Key changes in gene expression identified for different stages of C$_4$ evolution in *Alloteropsis semialata*

Running title: Evolution of C$_4$ transcriptomes in *Alloteropsis*

Luke T. Dunning*,1, Jose J. Moreno-Villena*,1,2, Marjorie R. Lundgren1,3, Jacqueline Dionora4, Paolo Salazar4, Claire Adams5, Florence Nyirenda6, Jill K. Olofsson1, Anthony Mapaura7, Isla M. Grundy8, Canisius J. Kayombo9, Lucy A. Dunning10, Fabrice Kentatchime11, Menaka Ariyaratne12, Deepthi Yakandawala12, Guillaume Besnard13, W. Paul Quick1,4, Andrea Bräutigam14, Colin P. Osborne1, Pascal-Antoine Christin1,a

* These authors contributed equally to this work

1 Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom

2 Present address: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA

3 Present address: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom

4 International Rice Research Institute, DAPO, Metro Manila, Philippines

5 Botany Department, Rhodes University, 6140 Grahamstown, South Africa

6 Department of Biological Sciences, University of Zambia, Lusaka, Zambia

7 National Herbarium and Botanic Garden, Harare, Zimbabwe

8 Institute of Environmental Studies, University of Zimbabwe, Harare, Zimbabwe

9 Forestry Training Institute, Olmotonyi, Tanzania

10 Department of Social Sciences, University of Sheffield, 219 Portobello, Sheffield S1 4DP, United Kingdom

11 CABAlliance, P.O. Box 3055 Messa, Yaoundé, Cameroon

12 Department of Botany, Faculty of Science, University of Peradeniya, Galaha Road, Peradeniya 20400, Sri Lanka

13 Laboratoire Évolution et Diversité Biologique (EDB UMR5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France

14 Bielefeld University, Universitätsstrasse 35, 33501 Bielefeld, Germany

a Corresponding author: Pascal-Antoine Christin; telephone +44-(0)114-222-0027; fax +44 114 222 0002; email: p.christin@sheffield.ac.uk
Highlight

Comparative transcriptomics in a phylogenetic context show that the initial emergence of C\(_4\) photosynthesis in *Alloteropsis semialata* coincides with few changes in gene expression within mature leaves, with secondary adaptation occurring in geographically isolated populations.

Abstract

C\(_4\) photosynthesis is a complex trait that boosts productivity in tropical conditions. Compared to C\(_3\) species, the C\(_4\) state seems to require numerous novelties, but species comparisons can be confounded by long divergence times. Here, we exploit the photosynthetic diversity that exists within a single species, the grass *Alloteropsis semialata*, to detect changes in gene expression associated with different photosynthetic phenotypes. Phylogenetically-informed comparative transcriptomics show that intermediates with a weak C\(_4\) cycle are separated from the C\(_3\) phenotype by increases in the expression of 58 genes (0.22% of genes expressed in the leaves), including those encoding just three core C\(_4\) enzymes: ASP-AT, PCK, and PEPC. The subsequent transition to full C\(_4\) physiology was accompanied by increases in another 15 genes (0.06%), including only the core C\(_4\) enzyme PPDK. These changes likely created a rudimentary C\(_4\) physiology, and isolated populations subsequently improved this emerging C\(_4\) physiology, resulting in a patchwork of expression for some C\(_4\)-accessory genes. Our work shows how C\(_4\) assembly in *A. semialata* happened in incremental steps, each requiring few alterations over the previous one. These create short bridges across adaptive landscapes that likely facilitated the recurrent origins of C\(_4\) photosynthesis through a gradual process of evolution.

Keywords: adaptation, C\(_4\) photosynthesis, complex trait, intermediates, phylogenetics, transcriptomics
Introduction

The origins of traits composed of multiple anatomical and/or biochemical components have always intrigued evolutionary biologists (Darwin, 1859; Meléndez-Hevia et al., 1996; Lenski et al., 2003). If such traits gain their function only through the co-ordinated action of multiple components, their evolution via natural selection must cross a valley in the adaptive landscape. Despite this obstacle, complex traits have evolved repeatedly in diverse groups of organisms. This apparent paradox is solved for most traits by the existence of intermediate stages, which act as evolutionary enablers, creating bridges over the valleys of the adaptive landscape (Jacob, 1977; Dawkins, 1986; Weinreich et al., 2006; Blount et al., 2012; Vopalensky et al., 2012; Werner et al., 2014). The accessibility of new traits likely depends on the length and complexity of such bridges, which are generally unknown.

Quantifying the evolutionary gap between phenotypic states is therefore crucial to contextualise the likelihood of a novel trait evolving.

An excellent system to study the evolutionary trajectories of an adaptive trait is C₄ photosynthesis. This metabolic pathway increases CO₂ concentration at the active site of assimilation via the Calvin-Benson cycle (Hatch, 1987; Sage, 2004; Christin & Osborne, 2014). This avoids the energetically costly process of photorespiration, effectively increasing photosynthetic efficiency in warm and arid conditions (Sage et al., 2012, 2018). This CO₂-concentrating mechanism relies on a set of specific leaf anatomical properties and the co-ordinated action of up to ten enzymes carrying the C₄ reactions (hereafter ‘core C₄ enzymes’) and numerous associated proteins (Table S1; Hatch, 1987; Bräutigam et al., 2011; Sage et al., 2012; Külahoglu et al., 2014; Lundgren et al., 2014; Yin and Struik 2017). Despite its apparent complexity, C₄ photosynthesis is a textbook example of convergent evolution, having independently evolved more than 60 times within flowering plants (Sage et al., 2011). The origins of C₄ photosynthesis were likely facilitated by the presence of anatomical enablers in some groups (Christin et al., 2013b; Sage et al., 2013), but the processes leading to a functioning C₄ biochemical pathway within these anatomical structures are less well understood. All C₄ enzymes studied so far exist in C₃ plants, but are involved in different pathways (Aubry et al., 2011). There is a bias in the recruitment of genes into the C₄ system, with genes ancestrally abundant in the leaves of C₃ plants preferentially co-opted for C₄ (Christin et al., 2013a; John et al. 2014; Emms et al., 2016; Moreno-Villena et al., 2018). Changes to their expression patterns and/or kinetic properties of the encoded enzyme then followed (Bläsiing et al., 2000; Hibberd & Covshoff, 2010; Huang et al., 2017; Moreno-Villena et al., 2018), with cell-specific expression realized in some cases through the recruitment of pre-existing regulatory mechanisms (Brown et al., 2011; Kajala et al., 2012; Cao et al.,
The evolutionary transition between C\textsubscript{3} and C\textsubscript{4} phenotypes involves intermediate stages that only have some of the anatomical and biochemical modifications typical of C\textsubscript{4} plants (Monson \textit{et al.}, 1989; Sage \textit{et al.}, 2012, 2018). In particular, some C\textsubscript{3}+C\textsubscript{4} plants perform a weak C\textsubscript{4} cycle that is responsible for only part of their carbon assimilation (these correspond to ‘type II C\textsubscript{3}-C\textsubscript{4} intermediates’; Ku \textit{et al.}, 1983; Monson \textit{et al.}, 1986; Schlüter & Weber, 2016). This weak C\textsubscript{4} cycle might have emerged through the upregulation of C\textsubscript{4}-related enzymes to balance nitrogen among cellular compartments in the multiple lineages of plants that use a photorespiratory pump (Sage \textit{et al.}, 2011, 2012; Mallmann \textit{et al.}, 2014; Bräutigam & Gowik, 2016). Metabolic models suggest that any increase in flux of CO\textsubscript{2} fixed through the C\textsubscript{4} cycle in intermediate plants directly translates into biomass gain, leading to gradual increases in C\textsubscript{4} gene expression (Heckmann \textit{et al.}, 2013; Mallmann \textit{et al.}, 2014). The current model of C\textsubscript{4} evolution therefore assumes gradual, yet abundant changes in plant transcriptomes and genomes during the transition from C\textsubscript{3} ancestors to physiologically C\textsubscript{4} descendants. Indeed, comparisons of C\textsubscript{3} and C\textsubscript{4} species have typically identified thousands of differentially expressed genes encoding C\textsubscript{4} enzymes, regulators, and accessory metabolite transporters (Bräutigam \textit{et al.}, 2011, 2014; Gowik \textit{et al.}, 2011; Külahoglu \textit{et al.}, 2014; Li \textit{et al.}, 2015; Lauterbach \textit{et al.}, 2017). These large numbers might partially result from the comparison of species typically separated by millions of years of divergence (Christin \textit{et al.}, 2011), which leaves ample time for the accumulation of secondary changes linked to the C\textsubscript{4} trait beyond the minimal requirements, as well as variation in other unrelated traits (Heyduk \textit{et al.} In press). Even within a single species where photosynthetic transitions can be induced, the number of differentially expressed genes identified in transcriptome comparisons can be extremely high (Chen \textit{et al.}, 2014). Previous efforts have however typically targeted very few individuals per C\textsubscript{4} lineage, such that the initial bout of co-option that generated a C\textsubscript{4} cycle cannot be distinguished from subsequent adaptation via natural selection and diversification caused by genetic drift (Christin & Osborne, 2014; Reeves \textit{et al.}, 2018; Heyduk \textit{et al.} In press).

In this study, the transcriptomes of mature leaves are compared among plant populations using a phylogenetic approach. The work aims to quantify the phenotypic differences in gene expression between the C\textsubscript{3} phenotype and plants using a weak C\textsubscript{4} cycle (C\textsubscript{3}+C\textsubscript{4} state), independently from those responsible for the transition to the full C\textsubscript{4} type, and finally from those involved in the adaptation of an existing C\textsubscript{4} phenotype. The time elapsed between transitions, and therefore the number of changes unrelated to C\textsubscript{4} emergence, is reduced by focusing on a single species containing a diversity of photosynthetic types, the grass \textit{Alloteropsis semialata}. Congeners of \textit{A. semialata} are C\textsubscript{4}, but previous comparative transcriptomics and leaf anatomy have shown that C\textsubscript{4} biochemistry emerged multiple
times in the genus, from a common ancestor with some C_4-like characters (Fig. 1; Dunning et al., 2017). Capitalizing on the physiological diversity existing within A. semialata, leaf transcriptomes from multiple individuals originating from diverse populations of each photosynthetic type in this species are analysed, together with closely related C_3 and C_4 species, to detect the changes in gene expression linked to (i) the phenotypic difference between C_3 plants and C_3+C_4 intermediates, (ii) the shift to fixing carbon exclusively via the C_4 pathway in solely C_4 plants, and (iii) the adaptation of the C_4 cycle after its evolution in geographically isolated C_4 populations. This deconstruction of the genetic origins of a complex biochemical pathway sheds new light on the number of genetic changes needed to move to another part of the adaptive landscape during different stages of a stepwise physiological transition.

Material and Methods

Species sampling and growth conditions

Three biological replicates from ten separate populations/species were used for differential gene expression analyses. Seven of these were geographically distinct Alloteropsis semialata populations including: two C_3 populations from South Africa (RSA6) and Zimbabwe (ZIM1502) that represent extremes of the C_3 geographic range (Fig. 1B; Lundgren et al., 2015), two geographically distant C_3+C_4 populations from Tanzania (TAN1602) and Zambia (ZAM1503) that are hypothesised to operate a weak C_4 cycle (Lundgren et al., 2016), and three C_4 populations from Cameroon (CMR1601), Tanzania (TAN4) and the Philippines (PHI1601) that sample the two C_4 genetic subgroups (Olofsson et al., 2016; Fig. S1). The C_4 populations of A. semialata have decreased CO_2-compensation points, increased carboxylation efficiencies, and shifts in carbon isotopes compared with the C_3 populations that confirm their photosynthetic type (Lundgren et al., 2016). The C_4 leaves are characterized by increased vein density, PEPC protein abundance, and transcript abundance of genes encoding some C_4 enzymes compared with the C_3 types (Lundgren et al., 2016, 2019; Dunning et al., 2017). The C_3+C_4 A. semialata also show elevated leaf levels of PEPC protein and genes for some C_4 enzymes and increased concentration of chloroplasts in bundle sheaths in comparison with the C_3 populations, but no increase in vein density (Lundgren et al., 2016; Dunning et al., 2017). However, while slightly shifted compared to their C_3 conspecifics, their carbon isotope ratios are not in the C_4 range, which is common in plants performing a weak C_4 cycle, responsible for only part of their CO_2 uptake (i.e. ‘type II intermediates’; Monson et al., 1988; von Caemmerer, 1992; Sage et al., 2012; Lundgren et al., 2016). This results in a reduced CO_2-compensation point and oxygen inhibition (Lundgren et al., 2016), as
observed in other species acquiring part of their carbon via a weak C4 cycle (Ku et al., 1991). In addition to the seven A. semialata populations, we included one population of each of the C4 congeners A. angusta (AANG1 from Uganda) and A. cimicina (from Madagascar) to enable comparison of convergent C4-related changes in gene expression (Fig. S1). Finally, an Entolasia marginata population from Australia was included as a C3 outgroup. Three distinct genotypes for eight of the ten populations described above were retrieved from a recent dataset (Dunning et al. In press) or sequenced here. For the two other populations, sufficient biological replicates were not available. For A. angusta, we sequenced three clones of a single wild collected plant that were established more than one year before the study, while for E. marginata we sequenced two different genotypes and a clone of one of these genotypes, similarly established before the study (See Table S2 for detailed sample collection information).

To evaluate the diversity of gene expression across the diversity of photosynthetic types and the genetic diversity within each photosynthetic type, we supplemented the above data with a single biological replicate from a further 15 geographic distinct populations (12 from previously published data; Dunning et al., 2017, In press; Fig. 1A). The three newly sequenced individuals are two C4 A. semialata from Sri Lanka (SRI1702, lat: 6.81 long: 80.92) and Zambia (ZAM1726, lat: -14.21 long: 28.60), and a C3 individual from Zimbabwe (ZIM1503, lat: -18.78 long: 32.74). In total, we had 45 RNA-Seq libraries from 25 populations/species, with three biological replicates sampled from 10 populations and a single biological replicate sampled from the remaining 15 populations (Fig. 1A).

All plants were collected from the field as seeds or live cuttings, and subsequently grown under controlled conditions at the University of Sheffield as previously described (Dunning et al., 2017). In brief, plants were potted in John Innes No. 2 compost (John Innes Manufacturers Association, Reading, England) and maintained under wet, nutrient-rich conditions in controlled environment chambers (Conviron BDR16; Manitoba, Canada) set to 60% relative humidity, 500 μmol m⁻² s⁻¹ light intensity, 14h photoperiod, and day/night temperatures of 25/20°C. After a minimum of 30 days in these growth conditions, young fully expanded leaves were sampled for transcriptome analyses.

RNA extraction, sequencing, and transcriptome assembly

RNA extraction, library preparation and sequencing were performed as previously described (Dunning et al., 2017). In brief, total RNA was extracted from the distal half of fully expanded fresh leaves, sampled in the middle of the light period, using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) with an on-column DNA digestion step (RNase-Free Dnase Set; Qiagen, Hilden, Germany). Total RNA was used to generate 34 indexed RNA-seq libraries using the TruSeq RNA Library Preparation Kit v2
Each library was subsequently sequenced on 1/24 of a single Illumina HiSeq 2500 flow-cell (with other samples from the same or unrelated projects), which ran for 108 cycles in rapid mode at the Sheffield Diagnostic Genetics Service.

The raw RNA-Seq data were cleaned using the Agalma pipeline v.0.5.0 to remove low quality reads (Q<30), and sequences corresponding to ribosomal RNA or containing adaptor contamination (Dunn et al., 2013). De novo transcriptomes were assembled using Trinity (version trinityrnaseq_r20140413p1; Grabherr et al., 2011). All raw data and transcriptome assemblies have been submitted to the NCBI repository (Bioproject PRJNA401220). Coding sequences (CDS) longer than 500 bp were predicted for each population using OrfPredictor (Min et al., 2005), which uses homology to a user supplied reference protein database or ab initio predictions if no suitable match is found. The protein database used comprised the complete coding sequences of eight model species: Arabidopsis thaliana, Brachypodium distachyon, Glycine max, Oryza sativa, Populus trichocarpa, Setaria italica, Sorghum bicolor and Zea mays.

Phylogenetic reconstruction using core-orthologs

Single-copy orthologs were extracted from the newly and previously published transcriptome assemblies (Dunning et al., 2017) to infer phylogenetic relationships among individuals. Homologous sequences to 581 single-copy plant core-orthologs previously determined in the Inparanoid ortholog database (Sonnhammer & Ostlund, 2014) were identified. A Hidden Markov Model based search tool (HaMSTR v.13.2.3; Ebersberger et al., 2009) was used to screen the CDS of the transcriptomes. Sequences of the single copy plant core-orthologs were subsequently aligned using a previously described stringent alignment and filtering pipeline (Dunning et al., 2017). In brief, the CDS were translation aligned and filtered using T-COFFEE v. 11.00.8cbe486 (Notredame et al., 2000) before trimming with gblocks v.0.91 (Castresana, 2000). Sequences shorter than 100 bp after trimming, and ortholog alignments with a mean nucleotide identity <95% were discarded, retaining 504 markers. A maximum likelihood tree was inferred using IQ-TREE v.1.6.3 (Nguyen et al., 2014), which determined the most appropriate nucleotide substitution model prior to inferring a phylogeny with 1,000 ultrafast bootstrap replicates.

Differential expression analyses

For differential expression analysis, we used the 45,144 cDNA sequences from the A. semialata reference genome (Dunning et al., In press; accession number QPGU00000000) as a reference. Cleaned reads were mapped to the reference using Bowtie2 v.2.3.4.1 (Langmead & Salzberg, 2012)
recording all alignments. Counts for each transcript were then calculated using eXpress v.1.5.1 (Roberts & Pachter, 2013) with default parameters, and are reported in reads per kilobase of transcript per million mapped reads (rpkm). A multivariate analysis was used to assess similarities and differences in overall transcriptome expression profiles between samples. Clustering of expression profiles based on the biological coefficient of variation (BCV) were identified with multidimensional-scaling (MDS) in edgeR v3.4.2 (Robinson et al., 2010).

Differential expression analysis in edgeR was restricted to the ten populations with three biological replicates. For each pair of populations, differentially expressed genes were identified as those with an associated false discovery rate (FDR) below 0.05. The overlap between pairwise comparisons was used to identify changes associated with specific branches of the phylogenetic tree inferred from core orthologs. Changes were assigned to a branch if significant results were detected for all pairwise tests involving one member of the descending clade and one population outside the clade, and the direction of expression change was consistent. This summary of pairwise tests was done separately for each C₃+C₄/C₄ clade (A. cimicina, A. angusta, and A. semialata) with all C₃ populations so that convergent gene expression shifts could be detected. Overall, by grouping the differential expression results based on the phylogenetic clades, we are able to identify changes in gene expression that coincide with specific physiological transitions, as well as those that precede or follow these transitions.

Results

Transcriptome sequencing

Over 190 million 108-bp paired-end reads were used in this study, including more than 167 million for the ten populations sampled in triplicate (Table S3). For these 30 samples used in differential expression analyses, the data comprised 36.13 Gb, with a mean of 1.20 Gb per library (SD=0.54 Gb; Table S3). Over 95% of reads were retained after cleaning, and a de novo transcriptome was assembled for each of the populations using all available reads.

Phylogenetic relationships based on concatenated ortholog alignments

A phylogenetic tree was inferred from a concatenated alignment of 504 'core-orthologs' extracted from the predicted coding sequences from 25 transcriptome assemblies (12 assembled here), for a total of 573,762 bp after cleaning. Each population was represented by at least 126,048 bp (mean=468,507 bp; SD 94,782 bp). The concatenated alignment had 21.1% gaps and 6.3% of sites were parsimony
informative. The phylogeny was inferred using the GTR+F+R4 substitution model, which was the best fit model according to the BIC. The phylogenetic relationships were congruent with previous genome-wide nuclear trees (Olofsson et al., 2016; Dunning et al. In press), and confirmed that all the sampled C₄ populations of A. semialata form a monophyletic group, which is sister to the C₃+C₄ populations (Fig. 1). These two are in turn sister to the C₃ populations, so that previously inferred nuclear clades I (C₃), II (C₃+C₄), III and IV (both C₄) are retrieved, with the polyploid populations (RSA3 and RSA4) branching in between and the Cameroonian population at their base (Olofsson et al., 2016; Fig. 1). A. angusta and A. cimicina branched successively outside of A. semialata (Fig. 1), again mirroring previous results (Lundgren et al., 2015; Olofsson et al., 2016; Dunning et al. In press).

Transcriptome-wide patterns
A mean of 57.4% (SD=12.05%) of cleaned reads from the 45 RNA-Seq libraries mapped back to the 45,144 cDNA sequences extracted from the reference A. semialata genome (only A. semialata samples n=34, mean=64.1%, SD=4.3%). In total, 59.8% (n=26,975) of gene sequences had expression levels of >1 read per million of mapped reads in at least three samples and were retained for differential expression analysis. Based on their expression profiles, samples group strongly by species (Fig. 2A). When focusing on A. semialata, the main phylogenetic groups are recovered, which match the photosynthetic types (Fig. 1 and 2B). There is no apparent effect of the source study, with previous and new transcriptomes of the same species grouping together (Fig. 2). Differential expression analysis was performed for each pair of the ten populations that had three biological replicates. The 45 pairwise tests performed returned an average of 4,880 (SD=2,125) significantly (FDR<0.05) differentially expressed genes (Fig. 3; Table S4). The number of differentially expressed genes is highest between the most distantly-related populations and lowest among close relatives (Fig. 3). Complete expression results are available in Tables S4 and S5.

Differences between the C₃ and C₃+C₄ states of A. semialata
As expected, the long divergence time between the C₃ outgroup (Entolasia marginata) and A. semialata results in a large number of significant expression changes (branch A in Fig. 4). A total of 825 genes are downregulated along this branch (3.1% of those expressed in leaves), including two genes encoding phosphoenolpyruvate carboxylase (PEPC; ppc-1P2 and ppc-2P1; ASEM_AUS1_43423 and ASEM_AUS1_37421; Table S6), which drop to barely detectable levels in all A. semialata accessions, and are therefore unlikely to be linked to photosynthetic diversification. A total of 1,500 genes (5.6%) are upregulated in A. semialata compared to the C₃ outgroup (branch A in
This includes genes encoding the C₄-related enzymes malate dehydrogenase (NAD-MDH; *nadmdh*-2P4; ASEM_AUS1_14800), adenosine monophosphate kinase (AK; ak-3P3; ASEM_AUS1_08191 and ASEM_AUS1_08195), glyceraldehyde 3-phosphate dehydrogenase (GAPDH; *gapdh*-1P2; ASEM_AUS1_06811) and phosphoenolpyruvate carboxylase kinase (PEPC-K; *pepck*-1P3 and *pepck*-3P6; ASEM_AUS1_38337 and ASEM_AUS1_12272), although their expression levels remain fairly low in all *A. semialata* regardless of photosynthetic type (mean=42 rpkm; SD=37; Table S5). One gene encoding an enzyme linked to the photorespiratory pathway is also upregulated (*hpr*-2P3; ASEM_AUS1_28984), although levels again remain fairly low within *A. semialata* (mean=19 rpkm; SD=13; Table S5). The rest of the numerous genes varying in expression between the whole of *A. semialata* and the outgroup do not have known links to the C₄ pathway. A total of 60 genes (0.22%) are differentially expressed along the branch leading to the C₃ populations of *A. semialata* (branch B in Fig. 4). None of these 60 genes encodes a protein known to function as part of the C₄ pathway (Table S6).

Within *A. semialata*, a C₄ cycle, weak or strong, characterizes the monophyletic group of C₃+C₄ and C₄ populations, but not its C₃ sister group. Along the branch leading to C₃+C₄ and C₄ accessions we detect 67 significantly differentially expressed genes (branch E in Fig. 4; Table 1). Of those, 58 (0.22% of all expressed genes) are consistently upregulated in the C₃+C₄ and C₄ populations compared to the C₃ samples, including three genes that encode key C₄ enzymes: aspartate aminotransferase (ASP-AT; *aspat*-3P4; ASEM_AUS1_08268), phosphoenolpyruvate carboxykinase (PCK; *pck*-1P1; ASEM_C4_17510), and PEPC (*ppc*-1P3; ASEM_C4_19029; Table S6). These three genes reach very high levels in the leaves of all C₃+C₄ and C₄ individuals (mean=1,766 rpkm; SD=585; Table S5; Fig. 5), including the C₄ congener *A. angusta* (mean=5,002 rpkm; SD=2,607; Table S5). The other genes whose expression changes significantly along the same branch mostly remain at low to moderate levels in all *A. semialata*, but a number of them are also significant in *A. angusta*, and for two of them in *A. cimicina* (Tables 1 and S6). The significant genes include one for Nudix hydrolase, which was previously identified in a comparison of rice and C₄ grasses (Ding et al., 2016). The remaining genes have however not been related to C₄ photosynthesis in previous screens of grasses (Ding et al., 2016; Huang et al., 2017). A gene for a callose synthase is downregulated in the C₃+C₄/C₄ group as well as *A. angusta* (Table 1), which might be linked to plasmodesmatal widening to facilitate intercellular fluxes, as suggested for other genes linked to callose synthesis (Bräutigam et al., 2011; Huang & Brutnell, 2016). Some of the other differentially expressed genes encode proteins that have been previously suggested as being involved in metabolic/structural differences between photosynthetic types (e.g. acyl transferase, pyruvate dehydrogenase; Huang & Brutnell, 2016) or that might be linked to
plasmodesmata (e.g. phosphatidylglycerol/phosphatidylinositol transfer protein), although the functional links with photosynthetic diversification remain to be tested.

Changes during the transition from C_3+C_4 to C_4 in A. semialata

Within A. semialata, a strong C_4 cycle characterizes a monophyletic group of populations (Fig. 1A), but only 16 genes (0.06% of all expressed genes) were significantly differentially expressed along the branch separating this group from the other populations (branch I in Fig. 4). Of these, 15 were consistently upregulated in the C_4 populations, including one gene encoding the core C_4 enzyme pyruvate orthophosphate dikinase ($PPDK$; $ppdk^{-1P2}$; ASEM_AUS1_39556), which reaches very high levels in all C_4 populations (mean=4,479 rpkm; SD=2,293; Tables 1 and S6; Fig. 5), including the congeners A. cimicina (mean=1,766 rpkm; SD=585; Table S5) and A. angusta (mean=1,367 rpkm; SD=1,100; Table S5). The other genes upregulated in the C_4 accessions, which include transcription factors and some transporters, reach moderate levels in the C_4 accessions, although some are also significantly upregulated in A. angusta (Table 1). Significant changes in the abundance of the genes for the phosphatidylglycerol/phosphatidylinositol transfer protein might be linked to modifications of plasmodesmata to facilitate metabolite exchanges (Grison et al., 2015), while aquaporins might be involved in membrane diffusion of CO_2 (Kaldenhoff et al., 2014). However, whether these genes played a direct role in the photosynthetic diversification of A. semialata remains speculative.

Adaptation of C_4 photosynthesis in independent lineages

The three C_4 populations included in the differential expression analyses come from geographically distant locations and diverged more than half a million years ago (Lundgren et al., 2015; Olofsson et al., 2016), explaining the large number of differentially expressed genes among them (Fig. 3). Interestingly, this includes enzymes linked to the C_4 cycle with genes encoding PEPC (ppc^{-1P3}; ASEM_AUS1_12633), NAD-MDH ($nadmdh^{-1P8}$; ASEM_AUS1_25602), PEPC-K ($pepck^{-1P3}$; ASEM_C4_38337), NADP-MDH (nadpmdh-3P4; ASEM_AUS1_33376), and a sodium bile acid symporter (SBAS; $sbas^{-4P4}$; ASEM_AUS1_12098) all upregulated in the C_4 plants from the Philippines (PHI1601; Table S6). A comparison of expression levels in the other transcriptomes (including the 15 populations not used for the differential expression) indicates that the gene $sbas^{-4P4}$ has qualitatively higher expression in all C_4 individuals from clade IV of A. semialata (mean=898 rpkm; SD=483), but not in the other C_4 individuals (mean=27 rpkm; SD=19) or the other A. semialata populations as a whole (mean=20 rpkm; SD=13; Table S5; Fig. 5). This gene is orthologous to a group of Arabidopsis paralogs including BASS6 (At4g22840), which has the ability to transport glycolate,
and appears to be involved in a process decreasing photorespiration (South et al., 2017). The
Arabidopsis paralog previously related to C₄ photosynthesis transports pyruvate (BASS2; Furumoto et al., 2011), but its precise function might differ between the Alloteropsis and Arabidopsis orthologs. In addition, a gene encoding the photorespiratory enzyme peroxisomal (S)-2-hydroxy-acid oxidase (GLO; glo-1P1; ASEM_AUS1_30871) is downregulated in only one of the three C₄ populations (CMR1601; Table S6).

There is quite large variation in the expression of individual genes encoding some other C₄ enzymes, with some more abundant in the C₄ than C₃+C₄ A. semialata populations on average, yet relatively low in other C₄ individuals. These genes include alanine aminotransferase (ALA-AT; alaat-1P5, ASEM_AUS1_25403; C₄ mean=1,105 rpkm; SD=812; C₃+C₄ mean=134 rpkm; SD=59; significantly differentially expressed in 13 of the 15 required pair-wise tests), which has low expression in C₄ individuals from Tanzania (TAN4-08; rpkm=135) and Cameroon (CMR1601-07; rpkm=154). Similarly, one of the genes encoding the NADP-malic enzyme (nadpme-1P4; NADP-ME, ASEM_AUS1_06611; significantly differentially expressed in 7 of the 15 required pair-wise tests) is on average more abundant in the C₄ and C₃+C₄ (mean=300 rpkm; SD=235) than C₃ (mean=75 rpkm; SD=32) A. semialata populations, but low within some C₄ individuals (e.g. TAN4-01 rpkm=82; TAN4-08 rpkm=54; ZAM1503-08 rpkm=50; Fig. 5). This gene is also significantly upregulated in A. cimicina and A. angusta (Table S5). One of the genes for PEPC kinase (pepck1P3) reaches high levels in several C₄ accessions of A. semialata (Table S5). Similarly, some genes for the small unit of Rubisco reach very low levels in some C₄ accessions. For instance, the gene AUS1_20231 is at low levels in most C₄ A. semialata, yet remains very high in others while the paralog AUS1_26631 reaches extremely low levels, specifically in the Asian group of C₄ A. semialata (Table S5). A third paralog (AUS1_26630) remains high in all accessions, so that the total abundance of genes for Rubisco is not markedly decreased, which is congruent with the high Rubisco protein abundance in the leaf of the C₄ A. semialata (Ueno & Sentoku, 2006).

The number of genes significantly differentially expressed in the C₄ A. cimicina and A. angusta lineages is much higher, since only one population represents each of these species (Fig. S3). As previously reported (Dunning et al., 2017), a high number of genes encoding core C₄ enzymes, regulatory proteins and transporters are upregulated in A. cimicina (Table S7), and to a lesser extent in A. angusta (Table S8), while some photorespiration and Rubisco genes are downregulated in both species. Besides the differentially expressed genes, a number of C₄-related genes are abundant in all samples independent of their photosynthetic type. This is especially the case of genes encoding β-carbonic anhydrase (βca-2P3; ASEM_AUS1_16750; mean=1,682 rpkm, SD=1,027, min=290) and
malate dehydrogenases: *nadpmdh-1P1* (ASEM_AUS1_23802; mean=443 rpkm, SD=501, min=117), *nadpmdh-3P4* (ASEM_AUS1_33376; mean=447 rpkm, SD=184, min=166), and *nadmdh-3P5* (ASEM_AUS1_22160; mean=157 rpkm, SD=69, min=41). Transcripts for these genes were also abundant in the leaves of distantly related C₃ grasses, and their upregulation very likely predates the diversification of the group (Moreno-Villena *et al.*, 2018).

Discussion

Sampling the natural diversity to limit false positives

RNA-Seq is routinely used to identify genes differentially expressed between individuals with distinct phenotypes, leading to lists of candidate genes underpinning these differences (e.g. Shen *et al.*, 2014; Dunning *et al.*, 2016; Fracasso *et al.*, 2016). When comparing distinct species, the risk of false positives is very high, as all changes in gene expression unrelated to the studied phenotypic transitions are detected. Here, 77.1% of genes expressed in the leaves are significantly differentially expressed in at least one pairwise comparison between our ten populations (49.8% within *A. semialata*), which all belong to a relatively small group of closely related grasses. A powerful strategy to reduce false positives is to consider multiple independent origins of the trait of interest, and retain only those genes differentially expressed in all lineages (Ding *et al.*, 2016; Rao *et al.*, 2016). Such a filter would however exclude non-convergent changes in gene expression.

The alternative approach adopted here was to carry out multi-individual comparisons to infer changes along specific branches of the phylogenetic tree. The problem of false positives remains, as changes coinciding with the studied transitions would also be detected. However, working within a species complex decreases the number of false positives, as shorter divergence times are likely to result in fewer unrelated changes in gene expression. Because most changes cluster on terminal branches (Fig. 4), probably representing neutral changes that do not persist over evolutionary time, the inference of changes on short internal branches is less likely to be affected by drift. Indeed, a comparison of a C₃ *A. semialata* with the C₄ sister species *A. angusta* would identify over 5,000 (18% of genes expressed in the leaves) differentially expressed genes (Fig. 3). This number drops by approximately 50% when comparing individual C₃ and C₄ populations within *A. semialata*, but still includes all changes that occurred before, during, and after the C₃ to C₄ transition. After incorporating multiple populations of each type, only 67 genes (0.25% of genes expressed in the leaves) are identified that differ in expression between the C₃ and C₃+C₄ phenotypes, and 16 (0.06% of genes expressed in the leaves) between the C₃+C₄ and C₄ states. Changes in some of these genes might not be directly linked to the
diversification of photosynthetic types, but several were convergently modified in *A. angusta* and/or *A. cimicina* (Table 1). These genes represent the best candidates for a role in the emergence and subsequent strengthening of a C₄ cycle in the group.

Emergence and reinforcement of the C₄ cycle in Alloteropsis semialata

The phylogenetic relationships and genus-wide comparisons of transcriptomes and leaf anatomical traits indicate that the last common ancestor of all *A. semialata* might have possessed a weak C₄ cycle based on the upregulation of some enzymes (Fig. 1; Dunning *et al.*, 2017). A large number of genes are differentially expressed between all *A. semialata* and the C₃ outgroup, which is not surprising given the evolutionary distance of at least 15 Myr (Christin *et al.*, 2014). However, these include relatively few genes encoding C₄ enzymes (Table S6). We conclude that the transcriptome of the C₃ *A. semialata* differs from that of other C₃ grasses by relatively few C₄-related genes. The C₃ group might represent a reversal from a C₃+C₄ state to a phenotype with expression levels similar to the C₃ outgroup. In such a scenario, C₄-related changes that happened in the last common ancestor of *A. semialata* and were reversed in the C₃ group would be assigned to the branch leading to the C₃+C₄ and C₄ groups. Because they focus on the phenotypic gaps in gene expression between the C₃ state and those using a weak or strong C₄ cycle, our transcriptome comparisons are therefore not heavily influenced by potential evolutionary reversals or reticulate evolution.

In total, 67 genes are differentially expressed in the group encompassing C₃+C₄ and C₄ phenotypes, and these include only three genes encoding core C₄ enzymes that are upregulated in all C₃+C₄ and C₄ individuals (genes for ASP-AT, PCK and PEPC; Table 1; Table S5). These three enzymes form an aspartate shuttle based on the PCK decarboxylase (Fig. 6), which theoretically cannot sustain a full C₄ pathway on its own without creating an energetic imbalance among cell types (Wang *et al.*, 2014). However, it might create a weak CO₂-concentrating mechanism in C₃+C₄ plants that can function without dramatic energetic consequences due to its coexistence with a C₃ type of photosynthesis. While the functional significance of the other changes detected along the same branch is not always known, several might be linked to the control of plasmodesmata and thereby intracellular exchanges (Table 1). Other small adjustments of the cellular metabolism might remain undetected, but none of the other major C₄ enzymes or transporters are significantly upregulated during the emergence of a weak C₄ cycle (Table 1). The apparently few changes in transcription required to operate a weak C₄ cycle in the C₃+C₄ intermediates may be facilitated by C₄-like anatomical properties and an abundance of genes for some key enzymes in the ancestor, as observed in other C₃ grasses (Christin *et al.*, 2013a, 2013b; Emms *et al.*, 2016; Dunning *et al.*, 2017; Moreno-Villena *et al.*, 2018), and recent
evidence suggests that some anatomical traits themselves might emerge via very few genetic changes (Wang et al., 2017). While it is only responsible for part of the plant’s CO₂ uptake, the weak C₄ cycle of C₃+C₄ plants reduces photorespiration (Ku et al., 1991; Lundgren et al., 2016), which confers a selective advantage analogous to that of a complete C₄ cycle in tropical conditions (Sage et al., 2012; Christin & Osborne, 2014; Lundgren & Christin, 2017), and allows the evolution of a stronger C₄ cycle under natural selection for faster biomass accumulation (Heckmann et al., 2013; Mallmann et al., 2014; Bräutigam & Gowik, 2016).

The transition from a weak to a strong C₄ cycle in A. semialata changes carbon isotope signatures (the method most often used to identify photosynthetic types) from non-C₄ values to values diagnostic of C₄ plants (von Caemmerer, 1992; Lundgren et al., 2015). This shift indicates a strengthened connection between the C₃ and C₄ cycles and a decreased leakiness, so that less atmospheric CO₂ is directly fixed by the Calvin-Benson cycle (Monson et al., 1988; von Caemmerer, 1992). Within A. semialata, this might have been mediated by the reduced distance between veins in the C₄ A. semialata (Lundgren et al., 2016, 2019; Dunning et al., 2017) and/or biochemical alterations. The upregulation of relatively few genes (0.06%) coincided with the phenotypic transitions, and only one of these encoded an enzyme with a known C₄ function, namely PPDK. This enzyme is responsible for the regeneration of PEP, the substrate of PEPC (Fig. 6). An increased PPDK activity is also observed between species of Flaveria performing a weak and a strong cycle, and it has been suggested that this provides PEPC with PEP at higher rates, thereby increasing the efficiency of the C₄ pathway (Monson & Moore, 1989; Sage et al., 2012). Based on the literature and our transcriptome data, the C₄ cycle of A. semialata relies on a minimum of seven enzymes (Fig. 6; Frean et al., 1983; Ueno & Sentoku, 2006). Genes for some of these enzymes (NAD-MDH, and AK) increased in the common ancestor of the whole group, potentially as part of an ancestral weak C₄ cycle (Fig. 1; Dunning et al., 2017). Within A. semialata, further increases in transcript abundance are observed in the C₃+C₄ vs C₃ or C₄ vs C₃+C₄ comparisons (Table 1) for genes encoding PEPC and three other enzymes (i.e. ASP-AT, PCK, and PPDK; Fig. 5). The expression of genes encoding CA and others NAD(P)-MDH in the C₃ ancestor of the group might have been sufficient to sustain a functioning C₄ cycle (Table S5; Moreno-Villena et al., 2018). Genes for the last of these enzymes (NADP-ME) are abundant in some C₄ individuals (Table S5; Fig. 5), and might be expressed only in specific conditions, as suggested previously (Frean et al., 1983).

C₄ populations of A. semialata are also characterized by a set of specific anatomical modifications and changes in the cellular localization of some enzymes (Ueno & Sentoku, 2006; Lundgren et al., 2016, 2019; Dunning et al., 2017). Gene expression changes responsible for these
modifications would not necessarily be captured by our transcriptome analyses of full mature leaves, and the evolution of the C₄ phenotype almost certainly involves more genetic changes than those detected here. While protein abundance is not a direct function of gene expression, the two are correlated (Schwanhäusser et al., 2011; Csárdi et al., 2015; Koussounadis et al., 2015). In the case of A. semialata, the three C₄ enzymes with genes differentially expressed in the C₃+C₄/C₄ transcriptomes (PEPC, ASP-AT and PCK) are also the ones with large differences in activities between the C₃ and C₄ A. semialata in a previous study (Ueno & Sentoku, 2006). Transcriptome comparisons offer a first assessment of the changes underlying adaptive transitions, allowing subsequent investigations of responsible regulatory elements, post-transcriptional processes, changes of the protein kinetics, and verification of gene functions via genetic manipulation (e.g. Wang et al., 2017; Borba et al., 2018).

Overall, our comparative transcriptomics show that, once the required enablers are present, the transition between C₃ to C₃+C₄ with some C₄ activity, and C₃+C₄ to a rudimentary C₄ metabolism might have required fewer changes in gene expression in A. semialata than previously suggested based on other comparisons (Bräutigam et al., 2011, 2014; Gowik et al., 2011; Külahoglu et al., 2014; Li et al., 2015). These changes were spread between the C₃/C₃+C₄ and C₃+C₄/C₄ transitions, supporting a stepwise model of evolution (Mallmann et al., 2014), where evolutionarily stable adaptive peaks can be reached with few mutations.

Adaptation continued after the emergence of a rudimentary C₄ pathway

The CO₂-pump generated by the C₄ cycle of A. semialata is less efficient than that of other C₄ species (Niklaus and Kelly, 2019), as illustrated by the incomplete segregation of enzymes between different cell types (Ueno & Sentoku, 2006) and slightly elevated CO₂-compensation points lying at the upper limit of those observed in C₄ species (Lundgren et al., 2016). Therefore, A. semialata may be considered to exhibit an incipient C₄ cycle, which has not been optimised through protracted evolutionary periods, as suggested in the most recent models (Bräutigam & Gowik, 2016). The analyses conducted here, which compared all C₄ individuals to the C₃+C₄ or C₃ conspecifics, can detect the changes that happened in the early C₄ members of the group, before the diversification of the C₄ genotypes. However, transcriptome comparisons across C₄ individuals of A. semialata show evidence of additional alterations of the leaf biochemistry subsequent to the initial emergence of a C₄ cycle, with the abundance of some C₄-related enzymes varying in abundance across C₄ populations (e.g. NAD-MDH) and photorespiratory proteins downregulated in only some of the C₄ populations (Tables S5 and S6). These changes likely represent the adaptation of the C₄ cycle after its initial emergence (Heyduk et al. In press; Niklaus and Kelly, 2019), previously illustrated for A. semialata by variation in the identity.
of genes responsible for an abundance of the key C₄ enzyme PEPC across C₄ genotypes (Dunning et al., 2017) and leaf anatomy (Lundgren et al. 2019), and recently reported for Gynandropsis gynandra (Reeves et al., 2018).

The C₄ pathway proposed for A. semialata, based on the upregulation of four core C₄ enzymes in addition to those present in C₃ ancestors (Fig. 6), might serve as an intermediate stage toward more complex and more efficient C₄ cycles. The congeneric C₄ A. cimicina and A. angusta have transcriptomes more typical of other C₄ species, with very high levels of numerous C₄-related enzymes, including a number of regulatory proteins and metabolite transporters (Table S5), as would be predicted from other study systems, and an abundance of amino acid transitions adapting the proteins for the new catalytic context (Bräutigam et al., 2011, 2014; Gowik et al., 2011; Mallmann et al., 2014; Christin et al., 2015; Dunning et al., 2017). These two species might have undergone more adaptive changes, due to an earlier C₄ origin or faster evolutionary rate. As illustrated by the additional C₄-related genes upregulated in the C₄ plants from the Philippines, the rudimentary C₄ trait of A. semialata is likely to undergo similar secondary adaptations over evolutionary time.

Conclusions

In this study, the transcriptomes of individuals from the grass Allotropis semialata are analysed in a phylogenetic context to show that the changes in gene expression required for a physiological innovation can be spread over time. The relatively few changes required for the initial emergence of a metabolic pathway contrasted with the numerous modifications involved in the adaptation of this new pathway. Indeed, the emergence of a weak C₄ cycle in our study system was accompanied by the upregulation of three enzymes with a known C₄ function and 55 others proteins. The evolution of a stronger C₄ cycle then involved the upregulation of one other C₄ enzyme and 14 other proteins. However, adaptation of C₄ photosynthesis, illustrated here by population-specific expression of C₄-specific enzymes, continues when the plants are already in a C₄ state. The evolutionary modifications required to generate a rudimentary C₄ pathway can therefore be modest in species possessing C₄ enablers, but even a suboptimal C₄ pathway is important because it changes the environmental responses of the species. This creates an opportunity for natural selection to act on the standing variation, new mutations and, in some cases, laterally acquired genes, to assemble a trait of increasing complexity, allowing the colonization and gradual dominance in a larger spectrum of ecological conditions.
Data deposition

All raw DNA sequencing data (Illumina reads) and transcriptome assemblies generated as part of this study have been deposited with NCBI under Bioproject PRJNA401220.

Supplementary Data

Supplementary data are available at JXB online.

Table S1: List of enzymes considered as core C₄ enzymes.

Table S2: Information for populations sampled in triplicates.

Table S3: RNA-Seq data and mapping statistics for ten populations with triplicates.

Table S4: Pairwise differential expression test results for all genes.

Table S5: Leaf abundance, annotation, and summary of significance for all genes.

Table S6: Summary of differentially expressed genes referred to in Fig. 1.

Table S7: Summary of differentially expressed genes referred to in Fig. S1A.

Table S8: Summary of differentially expressed genes referred to in Fig. S1B.

Figure S1: Phylogenetic patterns of changes in gene expression in (A) Alloteropsis angusta, and (B) Alloteropsis cimicina.

Acknowledgements

This paper is dedicated to the memory of Mary Ann Cajano, from the University of the Philippines at Los Banos, who helped with the identification of plant specimens. The authors thank John Thompson who helped with plant collection. This work was funded by the Royal Society University Research Fellowship (grant number URF120119) and the Royal Society Research Grant (grant number RG130448) to PAC. LTD is funded by a NERC grant (grant number NE/M00208X/1), and JKO and MRL are funded by an ERC grant (grant number ERC-2014-STG-638333).

Author contributions

LTD, JJMV, AB, CPO, and PAC designed the research; LTD, MRL, JD, PS, CA, FN, JKO, AM, IMA, CJK, LAD, FK, JT, GB, WPQ, CPO, and PAC identified and collected plant material; LTD and JJMV generated and analysed the transcriptome data, with the help of AB and PAC; LTD, JJMV, and PAC wrote the paper with the help of all co-authors.
References

Chen T, Zhu XG, Lin Y. 2014. Major alterations in transcript profiles between C₃–C₄ and C₄ photosynthesis of an amphibious species Eleocharis baldwinii. Plant Molecular Biology, 86, 93-

South PF, Walker BJ, Cavanagh AP, Rolland V, Badger M, Ort DR. 2017. Bile Acid Sodium
Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana. The Plant Cell 29, 808-823.

Table 1: List of genes differentially expressed in key comparisons within *Alloteropsis semialata* from C$_3$ to C$_3$+C$_4$, and C$_3$+C$_4$ to C$_4$ that have SwissProt annotations. SwissProt protein description and *Arabidopsis* ortholog information is based on top-hit blast matches. Mean rpkm is derived from the seven *A. semialata* populations used for differential expression analysis (full summary of results can be found in Table S6).

<table>
<thead>
<tr>
<th>Gene</th>
<th>SwissProt protein description</th>
<th>Arabidopsis ortholog</th>
<th>C$_3$</th>
<th>C$_3$+C$_4$</th>
<th>C$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEM_AUS1_17510</td>
<td>Phosphoenolpyruvate carboxylase (PCK)</td>
<td>AT4G37870</td>
<td>2</td>
<td>1168</td>
<td>3017</td>
</tr>
<tr>
<td>ASEM_AUS1_08268</td>
<td>Aspartate aminotransferase (ASP-AT)</td>
<td>AT5G15520</td>
<td>158</td>
<td>1843</td>
<td>1196</td>
</tr>
<tr>
<td>ASEM_AUS1_19029</td>
<td>Phosphoenolpyruvate carboxylase (PEPC)</td>
<td>AT2G42600</td>
<td>95</td>
<td>828</td>
<td>1118</td>
</tr>
<tr>
<td>ASEM_AUS1_30031a</td>
<td>Fruit bromelain</td>
<td>AT1G06260</td>
<td>11</td>
<td>260</td>
<td>497</td>
</tr>
<tr>
<td>ASEM_AUS1_08709</td>
<td>Iron-sulfur cluster assembly protein 1</td>
<td>AT4G22220</td>
<td>67</td>
<td>394</td>
<td>473</td>
</tr>
<tr>
<td>ASEM_AUS1_11198</td>
<td>Bidirectional TCA2 protein</td>
<td>AT3G16990</td>
<td>10</td>
<td>43</td>
<td>80</td>
</tr>
<tr>
<td>ASEM_AUS1_19914</td>
<td>50S ribosomal protein L17</td>
<td>AT5G64650</td>
<td>1</td>
<td>78</td>
<td>58</td>
</tr>
<tr>
<td>ASEM_AUS1_02887a</td>
<td>Cysteine proteinase 1</td>
<td>AT2G32230</td>
<td>0</td>
<td>44</td>
<td>54</td>
</tr>
<tr>
<td>ASEM_AUS1_16281a</td>
<td>Probable carboxylase 1</td>
<td>AT5G06570</td>
<td>1</td>
<td>16</td>
<td>50</td>
</tr>
<tr>
<td>ASEM_AUS1_11666</td>
<td>Putative protease Do-like 1</td>
<td>AT5G27660</td>
<td>1</td>
<td>63</td>
<td>39</td>
</tr>
<tr>
<td>ASEM_AUS1_18766a</td>
<td>Nudix hydrolase 16</td>
<td>AT3G12600</td>
<td>4</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>ASEM_AUS1_21431a</td>
<td>DNA-binding protein MNB1B</td>
<td>AT4G35570</td>
<td>0</td>
<td>94</td>
<td>30</td>
</tr>
<tr>
<td>ASEM_AUS1_24040ab</td>
<td>Putative phosphatidylglycerol/phosphatidylinositol transfer protein</td>
<td>AT3G11780</td>
<td>4</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>ASEM_AUS1_08934</td>
<td>Putative F-box protein</td>
<td>AT4G38870</td>
<td>0</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>ASEM_AUS1_44075</td>
<td>Indole-3-acetaldehyde oxidase</td>
<td>AT5G20960</td>
<td>0</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>ASEM_AUS1_24692</td>
<td>Dihydrodiplopysline-residue acetyltransferase component 1 of pyruvate dehydrogenase complex</td>
<td>AT3G52200</td>
<td>0</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>ASEM_AUS1_38810</td>
<td>UDP-glycosyltransferase</td>
<td>AT1G05680</td>
<td>0</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>ASEM_AUS1_24427</td>
<td>Putative F-box protein</td>
<td>AT1G65770</td>
<td>0</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>ASEM_AUS1_43609a</td>
<td>Flavin-containing monoxygenase FMO GS-OX-like 9</td>
<td>AT5G07800</td>
<td>0</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>ASEM_AUS1_40960</td>
<td>Cysteine-rich receptor-like protein kinase 26</td>
<td>AT4G23240</td>
<td>1</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>ASEM_AUS1_16960a</td>
<td>Valine--tRNA ligase</td>
<td>AT1G14610</td>
<td>0</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>ASEM_AUS1_27461ab</td>
<td>Aspartic proteinase nepenthesin-2</td>
<td>AT2G03200</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>ASEM_AUS1_15840</td>
<td>Tyrosine--tRNA ligase</td>
<td>AT2G33840</td>
<td>0</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>ASEM_AUS1_22664</td>
<td>Probable nucleolar protein 5-1</td>
<td>AT5G27120</td>
<td>0</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>ASEM_AUS1_39034</td>
<td>Putative protease Do-like 1</td>
<td>AT5G27660</td>
<td>0</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>ASEM_AUS1_21913</td>
<td>Protein NEN1</td>
<td>AT5G07710</td>
<td>0</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>ASEM_AUS1_01903</td>
<td>Disease resistance protein RPM</td>
<td>AT3G07040</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>ASEM_AUS1_21734</td>
<td>60S ribosomal protein L23a</td>
<td>AT3G55280</td>
<td>206</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>ASEM_AUS1_01414ab</td>
<td>Acetyl transferase 4</td>
<td>AT3G62160</td>
<td>150</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>ASEM_AUS1_31537</td>
<td>Pumilio homolog 23</td>
<td>AT1G72320</td>
<td>49</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>ASEM_AUS1_00061</td>
<td>40S ribosomal protein SA</td>
<td>AT3G04770</td>
<td>42</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>ASEM_AUS1_22162</td>
<td>Tubulin alpha-3 chain</td>
<td>AT4G14960</td>
<td>32</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>ASEM_AUS1_22449a</td>
<td>Callose synthase 3</td>
<td>AT5G13000</td>
<td>30</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ASEM_AUS1_04268a</td>
<td>40S ribosomal protein S21</td>
<td>AT5G27700</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ASEM_AUS1_06562ab</td>
<td>PTI1-like tyrosine-protein kinase 3</td>
<td>AT3G59350</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ASEM_AUS1_39556ab</td>
<td>Pyruvate, phosphate dikinase 1 (PPDK)</td>
<td>AT4G15530</td>
<td>60</td>
<td>133</td>
<td>1149</td>
</tr>
<tr>
<td>ASEM_AUS1_24184a</td>
<td>Phosphatidylglycerol/phosphatidylinositol transfer protein</td>
<td>AT3G11780</td>
<td>0</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<td>ASEM_AUS1_29700</td>
<td>Protein SRG1</td>
<td>AT1G17020</td>
<td>2</td>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>ASEM_AUS1_16577a</td>
<td>Lactoylglutathione lyase</td>
<td>AT1G11840</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>ASEM_AUS1_06220</td>
<td>S-norcoelaurine synthase</td>
<td>AT1G17020</td>
<td>1</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>ASEM_AUS1_24241</td>
<td>DnaJ homolog subfamily A member 1</td>
<td>AT3G14200</td>
<td>1</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Accession</td>
<td>Change</td>
<td>Fold Change</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>ASEM_AUS1_44200a</td>
<td>Aquaporin TIP1-1</td>
<td>AT2G36830</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ASEM_AUS1_13652</td>
<td>Transcription factor TGAL4</td>
<td>AT1G08320</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ASEM_AUS1_00246</td>
<td>Nicotinamide adenine dinucleotide transporter 2</td>
<td>AT1G25380</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Genes downregulated in C. A. semialata (branch I in Fig. 4)

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Accession</th>
<th>Change</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEM_AUS1_43847ab</td>
<td>Short-chain dehydrogenase TIC 32</td>
<td>AT4G23420</td>
<td>18</td>
<td>11</td>
</tr>
</tbody>
</table>

* Significant change in the same direction in A. angusta; ** Significant change in the same direction in A. cimicina
Figure captions

Figure 1: Phylogenetic tree inferred from multiple nuclear markers.

(A) This phylogeny was inferred under maximum likelihood using transcriptome-wide markers. Scale indicates number of nucleotide substitutions per site, and bootstrap support values are indicated near nodes. AANG = A. angusta. For A. semialata, population names indicate the country of origin; AUS = Australia, BUR = Burkina Faso, CMR = Cameroon, MAD = Madagascar, PHI = Philippines, RSA = South Africa, TAN = Tanzania, SRI = Sri Lanka, TPE = Chinese Taipei, ZAM = Zambia, ZIM = Zimbabwe. Populations sampled with biological replicates and used for differential expression analysis are indicated by the large circles and bold population names. Nuclear clades from Olofsson et al. (2016) are indicated. Branch colours indicate the ancestral photosynthetic types, based on the transcriptomes and leaf anatomy detailed investigations of Dunning et al. (2017). The hashed green at the base of A. semialata indicates uncertainty between C_3 and C_3+C_4 states. (B) Distribution of A. semialata photosynthetic types and sampling locations, with color codes as in panel A. Shadings indicate the approximate ranges of the three photosynthetic types of A. semialata, based on Lundgren et al. (2016).

Figure 2: Expression profile similarity across all samples.

Expression profiles are clustered in multidimensional scaling (MDS) plots using (A) all samples (B) only A. semialata samples. Species and nuclear clades from Olofsson et al. (2016) are delimited and population names are as in Fig. 1.

Figure 3: Number of differentially expressed genes among pairs of populations.

The heatmap shows the number of significantly differentially expressed genes detected for each pair of populations. The phylogenetic relationships among populations are indicated on the side, using an ultrametric version of the tree presented in Fig. 1.

Figure 4: Phylogenetic patterns of changes in gene expression.

The maximum-likelihood phylogeny from Fig. 1 is shown unrooted after pruning the populations not used for expression analyses. For each branch, the number of differentially expressed genes is indicated, with numbers next to arrows indicating those that are consistently up- or down-regulated as you move along the tree from the outgroup Entolasia marginata. Each population has three biological replicates, and colours indicate the photosynthetic type (blue = C_3; green = C_3+C_4; red = C_4). Scale indicates number of nucleotide substitutions per site, with truncated branches highlighted.
by two bars. The two greyed out C₄ congeners were excluded from these analyses, and results that involve them can be found in Fig. S3.

Figure 5: Expression levels of exemplar genes across accessions.

Expression levels in reads per kilobase of transcript per million mapped reads (rpkm) are shown for four example genes. Standard deviation for populations with biological replicates is indicated. Colours indicate the photosynthetic types; blue = C₃; green = C₃+C₄; red = C₄.

Figure 6: Putative C₄ pathway in Alloteropsis semialata

A C₄ cycle is suggested for *A. semialata* based on the transcript abundance of C₄-related genes, and the literature (Frean *et al.*, 1983; Ueno & Sentoku, 2006). Pathway components are coloured per the differential expression analysis, with those in black being putatively sufficiently abundant in C₃ ancestors, parts of the pathway in green upregulated during the transition to C₃+C₄, and parts in red upregulated during the transition from C₃+C₄ to C₄. ALA-AT = alanine aminotransferase, ASP-AT = aspartate aminotransferase, CA = carboxykinase, NADP-MDH = NADP malate dehydrogenase, NAD(P)-ME = NAD(P) malic enzyme, PCK = phosphoenolpyruvate carboxykinase, PEPC = phosphoenolpyruvate carboxylase, PEPP = phosphoenolpyruvate phosphatase, PPDK = pyruvate orthophosphate dikinase, PCR = photosynthetic carbon reduction cycle.