particularly the differences between fine sediments and high nutrients conditions on coral reef resilience more broadly, especially as it is one of the most 203 204 poorly quantified and understood stressors on reefs. It is likely that improvements in different 205 aspects of water quality is a more common driver of reef resilience in other locations, as shown in some case studies 62,63 . 206

208	Whil	e local actions to mitigate climate-change impacts are unlikely to keep up with escalating	
209	threats from climate change itself ⁶⁴ , concurrent actions are needed to support coral reef resilience		
210	throu	gh the medium term if reefs are to have the largest opportunity to recover ^{65–67} . Recent back-	
211	to-ba	ck bleaching events across two thirds of the GBR underscore the need to act quickly and	
212	imple	ement management measures that mitigate the multiple pressures facing the GBR ⁸ . Our	
213	result	s also show how mitigation of the inputs of high sediment and nutrient loads to improve	
214	water	quality plume conditions along the Queensland coast will give the GBR the best possible	
215	chanc	ce to maintain some level of resilience in an increasingly disturbed future.	
216			
217	Refe	rences	
218			
219	1.	Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).	
220	2.	Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science	
221		(<i>80-</i> .). 359, 80–83 (2018).	
222	3.	Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down	
223		to microbial scales. Nat. Commun. 7, 11833 (2016).	
224	4.	Hughes, T. P. et al. Phase shifts, herbivory and the resilience of coral reefs to climate change. Curr. Biol. 17,	
225		360–365 (2007).	
226	5.	McClanahan, T. R. et al. Prioritizing key resilience indicators to support coral reef management in a	
227		changing climate. PLoS One 7, e42884 (2012).	
228	6.	Graham, N. A. J. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11,	
229		1–2 (2013).	
230	7.	Vercelloni, J., Caley, M. J. & Mengersen, K. Crown-of-thorns starfish undermine the resilience of coral	

- populations on the Great Barrier Reef. *Glob. Ecol. Biogeogr.* **26**, 846–853 (2017).
- 8. Hughes, T. P. *et al.* Global warming and recurrent mass bleaching of corals. *Nature* **543**, 373–377 (2017).
- De'ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27--year decline of coral cover on the Great
 Barrier Reef and its causes. *Proc. Natl. Acad. Sci.* 109, 17995–17999 (2012).
- Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense
 cyclones under climate change. *Glob. Chang. Biol.* 23, 1511–1524 (2017).
- 11. Maynard, J. *et al.* Projections of climate conditions that increase coral disease susceptibility and pathogen
 abundance and virulence. *Nat. Clim. Chang.* 5, 688–694 (2015).
- Frieler, K. *et al.* Limiting global warming to 2 C is unlikely to save most coral reefs. *Nat. Clim. Chang.* 3, 165–170 (2013).
- Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future
 projections of coral bleaching. *Glob. Chang. Biol.* 20, 125–139 (2014).
- Ainsworth, T. D. *et al.* Climate change disables coral bleaching protection on the Great Barrier Reef. *Science*(80-.). 352, 338–342 (2016).
- Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral
 reef system following severe disturbance. *Science (80-.).* 340, 69–71 (2013).
- Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. *Curr. Biol.* 16, 2434–2439 (2006).
- 249 17. Done, T. J. Phase shifts in coral reef communities and their ecological significance. *Hydrobiologia* 247, 121–
 250 132 (1992).
- Is. Johns, K. A., Osborne, K. O. & Logan, M. Contrasting rates of coral recovery and reassembly in coral
 communities on the Great Barrier Reef. *Coral Reefs* 33, 553–563 (2014).
- Fabricius, K., De'ath, G., McCook, L., Turak, E. & Williams, D. M. Changes in algal, coral and fish
 assemblages along water quality gradients on the inshore Great Barrier Reef. *Mar. Pollut. Bull.* 51, 384–398
 (2005).
- 256 20. Uthicke, S., Thompson, A. & Schaffelke, B. Effectiveness of benthic foraminiferal and coral assemblages as

258		(2010).
259	21.	Thompson, A., Schroeder, T., Brando, V. E. & Schaffelke, B. Coral community responses to declining water
260		quality: whitsunday Islands, Great Barrier Reef, Australia. Coral Reefs 33, 923-938 (2014).
261	22.	Ortiz, JC. et al. Impaired recovery of the Great Barrier Reef under cumulative stress. Sci. Adv. 4, eaar6127
262		(2018).
263	23.	Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous
264		decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739-752 (2011).
265	24.	Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82-90 (2017).
266	25.	Hughes, T. P., Day, J. C. & Brodie, J. Securing the future of the Great Barrier Reef. Nature Climate Change
267		5, 508–511 (2015).
268	26.	Smith, J., Smith, C. & Hunter, C. An experimental analysis of the effects of herbivory and nutrient
269		enrichment on benthic community dynamics on a Hawaiian reef. Coral Reefs 19, 332-342 (2001).
270	27.	Fabricius, K. E., Okaji, K. & De'ath, G. Three lines of evidence to link outbreaks of the crown-of-thorns
271		seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29, 593-605 (2010).
272	28.	Willis, B. L., Page, C. A. & Dinsdale, E. A. Coral disease on the Great Barrier Reef. Coral Heal. Dis. 69-
273		104 (2004). doi:10.1007/978-3-662-06414-6
274	29.	Ferrier-Pagès, C., Gattuso, JP., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and
275		photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103-113 (2000).
276	30.	Houk, P., Musburger, C. & Wiles, P. Water quality and herbivory interactively drive coral-reef recovery
277		patterns in American Samoa. PLoS One 5, e13913 (2010).
278	31.	Brodie, J. E. et al. Setting ecologically relevant targets for river pollutant loads to meet marine water quality
279		requirements for the Great Barrier Reef, Australia: A preliminary methodology and analysis. Ocean Coast.
280		Manag. 143, 136–147 (2017).
281	32.	Fukaya, K., Okuda, T., Nakaoka, M., Hori, M. & Noda, T. Seasonality in the strength and spatial scale of
282		processes determining intertidal barnacle population growth. J. Anim. Ecol. 79, 1270–1279 (2010).

water quality indicators on inshore reefs of the Great Barrier Reef, Australia. Coral Reefs 29, 209-225

283	33.	Nyström, M., Graham, N. A. J., Lokrantz, J. & Norström, A. V. Capturing the cornerstones of coral reef
284		resilience: linking theory to practice. Coral Reefs 27, 795-809 (2008).
285	34.	Sweatman, H., Delean, S. & Syms, C. Assessing loss of coral cover on Australia's Great Barrier Reef over
286		two decades, with implications for longer-term trends. Coral reefs 30, 521-531 (2011).
287	35.	Pratchett, M. S., Caballes C.F., Rivera-Posada J.A. & Sweatman, H. P. A. Limits to understanding and
288		managing outbreaks of crown-of-thorns starfish (Acanthaster spp.). Oceanogr. Mar. Biol. Annu. Rev. 52,
289		133–200 (2014).
290	36.	Emslie, M. J., Cheal, A. J., Sweatman, H. P. A. & Delean, S. Recovery form disturbance of coral reef fish
291		communities on the {Great Barrier Reef, Australia}. Mar. Ecol. Ser. 371, 177–190 (2008).
292	37.	Emslie, M. J., Pratchett, M. S., Cheal, A. J. & Osborne, K. Great Barrier Reef butterflyfish community
293		structure: the role of shelf position and benthic community type. Coral Reefs 29, 705–715 (2010).
294	38.	GBRMPA. Great Barrier Reef Marine Park zoning plan 2003. 1–211 (Great Barrier Reef Marine Park
295		Authority, 2004).
296	39.	Petus, C., da Silva, E. T., Devlin, M., Wenger, A. S. & Álvarez-Romero, J. G. Using MODIS data for
297		mapping of water types within river plumes in he Great Barrier Reef, Australia: Towards the production of
298		river plume risk maps for reef and seagrass ecosystems. J. Environ. Manage. 137, 163–177 (2014).
299	40.	Fabricius, K. E., Logan, M. M., Weeks, S. J., Lewis, S. E. & Brodie, J. Changes in water clarity in response
300		to river discharges on the Great Barrier Reef continental shelf: 2002-2013. Esturarine, Coast. Shelf Sci. 173,
301		A1–A15 (2016).
302	41.	Brodie, J., Devlin, M. & Lewis, S. Potential Enhanced Survivorship of Crown of Thorns Starfish Larvae due
303		to Near-Annual Nutrient Enrichment during Secondary Outbreaks on the Central Mid-Shelf of the Great
304		Barrier Reef, Australia. Diversity 9, 17 (2017).
305	42.	Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and
306		bleaching. Glob. Chang. Biol. 20, 544–554 (2014).

- 307 43. van Woesik, R., Cacciapaglia, C. & Randall, C. J. Thermal-Stress Response of Coral Communities to
- 308 Climate Change. in *The Cnidaria, Past, Present and Future* 545–552 (Springer, 2016).

309	44.	Clark, T. R. et al. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great
310		Barrier Reef over the past century. Proc. Natl. Acad. Sci. 114, 10350–10355 (2017).
311	45.	Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, (2016).
312	46.	Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9,
313		1671 (2018).
314	47.	Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat.
315		<i>Clim. Chang.</i> 3, 160–164 (2013).
316	48.	Wooldridge, S. A. & Brodie, J. E. Environmental triggers for primary outbreaks of crown-of-thorns starfish
317		on the Great Barrier Reef, Australia. Mar. Pollut. Bull. 101, 805-815 (2015).
318	49.	Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and
319		disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
320	50.	Kayanne, H., Harii, S., Ide, Y. & Akimoto, F. Recovery of coral populations after the 1998 bleaching on
321		Shiraho Reef, in the southern Ryukyus, NW Pacific. Mar. Ecol. Prog. Ser. 239, 93-103 (2002).
322	51.	MacNeil, M. A. et al. Recovery potential of the world's coral reef fishes. Nature 520, 341–344 (2015).
323	52.	Brodie, J. et al. Development of basin-specific ecologically relevant water quality targets for the Great
324		Barrier Reef. (2017). doi:10.13140/RG.2.2.36754.35526
325	53.	Anthony, K. R. N. & Fabricius, K. E. Shifting roles of heterotrophy and autotrophy in coral energetics under
326		varying turbidity. J. Exp. Mar. Bio. Ecol. 252, 221-253 (2000).
327	54.	Petus, C. et al. Estimating the exposure of coral reefs and seagrass meadows to land-sourced contaminants in
328		river flood plumes of the great barrier reef: Validating a simple satellite risk framework with environmental
329		data. Remote Sens. 8, 1–30 (2016).
330	55.	Bessell-Browne, P. et al. Impacts of turbidity on corals: The relative importance of light limitation and
331		suspended sediments. Mar. Pollut. Bull. 117, 161–170 (2017).
332	56.	Birrell, C. L., McCook, L. J. & Willis, B. L. Effects of algal turfs and sediment on coral settlement. in
333		Marine Pollution Bulletin 51, 408–414 (2005).
334	57.	Change, I. P. on C. Climate change 2014: Mitigation of climate change. 3, (Cambridge University Press,

335 2015).

- 336 58. Van Hooidonk, R. *et al.* Local-scale projections of coral reef futures and implications of the Paris
 337 Agreement. *Sci. Rep.* 6, 39666 (2016).
- 338 59. The State of Queensland. *Draft Reef 2050 Water Quality Improvement Plan 2017-2022 for public*339 *consultation*. (2017).
- 340 60. van Oppen, M. J. H. *et al.* Shifting paradigms in restoration of the world's coral reefs. *Glob. Chang. Biol.* 23,
 341 3437–3448 (2017).
- Mellin, C., Aaron MacNeil, M., Cheal, A. J., Emslie, M. J. & Julian Caley, M. Marine protected areas
 increase resilience among coral reef communities. *Ecol. Lett.* 19, 629–637 (2016).
- Smith, S. V, Kimmerer, W. J., Laws, E. A., Brock, R. E. & Walsh, T. W. Kaneohe Bay sewage diversion
 experiment: perspectives on ecosystem responses to nutritional perturbation. *Pacific Sci.* 35, 279–395 (1981).
- Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven
 regime shifts versus rebound potential in coral reefs. *Nature* 518, 94–97 (2015).
- 348 64. Norström, A. V *et al.* Guiding coral reef futures in the Anthropocene. *Front. Ecol. Environ.* 14, 490–498
 349 (2016).
- 350 65. Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral Reef Ecosystems under Climate
 351 Change and Ocean Acidification. *Front. Mar. Sci.* 4, 158 (2017).
- Wolff, N. H., Mumby, P. J., Devlin, M. & Anthony, K. R. N. Vulnerability of the Great Barrier Reef to
 climate change and local pressures. *Glob. Chang. Biol.* 23, 3437–3448 (2018).
- Anthony, K. *et al.* New interventions are needed to save coral reefs. *Nat. Ecol. Evol.* **1**, 1420 (2017).
- 355 68. Sweatman, H. P. A. *et al.* Long-term monitoring of the Great Barrier Reef. *Aust. Inst. Mar. Sci.* (2008).
- 356 69. Jonker, M., Johns, K. & Osborne, K. Surveys of benthic reef communities using digital photography and
- counts of juvenile corals. Long-term monitoring of the Great Barrier Reef standard operational procedure
 number 10. *Aust. Inst. Mar. Sci.* (2008).
- 359 70. Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, Adaptability and Transformability in
- 360 Social ecological Systems. *Ecol. Soc.* **9**, 5 (2004).

- 361 71. Osborne, K., Dolman, A. M., Burgess, S. C. & Johns, K. A. Disturbance and the dynamics of coral cover on
 362 the Great Barrier Reef (1995--2009). *PLoS One* 6, e17516 (2011).
- 363 72. Bass, D. K. & Miller, I. R. Crown-of-thorns starfish and coral surveys using the manta tow and scuba search
 364 techniques. SOP 1 (1996).
- Puotinen, M., Maynard, J. A., Beeden, R., Radford, B. & Williams, G. J. A robust operational model for
 predicting where tropical cyclone waves damage coral reefs. *Sci. Rep.* 6, 1–12 (2016).
- 367 74. Stockwell, B., Jadloc, C. R. L., Abesamis, R. A., Alcala, A. C. & Russ, G. R. Trophic and benthic responses
 368 to no-take marine reserve protection in the Philippines. *Mar. Ecol. Prog. Ser.* 389, 1–15 (2009).
- 369 75. Cheal, A. J. *et al.* Coral--macroalgal phase shifts or reef resilience: links with diversity and functional roles
 370 of herbivorous fishes on the Great Barrier Reef. *Coral reefs* 29, 1005–1015 (2010).
- 371 76. McCook, L. J. *et al.* Adaptive management of the Great Barrier Reef: A globally significant demonstration of
 372 the benefits of networks of marine reserves. *Proc. Natl. Acad. Sci.* 107, 18278–18285 (2010).
- 373 77. Baith, K., Lindsay, R., Fu, G. & McClain, C. R. SeaDAS, a data analysis system for ocean-color satellite
 374 sensors. *Eos, Trans. Am. Geophys. Union* 82, 202–202 (2001).
- 375 78. Alvarez-Romero, J. G. *et al.* A novel approach to model exposure of coastal-marine ecosystems to riverine
 376 flood plumes based on remote sensing techniques. *J. Environ. Manage.* **119**, 194–207 (2013).
- 377 79. Devlin, M. J. *et al.* Mapping the pollutants in surface riverine flood plume waters in the Great Barrier Reef,
 378 Australia. *Mar. Pollut. Bull.* 65, 224–235 (2012).
- Bevlin, M. & Schaffelke, B. Spatial extent of riverine flood plumes and exposure of marine ecosystems in
 the Tully coastal region, Great Barrier Reef. *Mar. Freshw. Res.* 60, 1109–1122 (2009).
- 381 81. Osborne, K. et al. Delayed coral recovery in a warming ocean. Glob. Chang. Biol. 23, 3869–3881 (2017).
- 382 82. Salvatier, J., Wiecki, T. V & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. *PeerJ*383 *Comput. Sci.* 2, e55 (2016).
- Brooks, S. P., Catchpole, E. A. & Morgan, B. J. T. Bayesian animal survival estimation. *Stat. Sci.* 15, 357–
 376 (2000).
- 386 84. McCulloch, M. *et al.* Coral record of increased sediment flux to the inner Great Barrier Reef since European

387 settlement. *Nature* **421**, 727–730 (2003).

- 388 85. Waterhouse, J. *et al.* The risk from anthropogenic pollutants to Great Barrier Reef coastal and marine
- 389 ecosystems. in Scientific Consensus Statement 2017: A synthesis of the science of land-based water quality
- 390 *impacts on the Great Barrier Reef* (State of Queensland, 2017).
- 391 86. Csaszar, N. B. M., Ralph, P. J., Frankham, R., Berkelmans, R. & van Oppen, M. J. H. Estimating the
 392 potential for adaptation of corals to climate warming. *PLoS One* 5, e9751 (2010).
- 393

Supplementary Information is available in the online version of the paper.

395 Acknowledgements This research was supported by an NSERC Canada Research Chair awarded

396 to A MacNeil, Australian Research Council Discovery Early Career Researcher Awards to C

397 Mellin (DE140100701) and (DE160100741) to C Drovandi, and a Royal Society University

398 Research Fellowship awarded to N Graham (UF140691). We thank the exceptional staff at the

399 Australian Institute of Marine Science for their support and critical discussions of the work. Data

- 400 and coding used in this paper are available through the GitHub links in the Methods. Many
- 401 thanks to H Sweatman, B Schaffelke, K Fabricius, A Thompson, K Anthony, and three
- 402 anonymous reviewers for constructive comments on the manuscript. Special thanks to R van

403 Hooidonk at NOAA for graciously and quickly providing GBR-specific DHW predictions.

404

405	Author Contributions	A.A.M conceived of the stu	dy with N.A.J.G.; M.A.M.,	, C.M., N.H.W.,
			/ / / / /	, , , , , , , , , , , , , , , , , , , ,

406 M.D. and S.M. collected or collated the data; M.A.M, C.M., C.D., and K.M. developed and

407 implemented the analyses with ideas from T.R.M., S.M., and N.H.W.; M.A.M., C.M., and

408	N.A.J.G.	wrote the paper,	and all authors	contributed	significant	ly to the	interpretation	and
-----	----------	------------------	-----------------	-------------	-------------	-----------	----------------	-----

409 editing of the manuscript.

410

- 411 Author Information Reprints and permissions information is available at
- 412 www.nature.com/reprints. The authors declare no competing financial interests. Correspondence
- 413 and request for materials should be addressed to M.A.M. (a.macneil@dal.ca).

414

417 Figure 1 | Study locations and trends in hard coral cover across the Great Barrier Reef. a) Survey locations for 418 AIMS long-term monitoring program (LTMP) reefs (n=46), 1995-2017 (n=12,523 individual transects), grouped by 419 community type from Emslie et al. 2010. Trends in hard coral cover, with symbols indicating occasions when these 420 community types were exposed to major disturbances, such as storms (\S), bleaching events (\boxtimes , disease outbreaks

421 (🕏, and crown-of-thorns starfish outbreaks (**) per year for reefs within b) Poritidae/Alcyoniidae, c) mixed, d) soft-

422 coral dominated, and e) Acropora-dominated community types. Boxplots show center line (median), box limits

423 (upper and lower quartiles) whiskers (1.5x interquartile range).

426 Figure 2 | Bayesian posterior model results for hierarchical model of hard coral decline and recovery across 427 the Great Barrier Reef. Data from AIMS long-term monitoring program (LTMP) reefs (n=46), 1995-2017 428 (n=12,523 individual transects). a) Posterior distribution of intrinsic rate of increase (r) among GBR coral 429 community types; b) median predicted recovery trajectories from 10% initial cover for GBR coral community types, 430 given average conditions and an absence of coral loss from disturbance; c) scatterplot of joint posterior samples for 431 model r (intrinsic rate of increase) and a (density dependence) Gompertz-based coral model parameters; d) posterior 432 distribution of a among GBR coral community types; and e) posterior effect size plot for Gompertz-based coral 433 model covariate parameters, including posterior medians (circle), 50% uncertainty intervals (thick line), and 95% 434 uncertainty intervals (thin line), with grey dots indicating parameters where the 95% UI overlaps zero, and black dots 435 where they do not. CA·xxx and PFc·xxx indicate interactions in the model. Full model posteriors are presented in 436 Extended Data Figs 2 and 3. 437

454 **METHODS**

455 **Survey data**

456

457 The data underlying our analysis come from the Australian Institute of Marine Science (AIMS) Long Term Monitoring Program (LTMP)⁶⁸ which includes 46 reefs that were monitored annually 458 459 between 1993 and 2005, and biennially thereafter. Our data includes surveys from 1995 to 2017 460 (conducted October to April each year), with multiple bleaching and other disturbance events. Note that the most severe bleaching events of 2016/2017 occurred north of most survey locations, 461 462 where no long-term monitoring exists and our data and model do not include samples from the 463 northernmost sector or the heavily-impacted Keppels region. Surveyed reefs were primarily in the 464 central and southern GBR, the areas where routine monitoring occurs (Figure 1a). Importantly for 465 this study, each of the 46 survey reefs includes 15 fixed-position 50 m transects, a survey design 466 ideally suited to studying inter-annual dynamics. Within each survey reef, five transects were 467 spaced <50 m apart at each of three sites along the 6-9m contour of the reef slope. For each 468 transect in each observed year, the percentage of hard coral cover was estimated by the 469 percentage of 200 randomly selected individual points, five at a time, from each of 40 still images of the benthos and identifying to the genus level ⁶⁹. 470

471

472 **2016/2017 Bleaching event**

474 Because quantifying reef dynamics requires long-term monitoring data that includes a range of 475 disturbance events and subsequent periods of recovery, these northernmost locations currently 476 provide little information as to rates of recovery. They will do so however over the coming 477 decades where - bar an additional severe bleaching event - their recovery will provide a test of 478 our estimated recovery rates absent human influence. Therefore, from our model we predict there 479 is a greater than 50% chance that Acropora-dominated reefs within the northernmost sector of the 480 GBR will reach 60% [38%, 91%] average coral cover within 10 years (from 10% median coral 481 cover¹). These predictions are into areas north of our study area and constitute an important test 482 of the applicability of our approach among reefs outside our survey data. 483 Use of the term 'resilience' 484 485 486 Our definition of resilience specifically refers to the factors that moderate the impact of acute 487 disturbances (resistance) and the rate at which corals increase after experiencing them (recovery). 488 While we recognise a more nuanced, alternative definition of resilience as being "the capacity of

489 a system to absorb disturbance and reorganize while undergoing change so as to still retain

490 essentially the same function, structure, identity, and feedbacks" ⁷⁰, our study does not compare

491 structure and function of coral reefs explicitly. Rather our goal was to quantify hard coral cover

492 dynamics through time, and to understand the various processes that influence them. In this, our

493 formulation is clear and fit for purpose.

495 Model covariates

496

497 To make inferences regarding potential factors influencing coral decline and recovery, we 498 collected covariates purported to impact these processes, including levels of herbivory, water 499 quality, fisheries restriction, coral community type, and disturbance history. While some 500 covariates were unambiguous (such as zoning), for most processes we selected the best-available 501 covariates that captured their key features. At the scale of our analysis, this process necessarily 502 averages over factors not represented within these covariates, which is common in statistical 503 modelling but also makes our results conditional on the assumptions made in using these 504 covariates and the structure of our model. It is important to note that we standardized each model covariate so as to be broadly comparable within resilience and recovery model sub-components. 505 506 This means that when we state 'given average environmental conditions' about a given effect size 507 for a covariate, it assumes the other covariates are at their standardized average (0), which will 508 often not occur in practice. This formulation allows us to most readily compare among groups 509 and assess the relative importance of model covariates. Sub-headings include abbreviations used 510 in the model equations below.

511

512 Coral community type - CCT

513

514 For each transect in each observed year, the percentage of hard coral cover was estimated by 515 randomly selecting 200 individual points, five at a time, from each of 40 still images of the

516	benthos ⁶⁹ . Our communities followed Emslie <i>et al.</i> 2010 ³⁷ , who used a principal components
517	analysis (PCA) of average proportions of identified coral families to allocate each of the survey
518	reefs to one of four coral community types, including Acropora, Poritidae/Alcyoniidae, mixed-
519	coral, and soft-coral dominated reef types (Figure S1). These community types formed the basis
520	of hierarchical community groupings for subsequent modelling, where individual reefs were
521	nested within specific community types.

523 Disturbance history – COT, STO, BLE, DIS, UNK

524

While conducting LTMP surveys, AIMS staff recorded instances where >5% of total hard coral 525 cover was lost between surveys, assigning attribution to the loss based on five potential 526 527 disturbances: crown-of-thorns starfish outbreaks (COTS); storms or cyclones (STO); coral 528 bleaching (BLE); coral disease (DIS); or, where the cause of coral loss was not identified, 529 unknown (UNK). Each disturbance was identified by distinctive and identifiable effects on 530 corals, such as the presence of CoTS individuals or feeding scars, or dislodged and broken coral indicative of cyclone damage⁷¹. Each of these disturbances was originally coded for presence (1) 531 532 or absence (0) per transect per year, which we matched to existing quantitative estimates of 533 disturbance severity for subsequent modelling. Specifically, percent coral cover bleached was 534 interpolated using inverse distance weighting (maximum distance = 1°; minimum observations = 535 3) from extensive aerial surveys for the three mass bleaching events on the GBR (1998, 2002, 536 and 2016/2017). Interpolated maps of CoTS densities were generated by inverse distance

537	weighting (maximum distance = 1° ; minimum observations = 3) from the manta tow data
538	collected by the Australian Institute of Marine Science in every year between 1996 and 2017 ⁷² .
539	The potential for cyclone damage was estimated based on 4-km resolution reconstructed sea state
540	as per Puotinen et al. 2016 ⁷³ . This model predicts the incidence of seas rough enough to severely
541	damage corals (top one-third of wave heights >4m) caused by cyclones for every cyclone
542	between 1996-2017. CoTS and bleaching are sometimes thought of as ecosystem responses to
543	disturbances from nutrients and thermal stress ³⁵ . Note we did not plot UNK effects in the text
544	because these represent losses of corals that didn't have attribution in the data, but are likely from
545	one of the other recorded categories and therefore constitute observation error.

547 Herbivory - HRB

548

To represent the potential influence of herbivorous fish on the disturbance and recovery dynamics of coral reefs ⁷⁴ we included a measure of the total abundance of herbivorous reef fishes present in each survey year. As part of the LTMP, AIMS staff have also collected concurrent reef fish data, using standardized belt transect methods ⁶⁸. For each of the LTMP transects, divers conducted underwater visual surveys (UVC) whereby they estimated the abundance of herbivorous fishes (including scrapers, excavators, grazer/detritivores, and algal browsers)⁷⁵ present within 2.5m either side of a 50 m tape measure used to demarcate the survey area.

557 Zoning – MPA

To account for potential impacts of fishing on the disturbance and recovery dynamics of the LTMP survey reefs, we included a dummy variable to indicate if fishing was present (0) or not (1). Thirty-five percent of reefs within the GBR have been protected as no-fishing or no-entry zones since at least 2004, including many within the LTMP (Table S1); we included both nofishing and no-entry areas in our MPA covariate. It is worth noting that there is some evidence of poaching affecting ecosystem function among no-fishing reefs on the GBR⁷⁶.

565

```
566 Water quality exposure -PF_C
```

567

In the GBR region, the use of MODIS true colour imagery has provided a spatially rich technique 568 in the estimation of river plume extent and improved the assessment of the level of exposure of 569 570 inshore coral reefs and seagrass meadows to river plumes. River plume mapping utilising true 571 colour imagery has been applied as a method of characterising the water quality conditions 572 associated with periods of elevated river flow through the wet season. Various products have 573 been produced using different methods of extraction, aggregation through annual and multi-574 annual time frames, and integration to provide robust information on annual wet season 575 conditions and to report decadal time frames around water quality during wet season conditions. 576 While PFc represents an assessment of reduced water quality conditions in the wet season, future 577 work should consider the complexity of the year round turbidity issues associated with the 578 resuspension of the finer sediment during high wind conditions^{31,40}

580 River plume maps are produced using MODIS Level-0 data acquired from the NASA Ocean 581 Colour website (http://oceancolor.gsfc.nasa.gov) and converted into true-colour images with a spatial resolution of 500 m \times 500 m using SeaDAS ⁷⁷. The true colour images were then 582 583 spectrally enhanced from Red-Green-Blue to Hue-Saturation-Intensity colour systems and 584 classified to six distinct river plumes water types defined by their colour (RGB/HSI signatures) properties and hereafter referred to as plume colour classes ^{39,78}. Three types of plume waters 585 were distinguished following previously described methods^{79,80} as: *Primary*, characterized by 586 587 high turbidity and nutrients; *secondary*, characterized by high chlorophyll; and *tertiary*, 588 characterized by high color dissolved organic material (CDOM). The clustering of the colour 589 classes into six groups characterising the water types in the river plumes is through supervised 590 classification using spectral signatures from the changes in colour associated with the gradient of 591 river plumes. Each of the defined six colour classes (CC1–CC6) is characterised by different 592 concentrations of optically active components (TSS, CDOM, and chlorophyll-a) that influence 593 the light attenuation and can vary the impact on the underlying ecological systems. CC1–CC3 594 correspond to the brownish turbid water masses with high sediment and CDOM concentrations, 595 CC4 and CC5 to the greener water masses with lower sediment concentrations favouring 596 increased coastal productivity, and CC6 is the transitional water mass between plume waters and marine waters^{39,54}. These categorizations were used to underpin our composite index, PF_C which 597 598 represents the frequency of all plume water types (i.e CC1 - CC6). Thus, the PFc is a metric that

represents a range of water quality conditions, high turbidity, high CDOM and increasedproductivity.

601

602 Frequency of riverine plume exposure for each reef was measured using the MODIS satellite 603 observations from 2000 - 2014. Data represent the proportion of wet season weeks, defined as 604 the period from November to April (N = 22 weeks per year) in which plumes, corresponding to 605 the defined colour classes (CC1 – CC6) were present. To avoid backscattering interference 606 leading to false plume characterization at or near reef margins, plume data were processed as follows⁶⁶: Firstly, the Great Barrier Reef Marine Park Authority reef polygon layer, with a 1 km 607 608 buffer applied, was used to eliminate any plume data pixels it intersected. Secondly, the 609 remaining valid pixels were used to interpolate plume data across the data gaps (reef locations) 610 resulting from the first step. The resulting clean layer was used here to assess reef exposure to 611 the plume frequency (PFc).

612

613 Coral dynamics model

614

Our lack of overall change in coral cover estimates differed from previously-reported losses of total cover on the GBR – which were from 28% to 22% ³⁴ and from 28.0% to 13.8% ⁹ - reflecting methodological, spatial, and temporal differences among datasets and the problems inherent in using linear trends to describe long-term, density-dependent dynamics. To overcome these issues, we employed a Gompertz-based modelling approach to estimate recovery rates independent of

620 the magnitude of prior coral loss, using a hierarchical structure that included four characteristic 621 community types: Acropora, Poritidae/Alcyoniidae, mixed-coral, and soft-coral dominated reefs 622 ³⁷. Our model includes two growth components: an intrinsic growth rate and a term for density 623 dependence that controls for slower growth rate at near carrying capacity. As the resilience of 624 coral reefs rests on a combination of their ability to resist disturbances and to recover from them, 625 our models included explicit representations of both processes. Our modelling approach is 626 unusual in explicitly representing both decline and recovery using what have traditionally been population models for abundance, rather than simple linear trends. Our development of these 627 models was based on the innovation of Fukaya et al. 2010³², who reconciled Gompertz-based 628 629 population models with coverage-limited sessile organisms. A similar approach has been used previously by Osborne et al. 2017⁸¹, based on our initial development of these methods for this 630 631 analysis. To model resistance to disturbance, we include explanatory variables relating to levels 632 of fishing protection and herbivory, as well as the interactions between disturbance types and 633 both our index of the frequency of riverine plume waters (PF_C) and closed areas (CA). Post-634 disturbance recovery rates were modeled using variables relating to water quality exposure (PF_c), 635 herbivory, and protection from fishing (CA).

To quantify the coral disturbance and recovery dynamics of LTMP reefs between 1995 and 2017, we developed a coverage-based Bayesian hierarchical statistical model based on the work of Fukaya *et al.* 2010 ³². This Gompertz-based model quantifies the intrinsic growth rate (r) and strength of density dependence (a) for sessile species, expressed as coverage of a defined sampling area. In our case this was the number of visual points (y) out of 100 that contained hard

641	coral within the LTMP data per transect. Using a Binomial (BIN) observation model, we
642	assumed a hierarchy where transect level observations (i) at time (t), were nested within reef (r),
643	nested within each community type (c):
644	
645	$y_{crt,i} \sim BIN(100, p_{crt,i})$ [1]
646	
647	with mean model
648	
649	$\log(p_{crt,i} \times 100) = (r_{cr} + \gamma_7 HERB_{t,i}) + (1 - a_{cr})\log(y_{crt-1,i}) + \gamma_{2,c}COT_{t,i} + \gamma_{3,c}STO_{t,i} + \gamma_{4,c}BLE_{t,i} + \gamma_{5,c}DIS_{t,i}$
650	$+ \gamma_{6,c} UNK_{t,i} + \gamma_8 BLE \times PF_{C,r} + \gamma_9 COT \times PF_{C,r} + \gamma_{10} DIS \times PF_{C,r} + \gamma_{11} UNK \times PF_{C,r} + \gamma_{12} BLE$
651	$\times CA_r + \gamma_{13}COT \times CA_r + \gamma_{14}DIS \times CA_r + \gamma_{15}UNK \times CA_r$
652	
653	and where
654	$a_{cr} \sim N(a_c, \sigma_{ac})$
655	
656	$r_{cr} \sim N(r_c + k_0 C A_r + k_1 P F_T, \sigma_{rc})$
657	$a_c, r_c, k_0, k_1, \gamma_{115} \sim N(0, 100)$
658	$\sigma_{ac}, \sigma_{rc} \sim U(0, 100)$
659	
660	Note that in this formulation, each coral community type had their own global mean at the top
661	level of the hierarchy. These models were run in a Bayesian framework, using the PyMC3
662	package in Python ⁸² , with inferences made from 5000 samples of the No U-Turn Sampler
663	(NUTS) algorithm. Parallel chains were run, from starting values initialized automatically by an

664	Automatic Differentiation Variational Inference (ADVI) algorithm, to look for convergence of
665	posterior parameter estimates using the Gelman-Rubin convergence statistic (R-hat); posterior
666	traces and predictive intervals, as well as Bayesian p-values ⁸³ were examined for evidence of
667	convergence and model fit. All model diagnostics showed efficient exploration of the posterior
668	and provided no evidence for lack of model fit (Extended Data Figs S2, S3, S4).
669	
670	Disturbance probabilities
671	
672	To quantify the disturbance history within the LTMP data from 1995 to 2017, we elected to
673	model the average annual disturbance using a simple Bayesian hierarchical Bernoulli model
674	(BNI) for each coral community type and disturbance (DIS):
675	
676	$DIS_t \sim BIN(p_{dc})$
677	$p_{dc} = invlogit(\beta_{dc}) \qquad [2]$
678	$\beta_{dc} \sim N(0, 10)$
679	
680	yielding a community-type specific disturbance probability (p_{dc}) for each disturbance type (d) ,
681	where DIS is one of COT, STO, BLE, DIS, or UNK. Probabilities from this model were then
682	multiplied by median disturbance severity when used in our future projections.
683	
684	Pre-European conditions
685	

686	To evaluate the effect of increased sediment plumes on recovery rates and the capacity to
687	compensate for increased bleaching events, we initially relied on paleo-ecological estimates from
688	McCullugh et al. 2003 ⁸⁴ , who used coral cores from the central GBR to estimate modern and pre-
689	European barium loads at $4.8+0.6 \times 10^{12}$ and $3.5+0.2 \times 10^{12}$ L/wk respectively (a 66% difference).
690	However, based on the comments of a knowledgeable reviewer, we revised this threshold to
691	better reflect contemporary understanding of anthropogenic nutrient and sediment loads.
692	Specifically we used the average proportion of DIN and fine sediment loads attributed to
693	anthropogenic sources among the Wet Tropics, Burdekin, Mackay/Whitsunday, Fitzroy, and
694	Burnett Mary NRM regions in Tables 10 & 11 of Brodie et al. 2017 ⁵² to estimate an overall
695	potential PFc improvement of 65% (See Figures and summary statistics code below for exact
696	calculations). Note however that our PFc composite index has only recently been developed over
697	the entire GBR; the next step in this work is to calculate PFc at an individual catchment level to
698	allow specific management actions across the GBR, in line with both the scientific consensus
699	statement ⁸⁵ and the target water quality ⁵² reports.

Future projections

703 Current conditions scenario

To estimate how future changes in overall water quality would influence the disturbance and
recovery dynamics of LTMP reefs, we simulated a range of improved water quality scenarios

from 2018 to 2050 by proportionally reducing each of PF_C values by 1% increments (up to a 66%
reduction), while sampling from the posterior distributions of model [1] and the disturbance
probabilities from [2]. These simulations were run 9999 times per PF_T value, initiated using the
observed 2015 hard coral cover values.

711

712 Bleaching scenarios

713

714 The frequency of coral bleaching events is widely predicted to increase steadily over coming years², putting coral reefs in great danger of repeated bleaching events from which they have 715 716 insufficient time to recover. To simulate realistic scenarios for increased bleaching frequency, we 717 used modelled data from the 80 year rolling climatology scenario in Figure S1 of Logan et al. 2014¹³ to develop a bleaching factor relative to 2017. Specifically, we scaled the predictions in 718 719 that figure by the value in 2017, giving us a ratio of predicted bleaching probability per year out 720 to 2050 (Figure 3A) that we used to re-scale the probability of bleaching per year, relative to the 721 posteriors in model [2]. We then simulated from the posteriors of models [1] and [2], as for the 722 current conditions scenario above, but multiplying the annual bleaching probability by the new bleaching factor ratios. In keeping with the results of Logan et al.¹³, this process included both a 723 724 no-adaptation scenario, where the bleaching probability remains constant as temperatures 725 increase, and a rolling-window of adaptation, whereby corals are able to adapt to an 80-year window of change in the underlying climate⁸⁶. We also included a GBR-specific estimate of 726 727 relative projected bleaching probability, using the predicted increase in degree heating months

728	(DHM) under RCP 4.5 from van Hooidonk et al ⁵⁸ . Finally, given the dramatic, large-scale
729	bleaching events on the GBR in 2016, we downloaded the data from Hughes et al. 2018 ² and
730	used the same linear modelling approach they did, but in a Bayesian framework, to estimate the
731	projected trend in severe bleaching recurrence through to 2050 (See supplemental code; Extended
732	Data Fig 5). Because this probability of severe bleaching exceeds that of actual mortality, we re-
733	scaled the projected trend represented by the blue line in Extended Data Figure 5 relative to its
734	value in 2017, giving an additional bleaching factor ratio based on their empirical results. As
735	above, this bleaching factor ratio was multiplied by our estimated probability of bleaching
736	mortality in simulating future bleaching events.
737	
738	
739	Code and data to reproduce the entire analysis is available on GitHub:
740	Bayesian hierarchical model:
741	https://gist.github.com/mamacneil/fb907d588e13c0a359fbad11359cceac
742	
743	Annual disturbance probabilities:
744	https://gist.github.com/mamacneil/3b35088bbcc0da0957ccf89c7ba11956
745	
746	Empirical model from Hughes et al. 2018:
747	https://gist.github.com/mamacneil/245bb4c009c0c2637772dc6fa23e37cd
748	

749	Plots from Hughes et al. 2018 analysis:		
750	https://gist.github.com/mamacneil/967430a86a195587d9dc2e97d1a91c1f		
751			
752	Futur	e disturbance simulations:	
753	<u>https:</u>	//gist.github.com/mamacneil/06f814247816c0b1254045284435b695	
754			
755	Figur	es and summary statistics:	
756	https://gist.github.com/mamacneil/bcb49741174174960a6ecd9c93bb56eb		
757			
758	Data:		
759	All code and be posted to an open GitHub repository upon publication.		
760			
761	Additional references		
762	1.	Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492	
763		(2018).	
764	2.	Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the	
765		Anthropocene. Science (80). 359, 80–83 (2018).	
766	3.	Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to	
767		disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).	
768	4.	Hughes, T. P. et al. Phase shifts, herbivory and the resilience of coral reefs to climate	
769		change. Curr. Biol. 17, 360–365 (2007).	

770	5.	McClanahan, T. R. et al. Prioritizing key resilience indicators to support coral reef
771		management in a changing climate. PLoS One 7, e42884 (2012).
772	6.	Graham, N. A. J. et al. Managing resilience to reverse phase shifts in coral reefs. Front.
773		<i>Ecol. Environ.</i> 11, 1–2 (2013).
774	7.	Vercelloni, J., Caley, M. J. & Mengersen, K. Crown-of-thorns starfish undermine the
775		resilience of coral populations on the Great Barrier Reef. Glob. Ecol. Biogeogr. 26, 846-
776		853 (2017).
777	8.	Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543,
778		373–377 (2017).
779	9.	De'ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27year decline of coral
780		cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995–17999
781		(2012).
782	10.	Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from
783		more intense cyclones under climate change. Glob. Chang. Biol. 23, 1511–1524 (2017).
784	11.	Maynard, J. et al. Projections of climate conditions that increase coral disease
785		susceptibility and pathogen abundance and virulence. Nat. Clim. Chang. 5, 688-694
786		(2015).
787	12.	Frieler, K. et al. Limiting global warming to 2 C is unlikely to save most coral reefs. Nat.
788		<i>Clim. Chang.</i> 3, 165–170 (2013).
789	13.	Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses
790		into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).

791	14.	Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great
792		Barrier Reef. Science (80). 352, 338–342 (2016).
793	15.	Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of
794		an isolated coral reef system following severe disturbance. Science (80). 340, 69-71
795		(2013).
796	16.	Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef
797		recovery. Curr. Biol. 16, 2434–2439 (2006).
798	17.	Done, T. J. Phase shifts in coral reef communities and their ecological significance.
799		<i>Hydrobiologia</i> 247, 121–132 (1992).
800	18.	Johns, K. A., Osborne, K. O. & Logan, M. Contrasting rates of coral recovery and
801		reassembly in coral communities on the Great Barrier Reef. Coral Reefs 33, 553–563
802		(2014).
803	19.	Fabricius, K., De'ath, G., McCook, L., Turak, E. & Williams, D. M. Changes in algal,
804		coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef.
805		Mar. Pollut. Bull. 51, 384–398 (2005).
806	20.	Uthicke, S., Thompson, A. & Schaffelke, B. Effectiveness of benthic foraminiferal and
807		coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef,
808		Australia. Coral Reefs 29, 209–225 (2010).
809	21.	Thompson, A., Schroeder, T., Brando, V. E. & Schaffelke, B. Coral community responses
810		to declining water quality: whitsunday Islands, Great Barrier Reef, Australia. Coral Reefs

33, 923–938 (2014).

812	22.	Ortiz, JC. et al. Impaired recovery of the Great Barrier Reef under cumulative stress. Sci.
813		<i>Adv.</i> 4 , eaar6127 (2018).
814	23.	Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic
815		heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30,
816		739–752 (2011).
817	24.	Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
818	25.	Hughes, T. P., Day, J. C. & Brodie, J. Securing the future of the Great Barrier Reef. Nature
819		<i>Climate Change</i> 5 , 508–511 (2015).
820	26.	Smith, J., Smith, C. & Hunter, C. An experimental analysis of the effects of herbivory and
821		nutrient enrichment on benthic community dynamics on a Hawaiian reef. Coral Reefs 19,
822		332–342 (2001).
823	27.	Fabricius, K. E., Okaji, K. & De'ath, G. Three lines of evidence to link outbreaks of the
824		crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral
825		<i>Reefs</i> 29, 593–605 (2010).
826	28.	Willis, B. L., Page, C. A. & Dinsdale, E. A. Coral disease on the Great Barrier Reef. Coral
827		Heal. Dis. 69-104 (2004). doi:10.1007/978-3-662-06414-6
828	29.	Ferrier-Pagès, C., Gattuso, JP., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on
829		growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs

- **19,** 103–113 (2000).
- 831 30. Houk, P., Musburger, C. & Wiles, P. Water quality and herbivory interactively drive coralreef recovery patterns in American Samoa. *PLoS One* 5, e13913 (2010).

833	31.	Brodie, J. E. et al. Setting ecologically relevant targets for river pollutant loads to meet
834		marine water quality requirements for the Great Barrier Reef, Australia: A preliminary
835		methodology and analysis. Ocean Coast. Manag. 143, 136–147 (2017).
836	32.	Fukaya, K., Okuda, T., Nakaoka, M., Hori, M. & Noda, T. Seasonality in the strength and
837		spatial scale of processes determining intertidal barnacle population growth. J. Anim. Ecol.
838		79, 1270–1279 (2010).
839	33.	Nyström, M., Graham, N. A. J., Lokrantz, J. & Norström, A. V. Capturing the
840		cornerstones of coral reef resilience: linking theory to practice. Coral Reefs 27, 795-809
841		(2008).
842	34.	Sweatman, H., Delean, S. & Syms, C. Assessing loss of coral cover on Australia's Great
843		Barrier Reef over two decades, with implications for longer-term trends. Coral reefs 30,
844		521–531 (2011).
845	35.	Pratchett, M. S., Caballes C.F., Rivera-Posada J.A. & Sweatman, H. P. A. Limits to
846		understanding and managing outbreaks of crown-of-thorns starfish (Acanthaster spp.).
847		Oceanogr. Mar. Biol. Annu. Rev. 52, 133–200 (2014).
848	36.	Emslie, M. J., Cheal, A. J., Sweatman, H. P. A. & Delean, S. Recovery form disturbance
849		of coral reef fish communities on the {Great Barrier Reef, Australia}. Mar. Ecol. Ser. 371,
850		177–190 (2008).
851	37.	Emslie, M. J., Pratchett, M. S., Cheal, A. J. & Osborne, K. Great Barrier Reef butterflyfish
852		community structure: the role of shelf position and benthic community type. Coral Reefs

29, 705–715 (2010).

- 38. GBRMPA. *Great Barrier Reef Marine Park zoning plan 2003*. 1–211 (Great Barrier Reef
 Marine Park Authority, 2004).
- 856 39. Petus, C., da Silva, E. T., Devlin, M., Wenger, A. S. & Álvarez-Romero, J. G. Using
- 857 MODIS data for mapping of water types within river plumes in the Great Barrier Reef,
- 858 Australia: Towards the production of river plume risk maps for reef and seagrass
- 859 ecosystems. J. Environ. Manage. **137**, 163–177 (2014).
- Fabricius, K. E., Logan, M. M., Weeks, S. J., Lewis, S. E. & Brodie, J. Changes in water
 clarity in response to river discharges on the Great Barrier Reef continental shelf: 20022013. *Esturarine, Coast. Shelf Sci.* 173, A1–A15 (2016).
- 41. Brodie, J., Devlin, M. & Lewis, S. Potential Enhanced Survivorship of Crown of Thorns
- 864 Starfish Larvae due to Near-Annual Nutrient Enrichment during Secondary Outbreaks on
- the Central Mid-Shelf of the Great Barrier Reef, Australia. *Diversity* **9**, 17 (2017).
- Vega Thurber, R. L. *et al.* Chronic nutrient enrichment increases prevalence and severity
 of coral disease and bleaching. *Glob. Chang. Biol.* 20, 544–554 (2014).
- 43. van Woesik, R., Cacciapaglia, C. & Randall, C. J. Thermal-Stress Response of Coral
- 869 Communities to Climate Change. in *The Cnidaria, Past, Present and Future* 545–552
 870 (Springer, 2016).
- K. et al. U-Th dating reveals regional-scale decline of branching Acropora corals
 on the Great Barrier Reef over the past century. *Proc. Natl. Acad. Sci.* 114, 10350–10355
- 873 (2017).
- 45. Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat.

- 875 *Commun.* **7**, (2016).
- 876 46. Safaie, A. *et al.* High frequency temperature variability reduces the risk of coral bleaching.
- 877 *Nat. Commun.* **9**, 1671 (2018).
- Wiedenmann, J. *et al.* Nutrient enrichment can increase the susceptibility of reef corals to
 bleaching. *Nat. Clim. Chang.* 3, 160–164 (2013).
- 48. Wooldridge, S. A. & Brodie, J. E. Environmental triggers for primary outbreaks of crown-
- 881 of-thorns starfish on the Great Barrier Reef, Australia. *Mar. Pollut. Bull.* 101, 805–815
 882 (2015).
- 49. Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance,
- recruitment, and disturbance at several scales in space and time. *Ecol. Monogr.* 67, 461–
 488 (1997).
- Kayanne, H., Harii, S., Ide, Y. & Akimoto, F. Recovery of coral populations after the 1998
 bleaching on Shiraho Reef, in the southern Ryukyus, NW Pacific. *Mar. Ecol. Prog. Ser.*
- **239,** 93–103 (2002).
- MacNeil, M. A. *et al.* Recovery potential of the world's coral reef fishes. *Nature* 520, 341–
 344 (2015).
- 891 52. Brodie, J. et al. Development of basin-specific ecologically relevant water quality targets
 892 for the Great Barrier Reef. (2017). doi:10.13140/RG.2.2.36754.35526
- 893 53. Anthony, K. R. N. & Fabricius, K. E. Shifting roles of heterotrophy and autotrophy in
- coral energetics under varying turbidity. J. Exp. Mar. Bio. Ecol. 252, 221–253 (2000).
- 895 54. Petus, C. et al. Estimating the exposure of coral reefs and seagrass meadows to land-

896		sourced contaminants in river flood plumes of the great barrier reef: Validating a simple
897		satellite risk framework with environmental data. Remote Sens. 8, 1–30 (2016).
898	55.	Bessell-Browne, P. et al. Impacts of turbidity on corals: The relative importance of light
899		limitation and suspended sediments. Mar. Pollut. Bull. 117, 161–170 (2017).
900	56.	Birrell, C. L., McCook, L. J. & Willis, B. L. Effects of algal turfs and sediment on coral
901		settlement. in Marine Pollution Bulletin 51, 408–414 (2005).
902	57.	Change, I. P. on C. Climate change 2014: Mitigation of climate change. 3, (Cambridge
903		University Press, 2015).
904	58.	Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of
905		the Paris Agreement. Sci. Rep. 6, 39666 (2016).
906	59.	The State of Queensland. Draft Reef 2050 Water Quality Improvement Plan 2017-2022 for
907		public consultation. (2017).
908	60.	van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world's coral reefs.
909		Glob. Chang. Biol. 23, 3437–3448 (2017).
910	61.	Mellin, C., Aaron MacNeil, M., Cheal, A. J., Emslie, M. J. & Julian Caley, M. Marine
911		protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629-637
912		(2016).
913	62.	Smith, S. V, Kimmerer, W. J., Laws, E. A., Brock, R. E. & Walsh, T. W. Kaneohe Bay
914		sewage diversion experiment: perspectives on ecosystem responses to nutritional

915 perturbation. *Pacific Sci.* **35**, 279–395 (1981).

916 63. Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting

918		(2015).
919	64.	Norström, A. V et al. Guiding coral reef futures in the Anthropocene. Front. Ecol.
920		Environ. 14, 490–498 (2016).
921	65.	Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral Reef Ecosystems
922		under Climate Change and Ocean Acidification. Front. Mar. Sci. 4, 158 (2017).
923	66.	Wolff, N. H., Mumby, P. J., Devlin, M. & Anthony, K. R. N. Vulnerability of the Great
924		Barrier Reef to climate change and local pressures. Glob. Chang. Biol. 23, 3437–3448
925		(2018).
926	67.	Anthony, K. et al. New interventions are needed to save coral reefs. Nat. Ecol. Evol. 1,
927		1420 (2017).
928	68.	Sweatman, H. P. A. et al. Long-term monitoring of the Great Barrier Reef. Aust. Inst. Mar.
929		Sci. (2008).
930	69.	Jonker, M., Johns, K. & Osborne, K. Surveys of benthic reef communities using digital
931		photography and counts of juvenile corals. Long-term monitoring of the Great Barrier Reef
932		standard operational procedure number 10. Aust. Inst. Mar. Sci. (2008).
933	70.	Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, Adaptability and
934		Transformability in Social – ecological Systems. Ecol. Soc. 9, 5 (2004).
935	71.	Osborne, K., Dolman, A. M., Burgess, S. C. & Johns, K. A. Disturbance and the dynamics
936		of coral cover on the Great Barrier Reef (19952009). PLoS One 6, e17516 (2011).
937	72.	Bass, D. K. & Miller, I. R. Crown-of-thorns starfish and coral surveys using the manta

climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97

- 938 tow and scuba search techniques. SOP 1 (1996).
- 939 73. Puotinen, M., Maynard, J. A., Beeden, R., Radford, B. & Williams, G. J. A robust 940 operational model for predicting where tropical cyclone waves damage coral reefs. Sci. 941 *Rep.* **6**, 1–12 (2016). 942 Stockwell, B., Jadloc, C. R. L., Abesamis, R. A., Alcala, A. C. & Russ, G. R. Trophic and 74. 943 benthic responses to no-take marine reserve protection in the Philippines. Mar. Ecol. Prog. 944 Ser. 389, 1–15 (2009). 945 Cheal, A. J. et al. Coral--macroalgal phase shifts or reef resilience: links with diversity and 75. 946 functional roles of herbivorous fishes on the Great Barrier Reef. Coral reefs 29, 1005-947 1015 (2010). 948 76. McCook, L. J. et al. Adaptive management of the Great Barrier Reef: A globally 949 significant demonstration of the benefits of networks of marine reserves. Proc. Natl. Acad. 950 Sci. 107, 18278–18285 (2010). Baith, K., Lindsay, R., Fu, G. & McClain, C. R. SeaDAS, a data analysis system for 951 77. 952 ocean-color satellite sensors. Eos, Trans. Am. Geophys. Union 82, 202–202 (2001).
- 953 78. Alvarez-Romero, J. G. *et al.* A novel approach to model exposure of coastal-marine
- 954 ecosystems to riverine flood plumes based on remote sensing techniques. J. Environ.
- 955 *Manage*. **119**, 194–207 (2013).
- 956 79. Devlin, M. J. *et al.* Mapping the pollutants in surface riverine flood plume waters in the
 957 Great Barrier Reef, Australia. *Mar. Pollut. Bull.* 65, 224–235 (2012).
- 958 80. Devlin, M. & Schaffelke, B. Spatial extent of riverine flood plumes and exposure of

- 959 marine ecosystems in the Tully coastal region, Great Barrier Reef. Mar. Freshw. Res. 60,
- 960 1109–1122 (2009).
- 961 81. Osborne, K. *et al.* Delayed coral recovery in a warming ocean. *Glob. Chang. Biol.* 23,
 962 3869–3881 (2017).
- 82. Salvatier, J., Wiecki, T. V & Fonnesbeck, C. Probabilistic programming in Python using
 964 PyMC3. *PeerJ Comput. Sci.* 2, e55 (2016).
- 83. Brooks, S. P., Catchpole, E. A. & Morgan, B. J. T. Bayesian animal survival estimation. *Stat. Sci.* 15, 357–376 (2000).
- 967 84. McCulloch, M. *et al.* Coral record of increased sediment flux to the inner Great Barrier
 968 Reef since European settlement. *Nature* 421, 727–730 (2003).
- 969 85. Waterhouse, J. et al. The risk from anthropogenic pollutants to Great Barrier Reef coastal
- 970 and marine ecosystems. in *Scientific Consensus Statement 2017: A synthesis of the science*
- 971 *of land-based water quality impacts on the Great Barrier Reef* (State of Queensland,
- 972 2017).
- 973 86. Csaszar, N. B. M., Ralph, P. J., Frankham, R., Berkelmans, R. & van Oppen, M. J. H.
- 974 Estimating the potential for adaptation of corals to climate warming. *PLoS One* **5**, e9751
- 975 (2010).
- 976
- 977

Extended Data Figure 1 | Principal component analysis clustering of benthic community composition across

979 980 the Great Barrier Reef. Underlying data are from 690 transects surveyed annually on 46 reefs within the Australian 981 Institute of Marine Science Long Term Monitoring Program 1995-2017. After Emslie et al. 2010³⁷.

986 46 reefs within the Australian Institute of Marine Science Long Term Monitoring Program 1995-2017. Note the Z in 987 the parameter names refers to closed areas (CA).

990 991 992 Extended Data Figure 3 | Posterior model diagnostics for a Bayesian hierarchical model of coral cover across the Great Barrier Reef. Posterior forest plot of a) parameter estimates (posterior median, 50% (thick line) and 95% 993 (thin line) uncertainty intervals) and b) Gelman-Rubin convergence statistics (R-hat) for a coral disturbance (>5% 994 coral loss) probabilities from 690 transects surveyed annually on 46 reefs within the Australian Institute of Marine 995 Science Long Term Monitoring Program 1995-2017.

999 1000

000 Extended Data Figure 4 | Diagnostic plots of model fit for a Bayesian hierarchical model of coral cover across

1001 the Great Barrier Reef. Posterior predictive distributions (ppd; blue) of 25 random data points (red lines) for 1002 observed hard coral cover along the Great Barrier Reef. Relative correspondence between observed data and 1003 expected distribution given similar conditions (i.e. each ppd) is representative of adequate model fit. Red lines are 1004 beyond the 95% highest posterior density of their predictive distribution are evidence of inadequate model fit for that 1005 datum. The Bayesian p-value for overall model fit was 0.56, providing no evidence of our model being inconsistent 1006 with the observed data.

1009Extended Data Figure 5 | Estimated relationship of severe bleaching occurrences through time. Data (blue1010circles) extracted directly from supplemental table S1 of Hughes et al. 2018², consisting of severe (S; >30%1011bleached) coral bleaching records from 100 fixed global locations from 1980 – 2016. Estimated trend (red line) was1012estimated from a Bayesian generalized linear model of occurrences through time; plot includes 50% (dotted blue1013lines) and 95% (dashed blue lines) uncertainty intervals for the predicted trend, as well as 100 realizations of the1014expected trend (grey lines) generated from the model posteriors. Solid blue trend line beyond the vertical dotted line1015was used as an empirically-based potential bleaching scenario in our future projections.

1023
 1024
 Extended Data Figure 6 | Derived index of average frequency of river-influenced plumes (PFc) across the
 1025
 Great Barrier Reef. Survey locations for AIMS long-term monitoring program (LTMP) reefs (n=46) grouped by
 1026
 community type from Emslie *et al.* 2010³⁷. Index values are 0-1 scaled from combined primary (high turbidity and
 1027
 nutrients), secondary (high chlorophyll), and tertiary (high color dissolved organic material) waters, derived from
 1028
 MODIS true colour imagery from 2000 to 2014.

 $\begin{array}{c} 1032\\ 1033 \end{array}$ Extended Data Figure 7 | Approximate 50% uncertainty bounds for projected effects of changes in the 1034 average frequency of river-influenced plumes across the Great Barrier Reef, as represented in Figure 3. 1035 Scenarios for increases in relative bleaching potential under RCP 4.5 (rows) given no adaptation, with a rolling 80 1036 year window of adaptation¹³, and average expected GBR-specific trend from van Hooidonk et al. 2016 and the 1037 empirical trend estimated from Hughes et al. 2018. Projected net percent differences in median hard coral cover (Δ) 1038 relative to long-term expected coral cover under current disturbance conditions (i.e. no increase in frequency of 1039 bleaching-derived coral loss) given improvements in average water quality (PF_C). Points along the x-axis indicate 1040 level of PF_{C} improvement necessary to counteract projected coral loss due to increases in the frequency of 1041 destructive bleaching. Pre-European limits (dotted line on far right) derived from estimates of proportion of 1042 anthropogenic influence.