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Abstract 11	

Changepoint models are increasingly used to represent changes in the rate of warming in 12	

surface temperatures records. On the opposite hand, a large body of literature has 13	

suggested long-memory processes to characterize long-term behavior in surface 14	

temperatures. While these two model representations provide different insights into the 15	

underlying mechanisms, they share similar spectrum properties that create ‘ambiguity’, 16	

and challenge distinguishing between the two classes of models. This study aims to 17	

compare the two representations to explain temporal changes and variability in surface 18	

temperatures. To address this question, we extend a recently developed time-varying 19	

spectral procedure and assess its accuracy through synthetic series mimicking observed 20	

global monthly surface temperatures. We vary the length of the synthetic series to 21	

determine the number of observations needed to be able to accurately distinguish between 22	



	

2	

changepoints and long-memory models. We apply the approach to two gridded surface 23	

temperature datasets. Our findings unveil regions in the oceans where long-memory is 24	

prevalent. These results imply that the presence of long-memory in monthly sea surface 25	

temperatures may impact significance of trends, and special attention should be given to 26	

the choice of model representing memory (short vs long) when assessing long-term 27	

changes.  28	

 29	
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Introduction 32	

Quantifying changes in surface temperature records is challenging due to the presence of 33	

mixed signals coming from radiative forcings superposed to internal variability. 34	

Statistical analyses to characterize changes in such time-series require assumptions for 35	

both the signal component and the internal variability. The signal has been commonly 36	

characterized as a linear trend (Hartmann et al., 2013; Trenberth et al., 2007), although an 37	

increasing number of studies are using piecewise linear trend models with changepoints 38	

to describe and quantify the rate of warming (Beaulieu & Killick, 2018; Cahill, 39	

Rahmstorf, & Parnell, 2015; Gallagher, Lund, & Robbins, 2013; Karl, Knight, & Baker, 40	

2000; Rahmstorf, Foster, & Cahill, 2017; Ruggieri, 2012; Seidel & Lanzante, 2004) or 41	

models with mean changepoints (Jandhyala, Liu, Fotopoulos, & MacNeill, 2014; 42	

Khapalova, Jandhyala, Fotopoulos, & Overland, 2018). The model chosen to represent 43	

the temporal change is likely to influence estimates of the rate of change, their 44	

uncertainty, as well as interpretation of the detected changes.	45	

Internal variability is often characterized as “memory” or “red noise”, in which the ocean 46	

and other slow components of the climate system (e.g. ice sheets) respond slowly to 47	

random atmospheric forcing, producing variability at a longer time scale than the white 48	

noise atmospheric weather (Hasselmann, 1976). The fluctuations caused by the internal 49	

memory can be large enough to create periods of apparent slowdowns and surges, and 50	

clustering of extreme events (Bunde, Eichner, Kantelhardt, & Havlin, 2005), thus 51	

masking or exacerbating the long-term trend with potential risks for ecosystems (Mustin, 52	

Dytham, Benton, Travis, & Watson, 2013). 	53	
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In statistical terms, the memory is often represented by a first-order autocorrelation 54	

process (AR(1)) (Mann & Lees, 1996), in which the persistence decays exponentially as a 55	

function of the AR(1) parameter, hence representing short-term memory. This 56	

assumption has been commonly used in studies quantifying changes in surface 57	

temperature (Santer et al., 2008), and adopted to quantify trends in the last 58	

Intergovernmental Panel on Climate Change (Hartmann et al., 2013). Some studies even 59	

make the simpler assumption of independence (i.e. no memory) in trend detection, but 60	

this is well-known to increase the risk of spurious detection if some memory is present 61	

(von Storch, 1999; von Storch & Zwiers, 1999). Similarly, the presence of memory 62	

increases the risk of spurious detection when applying changepoint models (Tang & 63	

MacNeill, 1989, 1993). Another assumption for the internal memory in surface 64	

temperatures is that it persists over longer-term such that the autocorrelation function 65	

decays as a power law and does not reach zero (Yuan et al., 2015). Long-term memory 66	

has been suggested mainly for long climate reconstructions, but also in surface 67	

temperature global and gridded observational data sets and model simulations (Blender & 68	

Fraedrich, 2003; Efstathiou, Tzanis, Cracknell, & Varotsos, 2011; Fraedrich & Blender, 69	

2003; Huybers & Curry, 2006; Koscielny-Bunde et al., 1998; Lennartz & Bunde, 2009; 70	

Rybski, Bunde, Havlin, & von Storch, 2006; Rypdal, Østvand, & Rypdal, 2013; Varotsos 71	

& Kirk-Davidoff, 2006; Yuan, Fu, & Liu, 2013).  72	

Research in the statistical and econometric literature has suggested that long-memory 73	

processes and changepoint models may be easily confused with one another because both 74	

models share some similar properties within the spectrum (Diebold & Inoue, 2001; 75	

Granger & Hyung, 2004; Mills, 2007; Smith, 2005; Yau & Davis, 2012). Both 76	
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representations have been suggested for surface temperatures, and distinguishing between 77	

the two has important implications (Ruggieri, 2012) for mechanistic understanding and 78	

predictability (Mills, 2007; Smith, 2005). Yau and Davis (2012) proposed a likelihood 79	

ratio test for discriminating between the two representations, with a changepoint model as 80	

the null hypothesis and long-memory as the alternative hypothesis. Here we instead use a 81	

classifying approach (Norwood & Killick, 2018), which does not necessitate to set any 82	

models as the null and alternative hypothesis. More specifically, we compare two 83	

representations of signals and memory in surface temperatures that have been suggested 84	

in the literature: a) piecewise trend with no or short-memory as opposed to b) long-85	

memory with or without a superposed long-term linear trend. We first demonstrate the 86	

skill of the method on synthetic series mimicking global surface temperatures with 87	

different lengths and determine how many months of observations are necessary to 88	

distinguish the true underlying mechanisms described by the two categories of models. 89	

We also apply the method to two gridded surface temperature datasets to unveil spatial 90	

signatures of the two representations.	91	

 92	

Data 93	

We use two monthly gridded surface temperature datasets. The Met Office Hadley Centre 94	

and Climatic Research Unit surface temperature (HadCRUT4) dataset (version 95	

HadCRUT.4.5.0.0; available at 96	

http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html) (Morice et al. 97	

2012), combines sea surface temperatures (SST) from the Hadley Centre SST dataset 98	

version 3 (HadSST3; (Kennedy, Rayner, Smith, Parker, & Saunby, 2011a, 2011b) and 99	
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land surface temperatures from the Climatic Research Unit version 4 (Jones et al., 2012). 100	

We also use the Merged Land–Ocean Surface Temperature Analysis (MLOST) from the 101	

National Oceanic and Atmospheric Administration National Centers for Environmental 102	

Information (Smith, Reynolds, Peterson, & Lawrimore, 2008; Vose et al., 2012) available 103	

at https://www.ncdc.noaa.gov/cag/time-series/global), which combines land air 104	

temperatures from the Global Historical Climatology Network version 3.3.0 105	

(GHCNv3.3.0) and the Extended Reconstructed Sea Surface Temperature version 4 106	

(ERSST.v4) (Huang et al., 2015; Liu et al., 2015). 	107	

In both datasets, for each grid cell we retain the longest stretch of data that does not 108	

contain missing values.  If the length of this stretch of data is below 600 observations (50 109	

years) then we remove that grid point from consideration. This cut-off was chosen, as this 110	

is where we saw a tail-off in the accuracy of the classification method for the long-111	

memory model after some preliminary analyses (see Simulation results section). Figure 1 112	

presents the number of observations used in the analysis for each grid cell. The monthly 113	

means are deseasonalized to remove a fixed seasonal cycle, i.e. we remove the January 114	

average from all January values and so on. The method described below is applied 115	

independently to each grid cell to unveil spatial signatures.	116	

 117	

Method 118	

Models 119	

We aim to compare two categories of models that have been used to characterize signal 120	

and memory in surface temperatures: a) trend changepoints with short-memory and b) 121	

trend with long-memory. Since these characteristics may vary in different regions, we use 122	
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a series of models to generalize how the signal and memory can behave.  For the first 123	

category we select the best from the following models: mean changepoints and trend 124	

changepoints with no or short-term memory as in Beaulieu & Killick (2018). Here the 125	

short-memory is represented by an AR(1) process 𝑋! =  𝜙𝑋!!! + 𝜖!, where 𝜙 ∈ (−1,1) 126	

is the first lag autocorrelation parameter and 𝜖! are the white-noise (WN) errors with 127	

variance 𝜎! . This process is considered short-memory given that its autocovariance 128	

decays exponentially with the time-lag 𝜏, such that  𝛾 𝜏 = 𝜙! (Brockwell & Davis, 129	

2002).  In the absence of memory (𝜙 = 0), the process simplifies to white-noise. The 130	

models considered to characterize the surface temperature time-series (𝑌! ) can be 131	

expressed as:  132	

1. multiple changepoints in the mean with WN; 133	

𝑌! =

 𝜇! + 𝜖! , 𝑡 ≤ 𝑐!
 𝜇! + 𝜖! ,  𝑐! < 𝑡 ≤ 𝑐!

 ⋮ ⋮          
𝜇! + 𝜖! , 𝑐!!! < 𝑡 ≤ 𝑛 

      (1) 134	

where 𝜇!,… , 𝜇! represent the mean of each of the m-segments, 𝑐!,… , 𝑐!!!	the timing of 135	

the changepoints between segments, 𝜖!  are the WN errors with variances 𝜎!!,… ,𝜎!!   136	

depending on the segment and n is the length of the time-series.  137	

2. multiple changepoints in the mean with AR(1); 138	

𝑌! =

𝜇! + 𝜙!𝑦!!! + 𝜖! , 𝑡 ≤ 𝑐!
𝜇! + 𝜙!𝑦!!! + 𝜖! ,  𝑐! < 𝑡 ≤ 𝑐!

⋮  ⋮          
𝜇! + 𝜙!𝑦!!! + 𝜖! , 𝑐!!! < 𝑡 ≤ 𝑛 

     (2) 139	

where  𝜙!,… ,𝜙! represent the first order autocorrelation in each segment. 140	

3. multiple changepoints in the trend with WN;  141	
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𝑌! =

𝜆! + 𝛽!𝑡 + 𝜖! , 𝑡 ≤ 𝑐!
𝜆! + 𝛽!𝑡 + 𝜖! ,  𝑐! < 𝑡 ≤ 𝑐!

⋮  ⋮          
𝜆! + 𝛽!𝑡 + 𝜖! , 𝑐!!! < 𝑡 ≤ 𝑛 

     (3) 142	

where 𝜆!,… , 𝜆! and 𝛽!,… ,𝛽!represent the intercept and trend in each segment. 143	

4. multiple changepoints in the trend with AR(1);  144	

𝑌! =

𝜆! + 𝛽!𝑡 + 𝜙!𝑦!!! + 𝜖! , 𝑡 ≤ 𝑐!
𝜆! + 𝛽!𝑡 + 𝜙!𝑦!!! + 𝜖! ,  𝑐! < 𝑡 ≤ 𝑐!

⋮  ⋮          
𝜆! + 𝛽!𝑡 + 𝜙!𝑦!!! + 𝜖! , 𝑐!!! < 𝑡 ≤ 𝑛 

    (4) 145	

For all the models listed above, there may be no changepoints detected such that there is 146	

only one segment in the time series (m=1).  147	

We use the EnvCpt R package (Killick, Beaulieu, Taylor, & Hullait, 2018) to 148	

automatically fit the best model among the four models listed above. The methodology 149	

considers all possible parameters and number of changes across the 4 models. The 150	

number and location of change-points are determined using the Pruned Exact Linear 151	

Time (PELT) algorithm (Killick, Fearnhead, & Eckley, 2012), and is used in combination 152	

with the modified Bayesian information criterion (MBIC) (Zhang & Siegmund, 2007) as 153	

the penalty function to select the optimal number of changepoints. The best model among 154	

the four is then selected as the one with the smallest Bayesian Information Criterion 155	

(BIC), as shown to be performing well in Beaulieu and Killick (2018). The reader can 156	

refer to Beaulieu and Killick (2018) for full details of the methodology. 	157	

For the second category of models with long-memory, we either superpose a constant 158	

mean or a linear trend to the long-memory process, which we fit using autoregressive 159	

fractionally integrated moving average (ARFIMA) models. In its general form, an 160	

ARFIMA model can be expressed as: 161	
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1− 𝜙!𝐵!
!
!!! 1− 𝐵 !𝑌! = 1+ 𝜃!𝐵!

!
!!! 𝜖!    (5) 162	

where 𝜖! are the WN errors with variance 𝜎! and B is the backward operator such that  163	

𝐵𝑌! = 𝑌!!!  and  𝐵𝜖! = ϵ!!!. The ARFIMA model is characterized by the autoregressive 164	

(AR) parameters 𝝓 ∈ ℝ!, moving average (MA) parameter 𝜽 ∈ ℝ! and the integration 165	

(I) parameter is allowed to assume any real value (𝑑 ∈ ℝ). The restriction of d to take 166	

only integer values would simplify to an autoregressive integrated moving average 167	

(ARIMA) model. For a stationary process, d varies between -0.5 and 0.5 with d=0 168	

indicating no memory, -0.5<d<0 intermediate-memory (anti-persistent) and 0<d<0.5 169	

long-memory. In particular d=0.5 is a discrete-time 1/f process from (Mandelbrot, 1967). 170	

The ARFIMA process with 0<d<0.5 has long-memory because past behavior continues to 171	

influence the process for a long time such that the autocovariance decays algebraically as 172	

the time lag increases, in contrast to the faster exponentially decaying autocorrelation of a 173	

stationary short-memory process (e.g. AR) (Granger & Ding, 1996; Granger & Joyeux, 174	

1980; Hosking, 1981). More specifically, the autocovariance of an ARFIMA (0,d,0) is 175	

given by 𝛾 𝜏 = 𝜏 !!!! with a decreasing frequency according to a power law. This is 176	

often expressed in terms of the Hurst exponent H (Hurst, 1951), which relates to d as 177	

𝐻 = 𝑑 + 0.5, and 𝐻 ∈ (0.5,1).  178	

Here we restrict the order of the AR process to a maximum of 1 and the order of the MA 179	

process to 0 to match the changepoint models (Eqs. 1-4). We fit two long-memory 180	

models: one where the long-memory model fluctuates around a constant mean and the 181	

other one where long-memory is superposed to a long-term linear trend: 182	

𝑌! = 𝜇 + 𝐴𝑅𝐹𝐼𝑀𝐴 𝜙,𝑑, 0 ,   𝑡 ≤ 𝑛      (6) 183	

𝑌! = 𝜆 + 𝛽𝑡 + 𝐴𝑅𝐹𝐼𝑀𝐴 𝜙,𝑑, 0 ,   𝑡 ≤ 𝑛     (7) 184	
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where 𝜇 represents a constant mean, 𝜆 and 𝛽 the intercept and linear trend, respectively. 185	

For the long-memory models we use the arfima R package (Veenstra, 2013). We fit the 186	

flat mean (6) and linear trend (7) models separately and choose the model with the 187	

smallest BIC value as the best long-memory model.	188	

Classification 189	

Once the best a) trend changepoints with short-memory and b) trend with long-memory 190	

models have been identified we use a classification method to select which one is the 191	

most appropriate based on examining their time-series spectrum. As changepoint and 192	

long-memory models exhibit similar spectral behavior in a standard stationary spectrum, 193	

we use the time varying wavelet spectrum to distinguish them (Norwood & Killick, 194	

2018). Heuristically a time varying spectrum is simply the calculation of the 195	

traditional spectrum at each individual time point, localized to a small area of information 196	

around it. That is, if we take a specific time point we can plot the spectrum across 197	

frequency and attain a traditional spectrum but for data localized around that specific time 198	

point.  To avoid the subjective choice of window size for the localization, as well as other 199	

reasons, we use a time varying spectrum based on the locally-stationary wavelet process 200	

defined as: 201	

𝑌!,! = 𝑊!
!
!
𝜓!,!!!𝜉!,!!

!
!!!       (8) 202	

where 𝑗 ∈ 1,2,… and 𝑘 ∈ ℤ are scale and location parameters 𝜓! = 𝜓!,!,… ,𝜓!,!!!!  are 203	

discrete, compactly supported, real-valued non-decimated  Daubechies wavelet vectors of 204	

support length 𝐿! = (2! − 1)(𝑁! − 1) with a Daubechies wavelet filter of size 𝑁! and 205	

𝜉!,! are orthonormal, zero-mean, identically distributed random variables (Daubechies, 206	
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1992). The amplitudes 𝑊!
!
!

 are time-varying, real-valued, piecewise constant functions 207	

that have an unknown amount of jumps. The time-varying spectrum is the square of the 208	

amplitudes: 209	

𝑆!
!
!

= 𝑊!
!
!

!
         (9) 210	

and changes over both scale (frequency band) j and location (time) k. The two dimensions 211	

of the spectrum (scale and location) allow distinguishing between a changepoint model 212	

and a long-memory model. As the long memory model we fit is stationary, the time-213	

varying spectrum is constant over time.  In contrast the time-varying spectrum of a model 214	

containing changepoints will be piecewise constant. Figure 2 presents examples of time-215	

series simulated from a changepoint model and a long-memory model along with their 216	

respective standard stationary spectrum and time-varying spectrum. The ambiguity 217	

between their standard stationary spectra is obvious, and notable differences between the 218	

time-varying spectra of the two class of models are also highlighted (Figure 2).  219	

To distinguish the two class of models (long-memory vs changepoints), we use a 220	

classifier based on these differences, as proposed in Norwood and Killick (2018). This 221	

approach involves comparing a dataset to “known” groups through a distance metric. 222	

Since the truth is unknown, we simulate 1000 Monte Carlo replications of each of the 223	

best models in each category to serve as training data to build a classifier.  224	

For each group, changepoint and long-memory, the time varying spectrum of each of the 225	

𝑀=1000 simulated replications is calculated:  226	

𝑆!
! = 𝑆!,!

!
!!!,!,…,!∗!

       (10) 227	

Here 𝑆 is the vector containing the time varying spectrum, 𝑔 is the group, 𝑚 is the 228	
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simulation index from 1 to 1000, 𝑘 is the index of the time varying spectrum over 𝑛 time 229	

points and 𝐽 frequency bands. 230	

To get a representation of the time varying spectral behavior of each group, we take the 231	

average at each time-frequency point for each of the 𝑀=1000 replications: 	232	

𝑆! = !
!

𝑆!,!
!!

!!! !!!,!,…,!∗!
      (11) 233	

Denoting the spectrum of the original data by 𝑆!, based on these average spectra for each 234	

group we calculate the variance corrected distance metric across all time-frequency points 235	

from Norwood and Killick (2018): 236	

𝐷! = !
!!!

!!
!!!!

! !

!!,!
! !!!

! !!
!!!

!∗!
!!!       (12) 237	

This distance metric allows for different variances in each group. Further details on the 238	

locally-stationary wavelet process and the time-varying spectrum classifier can be found 239	

in Norwood and Killick (2018). 240	

Simulation of synthetic series	241	

Synthetic series were generated to mimic the behavior seen in the HadCRUT4 global 242	

monthly surface temperature (GMST) time series for the two categories of models, and 243	

evaluate whether the proposed approach would be able to distinguish them. In particular, 244	

we fit the best long-memory and changepoint models to the HadCRUT4 GMST, without 245	

assuming that one is better than the other, and simulate random series from the fitted 246	

models. To evaluate the effect of the record length on the performance, we simulate 247	

varying record lengths, from a minimum of 50 years (N=600 months) to the length of the 248	
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whole record of 168 years (N=2016 months).  249	

The models used for simulation are given as follows where the specific parameters used 250	

to simulate the synthetic series are presented in Table 1: 251	

a) Trend changepoint model with AR(1) errors (Trend cpt + AR(1));	252	

b) Trend with long-memory model (Trend + LM).	253	

To investigate how the length of the series affects the classification we take the two 254	

models and create 1000 monthly synthetic series for each of N=600, 700, 800, 1000, 255	

1200, 1400, 1600, 1800, 2016 (corresponding to samples varying between 50 to 168 256	

years). For the changepoint series we fix the location of the changepoints relative to the 257	

length of the series, as detailed in Table 1. For the Trend + LM scenario, we carry an 258	

additional simulation in which we simulate the series with the same parameters (Table 1), 259	

except that we vary the long-memory strength (from d=0.1 to d=0.499). 260	

 261	

Results 262	

Simulation results 263	

We apply the classification approach detailed above to the two sets of synthetic series 264	

generated with varying lengths N. Figure 3 presents the classification hit rates for the two 265	

simulation cases. The results demonstrate that overall it is easier to identify models with 266	

changepoints than models with long-memory. We show that with 50 years of 267	

observations, we can successfully classify the changepoint model (Trend cpt + AR(1)) 268	

with hit rates >99%, while the hit rate for the long-memory model (Trend + LM) is ~70% 269	
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(Figure 3a). As the series length increases, the classification hit rate improves for the 270	

long-memory model. With about 100 years of observations, the classifier’s skill improves, 271	

reaching ~95% hit rate. With 150 years of observations, the approach correctly classifies 272	

the Trend + LM model with a hit rate >99%. Note that the level of long-memory in the 273	

Trend + LM case described above is high (d=0.485). To evaluate the effect of long-274	

memory on the classifier’s ability, we also run simulations with the Trend + LM model 275	

with a varying degree of long-memory (from d=0.1 to d=0.499) (Figure 3b). For a very 276	

strong long-memory (d=0.499), the classifier reaches 60% hit rate at best with 168 years 277	

of data. For a weaker long-memory (d≤0.4), the classifier produces hit rates >80% with 278	

50 years of data and reaches >97% with 168 years of data.	279	

To demonstrate the importance of distinguishing between the two models for mechanistic 280	

understanding, we present how ‘wrong’ the results get when fitting the changepoint 281	

models to the synthetic series with long-memory (Trend + LM). Table 2 presents the 282	

percentage of series that detected at least one changepoint when the true model is Trend + 283	

LM. We can see that as the sample size increases, the percentage of simulations 284	

identifying erroneous changes increases.  This is due to the fact that data from long-285	

memory processes are prone to periods of increasing or decreasing trends and thus the 286	

longer the simulated long-memory process, the more likely these behaviors will manifest. 287	

 288	

GMST gridded datasets 289	

The classification approach detailed above was applied to the HadCRUT4 and MLOST 290	

gridded datasets. The results are presented in Figure 4 as a heat map. Results reveal 291	

consistent patterns between the two datasets, although more MLOST grid cells were used 292	
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in the analysis (Figure 1). Overall, the surface temperatures over land are better 293	

characterized as changepoint models with short-memory, while long-memory arises in 294	

regions of the ocean. For the cases where a changepoint model with short-memory is 295	

preferred, the number of changepoints is presented in Figure 5. In most cases, one 296	

changepoint is present in the time series, but some regions over land exhibit more than 297	

one changepoint. It must be noted that for the cases where no changepoints are detected, 298	

our classification approach is considered inconclusive as both series are stationary. These 299	

inconclusive areas are mostly located over the ocean around long-memory hot spots, 300	

suggesting that the transition zones are especially difficult to classify. Figure 6 presents 301	

the memory strength (fractionally-differenced parameter d from the ARFIMA model) in 302	

those long-memory hot spots for both datasets. It averages to 0.29 and 0.28 for the 303	

HadCRUT4 and MLOST datasets, respectively. This is lower than the long-memory 304	

estimated from the global HadCRUT4 time-series used to simulate synthetic series 305	

(d=0.485, Table 1). However, since our approach suggests that a changepoint model 306	

provides a better fit than a long-memory model at the global level (i.e. the variance 307	

corrected distance metric is -1), we hypothesize that the long-memory estimate may be 308	

spuriously inflated in the global record. 309	

 310	

Discussion 311	

We propose an approach to distinguish between two categories of models commonly 312	

used to characterize signal and memory in surface temperatures: a) short-memory 313	

superposed by a piecewise trend (Beaulieu & Killick, 2018; Cahill et al., 2015; Karl et al., 314	

2000; Rahmstorf et al., 2017; Ruggieri, 2012; Seidel & Lanzante, 2004) or long-memory 315	
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that may be superposed by a long-term trend (Franzke, 2012; Ludescher, Bunde, & 316	

Schellnhuber, 2017). The ambiguity between changepoints models and long-memory has 317	

been widely discussed in the statistical and econometric literature (Diebold & Inoue, 318	

2001; Granger & Hyung, 2004; Mills, 2007; Smith, 2005; Yau & Davis, 2012). In the 319	

climate literature, a systematic comparison between the two classes of models on 320	

temperature reconstructions datasets showed preference for changepoint models (Rea, 321	

Reale, & Brown, 2011), but to our knowledge, there has not been a formal comparison on 322	

surface temperature observations. The novelty of the present analysis is to formally and 323	

automatically compare both representations on observational records across hundreds of 324	

gridded locations. Our results show that the best combination of signal and noise has a 325	

strong spatial signature, where changepoints and short-term memory models are mostly 326	

appropriate over the land, while long-term memory is more prevalent in the oceans. 327	

Rypdal et al. (2013) suggests that the long-memory in the oceans is associated with the 328	

thermal inertia of the oceans. The small effective thermal inertia of the land surface 329	

compared to the oceans leads to shorter-memory over the continents (Manabe & Stouffer, 330	

1996; Pelletier, 1997). Our results further highlight hot spots where long-memory arises 331	

in sea surface temperatures in the extratropical North Pacific and North Atlantic, as well 332	

as in the tropical Pacific. These regions were previously shown to exhibit higher 333	

persistence (Vyushin, Kushner, & Zwiers, 2012). In oceanic regions away from intense 334	

currents and thermal fronts, the persistence is typically explained by a simple model 335	

where the ocean slowly responds to atmospheric weather and create short-memory 336	

(Frankignoul & Hasselmann, 1977; Hasselmann, 1976). The regions highlighted here are 337	

characterized by important currents, such as the Gulf Stream in the North Atlantic for 338	
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example, and likely need additional complexity to explain the memory structure observed 339	

here. This question should be investigated using climate models providing a better spatial 340	

coverage. We leave this aspect to future investigation.  341	

The classification used here is inconclusive in some areas (i.e. no changepoints detected, 342	

see Figure 5) because the approach is designed to distinguish the shapes of time varying 343	

spectra, where changepoints will show a piecewise constant time varying spectrum as 344	

opposed to a constant spectrum over time for long-memory. Without changepoints the 345	

problem reduces to a comparison between short-memory vs long-memory models, and a 346	

time varying spectrum is not appropriate to answer this question. In that case, it is instead 347	

recommended to use a test for distinguishing between short-memory and long-memory 348	

(Giraitis, Kokoska, Leipus, & Teyssière, 2003). For surface temperature data, a 349	

comparison between short-term and long-term memory on reanalysis data sets and model 350	

simulations suggest that climate persistence could lie in-between and that the data does 351	

not suggest that one representation is superior (Vyushin et al., 2012). However, it must be 352	

noted that a significant portion of the inconclusive areas also coincide with grid cells with 353	

limited data availability (~50 years/600 months without missing values) (Figure 1), which 354	

suggests that the areas of long-memory in the oceans could potentially be underestimated. 355	

Hence, classifying the two categories of models is more difficult with shorter time-series 356	

as opposed to the full record period (168 years) (Figure 3), and we find that this is 357	

emphasized when the “true” underlying model has long-memory. When the “true” model 358	

has short-memory and changepoints, fewer observations are required to perform a 359	

successful classification. This result is consistent with the simulation study in Norwood 360	

and Killick (2018), which demonstrates that this approach provides perfect classification 361	
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in the case of a true changepoint model and increasingly correct classifications, as 𝑛 362	

grows, in the case of a true long-memory model. The simulations in Norwood and Killick 363	

(2018) were conducted in a constant mean scenario and so we assess the performance of 364	

the method for linear trends here. At a lower time resolution such as annual, long-365	

memory may not be detectable due to the reduction in the number of observations and 366	

less likely to impact the significance of trends and changepoints. However, this is purely 367	

speculative and the time resolution aspect will be left for a future investigation. 368	

The results presented here may be affected by the use of discontinuous piecewise trend 369	

models to characterize the behavior of surface temperatures. Some studies have argued 370	

that global temperature piecewise trends should be continuous, where the lines of the 371	

different segments are forced to meet at the changepoints (Rahmstorf et al., 2017). Here 372	

we do not impose the continuity constraint to keep more flexibility, as some regions may 373	

exhibit discontinuities (Beaulieu & Killick, 2018). Furthermore, we have previously 374	

shown that changes detected under discontinuous models may give quasi-continuous 375	

segments, such that even though the continuity constraint is not imposed, the 376	

discontinuity is small and may only slightly impact the number and timing of the 377	

changepoints. Similarly, the autocorrelation and variances are allowed to vary between 378	

segments under our changepoint models, as opposed to simpler models that impose a 379	

global autocorrelation and variance and allow changepoints in the trend only. This choice 380	

is based on previous findings, where five GMST datasets were shown to be better 381	

represented by a trend changepoint model with AR(1), with an intensification in warming 382	

in the 1960s/70s accompanied by a reduction of autocorrelation (Beaulieu & Killick, 383	

2018). Forcing a global autocorrelation when it actually varies with time could lead to 384	
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spurious changepoints, thus we allow the autocorrelation parameters to change in each 385	

segments. If in some regions the autocorrelation parameters are constant through the time 386	

series, then their estimates will be very similar between segments. Studying the 387	

sensitivity of our results to a continuity constraint and constant autocorrelation is out of 388	

scope for the present study and is the focus of ongoing work. 389	

Based on our results, it is recommended to verify the presence of long-memory when 390	

testing for long-term trends and changepoints in sea surface temperatures, especially over 391	

the regions identified here (Figure 4). Hence, assuming a short-memory model such as 392	

routinely done in the IPCC (Hartmann et al. 2013) when testing for trends in presence of 393	

long-memory may impact their significance (Bloomfield & Nychka, 1992; Franzke, 394	

2012; Lennartz & Bunde, 2009; Ludescher et al., 2017). Similarly, piecewise trends may 395	

not hold in the presence of long-memory as demonstrated here. Separating signal and 396	

memory in surface temperatures is especially important as there may be implications for 397	

the attribution of the signal detected (Imbers, Lopez, Huntingford, & Allen, 2014; Rypdal, 398	

2015). 399	

Throughout this exposition we have concentrated on classifying changepoint models with 400	

long-memory models.  An interesting statistical avenue to explore would be to include a 401	

comparison with long-memory models that also include changepoints (Beran & Terrin, 402	

1996; Horvath, 2001). The challenge here would be in distinguishing between the 403	

changepoint model with short-memory and the changepoint model with long-memory as 404	

both would present as non-stationary spectra so we may expect the two groups to be close.  405	

In the context of modeling surface temperatures we feel that there is currently not enough 406	

data to accurately fit changepoint models with long-memory errors.  This is due to the 407	
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fact that a typical segment is unlikely to be longer than 50 years making estimation of the 408	

difference between changepoint and long-memory with changes infeasible. 409	

A limiting factor in the modeling presented here is that the estimation and classification 410	

require complete data. An interesting avenue for further research would be to develop 411	

approaches for identifying changepoints and long-memory in data that contains large 412	

periods of missing values. Also, the classification is performed in each grid cell 413	

separately, while it is likely that the signal and memory in a given grid cell will be similar 414	

to its neighbors. As such, integrating spatial correlation in the analysis has potential to 415	

improve the classification for spatial fields such as surface temperatures.	 	416	
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Tables 616	

 617	
Table 1: List of parameters used to simulate the sets of synthetic series. 618	
 619	

Variable Scenario Model Parameters 
HadCRUT4 
GMST 
(N=2016) 

A Trend cpt + AR(1) 𝜆! = 0.333, 𝜆! = 2.669, 𝜆! = −8.256, 
𝜆! = −5.962, 𝛽! = −0.000265, 𝛽! =
−0.00144, 𝛽! = 0.00426, 𝛽! = 0.00302,	
𝜑! = 0.306, 𝜑! = 0.753,𝜑! = 0.521, 
𝜑! = 0.776, 𝑐! = 329 0.163𝑁 , 𝑐! =
806 0.4𝑁 , 𝑐! = 1260 0.625𝑁 , 𝑚 = 4,	
𝜎!! = 0.0302, 𝜎!! = 0.0123, 𝜎!! = 0.0130, 
𝜎!! = 0.00907	

B Trend + LM 𝜆 = −10.405, 𝛽 = 0.00541, 𝜎 = 0.0144, 
𝑑 = 0.485 

  620	



	

27	

Table 2: Percentage of synthetic series that detect at least one changepoint over 1000 621	

replications for different sample sizes (N) when the truth is a long memory model. 622	

Scenario Number of observations expressed in months (years) 

600 

(50y) 

700 

(58y) 

800 

(67y) 

1000 

(83y) 

1200 

(100y) 

1400 

(117y) 

1600 

(133y) 

1800 

(150y) 

2016 

(168y) 

Trend + LM 70.9 74.4 84.2 91.2 94.7 95.2 97.2 97.9 99.6 

	  623	
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Figures 624	

 625	

Figure 1: Number of contiguous observations used in each grid cell for two surface 626	
temperature datasets a) MLOST and b) HadCRUT4. Grids with an insufficient number of 627	
observations (<600) to perform the classification are left blank.  628	



	

29	

 629	

Figure 2: Examples of time series generated a) from a trend changepoint model with 630	
AR(1) errors and b) long-memory, their respective average spectrum in c)  and d), and the 631	
corresponding time-varying spectrum in e) and f).   632	
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	633	
Figure	3:	Results of the simulation study for the two scenarios and for time-series with a 634	
varying number of years (N). (a) For each scenario, the percentage of series classified 635	
correctly as either trend changepoint and short-memory (Cpt) or trend and long-memory 636	
(LM) is presented taken over 1000 replications. (b) For the scenario with long-memory, 637	
the experiment is repeated with varying strengths for the long-memory parameter from 638	
low (d= 0.1) to high (d=0.499). 	  639	
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 640	

Figure 4: Comparison between changepoint models with short-term memory vs trend 641	
with long-term memory for two surface temperature datasets a) MLOST and b) 642	
HadCRUT4. The colorbar represents the variance-corrected distance metric presented in 643	
Eq. 12, which represents the strength of evidence for the chosen model: negative values 644	
indicate evidence for a change-point model (Cpt) while positive values indicate long-645	
memory (LM). Grids with insufficient data to perform the classification are left blank.	  646	
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 647	

Figure 5: Number of changepoints detected for grid cells where a changepoint model with 648	
short-term memory model is more likely than a trend with long-term memory for two 649	
surface temperature datasets a) MLOST and b) HadCRUT4. The grey areas indicate grid 650	
cells where a long-memory model was preferred. Grids with insufficient data to perform 651	
the classification are left blank.	  652	
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Figure 6: Strength of the memory (given by parameter d) for grid cells where a trend with 654	
long-memory is more likely than a changepoint model with short-term memory for two 655	
surface temperature datasets a) MLOST and b) HadCRUT4. The grey areas indicate grid 656	
cells where a change-point model is more likely. Grids with insufficient data to perform 657	
the classification are left blank. 658	


