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    Abstract 

Understanding the electronic transport properties of junctions consisting of a scattering 

region such as a nanoscale object or molecule connected to electrodes is the central 

basis for future nano and molecular scale applications. In this thesis, I shall discuss the 

theoretical methods needed to describe such junctions and the present three studies of 

the electronic properties of molecular junction. 

            High electrical conductance molecular nanowires are highly desirable components for 

future molecular-scale circuitry, but typically molecular wires act as tunnel barriers and 

their conductance decays exponentially with length. In chapter 4, I demonstrate that the 

conductance of fused-oligo-porphyrin nanowires can be either length independent or 

increase with length at room temperature. I show that this negative attenuation is an 

intrinsic property of fused-oligo-porphyrin nanowires, but its manifestation depends on 

the electrode material or anchor groups. This highly-desirable, non-classical behaviour 

signals the quantum nature of transport through such wires. It arises, because with 

increasing length, the tendency for electrical conductance to decay is compensated by a 

decrease in their HOMO-LUMO gap. This study reveals the potential of these 

molecular wires as interconnects in future molecular-scale circuitry. 

Identification of structure-property relationships that govern single-molecule 

conductance is key to the continued development of molecular electronics. To realise 

new quantum-interference-based molecular junction, there is a need to establish simple 

and intuitive rules for synthesizing molecules with flexible and controllable chemical 

structures. In chapter 5, I demonstrate methoxyl groups (-OMe) induce destructive 

quantum interference (DQI) tuning in meta-phenylene ethylene-type oligomers (m-

OPE). My calculation reveals that the conductance of single molecules with -OMe 

pendant groups is sensitive to the position of the –OMe. This result is in agreement 
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with recently developed magic ratio and orbital product rules and demonstrates that 

destructive QI can be tuned by changing the –OMe position. This novel method of DQI 

tuning provides a new design strategy for creating single-molecule junctions with 

desirable functions. 

The design and development of metal/single-molecule/metal junctions with a 

conductance response to external stimuli has been a strong driving force in molecular 

electronics community. Reproducible conductance increase (or decrease) of a junction 

in response to external stimuli have been exploited. Mechanoresistive metal-molecule-

metal junctions, whose electrical conductance depends on the mechanical separation of 

the two electrodes, allow further control, which could be exploited to fabricate 

junctions responsive to multiple stimuli (e.g. electrochemical potential and electrode 

separation). Furthermore, knowledge of the structure-property relationships of 

mechanosensitive junctions provides a wealth of information about the nature, strength 

and configuration of metal-molecule interactions at the contact interface, which can be 

applied to fundamental studies of surface science and can be exploited to improve the 

design of molecular junction. In chapter 6, I demonstrate the metal/single-

molecule/metal junctions give a mechanoresistive behaviour with enhanced sensitivity, 

based on (methylthio)thiophene contacting groups. The effect arises from localised 

interactions between the thienyl sulfurs and the electrodes, which allows the junction to 

transition from a monodentate to a bidentate contact configuration as the junction is 

compressed, resulting in a up to two order of magnitude in the (methylthio)thiophene-

terminated molecule higher conductance compared with the (methylthio)benzene 

counterpart. 
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   Chapter 1 

 

1.  Introduction 

1.1.  Molecular Electronics 

Molecular electronics is a field of science that investigates the electronic transport 

properties of systems in which individual molecules are used as a basic building block. 

The dimensions of some molecular systems are a few nanometres, and therefore 

molecular electronics should be viewed as a subfield of nanotechnology1. 

The idea of using single molecules as building block to design and fabricate molecular 

electronic components has been around for more than 40 years2, but only recently it has 

attracted huge scientific interest to explore their unique properties and opportunities. 

Molecular electronics, including self-assembled monolayers3 and single-molecule 

junctions4  are of interest not only for their potential to deliver logic gates5 , sensors6 

and memories7 with ultralow power requirements and sub-10-nm device footprints, but 

also for their ability to probe room-temperature quantum properties at a molecular scale 

such as quantum interference8. 

In the last couple of years and especially since the rise of graphene9 in materials 

science and condensed-matter physics10, one can think of graphene-molecule-

graphene junctions11. Graphene with its low resistance is a very attractive candidate that 
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offers different anchoring modalities12,13 compared to metallic electrodes such as gold. 

It has attracted enormous interest due to its fascinating properties, including high 

charge mobility, transparency, mechanical strength and flexibility. 

Graphene, a single-layer of a hexagonal lattice of carbon atoms, is a two-dimensional 

zero band gap semimetal carbon material and has received worldwide attention since its 

discovery by Geim and Novoselov et al. in 200414.It has emerged as a fascinating 

system for fundamental studies in condensed matter physics, as well as the promising 

candidate material for future application in nanoelectronics and molecular devices10. It 

has a high specific surface structure15 and excellent thermal, mechanical and electrical 

properties16–18. Nano-sized graphene nanoribbons have been cut out of graphene sheets 

with two basic shapes for the edges: armchair and zigzag, which have distinct 

electronic transport properties19,20. 

This thesis involves theoretical studies focused on electronic properties of electrode-

molecule-electrode junctions. Two main techniques have been used to study the 

junctions in this thesis; density functional theory (DFT), which is implemented in the 

SIESTA code21, and the non-equilibrium Green’s function formalism of transport 

theory22, which is implemented in the Gollum code23.  

The main focus in this thesis, is on finding molecules with desirable properties. Among 

different organic molecules, porphyrins are an attractive class of organic molecules to 

investigate for molecular electronic functions24. The porphyrin molecule consists of 

four pyrrole cores (the inner ring π-system), and is an attractive building block for 

molecular-scale devices, because it is highly-conjugated, has a rigid planner geometry 

and is chemically stable25,26. Therefore, we can use it as a basis for wires, switches, 

transistors,  and photodiodes27–29.  
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The search for molecular nanowires, whose electrical conductance decays slowly with 

length has been subject to many studies in the last couple of decades27,30–34. Single-

molecule wires typically act as tunnel barriers and their conductance decays 

exponentially by molecular length35,36. Molecular wires usually possess a high beta 

factor, which limits their potential as interconnects in future molecular-scale circuitry. 

For example, measured room-temperature values of positive beta factor for OPEs37, 

OAEs38, OPVs39, acenes40, for oligoynes39,41 and alkanes42 depending on their precise 

anchor groups to gold electrodes. 

One of the most interesting aspects of single-molecular electronics is the phenomena of 

room-temperature quantum interference (QI), which has attracted increasing attention 

due to its potential for tuning charge transport through molecules43–47. QI affects 

electron transport, because when a molecule is bonded to the electrodes, the de Broglie 

waves of electrons passing through the molecule from one side to the other side, causes 

complicated interference patterns within the molecule8,48,49. 

In the co-tunneling regime, where a single molecule is weakly connected to compound 

electrodes via sites i and j, electrons passing through the molecule from one electrode to 

the other can remain phase coherent, even at room temperature38,50. This means that 

quantum interference QI will determine the electrical conductance of single 

molecules51,52 , as was confirmed in a series of recent experiments revealing room-

temperature signatures of QI53,54. These signatures are described by counting rules55,56 

which identify conditions for the occurrence of destructive quantum interference, while 

recently-developed mid-gap theory and Magic ratio rule (MRR) can be used to account 

for constructive interference.  The MRR is an exact formula for conductance ratios of 

tight-binding representations of molecules in the weak coupling limit, when the Fermi 

energy  is  located  at  the  centre  of  the HOMO-LUMO (H-L) gap. It captures the 
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complexity of interference patterns created by electrons at  the  center  of  HOMO-

LUMO  gap  and  allow  the  prediction  of  conductance  ratios. 5,57,58 

 

1.2. Thesis Outline 

The theoretical approach used in this thesis includes two main techniques, Density 

Functional Theory in chapter (2), which is implemented in the SIESTA code and the 

non- equilibrium Greens function formalism of transport theory in chapter (3). Both of 

these methods are used to extensively study a family of molecules. 

Chapter four presents the unusual behaviour of porphyrin molecular wires, whose 

conductance increases with length. This is in contrast with classical conductors and 

most molecular wires, whose conductance decays with length. 

In the fifth chapter, I will introduce the effect of external substituent groups on the 

(phenylene ethylene-type oligomers) molecular wires, when placed in different 

positions and compare their behaviour with the effect of heteroatoms placed in different 

positions. 

The sixth chapter will present a novel strategy for the introduction of electromechanical 

functionality in molecular wires and highlights the importance of weak interactions at 

the electrode interface by designed and characterised a series of single-molecule switch. 

Finally, the seventh chapter presents conclusions and suggestions for future works. 
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Chapter 2 

2. Density Functional Theory  

2.1. Introduction  

The electrical properties of molecular electronics devices can be understood by 

investigating their structural and electronic properties using density function theory 

(DFT). The aim of this chapter is to give a brief introduction to density functional 

theory (DFT) and its implementation in the SIESTA code (Spanish Initiative for 

Electronic Simulations with Thousands of Atoms)1, which I have used as a theoretical 

tool to investigate the structures of molecules as well as calculating charge densities, 

band structures, mean-field Hamiltonian and binding energies.  

The physical theories that support the fundamental assertion of density functional 

theory were introduced by Hohenberg and Kohn2 and then expanded by Kohn and 

Sham3 to solve the intractable many-body problem of interacting electrons in an 

external potential to a tractable problem of non-interacting electrons in an effective 

potential. This has led DFT to become one of the main tools in theoretical physics, 

molecular chemistry and biology4.  
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2.2. Many-body problem 

To find a method to solve the many-body problem we use the theoretical physics in 

quantum statistical mechanics5. The task is to find the eigenvalues and eigenstates of the 

full Hamiltonian operator of a general system by solving the Schrodinger equation: 

        𝐻𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑁, 𝑅⃗⃗1, 𝑅⃗⃗2, … , 𝑅⃗⃗𝑀) = 𝐸𝑖𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑅⃗⃗1, 𝑅⃗⃗2, … , 𝑅⃗⃗𝑀)                       (2.1.1) 

Here H represents the time-independent Hamiltonian operator of the system consisting 

of N-electrons and M-nuclei which describes the interaction of particles with each other, 

𝜓𝑖 is the wavefunction of the 𝑖𝑡ℎ state of the system and 𝐸𝑖 is the numerical value of the 

energy of the 𝑖𝑡ℎ state described by 𝜓𝑖. The many-body Hamiltonian can be written as: 

 

    𝐻 = −∑
ℏ2

2𝑚𝑒
∇𝑖
2

𝑖 +
1

8𝜋𝜀0
∑

𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗 − ∑

ℏ2

2𝑚𝐼
𝐼 ∇𝐼

2 +
1

8𝜋𝜀0
∑

𝑍𝐼𝑍𝐽𝑒
2

|𝑅𝐼−𝑅𝐽|
𝐼≠𝐽 −

1

4𝜋𝜀0
∑

𝑍𝐼𝑒
2

|𝑟𝑖−𝑅𝐼|
𝑖𝐼     

                                                                                                                                   (2.1.2)                                                            

Where 𝑚𝐼, 𝑍𝐼  and 𝑅𝐼  are the mass, atomic number and position of the I-th atom in the 

solid respectively. The position of i-th electron is denoted by 𝑟𝑖  and 𝑚𝑒 is the mass of a 

single electron. The Hamiltonian of the many-body problem is divided into five terms: 

the first term is the electron kinetic energy, the second term is electron-electron 

interactions, the third term is the nuclei kinetic energy, the forth term is nuclei-nuclei 

interactions and the last term is electron-nuclei interactions.  

The Schrodinger equation (2.1.1) cannot be solved as it stands because there are too 

many variables unless apart from the hydrogen atom or a small number of electrons. 
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However, an approximate, but very accurate solutions may be found if the equation is 

simplified using the Born-Oppenheimer approximation6 by recognizing that the nuclei 

and the electrons differ greatly in mass and, as a result, differ greatly in their relative 

speeds of motion. They assume the nuclei are much heavier than an electron and 

consequently, masses of the nuclei move much slower than the electrons, which reveal 

that we can consider the electrons as moving in the field of fixed nuclei, i.e. the nuclear 

kinetic energy is zero and their potential energy is a constant. Thus, the electronic 

Hamiltonian reduces to: 

       𝐻 = −∑
ℏ2

2𝑚𝑒
∇𝑖
2

𝑖

+
1

8𝜋𝜀0
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|𝑖≠𝑗

−
1

4𝜋𝜀0
∑

𝑍𝐼𝑒
2

|𝑟𝑖 − 𝑅𝐼|
𝑖𝐼

                                         (2.1.3) 

Here, the Schrodinger equation is solved for the electron degrees of freedom only. Once 

we know the electronic structure of a molecular system, we can calculate classical 

forces on the nuclei and minimize these forces to find the ground state geometry. With 

the Born-Oppenheimer approximation the assumption that the nuclei wave-function is 

independent of the electron position, the equation (2.1.3) can be rewritten as follows: 

              𝐻 = 𝑇𝑒 + 𝑈𝑒−𝑒 + 𝑉𝑒−𝑛𝑢𝑐                                                                                   (2.1.4) 

Here first term Te is the kinetic energy of all electrons, the second term Ue-e is the 

interaction between electrons and the last term 𝑉𝑒−𝑛𝑢𝑐 describes the interaction between 

electrons and nuclei. 

Therefore, the corresponding time independent Schrödinger equation will read: 

           𝐻𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑖, . . ) = 𝐸𝑖𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑖, . . )                                               (2.1.5) 

Despite the Born-Oppenheimer approximation minimizing the size of the system, it is 

still difficult to solve equation (2.1.5). Therefore, Density functional theory solves this 
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problem by expressing the physical quantities in terms of the ground-state density, the 

electron density of a general many body states characterized by a wave 

function 𝜓(𝑟1, 𝑟2, … , 𝑟𝑖)  is defined as:  

            𝜌(𝑟) = ∫𝑑3𝑟3𝑑
3𝑟2…𝑑3𝑟𝑖|𝜓(𝑟1, 𝑟2, … , 𝑟𝑖)|

2                                                 (2.1.6)     

 

2.3. The Hohenberg-Kohn theorems 

Essentially, Density Functional Theory evolved significantly depending on two 

important theories developed by the Hohenberg and Kohn in 19642, where the electron 

density 𝜌(𝑟) is used to calculate the ground state energy7. 

From the first theorem, for any system of interacting particles in an external potential 

Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by the ground 

state particle density 𝜌0 (r).  

The second theorem of the Hohenberg-Kohn states that a universal functional for the 

energy E [𝜌] in terms of the density can be defined, valid for any external potential 

Vext(r). For any particular Vext(r), the exact ground state of the system is the global 

minimum value of this functional, and the density 𝜌(𝑟) that minimizes the functional is 

the exact ground state density 𝜌0(𝑟). 

 

2.4. The Kohn-Sham ansatz 

The Kohn–Sham formalism3 enables DFT to solve the many-body problem. The many 

body interactions in the external potential are modelled as a set of non-interacting 

particles in a new effective external potential Vext. By comparing the result of a non-

interacting system and an interacting system, we can find the effective external 
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potential. In 1965 there was a solution introduced by Kohn and Sham3 to replace the 

original Hamiltonian of the system by an effective Hamiltonian of non-interacting 

particles in an effective external potential that has the same ground-state density as the 

original system8,9. 

The form of the energy functional of the Kohn-Sham is: 

𝐸𝐾𝑆[𝜌] = 𝑇𝐾𝑆[𝜌] + ∫𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟) + 𝐸𝐻[𝜌] + 𝐸𝑥𝑐[𝜌]                                      (2.1.7) 

Here, 𝑇𝐾𝑆  is the kinetic energy of the non-interacting system. The difference between 

the energy of the non-interacting and interacting system is referred to the exchange 

correlation functional Exc. Also, EH represents the Hartree function, which describes the 

electron-electron interaction and it is given by:  

               𝐸𝐻[𝜌] =
1

2
∬

𝜌(𝑟)𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑟𝑑𝑟′                                                                               (2.1.8) 

The above equation represents an approximate version of internal interactions of the 

electrons Eint. So, the exchange correlation functional Exc represents the differences 

between the exact and approximated solutions to both the kinetic energy term and the 

electron-electron interaction terms that definition follows:  

            𝐸𝑥𝑐[𝜌] = (𝐸𝑖𝑛𝑡[𝜌] − 𝐸𝐻[𝜌]) + (𝑇[𝜌] − 𝑇𝐾𝑆[𝜌])                                              (2.1.9) 

If we take the functional derivatives of the last three terms of (2.1.9) then we can define 

an effective single particle potential Veff  as: 

             𝑉𝑒𝑓𝑓(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) +
𝜕

𝜕𝜌
(𝐸𝐻[𝜌] + 𝐸𝑥𝑐[𝜌])                                                     (2.1.10)   

Using this potential, we can write down a single particle Hamiltonian: 

              𝐻𝐾𝑆 = 𝑇𝐾𝑆[𝜌] + 𝑉𝑒𝑓𝑓                                                                              (2.1.11)  

The corresponding Schrödinger equation: 

               𝐻𝐾𝑆𝜓
𝐾𝑆 = 𝐸𝜓𝐾𝑆                                                                                    (2.1.12) 
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This equation called the Kohn-Sham equation, and the goal of solving the Kohn-Sham 

is to find the ground state density, as shown in figure (2.1.1). Normally, the solutions 

are obtained by an iteration step which starts by assuming an arbitrary density and then 

calculates an initial effective potential which is then used to solve a single particle 

Schrödinger equation. This solution is used to obtain the next density that will be 

considered as the initial value of density in the next loop. So, after several steps of 

iteration the density reaches the ground state density. The final density yields the 

implemented self-consistent effective potential for non-interacting electrons. Therefore, 

this method will be a successful approach to give an accurate ground state density when 

we have the exact Exc, which is determined as described in the next section. 

 

Figure 2.1.1: Schematic of the self-consistency process within SIESTA 

 

2.5. The Exchange Correlation functional 

DFT has been successful to reduce the quantum mechanical ground-state many-electron 

problem to self-consistent one-electron form, by the Kohn-Sham equations10. This 

method is formally precise, while for practical calculations, the exchange-correlation 
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energy, 𝐸𝑥𝑐, as a functional of the density has to be approximated. There are numerous 

proposed forms for the exchange and correlation in the literature11,12. The most 

commonly implemented approximation is Local Density Approximation (LDA)13 and 

generalized gradient approximation (GGA)14. To give more information about the Local 

Density Approximation and the Generalized Gradient Approximation, the following 

section will briefly describe it. 

 

2.5.1. Local Density Approximation 

The LDA approximation assumes that the exchange-correlation functional depends 

only on the local density and it is in some sense the simplest form one could imagine 

for the exchange and correlation energies. It is a powerful functional which is known to 

be accurate for systems where the electron density is not rapidly changing. The 

functional of the approximation is: 

       𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] = ∫𝑑𝑟𝜌(𝑟) (∈𝑥

ℎ𝑜𝑚 (𝜌(𝑟)) +∈𝑐
ℎ𝑜𝑚 (𝜌(𝑟)))                                      (2.1.13) 

Where the exchange and correlation for the homogeneous electron gas can be defined 

by terms  ∈𝑥
ℎ𝑜𝑚 and ∈𝑐

ℎ𝑜𝑚, respectively.  

 

2.5.2.   Generalized gradient approximation 

The GGA approximation extends the LDA by involving the derivatives of the density 

into the functional form of the exchange and correlation energies. In the GGA 

approximation, there is no closed form for the exchange term of the functional, but it 

has been calculated along with the correlation contribution by using numerical 

methods. The exchange-correlation energy is given by: 

           𝐸𝑥𝑐
𝐺𝐺𝐴 = 𝐸𝑥

𝐺𝐺𝐴[𝜌] + 𝐸𝑐
𝐺𝐺𝐴[𝜌]                                                                              (2.1.14) 
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And the exchange term is: 

         𝐸𝑥
𝐺𝐺𝐴[𝜌] = ∫ ∈𝑥 (𝜌(𝑟))𝑉𝑥(𝜌(𝑟) ∇𝜌(𝑟))𝜌(𝑟)𝑑𝑟                                            (2.1.15) 

 

2.6. SIESTA 

The DFT electronic structure calculations in this thesis have been performed using the 

SIESTA code1. SIESTA is a set of methods and a complete software package that can 

be used to perform DFT calculations on a huge system consisting of thousands of 

atoms. It uses the standard Kohn-Sham self-consistent density function method. In 

addition, the functionals that are used in SIESTA include the Local Density 

Approximation (LDA) and the Generalized Gradient Approximation (GGA).  

2.6.1. The Pseudopotential Approximation 

The Kohn-Sham equation simplifies the large interacting problem, but the calculation 

for the many-body Schrödinger equation for practical purposes is still very large and 

has the potential to be computationally intensive. One method to solve the 

computational problem is to reduce the number of electrons by introducing the 

pseudopotential approximation which was proposed by Fermi in 193415,16. The idea is 

to solve this problem by removing the core electrons from an atom17. 

The electrons in an atom can be split into two types: valence and core, where the 

valence electrons lie in partially filled shells, but core electrons lie within filled atomic 

shells. The core electrons are spatially localized about the nucleus and the valence 

electrons are outside the core region. When the atoms interact only the valence 

electrons overlap, and the core electrons could be removed and replaced by a 
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pseudopotential. This will reduce the number of electrons in a system and also, save the 

time and memory required to calculate properties of molecules that contain a large 

number of electrons18. 

 

2.6.2. SIESTA Basis Sets 

In order to turn the partial differential equations (e.g. the Schrodinger equation (2.1.1)) 

into algebraic equations suitable for efficient implementation on a computer, a set of 

functions (called basis functions) is used to represent the electronic wave function18. In 

order to find the ground state energy, the Hamiltonian of the system should be 

diagonalized. This process involves the inversion of a large matrix1 whose computation 

time scales with the number of non-zero elements. To minimize the size of the 

Hamiltonian, SIESTA utilises a linear combination of atomic orbital (LCAO) basis set 

which are constrained to be zero outside of a certain radius (cut-off radius). 

Furthermore, this generates the required sparse form for the Hamiltonian, and that 

reduces the overlap between basis functions. Therefore, a minimal size basis set can 

produce characteristics which model that of the studied system.  

The simplest form of the atomic basis set for an atom is single-ζ which corresponds to a 

single basis function per electron orbital  𝛹𝑛𝑙𝑚(𝑟) (i.e. 1 for an s-orbital, 3 for a p-

orbital, etc...). In this case, each basis function consists of a product of one radial 

wavefunction 𝜙𝑛𝑙
1 , and one spherical harmonic 𝑌𝑙𝑚: 

              𝛹𝑛𝑙𝑚(𝑟) = 𝜙𝑛𝑙
1 (𝑟)𝑌𝑙𝑚(𝜑, 𝜗)                                                                              (2.1.16) 

 

The radial part in equation (2.1.16) of the wavefunction is found by using the Sankey 

method19. 
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For higher accuracy basis sets (multiple-ζ) are formed by adding another radial 

wavefunctions for each included for each electron orbital. Further accuracy (multiple- ζ 

polarised) can be obtained by including wavefunctions with different angular momenta 

corresponding to orbitals which are unoccupied in the atom. Table (2.1.1) shows the 

number of basis orbitals for a selected number of atoms for single-ζ (SZ), double-ζ 

(DZ), Single-ζ Polarised (SZP) and double-ζ polarized (DZP) basis set in all DFT 

calculations. 

 

Table 2.1.1: Example of the number of radial basis functions per atom as used within the 

SIESTA for different degrees of precisions. 

 

 

 

 

 

 

2.6.3. Calculating binding energy using the counter poise method  

Using the DFT approach to calculate the ground state geometry of different system 

configurations allows us also to calculate the binding energy between different parts of 

the system. However, these calculations are subject to errors, due to the use of localized 

basis sets which are centred on the nuclei. If atoms are moved, then, their basis 

functions will overlap which might cause artificial strengthening of atomic interactions 

and this will give an inaccurate total energy of the system. In general, to solve this type 

of error, the Basis Set Superposition Error correction (BSSE)20 or the counterpoise 

correction (CP)21 must be performed in calculations when utilizing the linear 

Atoms SZ SZP DZ DZP

H 1 4 2 5

C 4 9 8 13

N 4 9 8 13

O 4 9 8 13

S 4 9 8 13

Au 6 9 12 15
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combination of atomic orbitals. The energy of interaction of two systems a and b can be 

expressed as: 

 

            ∆𝐸(𝑎𝑏) = 𝐸𝑎𝑏
𝑎𝑏 − (𝐸𝑎

𝑎 + 𝐸𝑏
𝑏)                                                                        (2.1.17) 

 

Where 𝐸𝑎𝑏
𝑎𝑏 is the total energy for the dimer system a and b, and the 𝐸𝑎

𝑎 and 𝐸𝑏
𝑏

 are the 

total energy of the two isolated systems. So, to perform these corrections inside 

SIESTA, I use ‘ghost’ states (basis set functions which have no electrons or protons) to 

evaluate the total energy of the systems a or b in the dimer basis. 

∆𝐸(𝑎𝑏) = 𝐸𝑎𝑏
𝑎𝑏 − (𝐸𝑎

𝑎𝑏 + 𝐸𝑏
𝑎𝑏)   

where 𝐸𝑎
𝑎𝑏 𝑎𝑛𝑑 𝐸𝑏

𝑎𝑏 is the energy of system, a and b evaluated in the basis of the dimer. 

This method provides accurate results for different systems to give reliable and realistic 

results22-24.  
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Chapter 3 

3. Single Particle Transport 

3.1. Introduction 

In this chapter, I will introduce the theory of single particle transport as the main 

numerical tool. In molecular electronics, the aim is to understand the electrical 

behaviour and characteristics of molecular junctions and how to connect the molecular 

structures to electrodes to investigate electronic properties. The coupling strength 

between the molecule and the metallic electrodes in most cases is weak which leads to 

scattering processes from the electrode to the molecule or inside the molecule. One of 

the main theoretical methods to study scattering in these systems is the Green’s 

function formalism.  

I will start with a brief overview of Schrödinger equation and the Landauer formalism 

with a simple derivation. Following this, I will introduce the concept of Green’s 

functions for a simple one-dimensional tight binding chain to describe the transport of 

arbitrarily complex geometry which presents the general methodology used to describe 

the transmission coefficient T(E) in a molecular junction for electrons with energy E 

traversing from one electrode to the other. 
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3.2. Schrödinger Equation 

The most general Schrödinger equation1 describes the evolution of physical properties 

of a system in time and was proposed by the Austrian physicist Erwin Schrödinger in 

1926 as: 

                           𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑟, 𝑡) = 𝐻̂ 𝜓(𝑟, 𝑡)                                                                (3.2.1) 

Where 𝜓  is the wave function of the quantum system, and 𝐻̂  is the Hamiltonian 

operator which characterizes the total energy of any given wave function and ℏ is the 

reduced Planck constant ( 
ℎ

2𝜋
 ), r and t are the position vector and time respectively.  

For a single particle moving in an electric field: 

                         𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑟, 𝑡) = [

−ℏ2

2𝑚
∇2 + 𝑉(𝑟, 𝑡)] 𝜓(𝑟, 𝑡)                                         (3.2.2) 

Separating the variables, where  𝜓(𝑟, 𝑡) = 𝜓(𝑟) 𝑓(𝑡). The Schrodinger equation then 

becomes two ordinary differential equations:   

                          
1

𝑓(𝑡)

𝑑

𝑑𝑡
𝑓(𝑡) = −

𝑖𝐸

ℏ
                                                          (3.2.3) 

And  

                                𝐻̂ 𝜓(𝑟) = 𝐸𝜓(𝑟)                                                                        (3.2.4)         

The solution of equation (3.2.3) could be written as: 

                                𝑓(𝑡) = 𝑒−𝑖𝐸𝑡 ℏ⁄                                                                            (3.2.5)    

 Then, the time dependent Schrodinger equation solution is obtained:  

                                 𝜓(𝑟, 𝑡) =  𝜓(𝑟) 𝑒−𝑖𝐸𝑡 ℏ⁄                                                             (3.2.6)    
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Where, the most general solution is: 

                                 𝜓(𝑟, 𝑡) =  ∑ 𝑐𝑖𝑖 𝜓𝑖(𝑟) 𝑒
−𝑖𝐸𝑡 ℏ⁄                                                    (3.2.7)            

 Equation (3.2.4) is called the time independent Schrödinger equation and it is an 

eigenvalue problem where E’s are eigenvalues of the Hamiltonian 𝐻̂.    

3.3. The Landauer Formula 

The Landauer formula2,3 is the standard theoretical model to describe transport 

phenomena in ballistic mesoscopic systems. This formula is the most popular way to 

describe coherent transport in nanodevices because it is a simple expression for the 

relation between the transmission probability of the electron and the electronic 

conductance in one-dimensional structures with two terminals. To begin with, I assume 

that the system connects two large reservoirs (or contacts) with a scattering region, as 

shown in figure 3.3.1. The chemical potentials for the reservoirs are slightly 

different 𝜇𝐿 > 𝜇𝑅 ⟹ 𝜇𝐿 − 𝜇𝑅 = 𝛿𝐸 > 0, which will drive electrons from the left to 

the right reservoir.  

 

 

 

 

 

 

 

Figure 3.3.1: A mesoscopic scatterer connected to contacts by ballistic leads, where the 

chemical potential in the contacts is μL (left) and μR (right) respectively.  
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The incident current (𝛿𝐼𝑖𝑛) passing through this system from the left to the right 

reservoir is: 

                 𝛿𝐼 = 𝑒𝑣 (
𝜕𝑛

𝜕𝐸
) (𝜇𝐿 − 𝜇𝑅)                                                                                     (3.3.1) 

Where e is the electron charge, 𝑣 is the group velocity, and 
𝜕𝑛

𝜕𝐸
  is density of states 

(DOS). 

For one-dimensional system: 

                     
𝜕𝑛

𝜕𝐸
=

𝜕𝑛

𝜕𝑘

𝜕𝑘

𝜕𝐸
=

𝜕𝑛

𝜕𝑘

1

𝑣ℏ
                                                                                          (3.3.2) 

As in one-dimension,  
𝜕𝑛

𝜕𝑘
=

1

𝜋
  and   

𝜕𝑛

𝜕𝐸
=

1

𝑣ℎ 
, since the group velocity is 𝑣 =

1

ℏ
 
𝑑𝐸

𝑑𝑘
  ,which simplifies equation (3.3.1) to:  

                      𝛿𝐼 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
𝛿𝑉                                                                        (3.3.3) 

Where 𝛿𝑉 represents the voltage corresponding to the chemical potential difference and 

number 2 is a factor for spin dependency. From equation (3.3.3), it is clear that the 

conductance for one open channel in the absence of a scattering region is  (
𝑒2

ℎ
)  , which 

is around 77.5 μS, or the resistance (
ℎ

𝑒2
) about 12.9 kΩ.  On the other hand, if the 

system has a scattering region, the current is partially reflected with a probability 𝑅 = 

|𝑟|2 and partially transmitted with a probability 𝑇 = |𝑡|2. The current passing through the 

scatterer to the right lead will be: 

               𝛿𝐼 =
2𝑒2

ℎ
𝑇𝛿𝑉 ⇒

𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
𝑇                                                                     (3.3.4) 

This equation is the Landauer formula, where the conductance 𝐺 =
𝐼

𝑉
= (

2𝑒2

ℎ
) 𝑇. and 

the transmission is evaluated at the Fermi energy4. 
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At zero voltage and finite temperature the conductance is:  

                  𝐺 =
𝐼

𝑉
= 𝐺0 ∫ 𝑑𝐸𝑇(𝐸) (−

𝑑𝑓(𝐸)

𝑑𝐸
)

∞

−∞
                                                         (3.3.5) 

Where 𝐺0 = (
2𝑒2

ℎ
)   which is the quantum of conductance, 𝑓(𝐸) is the Fermi-Dirac 

distribution function and the quantity  −
𝑑𝑓(𝐸)

𝑑𝐸
  is a normalised probability distribution 

of width approximately equal to 𝑘𝐵𝑇, centred on the Fermi energy 𝐸𝐹,where kB  is 

Boltzmann constant 𝑘𝐵 = 8.62 × 10−5
𝑒𝑉

𝐾
, 𝑇  here is the Temperature.  

 The integral in equation (3.3.5) represents a thermal average of the transmission 

function T(E) over an energy window of the width (𝑘𝐵𝑇 = 25 meV at room 

temperature)5. at zero voltage and zero temperature:   

                               𝐺 = 𝐺0 × 𝑇(𝐸𝐹)                                                                                        (3.3.6) 

In the case where there is more than one open channel, the Landauer formula has been 

extended by Büttiker3, where the sum of all the transmission amplitudes which describe 

electrons incoming from the left contact and arriving to the right contact: 

 

              
𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
∑|𝑡𝑖,𝑗|

2

𝑖,𝑗

=
2𝑒2

ℎ
𝑇𝑟𝑎𝑐𝑒(𝑡𝑡† )                                                   (3.3.7) 

Here, 𝑡𝑖,𝑗 represents the amplitude of transmission describing scattering from the jth 

channel of the left lead to ith channel of the right lead and G is the electrical 

conductance. Also, the reflection amplitudes 𝑟𝑖,𝑗 describe the electron passing through 

scattering region but in the opposite direction. Combination of the amplitudes of 

transmission and reflection will make the scattering S matrix as follows: 
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                    𝑆 = (
𝑟               𝑡′

𝑡               𝑟′
)                                                                                         (3.3.8) 

Here, r and t represent the electrons transferring from the left, also r' and t' describe 

electrons coming from the right. In equation (3.3.7) r, t, r' and t' are matrices for more 

than one open channel, and due to charge conservation satisfaction, the S matrix be 

unitary 𝑆𝑆+ = 𝐼. 

 

3.4. Tight-Binding Model  

Tight binding has existed for many years as a convenient and transparent model for the 

description of the electronic structure in molecules and solids6. In this work, I will also 

use the tight binding model (TBM) which assume that the electrons in a solid are 

sufficiently tightly bound that I need only consider nearest neighbours. This will be true 

in many physical problems when the wave function at the individual atomic sites decay 

to zero before they reach the second nearest neighbour. 

 A simple TB description of system could be constructed by assigning a H𝑢̈ckel 

parameter to on-site energy ε of each atom in the molecule connected to the nearest 

neighbours with a single Hückel parameter (hopping matrix element) γ as shown in 

figure (3.4.1). 

 

 

 

Figure 3.4.1: A simple Tight Binding Hamiltonian for a close system of two single-orbital sites 

with on-site energies ε and −ε coupled to each other by the hopping integral γ. 

𝜀 −𝜀
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Here, I will present a simplest example to find the eigenvalues and eigenvector by using 

tight binding method. The Hamiltonian of such system is written as:  𝐻 = (
𝜀  
 ∗ −𝜀) , 

then the Schrödinger equation reads:                     

                                (
𝜀  
 ∗ −𝜀) (

𝜓
𝜙
) = 𝐸 (

𝜓
𝜙
)                                                         (3.4.1) 

The eigenvalues E are calculated by solving det(H-EI)=0. Where I =(
1 0
0 1

) is the 

identity matrix. 

The eigenvalues from the Hamiltonian are: 

                             𝐸± = ±√𝜀2 + | |2                                                                     (3.4.2) 

Corresponding to each eigenvalue there must be orthogonal eigenvectors (
𝜓+

𝜙+
), (

𝜓−
𝜙−

). 

By substituting equation (3.4.2) into (3.4.1) I get: 

                         
𝜓±

𝜙±
=

𝛾

𝐸±−𝜀
=

𝐸±+𝜀

𝛾∗
                                                        (3.4.3) 

If ε = 0 and E = ±γ, simplest normalised eigenstates could be written as: 

            (
𝜓+

𝜙+
) =

1

√2
(
1
1
 )             ,    (

𝜓−
𝜙−

) =
1

√2
(
1
−1

)                                                 (3.4.4) 

If γ = 0 and E = ± ε, the wave functions are fully localised on each site: 

                   (
𝜓+

𝜙+
) =

1

√2
(
0
1
 )             ,    (

𝜓−
𝜙−

) =
1

√2
(
1
0
)                                              (3.4.5) 
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3.5. Scattering Theory  

3.5.1. One dimensional (1-D) linear crystalline lattice (infinite).  

In order to calculate transport properties in a perfect wire I am going to use the Green’s 

function technique to obtain the transmission coefficient, I will start by a simple infinite 

one-dimensional chain with on-site energies ε0 and real hopping parameters -γ as shown 

in figure (3.5.1).  

 

 

Figure 3.5.1: One-dimensional periodic lattice tight-binding approximation with on-site 

energies ε0 and hopping parameters -γ. 

 

First, the Schrödinger equation describing the system’s wavefunction with the 

Hamiltonian H is: 

                              H|𝜓⟩ = 𝐸|𝜓⟩                                                                             (3.5.1) 

To solve Schrödinger equation in (3.5.1) for the system in figure (3.5.1), I need to 

define the Hamiltonian matrix for this system as: 

                         𝐻 = (

⋱ − 0 0
− 𝜀0 − 0
0 − 𝜀0 − 
0 0 − ⋱

)                                                          (3.5.2)   

              

The Schrödinger equation at a lattice site   j  in terms of the energy and wavefunction 

𝜓𝑗 is given by : 

00 0 0 0 0 0

−− − − − −
− 

j-1 j j+1
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                                 (𝐸 − 𝐻)𝜓 = 0                                                                         (3.5.3) 

 

                𝜀0𝜓𝑗 −  𝜓𝑗+1 −  𝜓𝑗−1 = 𝐸𝜓𝑗                                                               (3.5.4) 

Where 𝜓 is the wavefunction, and equation (3.5.2) satisfied for all j going 

from +∞ 𝑡𝑜 − ∞. I can get the Recurrent Relation by factored out the term  𝜓𝑗+1 as: 

                        𝜓𝑗+1 = (
𝜀0−𝐸

𝛾
)𝜓𝑗 − 𝜓𝑗−1                                                                   (3.5.5)   

By using the Bloch’s theorem  

                       𝜓𝑗 =
1

√𝜐
𝑒𝑖𝑘𝑗               , −𝜋 ≤ 𝑘 < 𝜋                                                     (3.5.6) 

 I can define the wave function for the perfect lattice chain. The Schrödinger equation 

(3.5.5) can be solved to obtain the dispersion relation: 

                                𝐸 = 𝜀0 − 2 𝑐𝑜𝑠𝑘                                                                     (3.5.7) 

The group velocity can be obtained by: 

                                  𝑣 =
𝜕𝐸

𝜕𝑘
= 2 sin(𝑘)                                                                          (3.5.8) 

Where k is the wavenumber. It is clear that for a given energy I can see there are two 

wavefunctions that satisfy equation (3.5.1), and their k and v have opposite signs.  

 

3.5.2. Retarded Green’s Function 

To calculate the retarded Green’s function 𝑔(𝑗, 𝑗′), which is closely related to the 

wavefunction, the following equation is solved: 

 

                  (𝐸 − 𝐻)𝑔(𝑗, 𝑗′) = 𝛿𝑗, 𝑗′                                                                         (3.5.9) 

 

Here, 𝛿𝑗, 𝑗′ is Kronecker delta 𝛿𝑗, 𝑗′ = 1  if  𝑗 = 𝑗′ and 𝛿𝑗, 𝑗′ = 0   if 𝑗 ≠ 𝑗′. 
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In general, the retarded Green’s function 𝑔(𝑗, 𝑗′) explains the response of a system at a 

point  j due to an excitation (a source) at point 𝑗′. In reality, the excitation give rise to 

two waves, which travel outwards with amplitudes A and B as shown in figure (3.5.2). 

 

 

 

 

 

Figure 3.5.2: Retarded Green’s function of an infinite one-dimensional lattice. The excitation 

at  𝑗 =  𝑗′ causes waves to propagate left and right with amplitudes A and B respectively. 

 

The waves can be presented as: 

                             𝑔(𝑗′, 𝑗 ) = { 𝐵𝑒
𝑖𝑘𝑗 

𝐴𝑒−𝑖𝑘𝑗 
            

𝑗 > 𝑗′

𝑗 < 𝑗′
                                              (3.5.10) 

In this equation, the solution satisfies equation (3.5.9) at every point except 𝑗 =  𝑗′. 

Since the Green’s function must be continuous in equation (3.5.10), I equate the two at 

𝑗 =  𝑗′:  

                  [𝑔(𝑗, 𝑗′)]𝑗=𝑗′ 𝑙𝑒𝑓𝑡 = [𝑔(𝑗, 𝑗′)]𝑗=𝑗′ 𝑟𝑖𝑔ℎ𝑡                                                (3.5.11) 

                 𝐵𝑒𝑖𝑘𝑗
′
= 𝐴𝑒−𝑖𝑘𝑗

′
  ⟹    𝐴 =  𝐵𝑒2𝑖𝑘𝑗

′
                                                  (3.5.12) 

By substituting equation (3.5.12) into the Green’s function equation (3.5.10), I find as 

shown: 

          𝑔(𝑗′, 𝑗 ) = {
 𝐵𝑒𝑖𝑘𝑗                        = 𝐵𝑒𝑖𝑘𝑗

′
𝑒𝑖𝑘(𝑗−𝑗

′)           𝑗 ≥ 𝑗′  

𝐵𝑒2𝑖𝑘𝑗
′
𝑒−𝑖𝑘𝑗          = 𝐵𝑒𝑖𝑘𝑗

′
𝑒𝑖𝑘(𝑗

′−𝑗)           𝑗 ≤ 𝑗′
                 (3.5.13) 

BA

zj=j'
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I can rewrite the equation (3.3.13) as:  

                    𝑔(𝑗, 𝑗′) = 𝐵𝑒𝑖𝑘𝑗
′
𝑒𝑖𝑘|𝑗−𝑗

′|                                                                  (3.5.14) 

To find the value of the constant B, I use equation (3.5.9) and equation (3.5.6) which 

for j = j′ given: 

                         (𝜀𝑜 − 𝐸)𝐵 −  𝐵 𝑒𝑖𝑘 −  𝐵𝑒𝑖𝑘 = 1                                                      (3.5.15) 

                                  𝐵(2𝑐𝑜𝑠𝑘 − 2𝑒𝑖𝑘) = 1    

                                𝐵 =
1

2𝑖𝛾𝑠𝑖𝑛𝑘
=

1

𝑖ℏ𝑣
 

Where the group velocity, found from the dispersion relation equation (3.5.7), is: 

                              𝑣 =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
=

2𝑖𝛾𝑠𝑖𝑛𝑘

ℏ
                                                         (3.5.16) 

I can rewrite the retarded Green’s function as shown: 

                                 𝑔𝑅(𝑗, 𝑗′) =
1

𝑖ℏ𝑣
𝑒𝑖𝑘|𝑗−𝑗

′|                                                         (3.5.17) 

If the two waves incoming from left and right enter the point j′, so j′ is a sink not a 

source, then the corresponding Green's function is called the advanced Green’s 

function.  

 

3.5.3. One-Dimensional (1-D) Scattering 

In this section, I will obtain the Green’s function of a system that has two one-

dimensional tight binding semi-infinite leads, connected by a coupling element α. The 

two leads have equal on-site potentials 𝜀0 and hopping elements− , as shown in figure 

(3.5.3). 
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Figure 3.5.3: Simple tight-binding model of a one-dimensional scatterer attached to one-

dimensional leads. 

To solve this problem, I will derive the transmission and reflection amplitudes for an 

electron moving from the left lead to right lead through the scattering region. First, the 

Hamiltonian that takes the form of an infinite matrix, is given by: 

                  𝐻 =

(

 
 
 

⋱
− 
0
0
0
0

− 
𝜀0
− 
0
0
0

0
− 
𝜀0
𝛼
0
0

0
0
𝛼
𝜀0
− 
0

0
0
0
− 
𝜀0
− 

0
0
0
0
− 
⋱ )

 
 
 
= (

𝐻𝐿          
−
−

𝑉𝑐
†        

𝑉𝑐
−
−
𝐻𝑅

)                                    (3.5.18) 

Here, 𝐻𝐿 and 𝐻𝑅  denote the Hamiltonians of the leads, which are the semi-infinite 

equivalent of the Hamiltonian that is shown in equation (3.5.4), and Vc is the coupling 

parameter connecting them. If γ is real, then the dispersion relation corresponding to the 

leads which is introduced above in equation (3.5.7), and also the group velocity was 

written in equation (3.5.16). By calculating the Green’s function of this problem, I can 

obtain the scattering amplitudes. So, the form for the solution of equation (3.5.9), which 

is given as: 

                                    𝐺 = (𝐸 − 𝐻)−1                                                                  (3.5.19) 

This equation can be singular if the energy E is equal to eigenvalues of the Hamiltonian 

H, to deal with this it is practical to consider the limit: 

                           𝐺∓ = lim
𝜂→0

(𝐸 − 𝐻 ± 𝑖𝜂)−1                                                          (3.5.20) 
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Here, η denotes a positive number and G∓ represents the retarded (advanced) Green’s 

function. In what follows, the retarded Green’s function has been used, and the positive 

sign only has been chosen. For the infinite one- dimensional chain, the retarded Green’s 

function can be defined in equation (3.5.17), which is given as: 

                               𝑔𝑗,𝑗′
∞ =

1

𝑖ℏ𝑣
𝑒𝑖𝑘|𝑗−𝑗′|                                                                    (3.5.21) 

Hence, j and j’ denote the labels of the sites in the chain and sufficient boundary 

conditions, which are needed to give the Green’s function of a semi-infinite lead. The 

lattice is semi-infinite; therefore, the chain should be terminated at a given point j0 as 

shown in figure (3.5.4).  

 

 

 

Figure 3.5.4: Tight-binding approximation of a semi-infinite one-dimensional chain with on-

site energies 0 and couplings − . 

The boundary condition is achieved by adding a wavefunction to the Green’s function. 

To get the appropriate boundary condition thus I have to add:                                                                 

                                𝛹𝑗,𝑗′
𝑗0 = −

𝑒𝑖𝑘(𝑗+𝑗
′−2𝑗0)

𝑖ℏ𝑣
                                                              (3.5.22) 

The Green’s function (𝑔𝑗𝑗′ = 𝑔𝑗𝑗′
∞ +𝛹𝑗,𝑗′

𝑗0 )  will have the following simple form at the 

boundary j = j' = j0 −1: 

                                  𝑔𝑗0−1,𝑗0−1 = −
𝑒𝑖𝑘

𝛾
                                                               (3.5.23) 
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In the case where the two leads a decoupled, α = 0, the total Green’s function of the 

scattering region can be given as: 

                  𝑔 =

(

 
 
−

𝑒𝑖𝑘

𝛾

0
0
0

     0
0
0
0

0
0
0
0

0
0
0

−
𝑒𝑖𝑘

𝛾 )

 
 
= (

𝑔𝐿
0
0
0

     0
0
0
0

0
0
0
0

0
0
0
𝑔𝑅

)                                         (3.5.24) 

Here, g is the decoupled Green’s function. 

If I consider a switch on of the interaction, then to obtain the Green’s function of the 

coupled leads of this system, Dyson’s equation is written:  

                            𝐺−1 = (𝑔−1 − 𝑉)                                                                      (3.5.25) 

Where the operator V describing the interaction connecting the two leads, which has the 

form: 

                            𝑉 = (

0
0
0
𝑉𝑐

†

     0
0
0
0

0
0
0
0

𝑉𝑐
0
0
0

) = (

0
0
0

−𝛼∗

     0
0
0
0

0
0
0
0

−𝛼
0
0
0

)                                         (3.5.26) 

 

By solving the Dyson’s equation (3.5.25), I will obtain: 

                  𝐺 =
1

𝛼2−𝛾2𝑒−2𝑖𝑘
(

 𝑒−𝑖𝑘

0
0
−𝛼

     0
0
0
0

0
0
0
0

−𝛼
0
0

 𝑒−𝑖𝑘
)                                                        (3.5.27) 

Here, I can calculate the transmission (t) and the reflection (r) amplitudes from the 

Green’s function equation (3.5.27). This is obtained by using the Fisher-Lee relation,7,8 

which relates the scattering amplitudes of a scattering problem to the Green’s function 

of the problem. The Fisher-Lee relations for our case is given: 
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                                𝑟 = 𝑖ℏ𝑣𝐺1,1 -1                                                                      (3.5.28) 

          And                𝑡 = 𝑖ℏ𝑣𝐺 1,2𝑒
𝑖𝑘                                                                     (3.5.29) 

These amplitudes correspond to particles incident from the left. Similar expressions 

could be used for the transmission (𝑡′) and reflection (𝑟′) amplitudes for the particles 

are travelling from the right. Based on these coefficients, the probability is defined as:  

             𝑇 = |𝑡|2   ,    𝑇′ = |𝑡′|2    and      𝑅 = |𝑟|2   ,    𝑅′ = |𝑟′|2                           (3.5.10) 

 Since I are now in the possession of the full scattering matrix, so I can use the 

Landauer formula equation (3.3.4) to calculate the zero-bias conductance. 

 

3.6. Transport through an arbitrary scattering region 

 In this section I will derive the most general formula for the transmission probability 

for an arbitrarily scattering structure. Here I will use a different approach starting with 

the wave functions leading to the surface Green’s function and ending up with a general 

formula for the transmission probability. 

 

 

 

Figure 3.6.1. Tight-binding representation of a one dimensional arbitrarily scattering region 

attached to one dimensional lead. 

Considering the nanoscale junction in Figure (3.6.1), where an arbitrary scattering 

region with Hamiltonian H is connected to two one dimensional leads. On-site energies 

0 0 0 0 0 0− 

𝑓𝑗

− 𝑅 - - - - − 𝐿

1 N
0-1-2 N+1 N+2 N+3

𝜙𝑗 = 𝑡 𝑒−𝑖𝑘𝜓𝑗 = 𝑒 𝑖𝑘+r𝑒−𝑖𝑘
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and coupling in the left (right) lead L(R) are εL (εR) and −γL (−γR), respectively, and the 

leads are connected to the site 1 and N of the scattering region. 

If the wave function in the left, the right and the scattering region are  𝜓𝑗 = 𝑒𝑖𝑘𝑗 +

𝑟𝑒−𝑖𝑘𝑗  ,𝜙𝑗 = 𝑡𝑒𝑖𝑘𝑗 and 𝑓𝑗  respectively, the Schrödinger equation for the left and right 

lead and the scattering region with connection points could be written as:  

                     𝜀0𝜓𝑗 −  𝜓𝑗−1 −  𝜓𝑗+1 = 𝐸𝜓𝑗                   for    𝑗 ≤ 0                         (3.6.1) 

                      𝜀0𝜓0 −  𝜓−1 −  𝜓1 = 𝐸𝜓0                    for    𝑗 = 0                          (3.6.2) 

         ∑ ℎ𝑖𝑗𝑓𝑗 −  𝐿𝜓0𝛿𝑖1 −  𝑅𝜙𝑁+1𝛿𝑖𝑁 = 𝐸𝑓𝑖 
 𝑁
𝑗=1   for   0 ≤ 𝑗 ≤ 𝑁 + 1                 (3.6.3) 

Also, 

                     𝜀0𝜙𝑁+1 −  𝑅𝑓𝑁 −  𝜙𝑁+2 = 𝐸𝜙𝑁+1          for    𝑗 = 𝑁 + 1                 (3.6.4) 

                  𝜀0𝜙𝑗 −  𝜙𝑗−1 −  𝜙𝑗+1 = 𝐸𝜙𝑗                      for  𝑗 > 𝑁 + 1                   (3.6.5) 

Equation (3.6.3) can be written as: 

f  =g X  where   𝑔 = (E − h)−1 is the Green’s function and | X ⟩ called source which 

is a zero vector with non-zero elements only in the connection points at site  𝑗 = 0 

and  𝑗 = 𝑁 + 1. For the junction in figure (3.6.1),  |X ⟩  has only two non-zero elements 

due to the source. 

                      (
𝑓1
𝑓𝑁
) = (

𝑔11 𝑔1𝑁
𝑔𝑁1 𝑔𝑁𝑁

) (
𝑋0

 𝑋𝑁+1
)                                                           (3.6.6)  

Where 𝑋0 =  𝐿𝜓0  and  𝑋𝑁+1 =  𝑅𝜙𝑁+1. 

By using the recurrence relation, I get: 

                                  𝜙𝑁 =  𝑅𝑓𝑁                                                                           (3.6.7)  
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                                   𝜓1 =  𝐿𝑓1                                                                            (3.6.8) 

                                 𝜙𝑁 = 𝜙𝑁+1 𝑒
−𝑖𝑘                                                                    (3.6.9) 

                                 𝜓1 = 2𝑖𝑠𝑖𝑛𝑘 + 𝜓0𝑒
−𝑖𝑘                                                         (3.6.10)  

By combine these four equations with equation (3.6.6) I get: 

                 (
γ

γL
 e−ik−g11γL                  −g1N γR

−gN1 γL             −gNN γR−
γ

γR
e−ik

)( 0

1+N
)=

γ

γL
(2isink)(1

0
)                           (3.6.11)   

Therefore  

                   ( ψ0
∅N+1

) =     γ

γL
(2isink) 

1

d
(
−

γ

γR
𝑒−𝑖𝑘 −gNN γR

−gN1 γL
)    

The transmission t and reflection r amplitudes could be obtained: 

                            𝑡 = 𝑖𝑣 [ 𝐿𝑔𝐿 (
𝑔𝑁1

∆
)  𝑅𝑔𝑅]                                                              (3.6.12)   

Where                        𝑔𝐿,𝑅 =
𝑒𝑖𝑘𝐿,𝑅

−𝛾𝐿,𝑅
                                                                         (3.6.13)   

This is the surface Green’s function in the left and right leads and: 

               ∆ =  (1 − Σ𝐿g11 − Σ𝑅gNN + Σ𝐿Σ𝑅 (g11gNN − g1NgN1) )                     (3.6.14)  

Where    Σ𝐿,𝑅 =  2
𝐿,𝑅
𝑔𝐿,𝑅   are called self-energies due to the left and right contacts. 

The transmission probability is: 

                         T (E) =   |∅N+1|
2 = |t|2                                                                  (3.6.15)                                                   

Then, 

                      T (E) = (
γL

γ
)
2

(
γR

γ
)
2

υ2 (
gN1 

∆
)
2

                                                          (3.6.16) 
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Equation (3.6.16) is the most general formula to calculate the transmission probability 

for any scattering region connected to identical leads. 

The completely general technique for calculating Green’s function and a scattering S 

matrix and transport coefficient of a finite super-lattice connected to crystalline semi-

infinite leads can be found in 9. 

 

3.7    Features of the Transport Curve 

The main feature of electron transport through single molecules and phase coherent 

nanostructures is the appearance of transport resonances and anti-resonances associated 

with quantum interference. Deep understanding of the transmission process can be 

achieved by looking at the properties of these resonances. Here, I will briefly discuss 

different kinds of resonances, which are: Breit−Wigner resonances10, anti-resonances 

11,12 and Fano resonances13,14. 

 

3.7.1 Breit-Wigner Resonance  

 

 

Figure 3.7.1: Simple model to study a Breit-Wigner resonance, a scattering region with a 

single impurity placed between two one-dimensional semi-infinite chains 

 

To study the behaviour of resonances for transmission function T(E), figure (3.7.1) 

shows a one-dimensional crystalline linear chain with a single impurity placed in the 

middle of the chain as a defect which is coupled to the left and right of semi-infinite 
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crystalline chains by hopping elements −𝛼. Then, the transmission probability could be 

expressed by a Lorentzian function, via the Breit-Wigner formula as:  

                                       𝑇(𝐸) =
4Γ1Γ2

[(𝐸−𝜀𝑛)
2+(Γ1+Γ2)

2]
                                       (3.7.1) 

 

Therefore, within this formula, the transmission coefficient T(E) of the single molecular 

junction can be described by two parameters: ( Γ ) and ( 𝜀𝑛 ) where (Γ ) is the strength 

of the coupling between the molecule and the electrodes (labeled 1 and 2 in equation 

(3.7.1)) and  𝜀𝑛 = 𝐸𝑛 − Σ  is the eigen energy 𝐸𝑛  of the molecular orbital shifted 

slightly by an amount Σ  due to the coupling of the orbital to the electrodes5. 

Transmission coefficient T(E) has Breit-Wigner-type resonances showing the 

maximum value when the electron resonates with the molecular orbital (i.e. when  

𝐸 = 𝜀𝑛).  

The formula is valid when the energy E of the electron is close to an Eigen energy  𝐸𝑛  

of the isolated molecule, and if the level spacing of the isolated molecule is larger than ( 

Γ1 + Γ2).  In the case of a symmetric molecule attached symmetrically to identical leads 

(i.e.  Γ1 = Γ2 ) and again when ( 𝐸 = 𝜀𝑛 ), T(E) =1. The width of the resonance depends 

on the coupling component 𝛼  where if the coupling element 𝛼  is large, the resonances 

are wider.  

If a bound state (e.g. a pendant group ε2) is coupled (by coupling integral 𝛽) to a 

continuum of states as shown in figure (3.7.2), Fano resonances could occur. Fano 

resonance contains an anti-resonance followed by a resonance with an asymmetric line 

profile in between. 
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Figure 3.7.2: Tight binding model to study Fano resonances. Two one-dimensional semi-

infinite chains coupled to a scattering region of site energy ε0 by hopping elements −  where 

an extra energy level is attached to the scattering region. 

Also, an anti-resonance could appear in the transmission probability when the system is 

multi-branched and destructive interference occurs between propagating waves at the 

nodal point. A simply example is shown in figure (3.7.3) 

 

 

 

Figure 3.7.3: Tight binding model to study anti-resonance. Two one-dimensional semi-infinite 

chains coupled to the scattering region. 

Figure 3.7.4 shows the general shape of the transmission probability related to this kind 

of resonances.  

 

 

 

 

 

 

 

Figure 3.7.4: Transmission coefficients for the systems describe in sections 3.7.1 (Red), 3.7.2 (Green) 

and 3.7.3 (Blue). 
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Chapter 4 

 

The Conductance of Porphyrin-Based Molecular 

Nanowires Increases with Length 

 

The conductance of a classical metallic wire is inversely proportional to its length. In 

contrast, molecular wires usually act as tunnelling barriers where the conductance 

decays exponentially with length. In contrast, in this chapter, the conductance of fused-

oligo-porphyrin nanowires is examined theoretically, and I demonstrate the conductance 

increase with length at room temperature. The results presented in this chapter were 

published in Norah Algethami, et al ‘The Conductance of Porphyrin-Based Molecular 

Nanowires Increases with Length’ Nano Letter 2018, 18 (7), 4482–4486. 
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4.1. Introduction 

The search for molecular nanowires, whose electrical conductance decays slowly with 

length has been subject to many studies in the last couple of decades1-6. Single-

molecule wires typically act as tunnel barriers and their conductance G decays 

exponentially by molecular length7,8 L as G = A e-βL where A is pre-factor and β is the 

decay (attenuation) factor. Molecular wires usually possess a high beta factor, which 

limits their potential as interconnects in future molecular-scale circuitry. For example, 

measured room-temperature values of β range from 2.0 - 3.4 nm−1 for OPEs9, 3.3 nm−1 

for OAEs10, 1.7 - 1.8 nm−1 for OPVs11, 4.9 nm−1 for acenes12, 1.7 - 3.1 nm−1 for 

oligoynes11,13 and 8.4 nm−1 for alkanes14 depending on their precise anchor groups to 

gold electrodes. 

The aim of this chapter is to identify molecular wires with vanishing or even a negative 

value of β, motivated by measurements of molecular wires based on porphyrin 

derivatives15-20, which exhibit exceptionally low attenuation factors, due to their highly 

conjugated electronic structure. For example, scanning tunnelling microscope (STM) 

measurements using a gold tip and substrate revealed that molecular wires formed from 

porphyrin units connected to each other through acetylene linkers exhibit a low 

attenuation factor of β =0.4 nm-1 with both pyridyl and thiol anchors2,21 and fused-oligo-

porphyrin wires with pyridyl anchors22 exhibited an even lower value of β = 0.2 nm-1. 

The agreement between these experiments and theories based on phase coherent 

transport suggests that the electron−phonon interaction23 is not a dominant effect in 

porphyrin nanowires up to ∼4 nm. In what follows, I demonstrate that by employing 

different anchors, this fascinating family of molecular wires can exhibit vanishing or 

negative attenuation factors. I demonstrate that a negative attenuation factor is an 

intrinsic property of the fused-oligo-porphyrins, which arises from the strong coupling 
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between neighbouring porphyrin oligomers and a resulting strong decrease in their 

HOMO−LUMO gap with length. This behaviour is in marked contrast the anomalous 

conductance trends measured in oligothiphenes,24 which are attributed to extrinsic 

factors, such as conformational changes of the molecule in the junction,25 or a 

peculiarity of iodide anchor groups, which cause short oligomers to lie flat on the 

substrate electrode26.   

 

4.2. Molecular Structure 

 

 

 

 

 

 

 

 

 

Figure 4.2.1. A schematic of a generic molecular junction and FOP monomer, dimer, and 

trimer molecular wires. (a) The schematic of a generic molecular junction containing a fused 

porphyrin trimer. (b) A porphyrin monomer connected to electrodes from m and m′ connection 

points. (c) A fused porphyrin dimer, comprising two monomers connected to each other 

through three single bonds (red bonds) and connected to electrodes from d and d′ connection 

points. (d) A fused porphyrin trimer connected to electrodes from t and t′ connection points. 
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Figure 4.2.1 shows the molecular structure of a porphyrin monomer, a fused dimer and 

a fused trimer, in which two or three porphyrins are connected to each other through 

three single bonds (shown by red lines in figure 4.2.1 (c), (d). 

To gain a deeper insight into electrical transport properties for this molecule, the 

computational modelling has been used. Before computing transport properties, all 

molecules were initially geometrically relaxed in isolation to yield the geometries 

shown in figure 4.2.1. These geometry of each structure for porphyrin molecule was 

relaxed to a force tolerance of 20 meV/Å using the SIESTA implementation of density 

functional theory (DFT) which has been presented in details in chapter (2), with a 

double-ζ polarized basis set (DZP) and generalized gradient functional approximation 

(GGA-PBE) for the exchange and correlation functional and a real space grid was 

defined with an equivalent energy cutoff 150 Ry. 

Table 4.2.1 shows the plots orbitals of the highest occupied molecular orbital (HOMO) 

and lowest unoccupied molecular orbital (LUMO). By comparing the topology of the 

HOMO and LUMO orbitals for the oligo-fused porphyrin as shown in table 4.2.1 with 

the molecular orbitals for non-fused porphyrin as shown in table 4.2.2, from the first 

figure, because the fused porphyrin is fully conjugated electronic structure, I see the 

charge density is distributed and extended across the length of all the molecule 

(Monomer, Dimer and Trimer). 
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Table 4.2.1. The wave functions of HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1 and 

LUMO+2 levels orbitals for fused oligo porphyrin. 
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Table 4.2.2:  The wave functions of HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1 and 

LUMO+2 levels orbitals for Non-Fused Porphyrin. 

 

 

4.3. Results and discussion  

I compute the electrical conductance of the highly conjugated porphyrin wires shown in 

figure 4.2.1, in which neighbouring porphyrins are fused to each other via three single 

bonds (shown in red in figure 4.2.1). I systematically examined fused-oligo-porphyrin 
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(FOP) wires with different lengths connected to different electrodes with different 

anchors and consistently found that the conductance of these fused-oligo-porphyrin 

(FOP) wires can increase with length and that they possess a negative attenuation 

factor. This is first time that negative β–factor wires have been identified and is 

significant, because these wires are stable and therefore ideal candidates for low-

conductance interconnects. To demonstrate that this result is generic and occurs for 

different electrode materials and anchor groups, I study quantum transport through 

FOPs (figure 4.2.1 (a)) with three different lengths (figure 4.2.1 (b), (c), (d)) 

sandwiched between either gold electrodes27,28 with thiol or acetylene anchors. I also 

study FOPs between graphene electrodes17,29,30 with either direct carbon-carbon bonds 

to the edges of the graphene or non-specific, physisorbed coupling to the graphene.  

From the molecular structure of a porphyrin monomer, a fused dimer and a fused trimer 

as shown in figure 4.2.1, I first consider molecular junctions in which the carbon atoms 

labelled (m,m’), (d,d’) and (t,t’) respectively are connected to electrodes via acetylene 

linkers as shown in figure 4.3.1 which illustrate the molecular structure junction of 

porphyrin wires in case of Monomer, Dimer and trimer in figure 4.3.1 (a), (b), (c) 

where the porphyrin wires are connected to the edges of rectangular shaped graphene 

electrodes with periodic boundary conditions in the transverse direction.  

To calculate the room temperature electrical conductance G, we calculate the electron 

transmission coefficient T(E) using the Gollum transport code combined with the 

material specific mean field Hamiltonian obtained from SIESTA implementation of 

density functional theory (DFT) and then evaluate G using the Landauer formula (as 

explain in chapter 2). Results for the monomer, dimer and trimer attached to graphene 

electrodes figure 4.3.1 (a), (b), (c) are shown in figure 4.3.1(d).  
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Figure 4.3.1: Transport through monomer, dimer and trimer molecular wires attached to two 

graphene electrodes. (a),(b),(c) A fused porphyrin molecular wire connected to graphene 

electrodes via acetylene linkers through monomer, dimer and trimer respectively. (d) The room 

temperature electrical conductance for the porphyrin monomer (blue curve), porphyrin dimer 

(red curve) and porphyrin trimer (green curve) as a function of the electrode Fermi energy EF, 

in units of the conductance quantum G0 = 77 microsiemens.  

 

For these highly-conjugated wires, the energy level spacing decreases as their size 

increases. Therefore, the energy gap between the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) of the dimer is smaller 

than that of the monomer and in turn, the HOMO-LUMO (HL) gap of the trimer is 

smaller than that of the dimer. This behaviour is reflected in the conductance 

resonances of figure 4.3.1 (d), which are furthest apart for the monomer (blue curve) 
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and closest together for the trimer (green curve). This can be understood by starting 

from a chain of N isolated monomers. Because each monomer has a HOMO energy 𝐸𝐻
0  

and a LUMO energy 𝐸𝐿
0, the isolated chain has N-fold degenerate HOMO and N-fold 

degenerate LUMO. When the monomers are coupled together to form a fused wire, the 

degeneracies are lifted, to yield a HOMO, N-tuplet with molecular orbital energies 

𝐸𝐻
1 < 𝐸𝐻

2 < ⋯ < 𝐸𝐻
0 … < 𝐸𝐻

𝑁 and a LUMO, N-tuplet 𝐸𝐿
1 < 𝐸𝐿

2 < ⋯ < 𝐸𝐿
0… < 𝐸𝐿

𝑁. 

Consequently, the new HL gap 𝛥(𝑁) = 𝐸𝐿
1 − 𝐸𝐻

𝑁  is lower in energy than that of the 

monomer.  

Figure 4.3.1(d) shows the electrical conductance as a function of the electrode Fermi 

energy 𝐸𝐹, plotted relative to the value 𝐸𝐹
𝐷𝐹𝑇 predicted by DFT for pristine electrodes. 

The precise value of the electrode Fermi energy EF can depend on many environmental 

factors, but unless the molecular energy levels are shifted by an electrostatic or 

electrochemical gate, it always lies within the H-L gap of the contacted molecule. If 

𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 is approximately -0.18 eV, then all three curves in figure 4.3.2 (d), coincide 

and the monomer, dimer and trimer will possess the same conductance. For any other 

value within the HL gap (i.e. between the resonant peaks in the range -0.4 eV to +0.1 

eV) the conductance of the trimer exceeds that of the dimer, which in turn exceeds that 

of the monomer. Consequently, we predict that β is negative or zero.  

To demonstrate that negative values of β are a generic feature of FOP molecular wires 

and occur for different choices of electrode or anchor groups, we calculate their 

electrical conductances when connected to gold electrodes through thiol anchors as 

shown in figure 4.3.3 (a), (b), (c) respectively and calculated their electrical 

conductances as shown in figure 4.3.3 (d). I also computed their conductances when 

coupled to graphene electrodes without a conventional anchor group as shown in figure 

4.3.4. 
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 For these molecular junctions, figure 4.3.3 (d) show the electrical conductance for the 

gold junctions with thiol anchors, if 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 is lower than the mid-gap (0.18 eV) of 

the trimer, β is zero or slightly positive, otherwise β is negative.  

 

 

Figure.4.3.3: Transport through monomer, fused dimer and trimer porphyrin wires sandwiched 

between two graphene or gold electrodes. (a),(b),(c) A gold/FOPs/gold junction with thiol 

anchors. (d) The electrical conductances of the gold/monomer, dimer or trimer/gold junctions 

with thiol anchors. The distance between the molecules with gold electrodes and sulfur atom is 

0.26 nm. 

 

In the graphene junctions without specific anchoring as shown in figure 4.3.4, where 

the overall conductance is low due to the weak physisorbed nature the coupling to the 

   



 
 

68 
 

electrodes, the electrical conductances of FOPs within the HL gap of the trimer are 

again found to increase with length. This unconventional negative beta factor is clearly 

independent of the connection point to the electrodes, because in the structure junctions 

of figure 4.3.4 (a), (b), (c) there is no specific connection point between the electrode 

surfaces and the molecules. The results of figure 4.3.3 and 4.3.4 demonstrate that low 

or negative β factors are a common feature of fused oligo-porphyrins and occur for 

different modes of anchoring to electrodes. 

Figure.4.3.4: The molecular junction of graphene/monomer, dimer or trimer/graphene 

junctions without specific anchoring to the graphene shows in (a), (b), (c) respectively. The 

distance between FOP and graphene electrodes are 0.3 nm. (d) The electrical conductances 

graphene/monomer, dimer or trimer/graphene junctions without specific anchoring to the 

graphene.  
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To clarify why the conductance increases with length, we constructed a simple tight-

binding model, in which a single p orbital per atom interacts with nearest neighbour 

orbitals only. The energy origin is chosen such that all on-site energies 𝜀 =0 and -0.5/γ 

for carbon and nitrogen respectively and nearest-neighbour couplings  = −1 for both 

C-C and C-N bonds.  

I calculated the transmission function T(E) between two ends of the wires e.g. (with 

contact atoms (m,m’), (d,d’) and (t,t’) for the monomer, dimer and trimer respectively, 

as shown in figure 4.1.1 I then examined the effect of varying the coupling parameter α 

between neighbouring porphyrin units which shown by red bonds in figure 4.1.1 (c), 

(d). The different curves in figure 4.3.5(a) show that for a value α = -0.65γ where γ=-1 

is coupling integrals between p orbitals of any neighboring C−C atoms, the curves 

overlap and for more negative values of α, the transmission coefficient increases with 

length for energies within the HL gap of the trimer as shown in figure 4.3.5 (a), in 

agreement to the above DFT results. To demonstrate that the decrease in the HL gap is 

due to a splitting of the HOMO and LUMO degeneracies, figure 4.3.5 (b) shows the 

transmission curves of the trimer over a larger range of energy, for a series of values of 

the coupling α. For small α, the HOMO and LUMO are each almost triply degenerate 

and as the magnitude of α increases, the degeneracy is increasingly lifted, leading to a 

reduction in the HL gap. 
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Figure. 4.3.5: The transmission coefficient for three connections point (m,m’), (d,d’) and (t,t’) 

shown in figure. 4.2.1 (b), (c) and (d) respectively, obtained using a simple tight binding TB 

model of FOP junctions. (a) The dash line curve shows the transmission coefficients for the 

monomer. The solid and dotted lines show the transmission coefficient for the dimer and trimer 

respectively. The solid red and dotted green curves show the transmission coefficient for the 

dimer and trimer when α=-0.65. (b) The transmission coefficient of the trimer for values of α = 

-0.1, -0.15, -0.2. 

 

For α=0.65γ, figure 4.3.6 shows that this increase in conductance with length persists 

even if the number of fused porphyrin units increased to 4, 5 and 6 units. 
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Figure. 4.3.6: Transmission coefficient for fused oligo porphyrins with different length upto 6 

((a)to(f)) porphyrin units calculated using simple tight binding model. The red bonds are 

chosen to be 𝛼 = −0.65 . 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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On the other hand, figure 4.3.7 shows that the band structure of an infinitely-periodic 

fused porphyrin wire, calculated using density functional theory, the k-point grid of 

1x1x20 was chosen for band structure calculation possesses a small energy gap of about 

~100meV. Therefore, fused porphyrin ribbons are narrow-gap semiconductors, 

meaning that eventually the conductance will begin to decrease with length. In practice, 

this decrease is likely to be slower than exponential, because at room temperature and 

large enough length scales, inelastic scattering will become significant and a cross-over 

from phase-coherent tunnelling to incoherent hopping will occur10,31.  

 

 

 

 

 

 

 

 

 

Figure 4.3.7: Band structure of fused porphyrin nanoribbon. 

 

For comparison, figure 4.3.8 shows the transmission curves for butadiyne-linked 

porphyrin monomer, dimer and trimer molecular wires, for which the attenuation factor 

β is clearly positive for a wide range of energies within the HL gap of the trimer by 

tight binding model in agreement with the DFT calculation32 and also with reported 

measured values21-32. 
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Figure 4.3.8: (a), (b) and (c) are the schematic of Non-Fused porphyrin monomer, dimer and 

trimer molecular structure. (d), (e) are the transmission curves for the non-fused porphyrin 

calculated by TBM in case of the oligoyne bond between two or three Monomer (p) are (-0.9) 

and (-0.65) respectively. 

 

The fact that fused porphyrin ribbons are narrow-gap semiconductors means that for a 

finite oligomer, when electrons tunnel through the gap there will be contributions to the 

transmission coefficient from both the HOMO and the LUMO bands. As described in 

(a) (b) 

(c) 

p=-0.9 p=-0.65 

(e) (d) 
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the next section, the qualitative features of Figure 4.3.5(a) and Figure 4.3.1(d) can be 

obtained by summing these two contributions.  

 

 

 

4.3.1. A simple model based on coupling the frontier orbitals of a chain 

of monomers 
 

Here I note that the qualitative features of the figure 4.3.1(d) can be reproduced by a 

simple tight binding model of independent transport through the HOMOs and LUMOs. 

Let 𝑇(𝐸, 𝑛, − 𝐿 , 𝜀𝐿) be the transmission coefficient for a chain of n monomer LUMOs, 

with energies 𝜀𝐿 and coupled by nearest neighbour matrix elements − 𝐿 . Similarly let 

𝑇(𝐸, 𝑛, + 𝐻, 𝜀𝐻) be the transmission coefficient of an independent chain of monomer 

HOMOs, with energies 𝜀𝐻 and coupled by nearest neighbour matrix elements + 𝐻. 

Note that from figure 4.3.5 (b), since the splitting of the LUMO resonances is greater 

than that of the HOMO resonances,  𝐿 >  𝐻. 

Then if we assume no interference between the HOMO and LUMO, the total 

transmission coefficient is  

                   𝑇(𝐸, 𝑛) = 𝑇(𝐸, 𝑛, − 𝐿 , 𝜀𝐿) +  𝑇(𝐸, 𝑛, + 𝐻, 𝜀𝐻)                                   (4.3.1)    

Without loss of generality, we choose 𝜀𝐻 = −𝜀𝐿, which fixes the energy origin. As 

shown in figure 4.3.10, with an appropriate choice of parameters, this simple model 

captures the qualitative features of figure 4.3.1(d) and the tight-binding results of figure 

4.3.5(a). 
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Figure 4.3.9. A tight binding (Hückel) model of 1, 2 or 3 site scattering regions (depicted in 

red), coupled to one-dimensional leads. The scattering region represents either a chain of 

coupled monomer LUMOs or a chain of coupled monomer HOMOs. After calculating their 

separate transmission coefficients, they are simply added to give the total transmission 

coefficient. 

 

 

 

Figure 4.3.10. Sum of transmission coefficient 𝑇(𝐸, 𝑛) = 𝑇(𝐸, 𝑛, − 𝐿, 𝜀𝐿) +  𝑇(𝐸, 𝑛, + 𝐻 , 𝜀𝐻)  

through independent HOMO and LUMO levels for a monomer n=1, dimer n=2 and trimer 

n=3. For the monomer, 𝜀𝐿 = 0.935; for the dimer, 𝜀𝐿 = 1.0,  𝐿 = 0.75,  𝐻 = 0.55 and for the 

trimer, 𝜀𝐿 = 0.75,  𝐿 = 0.5,  𝐻 = 0.35. In these plots, the coupling between the molecule and 

the one-dimensional leads is 𝛼 = −0.1 and the leads are represented by a chain of sites with 

site energies 𝜖0 = 0 and nearest neighbour couplings  = −1. 

 

The tight-binding results of figure 4.3.5 and the DFT results with a non-specific anchor 

(figure 4.3.4(d)) suggest that a negative beta factor is a generic feature of the fused 

porphyrin core, provided the centres of the HOMO-LUMO gaps of the monomer, dimer 

n

εH,Lε0 ε0 ε0 ε0

γ γα α
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and trimer are coincident. However, whether or not it is measured experimentally 

depends on level shifts of molecular orbitals after attaching to the electrodes. This is 

illustrated by the calculations shown in figure 4.3.11 using direct C-Au covalent 

anchoring to gold electrodes, where the HOMOs of the monomer, dimer and trimer 

coincide and therefore the centres of their HOMO-LUMO gaps are not coincident. This 

spoils the generic trend and leads to a positive beta factor. 

 

Figure 4.3.11. Transmission coefficient obtained from DFT Hamiltonian for three types of 

porphyrin connected to gold electrodes through a direct Au-C bond. 

 

It is worth to mention that the magnitude of the electrical conductance is generally 

higher in the junctions formed by covalent bond to the graphene electrodes (Figure 

4.3.1(d)) compared to junctions formed by gold electrodes (Figures 4.3.3(d) and 4.3.11 

(d)). However, the predicted conductance for the gold junctions with the thiol and direct 

Au−C anchoring are similar. Depending on the choice of Fermi energy, one might be 
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higher than another as shown in figure 4.3.12 (a), (b) and (c) for thiol and direct Au−C 

anchoring for Monomer, Dimer and trimer respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.12 (a): Transmission coefficient obtained from DFT Hamiltonian for monomer 

porphyrin with thiol and direct Au-C anchors. 

 

 

 

 

 

 

 

 

 

Figure 4.3.12 (b): Transmission coefficient obtained from DFT Hamiltonian for Dimer fused 

porphyrin with thiol and direct Au-C anchors. 

 

  

 
  

(a) 

 

  

 
  

(b) 
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Figure 4.3.12 (c): Transmission coefficient obtained from DFT Hamiltonian for Trimer fused 

porphyrin with thiol and direct Au-C anchors. 
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Chapter 5 

 

Quantum Interference Tuning in Single Molecular 

Junctions. 

In this chapter I present the effect at different positions of pendant methoxyl groups (-

OMe)) that enable the tuning of destructive quantum interference (DQI) features in meta-

phenylene ethylene-type oligomers (m-OPE). 

 

The results presented in this chapter were submitted to Chemical Science. This work is a 

collaboration work between (Lancaster University, Xiamen University, University of 

Western Australia and Durham University). 
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     5.1. Introduction  

The construction and electrical characterization of single-molecule junctions has 

underpinned rapid developments in the field of molecular electronics. The theoretical 

treatments and computational methods have given insight into the fundamentals of 

transmission of charge through single molecules. Recent developments include novel 

molecular wires,1-3 molecular switches,4,5 molecular diodes6-8, molecular field-effect 

transistors9-10, and bio-molecule recognition11,12. One of the most interesting aspects of 

single-molecular electronics is the phenomena of room-temperature quantum 

interference (QI), which has attracted increasing attention due to its potential for tuning 

charge transport through molecules13–17. QI affects electron transport, because when a 

molecule is bonded to the electrodes, the de Broglie waves of electrons passing through 

the molecule from one side to the other side, causes complicated interference patterns 

within the molecule18-20. Consequently, strategies for controlling the QI-induced 

interference pattern may provide mechanisms for changing the conductance of a single 

molecule without changing molecular backbone structure. Based on the concept and 

principles of QI, constructive QI (CQI) occurs when the interference pattern has a large 

amplitude at both the source and drain electrodes, causing high conductance, whereas 

destructive QI (DQI) occurs when the amplitude is small at one of the electrodes 

causing extremely low conductance.21,22  

Recently a number of studies have contributed to the development of tuning 

mechanisms of single-molecule electronic junction, including the impact of anchoring 

groups,23,24 the position of heteroatoms25,26 and the effect of molecular backbone27. 

Although much of research has been devoted to the investigation of QI patterns,28,29 

few papers have reported the effect of controlling these patterns by varying the 

locations of additional substituent pendant groups. Consequently, the aim of this study 
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is to investigate whether or not the introduction of pendant groups could provide a new 

strategy for tuning QI. 

5.2. Molecular Structures 

 

    

       

  

 

 

 Figure 5.2.1. (a) Diagram of STM-BJ setup and (b) chemical structures of the investigated 

molecules. 

 

5.3. Results and Discussion 

In this study, single-molecule charge transport in a series of meta-phenylene ethylene-

type oligomer (m-OPE) molecules, which were modified by a pendant methoxyl group 

(-OMe) placed at different positions is investigated. (As shown in Figure 5.2.1(b)). The 

three molecules M1, M2, M3 have the same molecular backbone structure with the 

same anchor groups. The only difference between these molecules is the substitutional 

position of the pendant -OMe. The influence of anchor groups was also taken into 

consideration by utilizing either sulphur acetyl (-SAc) anchor groups (M1, M2, M3) or 

the methyl sulfide (SMe) anchor groups (N1, N2, N3) to further confirm that the ability 
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to tune QI by varying the position of the pendant-OMe is independent of the anchor 

group.  

The above choice of molecules is informed by magic ratio theory30–32, which describes 

QI in the central ring and views the moieties to the left and right as “compound 

electrodes,” which inject and collect electrons via triple bounds into pi orbitals labelled 

i and j respectively, as shown in Figure 5.3.1. 

 

 

 

 

Figure 5.3.1. A conceptual view of eg. molecule N1. The blue regions represent compound 

electrodes, which inject and collect electrons via triple bounds into pi orbitals labelled i and j 

respectively. The perturbation is on site k. 

 

Since i and j are in meta positions relative to each other, then in the absence of the 

pendant group, the bare ‘parent’ molecule will exhibit DQI. If a perturbation such as a 

pendant group is imposed on pi orbital k, to yield a ‘daughter’ molecule such as those 

shown in figure 5.2.1, then magic ratio theory predicts the following: 

1. If, as in M3 and N3, k is meta to both i and j, then the pendant group will have only 

a small effect on conductance. 

2. If, as in M1 and N1, k is ortho to i and para to j, then the pendant group will affect 

the conductance by shifting the DQI feature to a higher or lower energy. 

3. If, as in M2 and N2, k is ortho to both i and j, then the pendant group will affect the 

conductance by shifting the DQI feature in an opposite direction to case 2. 

 

Injection point i  Collection point j 
i j 

perturbed point k 

k 
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This behavior is confirmed by density functional theory (DFT) calculations presented 

below and the MCBJ measurements carried out in Xiamen University.The experimental 

measurement shows the molecular conductance peaks were observed at 10-5.64±0.37 G0, 

10-4.95±0.51 G0 and 10-5.36±0.39 G0 for M1-3, and 10-5.70±0.22 G0, 10-5.01±0.37 G0 and 10-

5.36±0.47 G0 for N1-3, respectively as shown in figure (5.3.2). 

 

 

 

 

 

 

Figure 5.3.2. Typical individual conductance-distance for (a) sulphur acetyl (-SAc) anchor 

groups (M1, M2, M3) and (b) the methyl sulfide (-SMe) anchor groups (N1, N2, N3).  

 

 

 

 

 

 

Figure 5.3.3. Transmission coefficients of (a) molecules M1-M3 and (b) N1-N3 compared with 

the parent meta OPE (which contains no pendant group).  

(a) (b) 

(a) (b) 
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To demonstrate how pendant groups, control QI within this series of molecules, I used 

DFT to optimize geometry and ground state Hamiltonian with overlap matrix elements 

of each structure combined with the quantum transport code Gollum to compute the 

transmission coefficient of the systems.  SIESTA employs pseudo-potentials to account 

for the core electrons and linear combinations of atomic orbitals to construct the 

valence states. The generalized gradient approximation (GGA) of the exchange and 

correlation functional is used with the parameterization (PBE), a double-ζ polarized 

(DZP) basis set and a real-space grid defined with an equivalent energy cut-off of 150 

Ry. The geometry optimization for each structure is performed to the forces is 20 

meV/Ang. 

 Second column of Table 5.3.1 (a) and (b) shows geometry-optimized structures used to 

obtain the DFT transmission coefficient of the systems illustrated in figure 5.3.3 (a) and 

(b) respectively.  In agreement with magic ratio theory, Figure 5.3.3 (a) and (b) shows 

that the transmission dips of M3 and N3, (which are the signatures of DQI) are close to 

the transmission dips of their parents (shown as pink dashed curves) and therefore as 

expected, the pendant group has only a small effect on conductance. In contrast, the 

transmission dips of M1 and N1, are shifted to higher energies relative to the parental 

DQI dip, as expected. Furthermore, the transmission dips of M2 and N2, are shifted to 

much lower energies and no longer appear within the HOMO-LUMO gap. 

The presence or otherwise of DQI transmission dips is also consistent with a recently 

highlighted orbital product rule, which states that if the HOMO amplitudes at the ends 

of a molecule have the same sign (opposite signs) then the HOMO is assigned an 

“orbital product” aH, which is positive (negative). Similarly, if the LUMO amplitudes at 

the ends of a molecule have the same sign (opposite signs) then the LUMO is assigned 

an orbital product aL, which is positive (negative). Finally if the aH and aL possess the 
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same sign (ie if aH.aL is positive) then the transmission function will possess a DQI dip, 

otherwise CQI occurs and there will be no dip. Example of HOMOs and LUMOs are 

shown in Table 5.3.2, which demonstrates that the presence or otherwise of DQI 

features indeed follow this product rule. Further examples are shown in tables 5.3.3 and 

5.3.4. Tables (5.3.1) (a) and (b) shows relaxed structures of these molecules and 

calculated molecular length using DFT for thiol and SMe anchor group respectively. 

Table 5.3.1. The geometry-optimized structures used to obtain the DFT results for (a) molecules 

M1-M3 and (b) N1-N3 with calculate the molecule with the junction distances. 
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Table 5.3.2: HOMOs and LUMOs of molecules N1-N3 and M-OPE. Blue regions are positive 

and red regions are negative. As an example, for N1 the HOMO at the left end of the molecule 

is positive (+) and at the right end it is negative (-). Therefore, since these have opposite signs, 

aH is negative (-). Similarly, for N1, aL is negative. Since the product of aH . aL is positive (+), 

N1 will exhibit DQI. 

 

 

 

 

 

 

 

 

 

Table 5.3.3: The Molecular orbitals of the molecules with SMe anchor. 
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Table 5.3.4: The Molecular orbitals of the molecules with thiol anchor 

 

 

 

 

 

 

 

Since the electrical conductance G (in units of the conductance quantum) is 

approximately T(EF), where EF is the Fermi energy of the electrodes, a comparison with 

experiment requires knowledge of EF. In Figure 5.3.3, the energy E is plotted relative to 

the DFT-predicted value of EF, which is close to the LUMO (HOMO) resonance for –

SMe-anchored (-S-anchored) molecules. Figure 5.3.3 shows that for a wide range of 

Fermi energies within the HOMO-LUMO gaps, the conductances are predicted to 

follow the trend M2>M3 and N2>N3, in agreement with experimental results. The 

predicted conductance values of M1 and N1 are more sensitive to precise value of EF, 

which is sensitive to unknowns such as the shape of the electrode tip and is not 

necessarily predict accurately by DFT. The experimental measurement tends of 

M3>M1 and N3>N1 suggest that the Fermi energies lie in the vicinity of the grey 

regions marked in Figure 5.3.3. 
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Chapter 6 

Large amplitude, high-frequency single-molecule switch. 

 

In this chapter, I demonstrate theoretically that 2-(methylthio)thiophene units not only 

act as contact groups but can reversibly switch between a monodentate configuration 

(MeS-only) and a bidentate configuration (MeS- and thienyl S) upon junction 

compression; as the junction is compressed the electrical conductance increases greatly 

with the increased molecule-contact interaction. This means that such molecules show a 

large-amplitude mechanical switching behaviour. Results are compared with recent 

experimental work carried out in the Chemistry department of the University of 

Liverpool.  
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6.1. Introduction 

Changes of electrical conductance associated with the stretching or compression of a 

single-molecule junction sheds light on force-induced enhancement of molecular 

transport resonance,1 electron transfer reactions,2 spin transitions of an organometallic 

Fe(II) complex,3 stereoelectronic effects4 and quantum interference features.5 

Alterations of the molecule-metal contact configuration6-9 upon junction stretching or 

compression are another important class of phenomena which translates into 

mechanoresistive behaviour. Enhanced overlap of π-orbitals with the metallic 

electrodes in a compressed junction results, for instance, in higher conductance in 

thiophenol-terminated molecular wires,10,11 or a rheostat-like behaviour in long 

oligoenes,12 demonstrating the importance of weak interactions at the nanoscale. Such 

interactions are however ill-defined in nature, and to date, the conductance changes 

upon junction size modulation are only moderate. 

6.2. Molecular Structure 

 

 

 

 

 

 

Figure 6.2.1: Structures and numbering of the compounds presented in this study (a) and 

schematics of the designed (thiomethyl)thiophene contact, with the two binding sites 

highlighted. Key: H = white, C = grey, S = orange. 
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All components of the molecules were initially geometrically relaxed to yield the optimized 

geometries and ground state Hamiltonian shown in table 6.2.1. Table 6.2.1. also shows the 

molecular orbitals of the systems where all the HOMO and LUMO are extended across the 

backbone. 

Table 6.2.2. Molecular orbitals of HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1 and LUMO+2 

for the four components. 

 

6.3. Results and Discussion 

This study presents a molecular wire with improved mechanoresistive behaviour, based 

on a methyl thioether and thienyl moiety bidentate contact configuration. The former 

acts as primary contact and grants strong mechanical and electrical coupling, while the 

latter can interact with a metallic electrode through the lone pair on its sulfur atom and 

provide the additional electronic coupling to enhance conductance in the compressed 

junction as shown in figure 6.2.1(b). Thiophenes are known to make contact to Au 

electrodes,13 but the interaction is presented as being weaker than traditional contact 

groups,14 thus making it an ideal  “supporting” molecular contact to the stronger methyl 

thioether. 

Structure HOMO-2 HOMO-1 HOMO LUMO LUMO+1 LUMO+2
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Figure 6.3.1: Conductance vs time density maps for compound 2 (a) and 4 (b) and compound 1 

(c) and 3 (d) under square-wave modulation of 3 Å which is Idealised position of the electrodes 

during the modulation is depicted in (e). The structure of the molecular wire is superimposed to 

its density map of the four compounds presented in this study. The fluctuation conductance 

after modulated several times represents the high level which shows on-state in switched 

molecule corresponded to compressed junction, and the low level which shows off-state 

corresponded to extended junction. 

As can be observed in the experimental results from colleagues at Liverpool University 

shown in figure 6.2.1(b), after push-pull process to get the electrode separation results 

and defined changes in the conductance of 1 as shown in figure 6.3.1 (c). For 

comparison, the biphenyl-based compound 3 showed very little conductance changes as 

shown in figure 6.3.1 (d), consistent with increased interactions of the electrodes with 

the aromatic π-system as their junction is compressed. The striking difference in 

behaviour between these two simple biaryl compounds suggests that the thienyl moiety 
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is responsible for the mechanoresistive phenomenon. To better characterise this 

behaviour, two other compounds (2 and 4) are investigated, to test the versatility of 2-

(methylthio)thiophene as a switching contact moiety. In compound 2 the carbonyl 

substituent has an electron withdrawing effect, and therefore would result in reduced 

thiophene-electrode coupling, thereby decreasing the switching magnitude. Compound 

4 is a longer oligothiophene, and its purpose is to test whether mechanoresistive 

behaviour is retained in longer molecular wires. By using the same method is observed 

the conductance changes of greatly reduced magnitude in 2 as expected as shown in (a), 

and well-defined conductance variations in 4 which shown in figure 6.3.1 (b). 

The overall results confirm that the thienyl moiety as responsible for the observed 

behaviour, with 1 being the compound providing the largest conductance variation 

upon modulation of the electrode position, as evidenced by analysing the modulation 

profile as shown in (c). Therefore, this unprecedented high conductance modulation has 

been exploited to test the effect of more incremental compression/elongation 

(push/pull) cycles, and thereby assess the potentiometric behaviour of such single-

molecule junctions.  

To better understand the phenomena leading to conductance modulation, I used density 

functional theory (DFT) to optimize geometry and compute the conductance versus 

electrode separation for all the molecules.  SIESTA employs pseudo-potentials to 

construct the valence states. The generalized gradient approximation (GGA) of the 

exchange and correlation functional is used with the parameterization (PBE), a double-ζ 

polarized (DZP) basis set and a real-space grid defined with an equivalent energy cut-

off of 150 Ry. The geometry optimization for each structure is performed to the forces 

is 20 meV/Ang. (See Method in chapter 2). The quantum transport code Gollum15 was 

used to calculate the transmission coefficient 𝑇(𝐸) for electrons of energy E passing 
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from the source to the drain electrode via the molecule. If 𝑇(𝐸) varies slowly on the 

scale of 𝑘𝐵𝑇 at room temperature 𝑇, then 𝐺 = 𝐺0𝑇(𝐸𝐹), where 𝐸𝐹 is the Fermi energy of 

the gold electrodes. Using compound 4 as example as shown in figure 6.3.2 (a), the 

prediction at small tip-tip distances, the gold electrodes interact with both thienyl and 

thioether sulfurs, resulting in high molecule-electrode coupling and a high transmission 

coefficient within the gap between the highest occupied molecular orbital (HOMO) and 

lowest unoccupied molecular orbital (LUMO) resonances as shown in figure 6.3.3 (a). 

As the electrode separation is increased, the coupling to the thiophene moiety is 

reduced and therefore the value of transmission coefficient decreases. 

 

 

 

 

 

 

 

 

Figure 6.3.2: Relaxed structure of molecule 4 (a) and 3 (b) between two Au electrodes, at 

various tip-tip distances (11 and 8 Å respective starting separation, increased at any step by 2 

Å). Key: H = white, C = grey, S = orange, Au = yellow. 

The binding energy of these two of molecule 4 and 3, at different tip-tip gold electrodes 

distances are shown in Table 6.3.1. 
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Table 6.3.1 binding energy calculations for the different binding positions for molecule 3 and 4.  

 

 

 

 

 

 

 

Figure 6.3.3: The transmission coefficient T(E) versus electron energy of compound 4 (a) and 3 

(b) at the four tip-tip distances. 𝐸 is plotted relative to the DFT-predicted Fermi energy of gold 

(as 𝐸 − 𝐸𝐹). 

 

To predict the effect on the conductance 𝐺 = 𝐺0𝑇(𝐸𝐹), a value for 𝐸𝐹 is needed. In 

figure 6.3.3 (a) and (b), the HOMO and LUMO levels correspond to the resonances in 

the transmission plots 𝑇(𝐸) located immediately below and above 𝐸 − 𝐸𝐹 = 0 

respectively. The precise values of the HOMO and LUMO levels relative to 𝐸𝐹 (and 

therefore the exact zero of the horizontal axis) depend on environmental conditions and 

on the unknown shape of the electrodes. However, since the molecules are neither 
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oxidised nor reduced, 𝐸𝐹 lies within the energy gap between the HOMO and the 

LUMO, and the qualitative change in the conductance with tip-tip distance is 

determined by the behaviour of 𝑇(𝐸) within the gap. 

 In compound 4, the additional thiophene-Au interactions described earlier result in 

large variations of the mid-gap value of 𝑇(𝐸) as the electrode position is modulated, 

and therefore the conductance is also expected to exhibit large variations. In compound 

3, which lacks a thiophene moiety, the value of 𝑇(𝐸) within the gap does not change 

significantly, and the conductance is predicted to be almost independent of the 

electrode separation.  

The process was repeated for compounds 1 and 2 as presented in figures 6.3.4 and 

6.3.5. In agreement with experimental results, compressing the electrodes leads to 

strong interactions between the electrodes and the thiophene moieties, causing 

significant variations of the transmission coefficient over a wide range of energies 

within the HOMO-LUMO gap. Overall the amplitude of transmission coefficient values 

correlates well with the experimental data, with compound 1 having the largest 

variations in 𝑇(𝐸) as the electrode separation is modulated, and compound 3 showing 

little or no effect. 

 

 

 

 

 

 



 
 

106 
 

 

 

 

 

 

 

 

 

Figure 6.3.4: Relaxed structure of molecule 1 (a) and 2 (b) in a junction where the tip to tip 

distances is 7 Å for junction 1 and is stretched by ~ 2 Å at any step for junction 2-4. Key: H = 

white, C = grey, S = orange, Au = yellow and O=red. 

Figure 6.3.5: Transmission coefficient of compounds 1 (a) and 2 (b), calculated from the 

structures shown in Figure 6.3.6.  
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All calculations show a significant broadening of the transport resonances as the 

junction is compressed, further confirming that the change in molecule-contact 

interactions is indeed responsible for the switching phenomena. 
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Chapter 7 

Conclusions and Future Work 

1.1. Conclusions  

In conclusion, by using DFT and Green’s function methods as well as a simple tight 

binding method (TBM) as presented in chapter 2 and 3 respectively, I theoretically 

investigated transport properties of molecular scale junctions and achieved qualitative 

agreement with experimental data. Consequently, theory and experiment could 

effectively communicate and help each other to finally explain physics and chemistry 

phenomena at the molecular scale.   

In chapter 4, I demonstrated that the electrical conductance of fused oligo porphyrin 

molecular wires can either increase with increasing length or be length independent in 

junctions formed with graphene electrodes. This is due to alignment of the middle of 

the HOMO-LUMO gap of the molecules with the Fermi energy of the graphene 

electrodes. In addition, I showed that in junctions formed with gold electrodes, this 

generic feature is anchor group dependent. This negative attenuation factor is due to the 

quantum nature of electron transport through such wires and arises from the narrowing 

of the HOMO-LUMO gap as the length of the oligomers increases.  
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In chapter 5, the possibility of tuning DQI within m-OPE molecules was investigated 

by placing -OMe pendant groups at different positions within the central phenyl ring. 

The results demonstrate that the introduction of -OMe at different locations has a 

significant impact on DQI and provides a promising route to tuning the charge transport 

properties of the compounds, without altering molecular backbone configurations or the 

surrounding environment. The DFT calculations reveal that this fine tuning of charge 

transport through the single-molecule junctions occurs, because the attachment of –

OMe causes a significant shift the energetic location of transmission dips arising from 

DQI. More interestingly, the conductance of M2 was almost five-fold higher than M1, 

indicating that the simple positional switch of -OMe can achieve a large change of 

molecular conductance. This work presents a simple and convenient strategy for tuning 

room-temperature DQI at a single-molecule level and demonstrates a new strategy for 

designing molecular materials and devices with desirable functions. 

Finally, in chapter 6, a series of single-molecule mechanoresistive junctions was 

designed and characterised, based on a bidentate contact moiety that exploits the weak 

interactions of thienyl sulfurs with Au electrodes. The functional moiety is a 

(methylthio)thiophene, which is directly responsible for the observed high sensitivity 

behaviour by providing multiple anchoring points (the thienyl and thioether sulfurs) for 

the metallic electrodes. This study presents a novel strategy for the introduction of 

electromechanical functionality in molecular wires and highlights the importance of 

weak interactions at the electrode interface. Furthermore, as (methylthio) thiophenes 

and thiophenethiols are widely used as molecular wire termini in molecular electronics, 

that results shed more light on their unusual electromechanical properties. 
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1.2. Future Work 

For the future, the following aspects deserve further attention: (1) the electronic 

properties of Porphyrin with different connectivities to the electrodes such as 

connectivities 1-11 versus 6-11 in figure 4.3.6 (a) (2) To examine the effect of negative 

attenuation factor in fused porphyrins on their thermoelectric performance1,2 and study 

the effect of metallic centre in metalloporphyrin such as Nickel and Cobalt element (3) 

a systematic study of the effect of different anchor groups such as Thiol (S), Amino 

(NH2), Dihydrobenzo thiophene (BT), Direct carbon (C), methyle sulphide (SMe), 

Pyridine, Cyano (CN) on the transport properties3,4 and attenuation factor of molecular 

junctions formed by porphyrin or thiophene molecular cores.(4) examine the effect of 

different pendant group to the central ring of OPE3 such as NH2, CF3 on destructive 

quantum interference through meta connectivity. 

The field of molecular thermoelectrics is in its infancy and ongoing studies are needed 

to highlight how chemical modifications of molecules and new combinations of 

molecules and electrode materials can be used to tune electrical properties. For the 

future, it would be of interest to study how transport properties change when alternative 

electrode materials are used such as platinum, palladium or iron5,6 or even 

superconducting electrodes7-9. For the purpose of computing thermal properties, it 

would be of interest to utilise methods for computing phonon transport through 

nanostructures10,11 to obtain the contribution from phonons to the thermal conductance 

through fullerene-based molecular junctions. 
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