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ABSTRACT 1 

Previous studies have demonstrated the potential benefits of the complex conductivity (CC) 2 

imaging over electrical resistivity tomography (ERT) for an improved delineation of 3 

hydrocarbon-impacted sites and accompanying biogeochemical processes. However, time-4 

lapse CC field applications are still rare, in particular for measurements performed near 5 

anthropogenic structures such as buried pipes or tanks, which are typically present at 6 

contaminated sites. To fill this gap, we present CC imaging results for monitoring data 7 

collected in Trecate (NW Italy), a site impacted by a crude-oil spill. Initial imaging results 8 

revealed only a poor correlation with seasonal variations of the groundwater table at the site 9 

(~6 m). However, it was not clear to which extend such results are affected by anthropogenic 10 

structures present at the site. To address this we performed a detailed analysis of the misfit 11 

between direct and reciprocal time-lapse differences. Based on this analysis, we were able to 12 

discriminate spatial and temporal sources of systematic errors, with the latter commonly 13 

affecting measurements collected near anthropogenic structures.  Following our approach, CC 14 

images reveal that temporal changes in the electrical properties correlate well with seasonal 15 

fluctuations in the groundwater level for areas free of contaminants, whereas contaminated 16 

areas exhibit a constant response over time characterized by a relatively high electrical 17 

conductivity and a negligible polarization effect. In accordance with a recent mechanistic 18 

model, such response can be explained by the presence of immiscible fluids (oil and air) 19 

forming a continuous film through both the micro- and macro-pores, hindering the 20 

development of ion-selective membranes and membrane polarization. Our results demonstrate 21 

the applicability of CC imaging for an improved characterization of hydrocarbon-22 

contaminated areas, even in areas affected by cultural noise. 23 

 24 
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 46 

INTRODUCTION 47 

Management of hydrocarbon-impacted sites, in particular, the design of adequate remediation 48 

strategies encourages the development of new methodologies for the spatial characterization 49 

of contaminant plumes and associated biogeochemical processes (e.g., Schädler et al., 2012). 50 

Ideally, the characterization techniques should help to define the geometry of the 51 

hydrogeological units and the extent of the contaminant plumes with enhanced resolution, as 52 

well as delineate possible bio-geochemical transformations of contaminants. To date, site 53 

characterization relies mainly on laboratory analysis of gas, soil, and groundwater samples. 54 

Although ex-situ analysis provides direct measurement of the parameters of interest (e.g., 55 

chemical concentrations), investigations using direct methods are strongly limited by the 56 

sampling procedure (i.e., location and volume), thus, limiting the resolution of the 57 

investigation – given the spatial and temporal variability of the observed phenomena (e.g., 58 

Atekwana and Atekwana, 2010). In most cases, ex-situ investigations rely on the 59 

interpretation of too few and largely spaced sampling points requiring the interpolation of the 60 

data, which may then not reflect the actual geometry of e.g. the contaminant plumes, making 61 

the relevant interpretations weak and potentially misleading. Furthermore, the collection of 62 

samples and laboratory analyses are time-consuming, causing site characterization to last 63 

several months (or even years), potentially resulting in the comparison of data collected under 64 

different hydrogeochemical conditions.  65 

Several studies have investigated the applicability of geophysical methods for site 66 

characterization taking into account the possibility to gain quasi-continuous spatiotemporal 67 

information about the subsurface properties. In particular,  given the significant contrasts in 68 

the electrical properties between hydrocarbon contaminants (typically associated with low 69 

electrical conductivity) and groundwater (low to intermediate electrical conductivity), several 70 
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studies have suggested the application of electrical resistivity tomography, ERT (e.g., Sauck 71 

2000; Chambers et al., 2005; Heenan et al., 2014; Naudet et al., 2014). Nevertheless, over the 72 

last two decades, extensive laboratory and field studies have demonstrated that the electrical 73 

response of mature hydrocarbon plumes might reveal high electrical conductivity values 74 

following biotic and abiotic transformations of the contaminants (for details we refer to the 75 

revision from Atekwana and Atekwana, 2010, and references therein). Hydrocarbons can act 76 

as an energy source promoting microbial growth, and the release of metabolic products, such 77 

as carbonic acids. Hence, the anomalous high electrical conductivity values observed in 78 

mature hydrocarbon plumes have mainly been attributed to an increase the ionic 79 

concentration, and, thus, the fluid electrical conductivity (σw) accompanying the accumulation 80 

of carbonic acids (e.g., Cassidy et al., 2001; Werkema et al., 2003; Atekwana et al., 2004). 81 

Moreover, carbonic acids may contribute to the weathering of grain surfaces, and 82 

enhancement of secondary porosity, further increasing the σ’ observed in ERT surveys (e.g., 83 

Abdel Aal et al., 2006; Atekwana and Atekwana, 2010, and references therein). 84 

In addition to this, field investigations have also demonstrated the applicability of the 85 

complex electrical conductivity (CC), an extension of the ERT method,  for improved site 86 

characterization (e.g., Kemna et al., 2004; Schmutz et al., 2010; Revil et al., 2011; Deceuster 87 

and Kaufmann, 2012; Johansson et al., 2015), and the characterization of the source zone and 88 

plume of contaminants (e.g., Flores Orozco et al., 2012a). The CC imaging results are 89 

expressed in terms of its real (σ’) and imaginary (σ’’) components, which refers to the 90 

electrical conductivity and capacitive properties of the subsurface, respectively (e.g., Marshall 91 

and Madden, 1959; Slater and Lesmes, 2002; Kemna et al., 2012). For geological media free 92 

of metallic minerals, the conductivity is mainly controlled by the saturation, σw, the 93 

connectivity of the pore space (e.g., Archie, 1942), and by surface conduction processes 94 

taking place at the grain-water interface (e.g., Slater and Lesmes, 2002; Slater, 2006; Kemna 95 

et al., 2012). The imaginary component (σ’’) is only caused by the polarization of charges in 96 
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the electrical double layer (EDL) built at the interface between grain and pore water (e.g., 97 

Marshall and Madden, 1959; Kemna et al., 2012). 98 

Initial studies (e.g., Vanhala, 1997; Olhoeft, 1985, Kemna et al., 2004) revealed a significant 99 

increase in the polarization effect with increasing concentrations of aromatic hydrocarbons 100 

(e.g., toluene, kerosene). Aromatic hydrocarbons, such as toluene, benzene or kerosene, are 101 

“non-polar” compounds, which are unable to interact with water molecules, due to their lack 102 

of ionic or polar groups. Hence, in the subsurface they form immiscible droplets caged within 103 

the water filling pores, without a direct contact with the grain surface, and thus, are referred to 104 

as “non-wetting” oil. Accordingly, Schmutz et al. (2010) proposed a modification of the 105 

model describing the polarization of the electrical double layer, formed at the grain-fluid 106 

interface, to include the effect of the non-wetting hydrocarbons. Such a model predicts an 107 

increase in the polarization response with increasing the volumetric content of non-wetting 108 

hydrocarbons.  109 

Contrary to previous studies, Ustra et al. (2012) reported a negligible polarization response in 110 

laboratory measurement with sand-clay mixtures for different toluene concentrations. At the 111 

field scale, Flores Orozco et al. (2012a) observed an initial increase in the polarization 112 

response with increasing the concentrations of benzene and toluene, consistent with the 113 

Schmutz et al. (2010) model. However, the polarization response fades for contaminant 114 

concentrations above the saturation concentration (i.e., the occurrence of hydrocarbons as 115 

free-phase), in agreement with the response observed by Ustra el at. (2012). Johansson et al. 116 

(2015) also observed similar results in field measurements in a site impacted by PCE 117 

(perchloroethylene), an “oil-wetting” hydrocarbon. Moreover, Cassiani et al. (2009) observed 118 

an inconclusive response for laboratory measurements performed in sand samples mixed with 119 

different concentrations of crude-oil. 120 
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An extension to the Schmutz model, proposed by Revil et al. (2011), predicts the decrease in 121 

the polarization response with increasing the volumetric content of polar compounds, or “oil-122 

wetting” hydrocarbons, i.e., the scenario when the oil is in direct contact with the grain 123 

surface. However, such model does not explain the observed increase in the polarization 124 

response at low hydrocarbon concentrations observed in field studies. An increase in the 125 

polarization response for aged hydrocarbon plumes, in laboratory studies, has been related to 126 

the accumulation of negatively charged microbial cells (e.g., Abdel Aal et al., 2006; 127 

Atekwana and Slater, 2009; Revil et al., 2012). However, bio-stimulation experiments at the 128 

field scale reported negligible changes in the polarization effects following biofilm formation, 129 

but a much larger response due to the precipitation of minerals accompanying microbial 130 

activity (e.g., Flores Orozco et al., 2011; 2013). Therefore, recently it has been suggested that 131 

the increase in the polarization effect observed in aged hydrocarbon contaminant plumes 132 

might be related to the precipitation of metallic minerals accompanying microbial activity 133 

(Mewafy et al., 2013; Abdel Aal et al., 2014). Moreover, changes in the chemical composition 134 

of groundwater, as well as the accumulation of metabolic by-products (e.g., organic acids), 135 

can also modify the surface properties in the hydrocarbons (e.g., Cassidy et al., 2001), for 136 

instance, promote the changes from “non-wetting” oil to “oil-wetting”; thus, resulting in 137 

modifications of the geophysical response. 138 

The noteworthy differences observed in laboratory and field investigations clearly 139 

demonstrate the necessity for further investigations to better evaluate the applicability of the 140 

CC imaging method and improve the interpretation of the imaging results. Monitoring studies 141 

at the field scale are necessary to understand the dynamics in the geophysical response, 142 

considering the impossibility to reproduce in the lab the variety of processes taking place 143 

(simultaneously) in hydrocarbon-impacted sites. Moreover, existing field studies have been 144 

conducted in areas without anthropogenic structures. However, hydrocarbon contaminants are 145 

typically located at (often derelict) industrial areas, and are commonly associated to the 146 
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proximity to anthropogenic structures, such as power lines, or buried pipes and tanks. The 147 

electrical response of such anthropogenic structures may mask the one of the subsurface, thus, 148 

hindering an adequate interpretation of the CC imaging results and its application for site 149 

characterization. Therefore, field investigations need to address the capabilities of the CC 150 

imaging method to discriminate between signatures due to anthropogenic structures, 151 

lithology, and contaminants, as required for an improved site characterization.  152 

In this study, we present the results of one-year CC monitoring measurements collected at a 153 

site impacted by a crude oil spill. Petroleum crude oil is a light non-aqueous phase liquid 154 

(LNAPL) mainly composed of non-polar compounds; thus, expected to produce an increase in 155 

the polarization response with increasing the concentration (at least at early stages), after the 156 

model by Schmutz et al. (2010). Strong variations in the depth to the groundwater table at the 157 

site permitted to investigate changes in the electrical response due to the vertical transport of 158 

the contaminant and biogeochemical processes. Extensive geochemical data have been 159 

collected since the time of an oil spill accident in 1994. Such data are necessary to constraint 160 

the interpretation of CC imaging results. At the site, relatively few anthropogenic structures 161 

are present; yet, their response can distort or mask the electrical signatures associated to the 162 

lithology and contaminant. Considering that such distortions might also control temporal 163 

fluctuations in the measured data, anthropogenic structures can then be defined as sources of 164 

temporal systematic error. To better investigate this, we performed a detailed analysis of the 165 

time-lapse data-error, aiming at the identification and removal of spatial and temporal outliers 166 

(i.e., systematic errors) and the quantification of random data-error in CC monitoring 167 

measurements.  The analysis of the data presented here aims at evaluating the possibility of 168 

minimizing the distortion due to cultural noise in CC monitoring images in areas impacted by 169 

high hydrocarbon concentrations, a step forward for soil contamination assessment and site 170 

characterisation.  171 
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 172 

MATERIAL AND METHODS 173 

Study area 174 

The study area is located close to Trecate (Novara, Italy), where a blowout from a deep oil 175 

well in February 1994 resulted in the spill of approximately 15,000 m3 of crude oil (Cassiani 176 

et al., 2014). The subsequent site remediation has been reported for example in the study of 177 

Brandt et al. (2002). The area is mainly agricultural with a prevalence of man-made rice 178 

paddies, partly converted to other crops such as soy and maize. The main zone of hydrocarbon 179 

contamination covers approximately 96 hectares, affecting soil, vadose zone, and 180 

groundwater. Both saturated and unsaturated zones have been monitored for natural 181 

attenuation and evolution of contamination conditions since the time of the accident. 182 

Measurable levels of hydrocarbon contamination have been observed in soil samples collected 183 

at different depths between 2 and 10 m below ground surface (bgs) between 1995 and 2007. 184 

Figure 1 shows the total petroleum hydrocarbon (TPH) volumetric content in soil as reported 185 

from chemical analysis of samples collected at more than 115 points, distributed at depths of 186 

2, 6, and 10 m bgs and sampled using direct-push techniques. The groundwater samples 187 

collected in the contaminated area show a brown oil phase emulsion in aqueous phase, and 188 

high dissolved hydrocarbon concentrations limited essentially to the same area of elevated 189 

contamination in the soil at 10 m depth shown in Figure 1. Further spread of the contaminant 190 

plume in groundwater downstream (roughly southeast) of the site is strongly limited by strong 191 

biodegradation of the hydrocarbons, as shown, e.g., by the study of Burbery et al. (2004). The 192 

contamination in the soil is likely to have been controlled over the years by the strong 193 

seasonal water table oscillations between 6 and 12 m bgs, which produces a clear smear zone, 194 

spreading also the contaminant laterally at greater depths (see Figure 1).  195 
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Geologically, the site is characterized by a thick sequence of poorly sorted silty sands and 196 

gravels in extensive lenses, typical of braided river sediments (Cassiani et al., 2004). Braided 197 

rivers are related to high energy, but also typical of environments that dramatically decrease 198 

channel depth and velocity, and, thus could lead to the intercalation of fine sediments like clay 199 

(Williams and Rust, 1969). Such intercalations lead to the formation of paleo-channels at the 200 

site, which can be found now filled by fine sediments (clay and silt), as discussed by Cassiani 201 

et al., (2004). Additionally, an artificial layer of clayey-silty material, about 1 to 2 m thick, 202 

placed as a liner for rice paddies about a century ago, overlies most of the site (Cassiani et al., 203 

2014). The seasonal fluctuation in water table is primarily a result of recharge from regional 204 

irrigation and flooding of the rice paddies. During the experiments presented here, the depth 205 

to the water table was observed at its maximum by the end of February (10.5 m bgs) and 206 

minimum at the end of September (5 m bgs). Further details on the site can be found in the 207 

study by Cassiani et al. (2014) and references therein.  208 

 209 

Complex conductivity monitoring measurements 210 

The CC method - also known as induced polarization (IP) method - is based on measurements 211 

using a four-electrode array, where two electrodes are used to inject electric current and the 212 

other two to measure the resulting electrical voltages. In the present study, measurements 213 

were collected in the time-domain with a Syscal Pro (IRIS Instruments, France) using a 214 

square wave with 50% duty cycle and a pulse length of 2 s. Integral chargeability readings 215 

were performed between 240 and 1840 milliseconds (ms) after shutting current injection off 216 

using a linear distribution of 20 windows. Measurements were conducted using stainless steel 217 

electrodes with a separation of 2.5 m and a dipole-dipole ‘skip-3’ configuration for a dipole 218 

length of 10 m (i.e., dipole length defined by the number of skipped electrodes along the 219 

electrode array) to reach an estimated depth of investigation of about 12m. 220 
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Monitoring measurements were collected along the two lines shown in Figure 1: (1) Line A-221 

A’, using a total of 81 electrodes in a roll-along scheme (an extension of 33 electrodes) for a 222 

total length of 200 m, with a rough west-east orientation, the latter designed to cover areas 223 

from negligible to high contaminant concentrations, as indicated in Figure 1; and (2) Line B-224 

B’, a control line deploying a total of 48 electrodes for a length of 117.5 m, roughly oriented 225 

south-north and located in the uncontaminated area of the site (Figure 1). Measurements were 226 

collected every two months, starting in May 2009 and with the last data set collected in 227 

February 2010. All data sets were collected as direct-reciprocal pairs for data error ( ) 228 

analysis, with reciprocal readings referred to the recollection of the data after interchanging 229 

current and potential dipoles. Error analysis of independent data sets (i.e., collected at each 230 

time) was performed following the methodology described by Flores Orozco et al. (2012b). 231 

Additionally, we present here a methodology aiming at characterizing the data error in time-232 

lapse differences. 233 

Inversion of the data was performed using CRTomo, a smoothness-constrained inversion 234 

algorithm by Kemna (2000). The code solves for the distribution of the complex electrical 235 

resistivity (ρ*), the inverse of the complex conductivity (σ* = 1/ρ*) from a tomographic 236 

electrical impedance datasets (Z*). Hence, integral chargeability measurements were linearly 237 

converted to electrical impedance phase-shift values using the approach of Kemna et al. 238 

(1997) assuming a constant phase response (at the fundamental frequency of 0.125 Hz). The 239 

assumption of a constant-phase response is valid considering the relatively narrow frequency-240 

range for the measurements of the integral chargeability, equivalent to approximate 0.5 – 4 241 

Hz. To account for the known geological layering at the site (Cassiani et al., 2004; 2014), all 242 

inversions presented here were performed using a preferential horizontal smoothing with a 243 

ratio of 40:1 of the horizontal versus the vertical smoothing parameters (for details in the 244 

implementation see, e.g., Kemna et al., 2002).  245 
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To avoid the interpretation of model parameters with a poor sensitivity, we blanked in the 246 

imaging results those pixels associated with cumulated sensitivity values two orders of 247 

magnitude smaller than the highest cumulated sensitivity (i.e., the sum of absolute, data-error 248 

weighted, sensitivities of all considered measurements; see, e.g., Kemna et al., 2002; Weigand 249 

et al., 2017). 250 

 251 

Complementary geophysical data  252 

To assess lateral variations of the electrical properties at the site, mapping measurements were 253 

conducted with low-induction number electromagnetic (EMI) methods using a CMD-4 (GF 254 

Instruments, Czech Republic), which has an effective depth of investigation of 6 m.  255 

To support the interpretation of the CC imaging results, ground penetrating radar (GPR) data 256 

sets were collected along the same CC monitoring profiles using a PulseEkko Pro system 257 

(Sensors&Software, Canada) with 100 MHz antennas. The GPR surface profiles presented 258 

here were based on a common-offset acquisition. Borehole GPR data, also using 100 MHz 259 

antennas, were collected with two schemes: (1) a multiple offset gather (MOG) with 0.5 m 260 

vertical spacing between antenna stations, and (2) a zero-offset profile (ZOP) with 0.25 m 261 

spacing between antenna stations. The complete description of the GPR processing and results 262 

is presented in the study of Cassiani et al. (2014). 263 

To better differentiate in this study between the different geophysical data and modeled 264 

quantities, CC imaging results are presented in terms of its real (σ’) and imaginary (σ’’) 265 

components; whereas the measurements are represented by the apparent resistivity (ρa) and 266 

phase-shift (ϕa). The EMI mapping data are presented in terms of the measured apparent 267 

conductivity (σa), as we are only interested in the lateral changes. 268 

 269 
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RESULTS AND DISCUSSIONS 270 

Baseline characterization 271 

Figure 2 presents the imaging results in terms of the electrical conductivity (expressed in 272 

terms of the real component of the CC, σ’), and polarization (expressed in terms of the 273 

imaginary component of the CC, σ’’), as solved for baseline measurements collected in May 274 

2009, related to a groundwater level located at 6 m bgs. The electrical images for the control 275 

line (B-B’) exhibit the lowest values in the electrical conductivity (σ’ ~1 mS/m), and a modest 276 

polarization effect (σ’’ ~ 10 to 20 μS/m). A similar response is also observed in the first 60 m 277 

along the A-A’ profile, which correspond to the clean area. Variations in the CC at depth in 278 

line B-B’ appear to be controlled by lithological changes, for instance the areas associated 279 

with the lowest polarization effect (σ’’ ~ 20 μS/m) and conductivity values (σ’’ < 1 mS/m) 280 

reveal poor agreement with the location of the groundwater level, yet they are consistent with 281 

intercalations of unsaturated silty sands and saturated gravels (e.g., between 5 and 10 m 282 

depth). To aid in the interpretation of the electrical signatures, we present in Figure 2 the 283 

lithological description from a core recovered during the drilling of a well in the vicinity of 284 

line B-B’ (borehole BB reported in Cassiani et al., 2004). Moreover, CC images for line B-B’ 285 

illustrate lateral variations in the thickness of the geological units, associated to the existence 286 

of paleo-channels at the site typical of braided rivers environments. Lateral variations in the 287 

electrical properties resolved for profile B-B’ are consistent with previous observations at the 288 

site (Cassiani et al., 2004).  289 

Electrical values associated with the contaminated area of profile A-A’ (between 60 and 200 290 

m along the profile direction) reveal different anomalies in both σ’ and σ’’. The most 291 

prominent structures are marked in Figure 2, and can be summarized as: (a) two shallow 292 

anomalies characterized by modest conductive and high polarization values,  located around 293 

~60 and 100 m along the profile direction; (b) an anomaly between 1 and 5 m depth and 294 



13 

 

between ~60 and 100 m along the profile direction revealing the lowest conductivity values, 295 

and lateral changes from high to low polarization values; and (c) a shallow anomaly in the 296 

unsaturated zone exhibiting the highest σ’ and σ’’ values between 120 and 180 m along the 297 

profile direction. The last anomaly also reveals a vertical transition to a deeper structure 298 

characterized by low polarization effect (σ’’ < 5 μS/m) in the saturated zone.  299 

To help the interpretation of the anomalies observed in the CC images, we present in Figure 3 300 

the map of the apparent electrical conductivity (σa) as obtained from the EMI measurements, 301 

as well as the common-offset GPR profiles for measurements along lines A-A’ and B-B’. The 302 

position of the CC anomalies is also marked in the radargram presented in Figure 3. The 303 

apparent conductivity (σa) map presented in Figure 3a clearly reveals high σa anomalies in the 304 

vicinity of profile A-A’. In particular, the elongated feature roughly oriented north-south 305 

between 150 and 300 m in the x-direction of the EMI map. Such anomaly is coincident with 306 

the position of an unpaved road. Due to the compacted materials at the surface, such roads are 307 

expected to result in low electrical conductivity values. The high σa anomaly observed in 308 

Figure 3a, might indicate the location of at least one buried pipe. The unpaved road crosses 309 

line A-A’ around 60 m, where the GPR image (Figure 3c) reveals shallow reflections, as 310 

expected for measurements near metallic structures, confirming the position of a possible 311 

pipe. Moreover, similar reflections are observed in the near surface at ~95 m, pointing out to 312 

the presence of a second anthropogenic structure. This is the location of the shallow anomaly 313 

(a) observed in the CC images (c.f., Figure 2), characterized by modest σ’, and high σ’’ 314 

values. City documents indicate the location of a cast iron water pipe. Yet, no information is 315 

available about its exact size, nor about possible coating, which is a common method used to 316 

prevent oxidation.  317 

In addition to the interpreted pipe, the CC images reveal a second anomaly characterized by 318 

high polarization response between 60 and 80 m (along line A-A’) also consistent with 319 
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reflection hyperbolas observed in the GPR profile (between ~2 and 5 m bgs), as well as with 320 

high σa values in EMI measurements. Although such an anomaly may be interpreted as 321 

possible further anthropogenic structures, the deep extension of the anomaly might be also 322 

indicative of a lithological contact. At present, no information is available to aid in the 323 

interpretation.  324 

Furthermore, the lack of reflections in the radargram of line A-A’, between 120 and 180 m, 325 

spatially corresponds to the high σa, σ’, and σ’’ values in the EMI and CC images, and thus 326 

can be explained by the attenuation of electromagnetic waves in conductive media (von 327 

Hippel, 1954). Such observation suggests the presence of a clay-rich layer that is likely to be 328 

the filling of a paleo-channel of a braided river. Traces of these channels can be seen also in 329 

Figure 3a as relatively more conductive features elongated roughly in the NNW-SSE 330 

direction, with the bottom of one such channel clearly visible in the GPR line along B-B’ (see 331 

Cassiani et al. (2014) for a more detailed discussion). Alternatively, this anomaly may be 332 

interpreted as the result of an increase in fluid conductivity accompanying the accumulation 333 

of carbonic acids accompanying the well-documented degradation of hydrocarbons at the site 334 

(e.g., Burbery et al., 2004). Accordingly, the increase in σ’’ could be explained by the 335 

expected increase in the polarization response with increasing contaminant concentration 336 

predicted by the model from Schmutz et al. (2010).  337 

In contrast to line A-A’, the control line B-B’ does not reveal indications of possible 338 

anthropogenic structures and exhibits only vertical interfaces between 4 and 8 m bgs 339 

reflecting the sand and gravel intercalations, which are consistent with the CC images, as well 340 

as with the patterns observed in the EMI data regarding variations between low and moderate 341 

σa values. The imaging results obtained with the three different methods are consistent.  342 

Cultural noise in CC monitoring results 343 
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An initial analysis of the inversion results, based on the independent analysis of  monitoring 344 

data sets collected along line A-A’ (Figure A1 in the appendix) revealed inconclusive spatial 345 

and temporal patterns, hindering their interpretation. Whereas the σ’ monitoring images show 346 

relatively minimal variations for data collected at different periods, the polarization images 347 

show significant temporal variations, especially in the uncontaminated area. This region 348 

shows, in general, high σ’’ values in the saturated zone, with vertical variations along the 349 

monitoring period well correlated with changes in the groundwater table. Although promising, 350 

imaging results in the uncontaminated area resolved for November do not reflect the shallow 351 

position of the groundwater. Moreover, in the contaminated area of profile A-A’ (between 60 352 

and 200 m) the response is practically constant along the entire monitoring experiments. The 353 

apparent lack of variations in the electrical monitoring images for the contaminated areas may 354 

be indicative of (1) a constant response over time due to the contaminant-plume; (2) electrical 355 

signatures being controlled by static (i.e., time-invariable) subsurface properties such as 356 

lithology; or (3) the presence of anthropogenic structures (such as the water pipe) masking the 357 

electrical response of subsurface materials and contaminants.  358 

Accounting for the time-lapse differences between the monitoring and the baseline images 359 

should permit to mute the effect due to lithology and anthropogenic structures, assuming that 360 

those do not change over the monitoring time (e.g., Kemna et al., 2002). A further alternative 361 

may be given by the direct inversion of the time-lapse differences, or the inversion of the data 362 

using temporal regularization (e.g., Lasperre et al., 2017 and references therein). However, the 363 

presence of systematic errors in the data, as well as cultural noise, might mislead the 364 

application of such approaches and the quantification of random errors is critical for an 365 

adequate performance of time-lapse differences and time-regularization inversion schemes 366 

(Lasperre et al., 2017). In the case of the Trecate monitoring data sets, anthropogenic 367 

structures such as the unpaved road and the water pipe represent important sources of error. 368 

Moreover, monitoring measurements can also be affected by further sources of systematic 369 
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errors related to the comparison of data collected with differences in the contact resistances of 370 

the electrodes, which can arise due to variations in temperature, surface moisture, or the 371 

presence of snow and ice in the surface during the winter measurements.  372 

To overcome these deficiencies and improve the resolution of the electrical images, it is 373 

critical to (1) identify and remove outliers (i.e., systematic errors), and (2) quantify random 374 

error in the measurements, which can be taken into account within the inversion as parameters 375 

for the error model (e.g., Kemna, 2000,; Flores Orozco et al., 2012b; Binley et al., 2016). In 376 

particular, for this study, we consider outliers to be not only related to systematic errors in the 377 

independent measurements, but also, and most importantly, to data errors in the time-lapse 378 

differences for the CC measurements collected over the monitoring period, which hereafter 379 

are referred to as temporal outliers. Such temporal outliers are related to misplaced electrodes, 380 

variations in surface properties, and the contact resistances as well as possible changes in the 381 

signatures of anthropogenic structures. 382 

Raw-data analysis and identification of spatial and temporal outliers 383 

Analysis of each independent data set (i.e., tomographic data collected at each time during the 384 

monitoring period) shows a good reciprocity for data collected along profile A-A’, as 385 

presented in Figure 4 in terms of the apparent resistivity (ρa) and the apparent phase-shift (ϕa). 386 

The plots in Figure 4 show the highest (  > 20 mrads) values between electrodes 32 and 48, 387 

which include variations from large negative to large positive values. The collection of 388 

anomalous positive phase-shift values in electrical impedance measurements is associated 389 

with the so-called “negative IP effect” (see, e.g., Sumner, 1976, pp. 195-196 for further 390 

details) and are not strictly erroneous measurements. Such negative IP effects (Sumner, 1976) 391 

can be observed in two main situations: (1) adjacent to a conductor (i.e., metal) close to the 392 

electrodes, where an electrical field is enhanced within the conductor with a reversed 393 

direction to the injected current; thus, resulting in a change in the sign for measurements 394 
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collected with dipoles located on different sides of the conductor; (2) layered media where the 395 

lowest unit is more conductive than the layer immediately above, and the material closest to 396 

the electrodes, is polarizable. 397 

It is also possible to observe in Figure 4 that the negative IP effects reveal good consistency 398 

between direct and reciprocal readings, supporting the argument that the negative IP effects 399 

are not erroneous measurements. In this regard, a recent study by Dahlin and Loke (2015) 400 

investigated the inversion of negative chargeability in time-domain IP, further demonstrating 401 

that those are not necessarily erroneous measurements. Hence, the negative IP effect observed 402 

in Figure 4 might be controlled by two different, and likely concurrent, conditions: (1) the 403 

water pipe located near the surface, close to electrode 40 (~100 m along the profile direction); 404 

and (2) the contact between subsurface materials characterized by contrasting electrical 405 

properties at the other two anomalies (i.e., between 60 and 90 m, as well as between 120 and 406 

180 m along the profile direction). 407 

Additional to the detection of negative IP polarization effects, Figure 4 shows that phase-shift 408 

measurements away of the anthropogenic structures (measurements with electrodes 1- 30 and 409 

electrodes 45 to 80) are related to lower polarization effects (-ϕa < 10 mrad), with the lowest 410 

values associated with those measurements within the contaminated area (-ϕa < 5 mrad). 411 

Additionally, measurements associated with larger separations between current and potential 412 

dipoles (more than 25 electrodes) reveal spatially incoherent patterns, as expected due to a 413 

decrease in the signal-to-noise (S/N) ratio for “deeper” measurements. These erratic 414 

measurements are due to random error and low S/N leading to large discrepancies between 415 

direct and reciprocal measurements, the corresponding data points need to be removed before 416 

the inversion. 417 

As observed in the plots presented in Figure 4, the ϕa values recorded close to the 418 

anthropogenic structures (the unpaved road and the water pipe) dominate over the weaker 419 
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response associated to subsurface materials. Visual comparison of the plots in Figure 4 also 420 

reveals that the ϕa values for measurements collected between electrodes 32 and 48 vary 421 

dramatically at different times. These temporal variations in the data collected between 422 

electrodes 32 and 48 can only be explained by (1) changes in the contact resistances of the 423 

electrodes placed on the paved road and associated changes in the signal strength; and (2) 424 

changes in the moisture at the contact between soil and the water pipe due to seasonal 425 

fluctuations in groundwater level.  426 

The high  values of measurements over anthropogenic structures (between electrodes 32 427 

and 48) are not increasing the misfits between direct and reciprocal readings, as those are not 428 

outliers in the independent data sets. Thus, the data error ( ) estimated for independent data 429 

sets cannot be used to quantify distortion in the data due to cultural noise. Other methods 430 

proposed for the identification of outliers, and quantification of data quality, such as stacking 431 

(i.e., repeatability), or the analysis of the voltage-decay curve for time-domain IP readings 432 

(e.g., Gazoty et al., 2013; Flores Orozco et al., 2018), will also face the same problem, 433 

considering that the measurements over anthropogenic structures are spatially well resolved 434 

and associated to high S/N.  435 

Hence, as a second step, we investigated the reciprocity of time-lapse differences to identify 436 

possible systematic errors affecting temporal variations in the measurements. Here, we refer 437 

to the difference between the measurements collected at time j (j > 0) and baseline 438 

measurements (j = 0, corresponding to data collected in May) for both apparent resistivity 439 

(Δρa) and phase-shift (Δϕa ) as: 440 

 (1) 441 

. (2) 442 
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We quantify the data error, at the time-lapse j, as the misfit between direct and reciprocal 443 

values of the computed time-lapse differences, which can be written for the apparent 444 

resistivity ( ) as: 445 

, (3) 446 

where  and  refer to the time-lapse difference in direct and reciprocal readings, 447 

respectively. In analogous way, the data error for time-lapse differences in phase-shift 448 

readings can be written as: 449 

. (4) 450 

Figure 5 shows the computed time-lapse differences for data collected along line A-A’. The 451 

plots in Figure 5 reveal consistent values for the direct and reciprocal differences with the 452 

larger uncertainties observed for , in measurements collected between electrodes 32 to 55, 453 

in the vicinity of the unpaved road, water pipe, and possible lithological contacts. In 454 

particular, Figure 5 shows a poor reciprocity in time-lapse differences computed for readings 455 

between electrodes 50 and 55, which correspond to those electrodes installed directly on the 456 

unpaved road. Thus, such measurements could be removed before the inversion as systematic 457 

errors. 458 

To summarize, the outliers were identified (and removed) based on the analysis of direct-459 

reciprocal misfit in two steps: (i) for independent data sets, and (ii) after the computation of 460 

the time-lapse differences (  and ). In both cases, measurements were removed when 461 

the direct-reciprocal misfit exceeded the value of the corresponding average value between 462 

readings (i.e., ). This filter assumes that measurements 463 

affected only by random error should provide a consistent value for direct and reciprocal 464 

readings for both independent and time-lapse differences. From the initial 608 measurements, 465 
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only 233 measuring points were used for the inversion of each independent data set, with the 466 

rest of the readings being deleted as outliers. Figure 4 and Figure 5 demonstrate the validity of 467 

such assumption. Histograms of the data error (i.e.,  and ) presented in Figure 468 

6 demonstrate a normal distribution, as expected for random (time-lapse) data error. In 469 

addition to this, such plots reveal a few measurements related to larger  as isolated 470 

clusters separated from the main distribution of valid measurements. Hence, the occurrence of 471 

gaps in the histograms can be used to identify maximum and minimum threshold values for 472 

 (dashed lines in Figure 6). 473 

Monitoring results after removal of spatiotemporal outliers 474 

Here, we discuss monitoring imaging results obtained from the inversion of independent data 475 

sets after the removal of outliers based on the analysis of the direct-reciprocal misfit for 476 

independent measurements and time-lapse differences as described above. Furthermore, 477 

before the inversion we removed those quadrupoles not present in all five monitoring data sets 478 

to ensure we are comparing imaging results with similar resolution (i.e., based on the same 479 

number and distribution of quadrupoles). Accordingly, for the quantification of the data error, 480 

we performed a bin analysis as described in Flores Orozco et al. (2012b) based on the joined 481 

direct-reciprocal errors from all five data sets.  482 

Hence, the error parameters were the same for the inversion of the entire monitoring data sets, 483 

following the recommendation by Lasperre et al. (2017). The underlying assumption is that by 484 

using the same error parameters, we fit all measurements to the same error level for a fair 485 

comparison of the inversion results. Such approach seems to be adequate considering that all 486 

our measurements revealed a consistent distribution of the data error (Figure 5) and of the 487 

measured and  values (Figure 4 and Figure 6).  488 
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The inversion results computed for the monitoring data sets collected in line A-A’ after the 489 

removal of outliers following the methodology described above are presented in Figure 7. The 490 

electrical images reveal clear changes in the electrical properties for the contaminated and the 491 

clean sediments in line A-A’, but most importantly, they do not reflect spatial variations 492 

between 60 and 120 m, where the anthropogenic structures (the unpaved road and the water 493 

pipe) are located. Yet, the removal of measurements close to these structures leads to a 494 

decrease of sensitivity in the computed images, as observed in the blanked pixels between 60 495 

and 120 m. The first 60 m of profile A-A’ reveal a shallow anomaly characterized by low 496 

conductivity values (σ’ < 1 mS/m), the depth of which changes over time in agreement with 497 

fluctuations in the depth of the groundwater level. The high σ’ values (~5 mS/m) observed in 498 

the uncontaminated area of line A-A’ clearly delineate the saturated zone as they are 499 

consistently found below the groundwater table. As expected, a similar pattern is observed in 500 

the polarization (imaginary conductivity σ’’) images, with low σ’’ values associated with the 501 

unsaturated materials and higher values with the areas below the groundwater level. The low 502 

polarization values in the unsaturated zone show less spatial consistency, likely related to 503 

variations in the content of clay, which is polarizable even at low saturations (e.g., Titov et al., 504 

2004). The higher σ’’ values observed between May and September in the uncontaminated 505 

area at larger depths (~12 m bgs) are likely to reflect the vertical contact between sand and 506 

gravel (Cassiani et al., 2004; 2014). Such contact is not visible in data sets collected for 507 

deeper positions of the groundwater table (November, February), which is explained by a 508 

decrease in the depth of investigation due to the long pathways of current injections through 509 

the unsaturated zone (Flores Orozco et al., 2013). 510 

Regarding the contaminated area in profile A-A’, here only minimal changes are observed for 511 

measurements collected at different periods. The shallow conductive unit (down to 4 m bgs) is 512 

related to the paleo-channel discussed above. The interpreted high clay content in that area 513 

explains the high CC values (both σ’ and σ’’). The response of such layer is constant over 514 
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time, thus it is not affected by the analysis of time-lapse reciprocity. Below this unit only low 515 

values for the polarization effect (σ’’ << 1 μS/m) are observed in all monitoring images for 516 

line A-A’, in the area where higher concentrations of hydrocarbon have been reported (and 517 

confirmed by the detailed data shown e.g. in Cassiani et al., 2014). The geometry of the low 518 

polarization unit shows no correlation with fluctuations in the water table.  519 

The negligible polarization effect associated with high hydrocarbons concentrations observed 520 

in Figure 7 is consistent with observations reported in previous laboratory (Ustra et al., 2012; 521 

Personna et al., 2013) and field studies (Flores Orozco et al., 2012; Johansson et al., 2015). 522 

However, the model proposed by Schmutz et al. (2010) does not explain the observed 523 

decrease in the polarization response, even if crude oil is mainly composed of non-polar 524 

compounds. In this regard, some authors have argued that carbonic acids and other metabolic 525 

products might change the surface properties of hydrocarbons, promoting oil-wetting 526 

conditions (Cassidy et al., 2001; Zhao and Ionnidis, 2007). Hence, the negligible polarization 527 

response is consistent with the predicted response by the model of Revil et al. (2011). 528 

A recent mechanistic model predicted a decrease in the polarization response for high 529 

concentrations of non-wetting hydrocarbons (Bücker et al., 2017). Based on the formulation 530 

of the membrane polarization, this model demonstrates that σ’’ values are only dependent on 531 

the variations in the pore-space geometry imposed by the hydrocarbon droplets, and not on 532 

the electrical properties of the hydrocarbon surface Hence, the negligible polarization 533 

response observed in the contaminated area can be explained by the presence of immobile oil 534 

trapped within the micro-pores forming a continuous oil-film with the mobile fraction 535 

occupying the macro-pores. As demonstrated by Bücker et al (2017), such a continuous film 536 

hinders the formation of ion-selective membrane required for the development of membrane 537 

polarization, and could result in the negligible σ’’ response observed in profile A-A’ for the 538 

periods with a shallow water table. Accordingly, the polarization effect is still negligible for 539 
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measurements between November and May, for deeper positions of the groundwater table, as 540 

the oil trapped within the micro-pores forms a continuous film with air, another electrical 541 

insulator. Such explanation is supported by the high TPH concentrations reported at the 542 

position of the profile A-A’ (Figure 1). The hindered polarization response over the entire 543 

depth, and not only on top of the saturated zone, as expected for a light non-aqueous phase 544 

liquid (LNAPL) as oil, could be explained by the seasonal fluctuations in the water table 545 

depth, which transported the hydrocarbons into deeper sediments as observed in the TPH 546 

concentrations presented in Figure 1. Monitoring images in Figure 7 suggest that the 547 

sediments are not washed off following the recovery of the groundwater, which is also 548 

consistent with the persistency of the contaminant concentrations observed at the site 549 

(Cassiani et al., 2014). To support our interpretation, we present in Figure 8 the electrical 550 

properties (in terms of the σ’ and σ’’ values) as extracted from the electrical images computed 551 

for line A-A’ for pixel values located in the clean (30 – 40 m along the profile direction) and 552 

contaminated (160 – 170 m along the profile direction) regions at different depths and 553 

periods, as well as the water content profile as obtained from GPR zero-offset profile (ZOP) 554 

measurements performed between two boreholes located in the contaminated region 555 

practically along line A-A’ (close to 150  m along profile direction) (Cassiani et al., 2014). 556 

ZOP measurements were performed at different periods associated with different depths of 557 

the groundwater level. The results indicate only relatively small changes in the water content, 558 

in agreement with the interpretation of the CC monitoring results. This is in contrast with the 559 

large moisture-content variations observed by the ZOP data at another pair of boreholes in the 560 

uncontaminated zone close to the control line B-B’ (Cassiani et al., 2014).  Figure 8 also 561 

reveals vertical changes at 4 and at 12 m depth in the ZOP data, consistent with the limits of 562 

the clay-rich layer (4 m bgs) and with the depth interface (12 m bgs) observed in σ’’ images. 563 

The hydrocarbons act as electrical insulators, thus the relatively high σ’ observed in the 564 

contaminated sediments of profile A-A’ confirms the changes in the electrical properties in 565 
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mature hydrocarbon plumes due to microbial activity, e.g., the release of carbonic acids 566 

(Sauck, 2000; Werkema et al., 2003; Atekwana and Atekwana, 2010; Caterina et al., 2017). 567 

Microbial activity has been reported at the site (Burbery et al., 2004) and high concentrations 568 

of total organic carbon (TOC) observed at the site (Cassiani et al., 2014) support the 569 

interpretation of the high σ’ values in hydrocarbon-impacted sediments. Recent laboratory 570 

studies report an increase in the polarization effect due to the accumulation of metallic 571 

minerals accompanying the stimulation of microbial activity in soil samples obtained from 572 

hydrocarbon-contaminated sites (e.g., Mewafy et al., 2013; Atekwana and Abdel Aal, 2015). 573 

However, our results do not reveal any increase in the σ’’; neither the formation of iron 574 

sulphides has been reported at the site.  575 

 576 

CONCLUSIONS 577 

We have presented a detailed analysis of the data error in time-lapse differences of apparent 578 

resistivity ( ) and phase-shift ( ) for an improved processing of monitoring 579 

complex electrical conductivity (CC) imaging data sets. The data error was computed by 580 

means of the widely accepted analysis of direct and reciprocal misfit, taking it one-step 581 

further to investigate the reciprocity for time-lapse differences. The CC data sets were 582 

collected in the vicinity of different anthropogenic structures, such as a water pipe, unpaved 583 

roads, and prevalence of negative IP effects. Analysis of the independent data sets reveals that 584 

such measurements are associated with high signal-to-noise ratio, which also show a high 585 

correlation between direct and reciprocal measurements (variations <10 % of the mean value), 586 

demonstrating that readings exhibiting a negative IP effect are not necessarily erratic 587 

measurements.  588 
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CC imaging results obtained after the removal of outliers in time-lapse differences revealed 589 

significant differences between the electrical signatures from clean subsurface materials and 590 

those impacted by the oil-spill. For an uncontaminated region CC images exhibited changes in 591 

agreement with seasonal variations in the position of the groundwater level; whereas 592 

contaminated sediments exhibited a constant response over the entire monitoring period 593 

associated with a negligible polarization effect and relatively high electrical conductivities. 594 

The increase in the electrical conductivity in contaminated sediments is explained by 595 

degradation processes of the contaminant plume, such as the release of carbonic acids 596 

accompanying microbial activity in mature hydrocarbon plumes. The reduction of the 597 

polarization response can be explained by the presence of hydrocarbon droplets trapped 598 

within both the macro- and micro-pores, which results in the formation of a water film 599 

surrounding grain minerals with a constant thickness, hindering the development of ion-600 

selective membranes and the membrane polarization.  601 

The CC imaging results are consistent with independent results obtained with other 602 

geophysical methods, namely ground penetrating radar and low induction number 603 

electromagnetic methods(GPR and EMI). The electrical images computed after the removal 604 

of the temporal outliers reveal no anomalies associated to anthropogenic structures validating 605 

the suitability of the proposed approach.  606 

 607 

 608 
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 779 

Figures 780 

Figure 1: (a) The location of the study area; (b) satellite image revealing the extension of the 781 

contaminant plume at the surface following the crude oil well blowout in 1994; and (c) 782 

contaminant distribution in the subsurface at different depths as obtained from the chemical 783 

analysis of soil samples (black dots). The contaminant concentrations are expressed in terms 784 

of the total petroleum hydrocarbon (TPH) per unit soil mass. CC monitoring data sets were 785 

collected in lines A-A’ (west–east) and B-B’ (south-north) indicated by the solid white lines. 786 

Note that line B-B’ lies in the uncontaminated area, thus it can be considered as a “blank” 787 

line, while line A-A’ crosses a heavily contaminated zone. 788 

Figure 2: CC imaging results for baseline measurements (May 2009) collected along lines A-789 

A’ and B-B’, expressed in terms of the real (σ`) and imaginary (σ``) components of the 790 

complex conductivity. The water table at the time of acquisition is shown by the dashed black 791 

line and the position of the electrodes is marked with the solid dots at the surface. Anomalies 792 

marked by the solid lines along profile A-A’ refer to possible anthropogenic structures; 793 



34 

 

whereas available lithological information from previous drillings is imposed at the 794 

corresponding position in profile B-B’. 795 

Figure 3: Complementary geophysical datasets: (a) Interpolated map of the apparent electrical 796 

conductivity (σa) measured with EMI at a nominal depth of investigation of 6m with the 797 

position of the EMI readings indicated by the white dots, the location of the profile A-A’ and 798 

B-B’ by the solid black lines and unpaved roads by the dashed lines; common offset GPR 799 

profile along line B-B’ (b) and A-A’ (c). The anomalies depicted by the solid lines in the GPR 800 

profile for line A-A’ indicates the position of the anomalies observed in CC imaging results. 801 

Figure 4: Plots of the raw data expressed in terms of the apparent resistivity, (top) and 802 

impedance phase-shift  (bottom) for each quadrupole along line A-A’. Each measurement 803 

is represented as a pixel value with the x- and y-coordinates given by the electrode number of 804 

the positive current (A) and potential (M) electrode.  805 

Figure 5: Plots of the time-lapse difference between time (j=0) and baseline (j=1, 2, 3, 4) 806 

expressed in terms of the apparent resistivity, Δρa (top) and impedance phase-shift Δϕa 807 

(bottom) measurements in line A-A’. Each measurement is represented as a pixel value with 808 

the x- and y-coordinates given by the electrode number of the positive current (A) and 809 

potential (M) electrode.  810 

Figure 6: Plots of the data error for time-lapse differences as computed for the measured 811 

transfer resistance ( , left) and phase-shift ( , right). Histograms in red represent 812 

the complete time-lapse difference data set and the imposed histogram in blue the resulting 813 

values after filtering of temporal outliers. The dashed lines indicate the maximum data error 814 

accepted for each time-lapse based after the analysis of misfit between direct-reciprocal time-815 

lapse differences 816 
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Figure 7: Monitoring imaging results after the removal of spatiotemporal outliers for data 817 

collected in line A-A’ in terms of the real (left) and imaginary (right) component of the 818 

complex conductivity. The water table at each time is indicated by the solid line. 819 

Figure 8: Temporal variations in electrical properties expressed in terms of the real (a, b) and 820 

imaginary (c, d) components of the complex conductivity for pixel values extracted from the 821 

electrical images computed for line A-A’ in clean (a, c) (between 30 – 40 m along profile 822 

direction) and contaminated (b, d) (between 160 – 170 m along profile direction) regions. 823 

Dashed lines represent the yearly water table variations during the collection of the data (2009 824 

– 2010). For comparison, (e) shows the estimated soil moisture content derived from cross-825 

hole GPR ZOP for data collected at different time instants in the heavily contaminated zone, 826 

after Cassiani et al. (2014). 827 

 828 

Appendix 829 

Figure 1A: Complex conductivity imaging (CCI) results obtained for monitoring data 830 

collected at the Trecate site. Each data set was processed independently following the analysis 831 

of the misfit between direct and reciprocal readings described in Flores Orozco et al. (2012a). 832 

Accordingly, outliers and error parameters were defined independently for each data set. 833 

Imaging results are presented in terms of the real and imaginary component of the complex 834 

conductivity. The dashed line represents the position of the groundwater level at each 835 

monitoring period. The position of the electrodes is indicated at the surface by the black 836 

points. 837 



 

Figure 1: (a) The location of the study area; (b) satellite image revealing the extension of the 

contaminant plume at the surface following the crude oil well blowout in 1994; and (c) 

contaminant distribution in the subsurface at different depths as obtained from the chemical 

analysis of soil samples (black dots). The contaminant concentrations are expressed in terms 

of the total petroleum hydrocarbon (TPH) per unit soil mass. CC monitoring data sets were 

collected in lines A-A’ (west–east) and B-B’ (south-north) indicated by the solid white lines. 

Note that line B-B’ lies in the uncontaminated area, thus it can be considered as a “blank” 

line, while line A-A’ crosses a heavily contaminated zone.   



 

 

Figure 2: CC imaging results for baseline measurements (May 2009) collected along lines A-

A’ and B-B’, expressed in terms of the real (σ`) and imaginary (σ``) components of the 

complex conductivity. The water table at the time of acquisition is shown by the dashed black 

line and the position of the electrodes is marked with the solid dots at the surface. Anomalies 

marked by the solid lines along profile A-A’ refer to possible lithological contacts or 

anthropogenic structures; whereas available lithological information from previous drillings is 

imposed at the corresponding position in profile B-B’. 

  



 

Figure 3: Complementary geophysical datasets: (a) Interpolated map of the apparent 

electrical conductivity (σa) measured with EMI at a nominal depth of investigation of 6m with 

the position of the EMI readings indicated by the white dots, the location of the profile A-A’ 

and B-B’ by the solid black lines and unpaved roads by the dashed lines; common offset GPR 

profile along line B-B’ (b) and A-A’ (c). The anomalies depicted by the solid lines in the GPR 

profile for line A-A’ indicates the position of the anomalies observed in CC imaging results. 

  



  

Figure 4: Plots of the raw data expressed in terms of the apparent resistivity, ��(top) and 

impedance phase-shift � (bottom) for each quadrupole along line A-A’. Each measurement is 

represented as a pixel value with the x- and y-coordinates given by the electrode number of 

the positive current (A) and potential (M) electrode.  

  



 

 

Figure 5: Plots of the time-lapse difference between time (j=0) and baseline (j=1, 2, 3, 4) 

expressed in terms of the apparent resistivity, Δρa (top) and impedance phase-shift Δϕa 

(bottom) measurements in line A-A’. Each measurement is represented as a pixel value with 

the x- and y-coordinates given by the electrode number of the positive current (A) and 

potential (M) electrode. 

  



 

Figure 6: Plots of the data error for time-lapse differences as computed for the measured 

transfer resistance (�(∆�), left) and phase-shift (�(∆�), right). Histograms in red represent the 

complete time-lapse difference data set and the imposed histogram in blue the resulting values 

after filtering of temporal outliers. The dashed lines indicate the maximum data-error accepted 

for each time-lapse based on the maximum absolute � value observed in the control line or in 

measurements away from anthropogenic structures. 

  



 

Figure 7: CC monitoring imaging results after the removal of spatiotemporal outliers for data 

collected in line A-A’ in terms of the real (left) and imaginary (right) component of the 

complex conductivity. The water table at each time is indicated by the solid line. 

  



 

 

 

Figure 8: Temporal variations in electrical properties expressed in terms of the real (a, b) and 

imaginary (c, d) components of the complex conductivity for pixel values extracted from the 

electrical images computed for line A-A’ in clean (a, c) (between 30 – 40 m along profile 

direction) and contaminated (b, d) (between 160 – 170 m along profile direction) regions. 

Dashed lines represent the yearly water table variations during the collection of the data (2009 

– 2010). For comparison, (e) shows the estimated soil moisture content derived from cross-

hole GPR ZOP for data collected at different time instants in the heavily contaminated zone, 

after Cassiani et al. (2014). 
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Figure 1A: Complex conductivity imaging (CCI) results obtained for monitoring data 

collected at the Trecate site. Each data set was processed independently following the analysis 

of the misfit between direct and reciprocal readings described in Flores Orozco et al. (2012a). 

Accordingly, outliers and error parameters were defined independently for each data set. 

Imaging results are presented in terms of the real and imaginary component of the complex 

conductivity. The dashed line represent the position of the groundwater level at each 

monitoring period. The position of the electrodes is indicated at the surface by the black 

points. 
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