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ABSTRACT 40 

Animal studies demonstrate that noise exposure can permanently damage the synapses between 41 

inner hair cells and auditory nerve fibers, even when outer hair cells are intact and there is no 42 

clinically relevant permanent threshold shift. Synaptopathy disrupts the afferent connection 43 

between the cochlea and the central auditory system and is predicted to impair speech 44 

understanding in noisy environments and potentially result in tinnitus and/or hyperacusis. While 45 

cochlear synaptopathy has been demonstrated in numerous experimental animal models, 46 

synaptopathy can only be confirmed through post-mortem temporal bone analysis, making it 47 

difficult to study in living humans. A variety of non-invasive measures have been used to 48 

determine whether noise-induced synaptopathy occurs in humans, but the results are conflicting. 49 

The overall objective of this article is to synthesize the existing data on the functional impact of 50 

noise-induced synaptopathy in the human auditory system. The first section of the article 51 

summarizes the studies that provide evidence for and against noise-induced synaptopathy in 52 

humans. The second section offers potential explanations for the differing results between 53 

studies. The final section outlines suggested methodologies for diagnosing synaptopathy in 54 

humans with the aim of improving consistency across studies.  55 

  56 
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Introduction   57 

Damage to the inner ear, and associated hearing loss, occurs from noise trauma, ototoxic drugs, 58 

aging and genetic factors. One form of cochlear pathology involves synaptic damage that perturbs 59 

the neurotransmission between the inner hair cell (IHC) and auditory nerve (AN) fibers. This type 60 

of pathology has been termed cochlear synaptopathy (Kujawa and Liberman, 2015) and popularly 61 

“hidden hearing loss” (Schaette and McAlpine, 2011) because it can occur without affecting 62 

hearing thresholds. However, the definition of the latter term has become inconsistent between 63 

articles, with some authors using it to refer more generally to hearing dysfunction in the presence 64 

of normal hearing thresholds. For this reason, we will avoid use of the term “hidden hearing loss” 65 

in the present review. The predicted functional consequences of these synaptic alterations are 66 

listening difficulties in noisy backgrounds, tinnitus and hyperacusis (Kujawa & Liberman 2015). 67 

Experimental work, primarily on noise-traumatized and ageing rodents, has clearly demonstrated 68 

that the afferent synapse is more vulnerable than hair cells. AN fibers with low and medium 69 

spontaneous rates (SRs) and higher response thresholds appear to be particularly vulnerable to 70 

noise damage (Furman et al. 2013). Since these fibers do not respond at low intensity levels, their 71 

loss does not impact measures of auditory threshold, such as the clinical audiogram. Although 72 

auditory brainstem response (ABR) thresholds are insensitive to these synaptic changes, and there 73 

is some evidence that low SR-fibers do not contribute to the amplitude of ABR wave 1 (Bourien et 74 

al., 2014), the amplitude of ABR wave 1 recorded to supra-threshold transients appears to be a 75 

sensitive indicator of synaptopathy (Kujawa and Liberman, 2015; Furman et al., 2013). The 76 

amplitude of the middle-ear muscle reflex (MEMR) and the envelope following response (EFR) 77 

also appear to be sensitive to synaptopathy in animal models (Shaheen et al. 2015; Valero et al. 78 

2016; Valero et al. 2018).  An alternative explanation is that the low spontaneous fibers are more 79 

involved in efferent regulation than in high-intensity coding (Carney, 2018). 80 

It has recently been questioned whether cochlear synaptopathy occurs in humans and if 81 

there is evidence for functional consequences of this phenomenon, as revealed by listening 82 

difficulties in noisy backgrounds, tinnitus or hyperacusis. The purpose of this article is to highlight 83 

the research that finds evidence supporting noise-induced human synaptopathy, contrast this with 84 

studies that have not provided supporting evidence, discuss possible reasons for null results and 85 

diverging outcomes, and provide guidance to the field regarding research protocols. To outline 86 

these inconsistencies, the existing data that either support or do not support that noise-induced 87 
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synaptopathy occurs in humans are summarized. Details of the cited studies can be found in Table 88 

1. Next, possible explanations for these inconsistencies are provided. Finally, the last part of the 89 

article discusses methodological considerations for diagnosing synaptopathy in humans in order to 90 

standardize future experimental approaches. This will facilitate the integration of data across 91 

studies and improve the overall understanding of cochlear synaptopathy in humans.  92 

 93 

 94 

Data Consistent with Noise-Induced Synaptopathy in Humans  95 

Post-mortem temporal bone studies  96 

There is little debate regarding the existence of age-related synaptic loss (or synaptopathy) in the 97 

human inner ear. Analysis of temporal bones harvested post-mortem demonstrate that both age-98 

related synaptopathy (Viana et al. 2015) (Figure 1) and age-related neural degeneration can occur 99 

in humans (Makary et al. 2011). In the study by Makary et al., temporal bones were carefully 100 

selected to include only those with no overt loss of either IHCs or outer hair cells (OHCs), 101 

demonstrating that spiral ganglion cell numbers can decrease prior to hair cell loss. The results of 102 

Viana et al. suggest that synaptopathy can also occur independently of hair cell loss. The same 103 

study also included temporal bones with a combination of synaptic loss and hair cell (IHC and 104 

OHC) loss, with the most extreme hair cell loss observed in the cochlear base. Interestingly, a 105 

temporal bone from a female (age 67) donor had a notched OHC loss centered at 3000 Hz, which 106 

is suggestive of previous noise injury. Fewer type I fibers/IHC and fewer synapses/IHC were 107 

observed in this donor relative to a 54-year-old male and a 70-year-old female donors, which is 108 

consistent with noise-related neuronal/synaptic loss. These findings build on earlier observations 109 

of age-related AN fiber loss in temporal bones that also had “expected” age-related loss of OHCs 110 

(Felder & Schrott-Fischer 1995). Wu et al. (2018) also demonstrated significant age-related 111 

synapse and AN fiber loss in ears with expected age-related loss of hair cells. In addition, although 112 

spiral ganglion cell loss can occur independently of hair cell loss, neuronal loss is greater when 113 

hair cells are also missing (Otte et al. 1978). Thus, cochlear synaptopathy and neuropathy may be 114 

some of the earliest manifestations of future sensorineural hearing loss (SNHL) where 115 

synaptic/neuronal loss co-exists with hair cell loss.  116 

 117 
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Human auditory brainstem response studies of noise-induced synaptopathy 118 

To date, the electrophysiological metric for studying synaptopathy in humans has been the 119 

amplitude of wave I of the ABR, a measure of AN function that is associated with synaptopathy in 120 

rodent models (Kujawa & Liberman 2009; Sergeyenko et al. 2013). In a sample of young (age 19-121 

35) military Veterans and non-Veterans with normal audiograms and good distortion-product 122 

otoacoustic emissions (DPOAEs), Bramhall et al. (2017) found a reduction in ABR wave I 123 

amplitude for Veterans with high levels of reported noise exposure during their military service 124 

and non-Veterans who reported firearm use compared to non-Veterans with less noise exposure 125 

(Figure 2). Liberman et al. (2016) showed a reduction in the amplitude ratio of the ABR summating 126 

potential (SP) to the action potential (AP; equivalent to wave I of the ABR) in college music 127 

students (age 18-41) with high levels of reported noise exposure versus non-music students with 128 

lower reported noise exposure histories (Figure 3). It must be noted that using the Wave 1/SP ratio 129 

can be problematic as a normalizing strategy since the ratio is critically dependent on changes in 130 

the denominator. Stamper and Johnson (2015a) reported a reduction in ABR wave I amplitude for 131 

young people (age 19-28) with higher reported recreational noise exposure compared to individuals 132 

with lower exposure, but a reanalysis showed that this relationship held true only for female 133 

participants (Stamper & Johnson 2015b). In a group of older adults (aged 29-55) with pure tone 134 

thresholds ranging from normal to mild hearing loss, Valderrama et al. (2018) reported a significant 135 

relationship between lower ABR wave I amplitude and increasing lifetime noise exposure.  136 

 137 

Human envelope following response studies of noise-induced synaptopathy 138 

The envelope following response (EFR) is an evoked potential generated in response to 139 

amplitude modulated sounds (often a sinusoidally amplitude modulated pure tone) that can be 140 

measured from electrodes placed on the scalp. The EFR provides an indication of the fidelity 141 

with which the auditory system can follow the envelope of a stimulus (Dolphin & Mountain 142 

1992). Two studies demonstrated that EFR strength was reduced in mice with histologically 143 

confirmed synapatopathy that was either induced through ageing (Parthasarathy & Kujawa 2018) 144 

or noise exposure (Shaheen et al. 2015). The EFR was most sensitive to synaptopathy for 145 

stimulus modulation frequencies between 700 and 1000 Hz, which is consistent with the EFR 146 

being generated at the AN. However, it is unclear how these animal results will translate to 147 

humans, where the EFR is generally measured at much lower modulation frequencies (80-120 148 
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Hz), targeting EFR generators from the auditory midbrain. Bharadwaj et al. (2015) detected a 149 

marginally significant difference in the EFR slope and envelope interaural time difference (ITD) 150 

threshold when participants were grouped as “more” and “less” noise exposed, but argued this 151 

result should be interpreted with caution based on the crude characterization of noise-exposure 152 

history, small sample size, and cross-correlations among the temporal coding outcomes. While 153 

simulation studies based on functional models of the auditory periphery show a role for 154 

synaptopathy in reduced EFR strength (Bharadwaj et al. 2014; Paul et al. 2017; Verhulst et al. 155 

2018a; Verhulst et al. 2018b), it remains unclear whether the EFR is a robust marker for noise-156 

induced synaptopathy in humans. One potential confound is that animal experiments have shown 157 

that EFR remains normal as long as there is the capacity to maintain neural gain suggesting that 158 

top-down activity, including cognition and memory capabilities, can influence neural responses 159 

in the brainstem (Möhrle et al. 2016). These findings suggest that future studies should consider 160 

how top-down mechanisms influence the periphery, especially for aged populations.  161 

Furthermore, with better detection tools, other factors that may contribute to impaired neural 162 

processing may become feasible to assess, such as potentially detrimental effects of 163 

corticosterones and/or potentially beneficial effects of systemic corticosteroids on auditory 164 

processing (Singer et al., 2018). 165 

   166 

Data consistent with an impact of synaptopathy on auditory perception 167 

One advantage of looking at perceptual consequences of synaptic/neural dysfunction is that 168 

uncertainties about the reliability of noise exposure questionnaires and their comparability across 169 

studies can be taken out of the equation. Instead, a physiological measure (e.g. ABR wave I 170 

amplitude, ABR wave I/V amplitude ratio, EFR strength, middle-ear-muscle reflex (MEMR) 171 

strength) can be directly compared to, or correlated with, the perceptual measure.  172 

 173 

Tinnitus. Consistent with animal models of cochlear synaptopathy, where ABR wave I amplitude 174 

is reduced (Kujawa & Liberman 2009; Furman et al. 2013; Sergeyenko et al. 2013), several studies 175 

have shown a relationship between reduced wave I amplitude (or reduced wave I/V ratio) and 176 

tinnitus (Schaette & McAlpine 2011; Gu et al. 2012; Bramhall et al. 2018; Valderrama et al. 2018). 177 

It is not completely clear why the amplitude of wave V remains close to normal despite the inferred 178 

synaptopathy in tinnitus patients, although enhanced central gain after IHC loss can be a possible 179 
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explanation for this phenomenon (for review see Salvi et al. 2016). Decreased responses for two 180 

other physiological measures that are sensitive to synaptopathy in mouse models, the MEMR and 181 

the EFR (Shaheen et al. 2015; Valero et al. 2016; Valero et al. 2018), have been associated with 182 

tinnitus in humans as well. In individuals with tinnitus who have normal or near-normal 183 

audiograms, Wojtczak et al. (2017) observed a weakened MEMR relative to age- and sex-matched 184 

controls. Paul et al. (2017) showed EFR reductions for individuals with normal audiograms and 185 

tinnitus compared to those without tinnitus. However, reanalysis after identification of a statistical 186 

error revealed that this was not a significant effect (Roberts et al. 2018). 187 

 188 

Hyperacusis. The lack of a uniform measure of hyperacusis makes this perceptual deficit difficult 189 

to assess. Bramhall et al. (2018) did not observe a relationship between loudness discomfort level 190 

(LDL) and ABR wave I amplitude, but this may be because LDL alone is not a good indicator of 191 

hyperacusis (Sheldrake et al. 2015; Zaugg et al. 2016). Liberman et al. (2016) showed that their 192 

high noise exposure group was more likely to report annoyance of everyday sounds and avoidance 193 

of noisy environments than their low noise exposure group. However, neither their noise exposure 194 

nor their hyperacusis questionnaire was validated. In addition, although they showed a reduction 195 

in SP/AP ratio in their high noise exposure group, they did not specifically analyze the relationship 196 

between responses on the hyperacusis questionnaire and ABR measures. Given that the high noise 197 

exposure group had significantly poorer extended high frequency (EHF) thresholds than the low 198 

noise exposure group, this may account for the increased reporting of sound tolerance problems in 199 

the high noise exposure group.  200 

 201 

Speech-in-noise performance. Theoretical reasoning predicts that synaptopathy should degrade 202 

the neural coding of speech, particularly in noise, and thus hinder the intelligibility of speech in 203 

noise (Lopez-Poveda & Barrios 2013; Lopez-Poveda 2014). Liberman et al. (2016) found a 204 

relationship between SP/AP ratio and speech-in-noise performance in young males, the significant 205 

differences in the EHF thresholds of the two groups could have impacted speech-in-noise 206 

performance (Badri et al. 2011; Yeend et al. 2017).  Prendergast et al. (2018) reported the SP/AP 207 

ratio had considerably less test-retest reliability than wave I amplitude within their normal hearing 208 

cohort.  In a sample that included participants up to age 55 with pure tone thresholds ranging from 209 

normal to mild high frequency hearing loss, Valderrama et al. (2018) observed an interaction effect 210 
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of the ABR wave I/V amplitude ratio and wave V-I interpeak latency on speech-in-noise 211 

performance, suggesting that slower neural conduction is associated with poorer performance. 212 

While average high-frequency and EHF auditory thresholds did not appear to be predictive of 213 

speech perception performance in this sample, this does not rule out the possibility that subclinical 214 

OHC dysfunction may have contributed to the relationship between the ABR metrics and speech 215 

perception performance. Although the impact of synaptopathy on speech perception in people with 216 

normal audiograms may be limited, it is important to remember that synaptopathy likely co-exists 217 

with audiometric loss in many cases of SNHL, and that in the context of OHC dysfunction, 218 

synaptic/neuronal loss may have a greater impact on speech perception. This is supported by the 219 

findings of Bramhall et al. (2015) showing an interaction effect of average pure tone thresholds (at 220 

0.5, 1, 2, and 4 kHz) and ABR wave I amplitude on performance on the QuickSIN intelligibility 221 

test, with a stronger relationship between ABR wave I amplitude and QuickSIN performance 222 

(poorer performance for lower wave I amplitudes) in individuals with elevated pure tone 223 

thresholds. In addition to these peripheral effects, central factors such as attention, working 224 

memory and language, are also important factors that affect speech-in-noise performance (Yeend 225 

et al. 2017) and likely interact with any peripheral encoding deficits, thus contributing to the wide 226 

variation observed in speech-in-noise performance across individuals with similar audiograms 227 

(Johannesen et al. 2016; Lopez-Poveda et al. 2017). 228 

 229 

Performance on suprathreshold psychoacoustic tasks. Synaptopathy likely degrades the neural 230 

coding of acoustic information, particularly in noise (e.g., Lopez-Poveda 2014). The relationship 231 

between auditory encoding of complex stimuli and performance on basic psychoacoustic tasks such 232 

as amplitude modulation detection, temporal fine-structure sensitivity, tone-in-noise detection, 233 

frequency and intensity discrimination, and binaural interaural time difference (ITD) or interaural 234 

level difference (ILD) sensitivity are not well understood. Numerous studies have investigated the 235 

relationship between these metrics over the years with mixed outcomes, even for listeners with 236 

clinically normal hearing (Strelcyk & Dau 2009; Hopkins & Moore 2011; Fullgrabe et al. 2014; 237 

Stone & Moore 2014; Prendergast et al. 2017a; Yeend et al. 2017; Valderrama et al. 2018). Without 238 

a better understanding of the relationship between physiological metrics (often representing a 239 

population response to a click or AM stimulus) and performance on a psychoacoustic task, we run 240 

the risk of comparing apples to oranges, as a single synaptopathy profile may have differing effects 241 
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on physiological measures versus psychoacoustic tasks. Numerical modelling approaches can 242 

improve our ability to compare potential metrics of synaptopathy by predicting the expected impact 243 

of synaptopathy and/or OHC/IHC deficits on each measure (Verhulst et al. 2016; Encina-Llamas 244 

et al. 2017; Paul et al. 2017; Carney 2018; Verhulst et al. 2018b).  245 

 246 

Biophysical models of the human auditory periphery have suggested an impact of synaptopathy on 247 

the encoding of suprathreshold sounds. Bharadwaj et al. (2014) modelled the effect of a complete 248 

loss of low-SR AN fibers on the population response of the inferior colliculus (IC) (a proxy for the 249 

dominant source generators of the EFR) (Melcher & Kiang 1996) for an 80 dB SPL 100% 250 

sinusoidally AM pure tone embedded in notched noise and found a 7 dB reduction in the magnitude 251 

of the response. This study did not consider the impact of this reduction on a specific 252 

psychoacoustic task, but degraded coding of AM information at the level of the IC is expected to 253 

impair performance on a psychoacoustic AM detection task. Verhulst et al. (2018b) expanded on 254 

these findings by using a numerical model of the human auditory periphery  to compute the impact 255 

of synaptopathy and OHC loss on the EFR, AM and tone-in-noise detection threshold. Complete 256 

low-SR fiber loss was predicted to elevate the 4-kHz AM detection threshold by 2 dB, and an 257 

additional loss of 50% or 75% of the high-SR fiber population resulted in an AM detection 258 

threshold shift of 8 dB and 15 dB, respectively. The simulations also showed that individual 259 

differences in AM detection were well correlated to the EFR (in response to a 100% amplitude-260 

modulated tone) and that synaptopathy, rather than OHC deficits, was the main factor driving 261 

individual differences in AM detection performance for listeners with normal audiograms and those 262 

with sloping high frequency hearing loss. The simulations furthermore predicted the need for a 4-263 

dB stimulus signal increase for a synaptopathy model (100% low-SR loss and 50% high-SR fiber 264 

loss) to reach the same performance on a 4-kHz tone-in-noise detection task as a normal-hearing 265 

model. The simulated tone-in-noise detection differences on the basis of different degrees of 266 

synaptopathy were consistent with behavioural chinchilla tone-in-noise detection threshold shifts 267 

in the range of 5-10 dB when more than 60% of the IHC population was lost (Lobarinas et al. 268 

2016). Paul et al. (2017) showed that a simulated loss of low and medium SR fibers (based on the 269 

Zilany et al. (2014) model) was sufficient to account for individual differences in AM detection 270 

thresholds for a 5 kHz pure tone among individuals with normal hearing. In another simulation 271 

model, Carney (2018) suggested that synaptopathy may alter spectral contrasts across the cochlear 272 
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partition, which could impair encoding of speech. These studies suggest that model simulations are 273 

a promising method for disentangling the role of different AN fiber populations on suprathreshold 274 

auditory perception as well as the interaction between synaptopathy and OHC/IHC dysfunction.  275 

 276 

 277 

Data Inconsistent with Noise-Induced Synaptopathy in Humans 278 

As outlined earlier, there are two basic approaches to the search for noise-induced cochlear 279 

synaptopathy in humans. The first is to determine if noise exposure is associated with neural 280 

deficits (wave I amplitude changes) consistent with those observed in animals with histologically 281 

confirmed synaptopathy. The second is to determine whether or not noise exposure (with or without 282 

changes in evoked potential measurements) is associated with a measurable change in auditory 283 

function (difficulties understanding speech in complex listening situations).  284 

 285 

A number of studies have used the first approach, specifically, seeking evidence of neural deficits 286 

that parallel those observed in rodent models. To reduce the probability of inclusion of participants 287 

with significant OHC loss, human studies have largely recruited listeners with hearing thresholds 288 

within the clinically normal range (≤ 20 dB HL) and measured the amplitude of wave I of the ABR, 289 

the measure of AN function that is associated with synaptopathy in the rodent models (Kujawa & 290 

Liberman 2009; Sergeyenko et al. 2013). It needs to be mentioned that there are several 291 

morphological differences between rodent and human auditory neurons that could explain the 292 

difficulty in detecting synaptopathy in humans. For example, the total number of spiral ganglion 293 

cells and AN fibers differ and in contrast to rodents, nerve fibers in humans are rarely myelinated 294 

(Kimura et al. 1979; Nadol Jr 1988).  295 

 296 

The majority of studies have failed to find a significant relation between questionnaire- or 297 

interview-based estimates of noise exposure and wave I amplitude, for participants with normal 298 

audiometric hearing (Fulbright et al. 2017; Grinn et al. 2017; Guest et al. 2017b; Prendergast et al. 299 

2017a; Spankovich et al. 2017; Prendergast et al. 2018; Johannesen et al. 2019) (Figures 4 and 5). 300 

The largest study to date (126 participants) used a comprehensive lifetime noise interview to 301 

estimate noise exposure history but failed to detect significant decreases in wave I amplitude with 302 

increasing noise exposure, despite the presence of EHF hearing loss (Prendergast et al. 2017a), 303 
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raising questions about the prevalence of this pathology in humans with “typical” noise histories. 304 

Also of interest is the study of Fulbright et al. (2017), who collected data using the same 305 

methodology and stimulus conditions as the earlier study by Stamper and Johnson (2015a). A 306 

reanalysis of this earlier study by sex reported a significant correlation between noise exposure and 307 

wave I for female participants, but not males (Stamper & Johnson 2015b). However, when 308 

Fulbright et al. added their data to those of Stamper and Johnson, the effect was no longer 309 

significant for females either, suggesting that this original result may have been a statistical fluke. 310 

Several other groups have used the noise exposure questionnaire (NEQ) as used by Stamper and 311 

Johnson, without finding statistically significant relationships between NEQ scores and wave I 312 

amplitude (Grinn et al. 2017; Spankovich et al. 2017; Ridley et al. 2018). Skoe and Tufts (2018) 313 

did not detect differences in wave I amplitude, although they did report delayed latencies of waves 314 

I through V, with increasing delays for later waves. In this study, the participants were divided into 315 

low- and high-exposure groups based on noise dosimetry over a one-week period. 316 

 317 

As indicated earlier, another potential electrophysiological measure of synaptopathy that has 318 

received attention is the EFR, which has been suggested as a sensitive measure of low-SR fiber 319 

loss, especially at high stimulus levels and shallow modulation depths (Bharadwaj et al. 2014; 320 

Bharadwaj et al. 2015). Again, however, the evidence for an association with noise exposure is 321 

weak. Prendergast et al. (2017a), Guest et al. (2017b), and Grose et al. (2017) have all reported no 322 

significant relation between lifetime noise exposure and EFR amplitude. 323 

 324 

Studies failing to find evidence that noise-induced cochlear synaptopathy is functionally 325 

significant in humans 326 

The second basic approach taken in studies of noise-induced cochlear synaptopathy in humans is 327 

to determine whether or not noise exposure (with or without changes in evoked potential 328 

measurements) is associated with a measurable change in auditory function. Recent studies that 329 

have taken this approach have provided little evidence that noise exposure is related to perceptual 330 

deficits for listeners with normal audiometric hearing. In a study of 138 participants aged 18-36 331 

with clinically normal hearing, Prendergast et al. (2017b) reported little relation between lifetime 332 

noise exposure and a range of perceptual measures, including frequency discrimination, intensity 333 

discrimination, interaural phase discrimination, amplitude modulation detection, auditory 334 
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localization, musical consonance perception, and speech perception in noise (SPiN). Similarly, in 335 

an older cohort of 122 participants aged 30-57, Yeend et al. (2017) reported no relation between 336 

lifetime noise exposure and a range of auditory processing and SPiN tasks. Le Prell et al. (2018) 337 

similarly failed to detect any statistically significant relations between common sources of noise 338 

exposure and performance on a word-in-noise test. These null results are consistent with several 339 

other studies (Fulbright et al. 2017; Grinn et al. 2017; Grose et al. 2017; Guest et al. 2018). 340 

 341 

Another approach that avoids issues with the unreliability of self-reported noise exposure is to 342 

determine whether or not perceptual deficits are associated with physiological measures assumed 343 

to reflect cochlear synaptopathy. Several recent studies have reported no relation between ABR 344 

wave I amplitude and SPiN (Fulbright et al. 2017; Grinn et al. 2017; Prendergast et al. 2017b; 345 

Bramhall et al. 2018; Guest et al. 2018), nor between EFR amplitude and SPiN (Prendergast et al. 346 

2017b; Guest et al. 2018) (Figure 6). With regard to tinnitus, Gilles et al. (2016), Guest et al. 347 

(2017a; 2017b), and Shim et al. (2017), have each reported no relation between presence of tinnitus 348 

and wave I amplitude for participants with normal audiometric hearing. Guest et al. (2017a; 2017b) 349 

also reported no significant reduction in EFR amplitude in their tinnitus participants compared to 350 

controls. 351 

 352 

Possible explanations for null results and differences between studies. 353 

It is invalid to assume that a non-significant result implies that the null hypothesis has been proven. 354 

The following comments offer potential reasons for null results and differences in outcomes across 355 

studies. Many of the issues noted below have the net effect of reducing statistical power, as they 356 

introduce variability into the data. 357 

 358 

Humans may be less vulnerable to noise-induced synaptopathy than rodents.  359 

Cochlear synaptopathy is observed with ~100 dB SPL two-hour octave band exposures in the 360 

mouse (Kujawa & Liberman 2009), ~106 dB SPL two-hour octave band exposures in the guinea 361 

pig (Lin et al. 2011), and ~109 dB SPL two-hour octave band exposures in the rat (Lobarinas et al. 362 

2017).  Decreasing sound levels by 3 dB can eliminate synaptopathic injury (see Fernandez et al. 363 

2015), whereas increasing sound levels by 3 dB can intensify the injury to include permanent 364 

threshold shift (Lin et al. 2011).  Macaque monkeys are more resistant to cochlear synaptopathy 365 
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than rodents (Valero et al. 2017), resulting in predictions that humans are less susceptible to noise-366 

induced synaptopathy than rodents (Dobie & Humes 2017). Given the high intensity levels needed 367 

to produce acoustic trauma resulting in significant temporary threshold shift and bordering on a 368 

permanent threshold shift, there may be few human exposures that will result in the large reductions 369 

in ABR wave I seen in the original mouse study (Kujawa & Liberman 2009).  If so, this would 370 

make selective noise-induced cochlear synaptopathy harder to detect in humans. Indeed, when 371 

Dobie and Humes adjusted for inter-species differences in susceptibility to noise-induced 372 

temporary threshold shift, they found that the noise exposures that cause neuropathy in rodents, 373 

when translated to the equivalent levels predicted to be needed to induce cochlear synaptopathy in 374 

humans, exceed the OSHA permissible exposure limits. This suggests that the noise exposure 375 

levels that are synaptopathic for humans may already be addressed by current noise exposure 376 

guidelines.  377 

 378 

The range of exposures inducing selective cochlear synaptopathy may be narrow. 379 

In a recent macaque study, noise exposures producing a temporary threshold shift were 380 

associated with only a 12-27% loss of synapses (Valero et al. 2017) versus 40-55% loss in rodent 381 

models (Kujawa & Liberman 2009; Lin et al. 2011; Hickox et al. 2017). Given that primates 382 

appear more resistant to noise-induced synaptopathy than mice (Kujawa & Liberman 2009; 383 

Valero et al. 2017), there may only be a narrow “sweet spot” where noise-induced cochlear 384 

synaptopathy can occur while hearing thresholds are still clinically normal. This sweet spot 385 

would be characterized by sufficient synaptopathy to be detectable via ABR amplitude 386 

measurements (or another less variable, more reliable metric), but with overall cochlear damage 387 

low enough that OHCs are intact and hearing thresholds are normal. It is possible that this “sweet 388 

spot” is often the result of a combination of noise- and age-related synaptopathy. Support for this 389 

suggestion comes from the observation that several studies investigating young people with 390 

recreational noise exposure or tinnitus have failed to find evidence for synaptopathy in ABR 391 

wave I amplitude measurements (Fulbright et al. 2017; Grinn et al. 2017; Guest et al. 2017b; 392 

Prendergast et al. 2017a; Guest et al. 2018), whereas studies in slightly older cohorts (Schaette & 393 

McAlpine 2011; Gu et al. 2012; Valderrama et al. 2018) did find reductions in ABR wave I 394 

amplitude in the experimental group. There is also the possibility that partial synaptic repair may 395 

occur in humans following noise exposure. This phenomenon has been observed in noise-396 
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exposed guinea pigs (Liu et al. 2012; Shi et al. 2016) and if also prevalent in humans, it would be 397 

yet another source of variation impacting our ability to find evidence for synaptopathy.   398 

 399 

Sound evoked potentials are more variable in humans than in rodents. In the study of 400 

Prendergast et al. (2018), the coefficient of variation in wave I amplitude was 25% in the low noise 401 

exposure group, which may indicate a large degree of variability compared to the effect being 402 

measured. One of the factors that may contribute to the between-subject variability and reduced 403 

statistical power for detection of differences in human electrophysiological measures is head size 404 

and geometry (Mitchell et al. 1989; Don et al. 1994); this may contribute to differences in the average 405 

ABR wave I amplitude for males and females, with smaller average wave I amplitudes in males than 406 

in females. Cochlear duct length also varies with sex, with longer duct length in males than in females 407 

(Sato et al. 1991; Thong et al. 2017). The higher noise floor of human ABR wave I amplitude 408 

measurements is another potential source of variability. Humans are tested while unanesthetized 409 

(with a variable sleep state) and with dermal or ear canal electrodes, while rodents are tested while 410 

anesthetized using subcutaneous needle electrodes. An additional aspect that needs further 411 

investigation is the possibility that top-down regulation might be playing a role. 412 

 413 

The sensitivity of the auditory brainstem response to human synaptopathy might be 414 

inadequate.  415 

Most human studies have employed ABR amplitude measurements to assess cochlear synaptopathy 416 

(Schaette & McAlpine 2011; Gu et al. 2012; Stamper & Johnson 2015a; Liberman et al. 2016; 417 

Bramhall et al. 2017; Fulbright et al. 2017; Grinn et al. 2017; Grose et al. 2017; Guest et al. 2017b; 418 

Prendergast et al. 2017a; Shim et al. 2017; Bramhall et al. 2018; Guest et al. 2018; Valderrama et 419 

al. 2018). In these studies, a decrease in the amplitude of ABR wave I relative to wave V has been 420 

interpreted as evidence for cochlear synaptopathy and  based on speculation that wave V amplitude 421 

is “normal” as a consequence of the compensatory central gain observed in animal models (see 422 

Salvi et al. 2017).  The interpretation of wave I/V ratios must be considered hypothetical at this 423 

time, as central gain as a compensatory mechanism subsequent to the loss of synapses in the cochlea 424 

is highly speculative and not well understood. It is possible that not all cases of synaptopathy lead 425 

to increased central gain. Using ABR wave I amplitude as an indicator of synaptopathy is further 426 

complicated by the fact that high frequency OHC loss also reduces the wave I ABR amplitude by 427 
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decreasing the contribution of high frequency AN fibers to the ABR generation (e.g., Lewis et al. 428 

2015; Verhulst et al. 2016). In addition, it must be remembered that the OHCs provide significant 429 

level-dependent amplification of the cochlear response, and loss of the OHCs decreases the input 430 

to the IHCs (Dallos et al. 2006; for recent review see Le Prell 2019). This makes it difficult to use 431 

ABR wave I amplitude to diagnose  synaptopathy when OHC dysfunction is also present. Thus, 432 

synaptopathy might remain “hidden” even if ABR amplitude measurements are added to the 433 

audiometric test battery.  434 

In addition, the results of Bourien et al. (2014) suggest that ABR wave I amplitudes might not be 435 

a particularly sensitive measure of low-SR synaptopathy. In a series of measurements in gerbils, 436 

Bourien et al. showed that low-SR AN fibers have a minimal contribution to the amplitude of ABR 437 

wave I. This suggests that the sensitivity of wave I amplitude to low-SR synaptopathy is limited. 438 

There are, however, indications, that low-SR fibers might be more important in controlling the 439 

efferent system than in encoding of high-intensity sound levels (Carney 2018). This is also 440 

consistent with the modeling work in Encina-Llamas et al. (2017) where the EFR is dominated by 441 

off-frequency high-SR fibers. Removing all low-SR fibers shows hardly any contribution in a 442 

model based on AN responses. Interestingly, when Furman et al. (2013) demonstrated particular 443 

vulnerability of low-SR fibers to synaptopathy, they binned the low- and medium-SR fibers 444 

together in their analysis. Therefore, the possibility for a significant contribution of medium and 445 

high-SR fiber loss to synaptopathy (and ABR wave I amplitude) should also be considered.  446 

 447 

The sensitivity of the envelope following response to human synaptopathy might be 448 

inadequate. In addition to the concerns noted above, there are other factors that suggest the second 449 

main electrophysiological measure of synaptopathy in rodents, EFR amplitude, may also be 450 

insensitive to synaptopathy in humans, consistent with the lack of a clear reduction in EFR strength 451 

in individuals with a history of noise exposure. Modelling of AN activity suggests that low-SR 452 

fibers have limited contribution to the EFR at high stimulus levels and that amplitude fluctuations 453 

in the stimulus are coded by the activity of high-SR fibers at frequencies basal to the frequency of 454 

the stimulus (Encina-Llamas et al. 2017). Accordingly, low-SR fiber loss will not impact the EFR 455 

due to the large population of high-SR fibers contributing to the response. Empirical data will be 456 

necessary to resolve these questions, given discrepancies in predictions across the various modeling 457 

efforts. Furthermore, as noted earlier, in the mouse model, the EFR is sensitive to synaptopathy at 458 
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high modulation rates (around 1 kHz and above) but does not seem to be sensitive to synaptopathy 459 

at the lower rates (typically 100 Hz) used in the human studies (Shaheen et al. 2015).  460 

 461 

Variability in the noise-exposed populations studied could underlie observed differences in 462 

results and conclusions. Most studies of noise-induced synaptopathy have investigated young 463 

people with clinically normal hearing and high versus low recreational noise exposure (e.g. 464 

concerts, personal music player use, etc.). Many of these studies have not found an effect of noise 465 

exposure on suprathreshold ABR wave I amplitude, either using the noise exposure survey scores 466 

as a continuous variable or when participants are sorted into high and low exposure groups using 467 

survey data (Fulbright et al. 2017; Grinn et al. 2017; Prendergast et al. 2017a). Similarly, 468 

Holtegaard & Epp (2018) found no difference in ABR wave I amplitude for individuals with a 469 

history of occupational noise exposure (musicians and flight attendants) compared to controls with 470 

less reported noise exposure. In contrast, studies of young music students (Liberman et al. (2016) 471 

and  young female adults (Stamper & Johnson 2015a, 2015b) have found electrophysiological 472 

differences as a function of noise exposure history, consistent with synaptopathy. The few studies 473 

that have included older participants or individuals with higher levels of noise exposure have found 474 

noise exposure-related reductions in ABR wave I amplitude (Bramhall et al. 2017; Valderrama et 475 

al. 2018). Common recreational exposures and many occupational exposures are very different 476 

from the high-intensity military noise and firearms to which Bramhall et al.’s participants were 477 

exposed. If it is the case that humans are not as susceptible as rodents to noise-induced 478 

synaptopathy (Dobie & Humes 2017; Valero et al. 2017), then it is likely that the intensity levels 479 

of many common sources of recreational noise exposure are simply not high enough to cause 480 

synaptopathy.   481 

 482 

Differences in OHC function between control and experimental groups could confound 483 

results and interpretation. Even among young people with normal audiograms, subclinical OHC 484 

dysfunction is more likely in those with noise exposure than those without. This could affect 485 

electrophysiological and perceptual measures, leading to between-group differences that are not 486 

solely related to synaptopathy. 487 

 488 
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Variability in the tinnitus populations used across studies could underlie observed differences 489 

in results and conclusions. Recruitment strategies across studies investigating ABR wave I 490 

amplitude and tinnitus have varied (Schaette & McAlpine 2011; Gu et al. 2012; Guest et al. 2017b; 491 

Shim et al. 2017; Bramhall et al. 2018), which may contribute to the differing results. Tinnitus is a 492 

heterogeneous disorder with noise exposure as one possible cause. Other etiologies of tinnitus 493 

include head/neck trauma, medications, thyroid problems, cardiovascular disease, acoustic 494 

neuroma, Meniere’s disease, etc. (Henry et al. 2014). When subjects are recruited specifically based 495 

on their report of tinnitus, it is expected that there will be a mix of underlying etiologies for the 496 

tinnitus. However, if a study recruits for noise exposure and then looks at the subgroup of noise-497 

exposed participants that have tinnitus, that tinnitus group is more likely to have predominantly 498 

noise-induced tinnitus. 499 

 500 

Functional metrics are variable; some tests may not have adequate sensitivity or specificity. 501 

It is also perhaps unsurprising that it has proven difficult to find evidence that synaptopathy leads 502 

to deficits in behavioral performance. Oxenham (2016) has argued, from a signal detection theory 503 

perspective, that the effects of even 50% deafferentation may be insignificant perceptually. Other 504 

perceptual (Lopez-Poveda & Barrios 2013; Marmel et al. 2015) and computational models, 505 

however, suggest larger effects (4-7 dB) (Paul et al. 2017; Verhulst et al. 2018b) depending on the 506 

stimulus characteristics and the amount of deafferentation. Empirical data are needed to assess 507 

these varied model predictions. However, the models recently described by Carney (2018) suggest 508 

an even more fundamental paradigm change may be necessary, arguing against a direct role of low- 509 

and medium-SR fibers in coding sounds at moderate to high sound levels.  510 

 511 

Many auditory and non-auditory factors, such as memory and attention, are known to contribute to 512 

behavioral tasks such as SPiN (Yeend et al. 2017), and the contribution of synaptopathy may be 513 

relatively small, at least for listeners with clinically normal audiograms. Additional research is 514 

needed to determine the relative contributions of OHC function, cochlear synaptopathy, memory, 515 

attention, and other factors on auditory perception. If associations between cochlear synaptopathy 516 

and perceptual issues cannot ultimately be reliably measured, even in individuals with significant 517 

synaptic loss, such results would raise questions as to whether noise-induced cochlear synaptopathy 518 

should be regarded as a major hearing health issue. While cross-sectional retrospective study 519 
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designs are useful and powerful, longitudinal studies allowing the trajectory of change to be 520 

established in parallel across a detailed test battery would be helpful in more completely answering 521 

these questions. 522 

 523 

Noise exposure history metrics are variable and imprecise exposure measurements introduce 524 

variability. Different groups have used a variety of measures of self-reported noise exposure 525 

history in their studies of noise-induced synaptopathy (Bharadwaj et al. 2015; Stamper & Johnson 526 

2015a; Liberman et al. 2016; Bramhall et al. 2017; Grinn et al. 2017; Grose et al. 2017; Paul et al. 527 

2017; Prendergast et al. 2017a; Yeend et al. 2017; Holtegaard & Epp 2018). Although synaptopathy 528 

can theoretically be induced by noise exposure experienced at any point in an individual’s lifetime, 529 

some of these metrics assess noise exposure only during the previous year or two rather than over 530 

their lifetime. Although participants were excluded if they reported that the previous year was not 531 

representative of historic exposure, surveys based on the previous year have not been validated 532 

against lifetime surveys. Except for Bramhall et al. and Yeend et al., these noise exposure measures 533 

either do not specifically ask about firearm use or they do not incorporate firearm exposure into 534 

the overall noise exposure score because they use a scoring system that does not allow for both 535 

continuous and impulse/impact noise exposures. However, this is probably not a significant 536 

confound for the European studies, where firearm use is minimal. In addition, all self-report 537 

measures are dependent on the recall ability of the participants. This makes noise exposure history 538 

questionnaires a relatively crude metric that is prone to measurement error. There is no consensus 539 

on which noise exposure questionnaire should be used for studying synaptopathy or how to score 540 

it, making comparisons across studies difficult.  541 

 542 

It has been argued that the imprecision of the self-report noise exposure metrics is small compared 543 

to the range of noise exposures in the sample of participants used in some studies. For example, in 544 

one study reporting a null result for ABR wave I, the low- and high-exposure groups differed by 545 

an average of a factor of 340 in terms of estimated lifetime energy of exposure (Prendergast et al. 546 

2018). The mean exposure for the low-noise group in this study was equivalent, in terms of total 547 

energy, to that for an individual who goes to a nightclub or live music event for 1.5 hours, once per 548 

year, for 5 years. The mean high-noise exposure was equivalent to going to the same event for 3 549 

hours, three times per week, every week of the year, for 5 years. It seems unlikely that participants’ 550 
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recollection of exposures would be so poor as to be unable to distinguish between these. 551 

Furthermore, the lifetime noise-exposure measure used by Prendergast, Guest, and colleagues, was 552 

significantly correlated with 16-kHz thresholds (Prendergast et al. 2017a) and with the presence of 553 

tinnitus (Guest et al. 2017b), suggesting that this measure is reliable.  However, measurement error 554 

in estimates of noise exposure remains a significant concern. The potential for errors associated 555 

with the assignment of sound intensity levels to recreational exposures is highlighted by Le Prell 556 

et al. (2018), who measured preferred music player listening levels across multiple songs per 557 

subject. Even within a quiet lab setting, individual subjects had significant variability in their level 558 

selections on a song-to-song basis. These data raise questions about the validity of assigning a 559 

relatively arbitrary intensity level for calculating accumulated noise exposure over the past year or 560 

longer periods of time. Differences in accumulated noise dose are highly variable across events 561 

and individuals, as a function of differences in event intensity level, distance from the sound source, 562 

and duration of event attendance (see for example, the event specific exposure data in Grinn et al., 563 

(2017)). 564 

 565 

Control groups may differ across studies. In group comparisons, it is vital that the control 566 

population has limited noise exposure, otherwise the presence of people with synaptopathy in the 567 

control group will make it difficult to detect differences between the control and experimental 568 

groups. Ensuring a control group with limited noise exposure is difficult due to the inherent 569 

limitations of using noise exposure questionnaires. An in-depth noise exposure questionnaire with 570 

specific questions about a variety of potentially noisy activities rather than a questionnaire that uses 571 

more general questions to assess noise exposure history may be necessary to aid recall of noise 572 

exposures in potential study participants, particularly for infrequent exposures. Given the results 573 

from Bramhall et al. (2017) suggesting that firearm users have reduced ABR wave I amplitudes, 574 

even individuals with a single episode of firearm exposure should not be included in a control 575 

group. Confirming good OHC function by screening for otoacoustic emissions (OAEs) and/or EHF 576 

thresholds will also help ensure this population does not have noise exposure history that they have 577 

forgotten to report. It is also possible that most adult humans have some degree of age-related 578 

and/or noise-induced synaptopathy, making it difficult to identify a true control population, and 579 

obscuring variation between groups. 580 

 581 
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Positive results may be due to audiometric confounds unrelated to synaptopathy. Several 582 

studies have provided intriguing evidence that could support an interpretation of an underlying 583 

synaptopathic injury. However, there are potential confounds in some of these studies that should 584 

be considered. Some studies that have reported a relation between ABR measures of synaptopathy 585 

and noise exposure have either reported high-frequency audiometric differences between low-noise 586 

and high-noise groups (Liberman et al. 2016; Bramhall et al. 2017), or have not measured 587 

audiometric thresholds at extended high frequencies above 8 kHz (Stamper & Johnson 2015a, 588 

2015b). Bramhall et al. (2017) reported a 2-6 kHz threshold elevation compared to controls for one 589 

of their high-noise groups (“veteran high noise”), but not the other (“non-veteran firearms”). 590 

However, they controlled for variability in OHC function in their analysis by statistically adjusting 591 

for DPOAE differences between the groups. It is unclear the extent to which small audiometric 592 

differences might influence the electrophysiological measures of synaptopathy, although it is 593 

known that ABR wave I amplitude is dependent on basal cochlear generators (Don & Eggermont 594 

1978). Valderrama et al. (2018) reported a weak but significant relation between lifetime noise 595 

exposure and ABR wave I amplitude, even after controlling for audiometric thresholds. Although 596 

this was a relatively large sample with careful documentation of lifetime exposure to noise, the 597 

authors note that if a single outlier with extremely low noise and an extremely robust ABR wave I 598 

amplitude was excluded from the analysis, the observed association between lifetime noise 599 

exposure and ABR wave I amplitude was no longer statistically significant.  600 

 601 

Some of the positive findings with respect to tinnitus and synaptopathy may also have been affected 602 

by audiometric differences. In the Gu et al. (2012) study the groups were not audiometrically 603 

matched for the click level (120 dB peSPL) at which a significant effect on wave I amplitude was 604 

observed, with higher thresholds in the tinnitus group at frequencies of 8 kHz and above. In the 605 

Bramhall et al. (2018) study there were also audiometric differences between the groups, although 606 

the authors controlled for DPOAE differences in the analyses. In the Schaette and McAlpine (2011) 607 

study there was a small audiometric threshold elevation (3.5 dB) in the tinnitus group at 12 kHz, 608 

and thresholds at higher frequencies were not reported. Wojtczak et al. (2017), who reported a large 609 

reduction in the acoustic MEMR amplitude in their tinnitus participants compared to controls, also 610 

observed substantial audiometric differences between groups. Although the effect of group was 611 

still highly significant after controlling for audiometric threshold, the pure tone threshold 612 
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measurements were limited to a minimum of 0 dB HL, which may have biased thresholds for the 613 

controls upwards. It is unclear, however, if this could account for the large group differences in 614 

MEMR amplitude they observed. 615 

 616 

Reproducibility is a major concern. Finally, we should be aware of the crisis in the wider 617 

neuroscience community regarding reproducibility (Colquhoun 2017). Many of the human 618 

studies of synaptopathy have used a large number of outcome measures. Studies have often 619 

reported positive effects for one measure but not others, and the statistical significance of the 620 

positive effects has often been marginal (and usually uncorrected for multiple comparisons). In 621 

these circumstances, the rate of statistical Type I errors is very high.  622 

Suggestions for Methodological Approaches to Investigate Synaptopathy in Humans 623 

With the current state of technology, synaptopathy is a pathology that can only reliably be revealed 624 

using histological techniques post-mortem. Because across-study differences in results may be due 625 

to methodological differences, researchers around the world are working to identify the “best” 626 

(most sensitive) non-invasive measures for detecting synaptopathy in humans.  Ultimately, a test 627 

battery should be sensitive to synaptopathy both when auditory thresholds are normal, as well as 628 

when other auditory deficits are present. However, given that most studies of synaptopathy in 629 

humans have used samples with clinically normal or near normal hearing thresholds, it is difficult 630 

to recommend the best test measures for diagnosing synaptopathy in individuals with abnormal 631 

auditory thresholds. Therefore, the following recommendations are oriented towards diagnosis of 632 

synaptopathy in people with normal audiograms. Many of the essential components of the test 633 

battery may be necessary in order to have confidence in inferences regarding synaptopathy. The 634 

recommendations are as follows: 635 

 636 

o Noise exposure measurement tools: At this time, a variety of retrospective self-report tools are 637 

being used to investigate noise-induced synaptopathy. Some are survey based and emphasize 638 

the past year; others are interview based and emphasize lifetime noise exposure history. The 639 

strongest approach would include prospective monitoring of changes in the auditory measures 640 

described below as a function of noise exposure documented via dosimetry, but such data will 641 

be difficult to collect over an individual’s lifetime. The more practical goal should be the 642 
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development of standardized survey tools that can be used across laboratories, although these 643 

are inevitably subject to recall bias. An alternative approach is the recruitment of subjects with 644 

specific risk factors (e.g. frequent exposure to very high-intensity amplified music, exposure to 645 

firearm discharge, work in a high-level noise environment) with planned comparisons with 646 

lower-exposure control subjects matched for age and sex. 647 

o Otoscopy: inspection of the ear canals is necessary to exclude participants with potential 648 

obstruction of the ear canal or other pathology that may confound the results. 649 

o Tympanometry: measurement of ear drum mobility while the pressure in the sealed ear canal is 650 

systematically changed; this is necessary to document a correctly functioning middle ear system. 651 

o Distortion product otoacoustic emissions (DPOAEs): a measure of OHC function, necessary for 652 

differential allocation of deficits to OHC or AN damage. Note that if sound conduction through 653 

the middle ear is compromised, DPOAEs will be reduced or absent even if the OHC population 654 

and function are intact. 655 

o During screening tests, DPOAEs are often scored as pass/fail based on whether their 656 

levels are at least 6 dB above the noise floor. This is inadequate and more stringent 657 

criteria should be used to guarantee normal OHC function.    658 

o When DPOAEs are used diagnostically, they are more commonly defined as present 659 

and normal, present but abnormal, or absent, with present but abnormal used to 660 

identify DPOAE responses that are present but at a reduced amplitude.  Empirical 661 

research is necessary to identify whether use of these three categories has adequate 662 

specificity and sensitivity for sorting participants in these studies.  663 

o DPOAE testing with f1 and f2 primary tone levels of 65 dB SPL and 55 dB SPL are 664 

common. A DP-gram obtained at these stimulus levels can be compared to 665 

normative values (Gorga et al. 1997, Table A1). Restricting study participation to 666 

individuals with DPOAE levels above the 95th percentile for Gorga et al.’s impaired 667 

sample will greatly limit OHC dysfunction. However, in noise-exposed samples, 668 

this may make it difficult to meet recruitment targets. 669 

o Testing at lower SPLs should also be considered; noise-induced deficits may 670 

emerge at lower SPLs prior to higher SPLs and thus subtle changes in OHC function 671 

can be missed. 672 
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o As the availability of clinical equipment capable of measuring high-frequency 673 

DPOAEs continues to improve, the ability to adjust for OAE amplitude may 674 

continue to improve, and it may be advisable to require “normal” OAEs of all study 675 

participants at all tested frequencies (Bramhall et al. 2017). Although inclusion of 676 

OAEs might improve the ability to interpret study outcomes, it must also be 677 

remembered that normal DPOAEs can be recorded even in the presence of OHC 678 

damage and thus normal DPOAEs do not necessarily imply the OHC population is 679 

not damaged (Subramaniam et al. 1994a; Subramaniam et al. 1994b; Chen & 680 

Fechter 2003). In addition, OAEs are not sensitive to IHC function, and therefore 681 

controlling for OAEs will not guarantee perfect matching between groups. 682 

 683 

o Pure-tone air conduction thresholds, including EHF assessment: Conventional threshold 684 

assessment is necessary, including 3 and 6 kHz, and it is essential that EHF assessment be 685 

completed up to 12-16 kHz. Multiple studies have provided evidence of deficits in the high 686 

frequency range related to noise exposure history, with or without corresponding changes in 687 

ABR wave I amplitude. As described earlier, ABR wave I is sensitive to basal cochlear function, 688 

so it may be important to control for EHF thresholds when making comparisons between 689 

participants using this metric.  690 

o ABR: a measure of the sound evoked neural response, evoked by tones or clicks. Protocols vary 691 

significantly across laboratories; in the absence of more sensitive metrics, this is the current gold 692 

standard in animal models and should be included in human studies. 693 

o Clicks will activate larger regions of the cochlea than tones; some laboratories 694 

record responses to both clicks and tones while others only report responses to 695 

clicks. In order to reduce the potential impact of OHC loss in subjects with EHF 696 

hearing loss, low-pass filtered clicks could be used. At high intensities, ANFs at 697 

high CFs will only contribute through their tails, which are not affected by OHC 698 

loss. To facilitate comparisons across studies, clicks should be included in all 699 

investigations, and tones, chirps, and other shaped signals should be considered as 700 

optional additions.  Because the original data from Kujawa and Liberman (2009) 701 

reveal frequency specific effects with both more cochlear synaptopathy in basal 702 

regions and greater wave I deficits at higher frequencies, it is reasonable to predict 703 
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that non-click signals may provide insight into patterns of damage within the human 704 

cochlea but we do not yet have sufficient evidence to recommend specific protocols. 705 

If data emerge documenting increased sensitivity with non-click signals, these 706 

recommendations should be re-evaluated. 707 

o In general, click levels vary from as low as 70 dB nHL to as high as 100 dB nHL. 708 

Some groups report these stimulus levels in dB nHL, while others report them in 709 

dB peSPL.  To facilitate comparisons across studies, both dB nHL and dB peSPL 710 

should be included in all reports.  Based on both animal data and the studies 711 

reporting ABR wave I deficits consistent with synaptopathy, 90 and 100 dB peSPL 712 

stimuli are likely to be the most sensitive in revealing wave I deficits; at least one 713 

of these higher-level conditions should be included. 714 

o Most human studies consider click durations of 80-100 µs (see Table I) to 715 

characterize the onset response of the population of AN fibers. It should be noted 716 

that adopting longer duration click or tone-burst stimuli with different windowing 717 

properties are known to alter the frequency-dependent sources which contribute to 718 

the ABR amplitude (Rasetshwane et al. 2013). The exact stimulus specifics for the 719 

ABR might thus also have an impact on their sensitivity to synaptopathy and/or on 720 

the AN fibers types which contribute to the population response.  721 

o Responses may be measured using dermal electrodes or ear canal electrodes; ear 722 

canal electrodes are increasingly used in more recent studies to improve resolution 723 

of wave I.  724 

o Overall configuration for recordings may be one-channel or two-channel 725 

configurations. In a one-channel configuration, the active electrode is placed at the 726 

high forehead (Cz or Fpz), the reference electrode is placed at the ipsilateral earlobe 727 

or the mastoid, and the ground is placed at the contralateral earlobe or mastoid. In a 728 

two-channel configuration, the active electrodes for both channels are placed on the 729 

high forehead (Cz or Fpz), reference electrodes are placed on both earlobes or both 730 

mastoids, and the ground is placed at the center of the forehead.  731 

o The number of samples averaged has ranged from 500 (Grinn et al. 2017) to 12,500 732 

(Valderrama et al. 2018). Increasing the number of samples averaged will reduce 733 

noise in the ABR waveform, making it easier to resolve wave I, but data collection 734 
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time is increased. It has been indicated that there is little improvement between 1000 735 

and 2000 averages, except near threshold where as many as 4000 averages may be 736 

needed (Hall 1992). It appears that 1000 averages is probably adequate when 737 

measuring responses to high level (90-100 dB SPL) click signals in a normal-738 

hearing population, but increased averaging may be required when including 739 

participants with abnormal pure tone thresholds. A conservative approach would be 740 

to average a minimum of 4000 responses; additional data would be helpful in 741 

guiding the minimum protocol requirements.    742 

o Increasing the stimulus rate reduces neural recovery time between stimuli, reduces 743 

the ability to resolve wave I, and increases wave V latency. Stimulus presentation 744 

rates vary widely across studies. Hall (1992) shows that wave I amplitude is constant 745 

up to 21/sec rates and the amplitude decreases at 31/sec and at higher rates. Thus, a 746 

21/sec rate would be recommended for a standard test rate; additional stimulus rates 747 

can be included to probe the rate of wave I amplitude decrease as stimulus rate 748 

increases.  749 

o Although ABR measurements are a necessary element of the test battery, it must be 750 

noted that the field is not yet at a point where it is feasible to agree on whether wave 751 

I amplitude is the best metric or not, with some data suggesting that wave I is 752 

insensitive to low-SR fiber loss (Bourien et al. 2014).  753 

Wave I has good test-retest reliability (low measurement error) but large between-subject 754 

variance (Mitchell et al. 1989; Don et al. 1994; Prendergast et al. 2018). A differential measure 755 

that reduces between-subject variance due to factors unrelated to synaptopathy is recommended 756 

for improved sensitivity. As discussed above, the use of a ratio derived from wave I (i.e., wave 757 

V/I, or SP/AP amplitude) or other metrics such as wave V latency may be problematic because 758 

(1) the value of the ratio critically depends on changes in the denominator and (2) wave V 759 

features reflect response characteristics from central auditory nuclei, which may or may not 760 

correlate with synaptopathy. The growth of ABR wave I with increasing stimulus intensity may 761 

be a useful differential wave I measure with reasonable test-retest reliability (Johannesen et al. 762 

2019), but the data do not allow recommendation for a single best differential measure at this 763 

moment. 764 
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o In the absence of OHC deficits, it is not clear whether ABR latencies are impacted 765 

by synaptopathy. Delayed and temporally-smeared first-spike latencies of LSR 766 

fibers compared to HSR fibers, make that the ABR wave-I is mostly dominated by 767 

the temporally precise HSR fibers (Bourien et al., 2014). A selective loss of LSR 768 

fibers or different degrees of HSR fiber loss is thus not expected to impact the ABR 769 

wave-I latency much (see also simulations in Verhulst et al., 2018a). However, there 770 

is a suggestion that the degree to which the ABR wave-V latency shifts when 771 

background noise is added can be a marker of selective low/medium-SR fiber loss 772 

(Mehraei et al. 2016). In contrast to suggestions that ABR latencies reflect cochlear 773 

synaptopathy, it must also be noted that ABR latencies are very sensitive to OHC 774 

deficits and the shape of the audiogram (Gorga et al. 1985; Lewis et al. 2015). This 775 

means that ABR latencies for constant SPL stimulation can be used as a control 776 

measure to verify whether EHF loss contributed to the degraded ABR wave I 777 

amplitude. Specifically, the ABR waves would be delayed in listeners with OHC 778 

loss, when compared to listeners without OHC loss but with or without 779 

synaptopathy. 780 

o It is important to control for any potential confounds due to high-frequency hair cell 781 

damage, which may impact wave I in particular (and more so than wave V given 782 

that wave-V generators are more low-frequent than the wave-I generators (Don and 783 

Eggermont, 1978)).  EHF testing and/or high-frequency DPOAE measurements 784 

provide critical insight into peripheral damage and one or both of these measures 785 

should be included. Even in a sample with normal audiograms, it is advisable that 786 

ABR measures are statistically adjusted for between-subject differences in OAEs. 787 

OAEs are more sensitive to noise exposure than pure tone thresholds (Engdahl & 788 

Kemp 1996; Seixas et al. 2005; Marshall et al. 2009) and OAEs measured in the 789 

high frequencies (4-8 kHz) are correlated with pure tone thresholds in the extended 790 

high frequencies (11-20 kHz, Arnold et al. 1999). Given that OAEs are reflective of 791 

peripheral auditory function, adjusting ABR wave I amplitudes for OAEs may be 792 

preferable to adjusting for pure tone thresholds, which theoretically could be 793 

impacted by high levels of neuronal loss. Another potential method of limiting the 794 

impact of high frequency hair cell damage is to add notched noise to the ABR 795 
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stimulus. It should also be noted that wave I can be impacted by sub-clinical IHC 796 

dysfunction, and distinguishing synaptopathy from IHC dysfunction is problematic 797 

using wave I amplitude in isolation. It will also be problematic to distinguish 798 

synaptopathy (loss of synapses) from deafferentation (loss of nerve fibers) using 799 

wave I.  In the absence of histopathology, which cannot be collected from live 800 

participants, we recommend that authors reporting results remain cognizant of these 801 

limitations and specifically acknowledge the imprecision of wave I results. 802 

 803 

In summary, it is reasonable to infer there is a pathology of the IHCs, the synapses, or the ascending 804 

neural pathway, if middle ear conduction, OHC function, and threshold sensitivity (including EHF 805 

thresholds) are all normal, but there is decreased amplitude of the AP or wave I of the ABR. If 806 

middle ear conduction, OHC function, or threshold sensitivity is suspected to be compromised, the 807 

inference of selective synaptopathy is drawn into question. This does not mean synaptopathy has 808 

not occurred, but that functional deficits and/or supra-threshold complaints cannot be attributed to 809 

a selective neural pathology as there are other potentially contributing pathologies present.  810 

 811 

There are a number of optional (experimental) elements of the test battery that labs may consider 812 

adding; it is possible that one or more of these elements will ultimately be identified as essential 813 

components to include in future investigations. These are described below. 814 

 815 

• Middle ear muscle reflex (MEMR): also termed the acoustic reflex, stapedius reflex, or auditory 816 

reflex; this is an involuntary muscle contraction which can be triggered by either ipsilateral or 817 

contralateral sound. The AN must be intact to initiate the acoustic reflex; the strength of the 818 

acoustic reflex is reduced in mice with synaptopathy (Valero et al. 2016; Valero et al. 2018) 819 

and this may prove to be a useful metric in humans as well. MEMRs are known to be weak, or 820 

absent, in a subset of the population (Flamme et al. 2017; McGregor et al. 2018), and it has 821 

been suggested that synaptopathic injury could underlie this observed individual variability 822 

(Wojtczak et al. 2017). Use of a wideband probe and a broadband activator stimulus has been 823 

shown to lower MEMR thresholds compared to the standard 226 Hz probe tone used clinically, 824 

which could perhaps improve the ability to reliably detect MEMR responses in future studies 825 

(Feeney et al. 2017). 826 
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• Signal-in-Noise/Speech-in-Noise testing: Various labs are using different clinical tests, 827 

including the QuickSin, WIN, Matrix test, and others. The custom manipulation of the NU-6 828 

words by Liberman et al. (2016) revealed significant differences in performance for high risk 829 

and low risk participants. However, this test is not readily available to others, complicating 830 

replication of the testing and reproduction of the results by other laboratories. Furthermore, 831 

task difficulty can be defined simply in terms of percent correct performance, which is easily 832 

manipulated in any speech-in-noise test by changing the signal-to-noise ratio. Making a test 833 

more “complex” with respect to the cues available would be expected to make the test more 834 

cognitively demanding (for example, requiring increased attention and listening effort). This is 835 

likely to make performance more reliant on central rather than peripheral factors, reducing 836 

sensitivity to synaptopathy. 837 

• Testing audiometric thresholds for brief tones (<20ms) has been suggested as a possible method 838 

for detecting synaptopathy. Theoretical reasoning by Lopez-Poveda and Barrios (2013) and 839 

perceptual model simulations by Marmel et al. (2015) suggest that synaptopathy involves a 840 

substantial loss of low-threshold AN fibers in addition to the larger loss of high-threshold 841 

fibers, which is predicted to elevate the detection threshold for brief tones, without significantly 842 

elevating the thresholds for longer sounds. The results of Wong et al. (2019) in the budgerigar 843 

undermine this approach and the experimental data currently available are not adequate to allow 844 

a recommended protocol for this test. 845 

• Supra-threshold temporal tasks: Basic psychoacoustic tasks such as amplitude-modulation 846 

detection, temporal fine-structure sensitivity tasks, tone-in-noise detection, frequency and 847 

intensity discrimination as well as basic binaural ITD or ILD sensitivity tasks have been 848 

completed by some laboratories, but there is only limited theoretical development relating 849 

synaptopathy to specific deficits of interest. In those cases where deficits are present on only a 850 

subset of temporal processing tasks, interpretation is challenging. Some of these tests will be 851 

compromised by OHC pathology, highlighting the need for careful DPOAE assessment, if 852 

deficits are to be attributed to selective neural injury.  853 

Hyperacusis tools: There are no uniform measures of hyperacusis; loudness discomfort levels 854 

could be considered for inclusion (following Bramhall et al. 2018), although this measure may 855 

not be a good predictor of hyperacusis. Alternatively, a measure of loudness growth, such as the 856 

Contour Test of Loudness Perception (Cox et al. 1997), or categorical loudness scaling (Brand & 857 
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Hohmann 2002), might be a better metric. Annoyance related to everyday sounds and avoidance 858 

of noisy environments (following Liberman et al 2016) could be considered for inclusion as well.  859 

• ABR amplitude versus latency plots can be derived from the raw data and may be considered 860 

as per Verhulst et al. (2016) to further disentangle the contribution of OHC and synaptopathy 861 

aspects to SNHL. 862 

• Envelope following response (EFR): The EFR is a steady-state sound evoked response which 863 

follows the envelope of an AM stimulus. The carrier and modulation frequency can be 864 

manipulated, as well as the depth of amplitude modulation. Some studies have also included 865 

masking noise (e.g., Bharadwaj et al. 2015; Paul et al. 2017). However, as described above, the 866 

EFR cannot be measured in humans easily at the high modulations rates (~1 kHz) that are 867 

associated with synaptopathy in animal models. Even though model simulations suggest that 868 

EFRs to lower modulation rates may also be sensitive to synaptopathy, the interpretation of the 869 

EFR metric in terms of synaptopathy might depend critically on the stimulus characteristics 870 

and masking noise applied.  871 

Ultimately, to reach a definitive differential diagnosis of synaptopathy, we may need to turn to 872 

novel brain imaging techniques, perhaps variations of magnetic resonance imaging (MRI), positron 873 

emission tomography (PET) or magnetoencephalography (MEG), or some future technique not yet 874 

developed. For example, a new molecular imaging technique to detect changes in the 875 

neurotransmitter dopamine in the human brain has been described by Badgaiyan (2014). It may be 876 

that research efforts into other neurological conditions, such as Alzheimer’s disease, may yield 877 

viable techniques which hearing scientists can adopt for the detection of abnormal synaptic 878 

transmission at the AN. 879 

 880 

The above list of suggestions for assays to detect synaptopathy is quite lengthy and would not be 881 

clinically feasible for diagnostic purposes due to time constraints. However, at this point in time it 882 

is not possible to minimize the number of assays because of the many uncertainties within the 883 

literature. A more concise battery of assays can only be suggested when the number of studies 884 

related to human synaptopathy increase and the combinations of assays become validated.     885 

 886 
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Conclusions 887 

Despite a concerted international research effort over the past several years, conclusive evidence 888 

for noise-induced cochlear synaptopathy in humans remains elusive. In this commentary, we have 889 

discussed some of the possible reasons behind this. We have described how each of the various 890 

experimental approaches, including electrophysiological, questionnaire and behavioural measures 891 

have proved to be imperfect metrics. Although there may be techniques we can use to control 892 

variability, improve robustness, and increase statistical power, we seem far from reaching a 893 

satisfactory diagnostic approach. There are also important questions to be answered about the 894 

extent to which human synaptopathy mirrors the animal models, particularly in relation to the 895 

intensity of noise that is needed to induce synaptic damage in humans, the relative susceptibility of 896 

low-, medium- and high-SR fibers, and the possibility that structural repair at the synapse may 897 

occur following early auditory insults. Given that aging and cumulative noise exposure are 898 

necessarily correlated and associated with peripheral and central damage in addition to 899 

synaptopathy, disentangling noise-induced synaptopathy from deterioration of other auditory 900 

structures may prove to be an insurmountable challenge. Nevertheless, it is important to continue 901 

our efforts to determine whether synaptopathy occurs in humans, and to better understand its 902 

potential perceptual effects. As one of several peripheral and central factors that may contribute to 903 

suprathreshold hearing deficits in humans, we need to be able to characterize its relative influence 904 

on an individual’s overall auditory function. Understanding these relationships is essential if we 905 

are to move beyond the audiogram towards a holistic model of person-specific hearing care that 906 

diagnoses and treats both the “hidden” and “unhidden” components that underlie human hearing 907 

impairment.  908 

 909 

 910 

Figure Legends 911 

Figure 1.  912 

Histological evidence of synaptopathy in human temporal bones. Figure shows analysis of 913 

orphan ribbons in the IHC area. A: Thumbnail re-projections of the voxel space immediately 914 

surrounding 12 selected synaptic ribbons from z-stacks. Some ribbons are clearly juxtaposed to 915 

nerve terminals (left two columns) while others are not (right column). Only the red (anti-CtBP2) 916 

and green (anti-neurofilament) channels are shown for clarity. B: Percentage of orphan ribbons, 917 
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i.e. those not closely juxtaposed to post-synaptic terminals, as assessed by evaluating thumbnail 918 

arrays such as those illustrated in A, for each of the five completely reconstructed ears in the 919 

present study. Reprinted with permission from Viana et al., 2015, Hearing Research.  920 

 921 

Figure 2. Evidence of noise exposure-related ABR wave I amplitude reduction in humans. 922 

Mean ABR waveforms and peak amplitudes are plotted by noise exposure group. ABR wave I 923 

amplitude was reduced in the Veteran High Noise and non-Veteran Firearms groups compared 924 

with the non-Veteran control and Veteran Low Noise groups, while waves III and V were similar 925 

across groups. A: Waveforms were generated in response to a 110 dB p-pe SPL 4 kHz toneburst 926 

and averaged across all participants in each group. The peaks of waves I, III, and V are labeled. 927 

The inset shows the average wave V peak after correcting for variability in peak latency across 928 

participants. B: Wave amplitudes were measured from responses to a 110 dB p-pe SPL 4 kHz 929 

toneburst and then averaged across groups. Wave I and III amplitudes were measured as the 930 

difference in voltage between the wave peak and the following trough. Due to difficulty 931 

identifying the wave V trough in some participants, wave V amplitude was measured as the 932 

voltage difference between the wave V peak and the prestimulus baseline (average voltage 933 

measured for the 1-msec period of time before the stimulus presentation). Error bars indicate the 934 

standard error of the mean. ABR indicates auditory brainstem response. Reprinted with 935 

permission from Bramhall NF, Konrad-Martin D, McMillan GP, Griest SE. Auditory Brainstem 936 

Response Altered in Humans With Noise Exposure Despite Normal Outer Hair Cell Function. 937 

Ear Hear. 2017 Jan/Feb;38(1):e1-e12. https://insights.ovid.com/pubmed?pmid=27992391 938 

 939 

Figure 3. Evidence of noise-exposure related increase in SP/AP ratio in humans. 940 

Electrocochleography shows evidence for cochlear synaptopathy in the high-risk group. A: 941 

Averaged waveforms (±SEMs) from each group in response to clicks delivered at 9.1 Hz in 942 

alternating polarity at 94.5 dB nHL. SP and AP are measured from baseline to peak, as 943 

illustrated. B: Increasing click rate from 9.1 Hz to 40.1 Hz decreases AP without affecting SP: 944 

mean waveforms from 6 subjects are shown. C: Mean SP/AP ratio is nearly twice as high in the 945 

high-risk vs. the low-risk group. This difference remains when subjects are separated by sex. D: 946 

The difference in SP/AP ratios arises from both an increase in the SP and a decrease in the mean 947 

https://insights.ovid.com/pubmed?pmid=27992391
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AP, although only the SP differences are statistically significant. All data are means (±SEM). 948 

***p<0.001; **p<0.01. From Liberman et al., 2016. 949 

 950 

Figure 4. Evidence that self-reported noise exposure is not correlated with ABR wave I 951 

amplitude in humans.The relationship between self-reported noise exposure (calculated as 952 

LAeq8760) and action potential (AP) amplitude is shown for male and female participants for 953 

stimuli including A: clicks, B: 2 kHz tone bursts, C: 3 kHz tone bursts, and D: 4 kHz tone bursts. 954 

All AP amplitude data were normally distributed. Pearson correlation analysis revealed no 955 

statistically significant relationships between self-reported noise history and AP amplitude within 956 

males or females. Lines of best fit are shown (Males: black symbols and regression lines; 957 

Females: red symbols and regression lines). From Grinn et al., 2017.  958 

 959 

Figure 5. Evidence that ABR wave I amplitude is not decreased by noise exposure in 960 

humans. 961 

Grand average ABR waveforms. Average waveforms are shown in microvolts for males and 962 

females separately and for the 15 lowest and 15 highest noise exposed individuals for each sex. 963 

Waves I, III and V can be seen at around 2, 4 and 6 ms respectively. Waveforms are plotted 964 

broadband in order to show the full morphology of the response. Reprinted with permission from 965 

Prendergast et al., 2017. Hearing Research.  966 

 967 

Figure 6. Evidence that ABR wave I amplitude is not decreased among individuals with 968 

problems understanding speech in noise. 969 

ABRs elicited by 102 dB peSPL clicks for verified-SPiN-impairment and control groups. A: 970 

Grand average waveforms (averaged across ears and across participants). Shaded areas represent 971 

the SEM. B: Wave I and wave V amplitudes, presented as mean ± SEM. Reprinted with 972 

permission from Guest et al., 2018. Hearing Research.  973 

 974 

 975 

References 976 
 977 

https://www.sciencedirect.com/topics/neuroscience/jugular-venous-pressure


33 
 

Arnold, D. J., Lonsbury-Martin, B. L., Martin, G. K. (1999). High-frequency hearing influences lower-978 

frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg, 125, 215-979 

222. 980 

Badgaiyan, R. D. (2014). Imaging dopamine neurotransmission in live human brain. Prog Brain Res, 211, 981 

165-182. 982 

Badri, R., Siegel, J. H., Wright, B. A. (2011). Auditory filter shapes and high-frequency hearing in adults 983 

who have impaired speech in noise performance despite clinically normal audiograms. J Acoust 984 

Soc Am, 129, 852-863. 985 

Bharadwaj, H. M., Masud, S., Mehraei, G., et al. (2015). Individual differences reveal correlates of hidden 986 

hearing deficits. J Neurosci, 35, 2161-2172. 987 

Bharadwaj, H. M., Verhulst, S., Shaheen, L., et al. (2014). Cochlear neuropathy and the coding of supra-988 

threshold sound. Front Syst Neurosci, 8, 26. 989 

Bourien, J., Tang, Y., Batrel, C., et al. (2014). Contribution of auditory nerve fibers to compound action 990 

potential of the auditory nerve. J Neurophysiol, 112, 1025-1039. 991 

Bramhall, N., Ong, B., Ko, J., et al. (2015). Speech Perception Ability in Noise is Correlated with Auditory 992 

Brainstem Response Wave I Amplitude. J Am Acad Audiol, 26, 509-517. 993 

Bramhall, N. F., Konrad-Martin, D., McMillan, G. P. (2018). Tinnitus and Auditory Perception After a 994 

History of Noise Exposure: Relationship to Auditory Brainstem Response Measures. Ear Hear, 39, 995 

881-894. 996 

Bramhall, N. F., Konrad-Martin, D., McMillan, G. P., et al. (2017). Auditory Brainstem Response Altered in 997 

Humans With Noise Exposure Despite Normal Outer Hair Cell Function. Ear Hear, 38, e1-e12. 998 

Brand, T., Hohmann, V. (2002). An adaptive procedure for categorical loudness scaling. The Journal of the 999 

Acoustical Society of America, 112, 1597-1604. 1000 

Carney, L. H. (2018). Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural 1001 

and Hidden Hearing Loss. J Assoc Res Otolaryngol. 1002 

Chen, G. D., Fechter, L. D. (2003). The relationship between noise-induced hearing loss and hair cell loss 1003 

in rats. Hear Res, 177, 81-90. 1004 

Colquhoun, D. (2017). The reproducibility of research and the misinterpretation of p-values. Royal 1005 

Society open science, 4, 171085. 1006 

Cox, R. M., Alexander, G. C., Taylor, I. M., et al. (1997). The contour test of loudness perception. Ear Hear, 1007 

18, 388-400. 1008 



34 
 

Dallos, P., Zheng, J., Cheatham, M. A. (2006). Prestin and the cochlear amplifier. The Journal of 1009 

physiology, 576, 37-42. 1010 

Dobie, R. A., Humes, L. E. (2017). Commentary on the regulatory implications of noise-induced cochlear 1011 

neuropathy. Int J Audiol, 56, 74-78. 1012 

Dolphin, W. F., Mountain, D. C. (1992). The envelope following response: scalp potentials elicited in the 1013 

Mongolian gerbil using sinusoidally AM acoustic signals. Hear Res, 58, 70-78. 1014 

Don, M., Eggermont, J. J. (1978). Analysis of the click-evoked brainstem potentials in man unsing high-1015 

pass noise masking. J Acoust Soc Am, 63, 1084-1092. 1016 

Don, M., Ponton, C. W., Eggermont, J. J., et al. (1994). Auditory brainstem response (ABR) peak 1017 

amplitude variability reflects individual differences in cochlear response times. J Acoust Soc Am, 1018 

96, 3476-3491. 1019 

Encina-Llamas, G., Parthasarathy, A., Harte, J., et al. (2017). Synaptopathy with envelope following 1020 

responses (EFRs): The off-frequency problem. In International Symposium on Auditory and 1021 

Audiological Research (ISAAR). Nyborg, Denmark. 1022 

Engdahl, B., Kemp, D. T. (1996). The effect of noise exposure on the details of distortion product 1023 

otoacoustic emissions in humans. The Journal of the Acoustical Society of America, 99, 1573-1024 

1587. 1025 

Feeney, M. P., Keefe, D. H., Hunter, L. L., et al. (2017). Normative Wideband Reflectance, Equivalent 1026 

Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults. Ear 1027 

Hear, 38, e142-e160. 1028 

Felder, E., Schrott-Fischer, A. (1995). Quantitative evaluation of myelinated nerve fibres and hair cells in 1029 

cochleae of humans with age-related high-tone hearing loss. Hear Res, 91, 19-32. 1030 

Fernandez, K. A., Jeffers, P. W., Lall, K., et al. (2015). Aging after noise exposure: acceleration of cochlear 1031 

synaptopathy in "recovered" ears. J Neurosci, 35, 7509-7520. 1032 

Flamme, G. A., Deiters, K. K., Tasko, S. M., et al. (2017). Acoustic reflexes are common but not pervasive: 1033 

evidence from the National Health and Nutrition Examination Survey, 1999-2012. Int J Audiol, 56, 1034 

52-62. 1035 

Fulbright, A. N. C., Le Prell, C. G., Griffiths, S. K., et al. (2017). Effects of Recreational Noise on Threshold 1036 

and Suprathreshold Measures of Auditory Function. Semin Hear, 38, 298-318. 1037 

Fullgrabe, C., Moore, B. C., Stone, M. A. (2014). Age-group differences in speech identification despite 1038 

matched audiometrically normal hearing: contributions from auditory temporal processing and 1039 

cognition. Front Aging Neurosci, 6, 347. 1040 



35 
 

Furman, A. C., Kujawa, S. G., Liberman, M. C. (2013). Noise-induced cochlear neuropathy is selective for 1041 

fibers with low spontaneous rates. J Neurophysiol, 110, 577-586. 1042 

Gilles, A., Schlee, W., Rabau, S., et al. (2016). Decreased Speech-In-Noise Understanding in Young Adults 1043 

with Tinnitus. Front Neurosci, 10, 288. 1044 

Gorga, M. P., Neely, S. T., Ohlrich, B., et al. (1997). From laboratory to clinic: a large scale study of 1045 

distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss. 1046 

Ear Hear, 18, 440-455. 1047 

Gorga, M. P., Worthington, D. W., Reiland, J. K., et al. (1985). Some comparisons between auditory brain 1048 

stem response thresholds, latencies, and the pure-tone audiogram. Ear and Hearing, 6, 105-112. 1049 

Grinn, S. K., Wiseman, K. B., Baker, J. A., et al. (2017). Hidden Hearing Loss? No Effect of Common 1050 

Recreational Noise Exposure on Cochlear Nerve Response Amplitude in Humans. Frontiers in 1051 

neuroscience, 11, 465. 1052 

Grose, J. H., Buss, E., Hall, J. W., 3rd. (2017). Loud Music Exposure and Cochlear Synaptopathy in Young 1053 

Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences. Trends 1054 

Hear, 21, 2331216517737417. 1055 

Gu, J. W., Herrmann, B. S., Levine, R. A., et al. (2012). Brainstem auditory evoked potentials suggest a 1056 

role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol, 13, 819-833. 1057 

Guest, H., Munro, K. J., Plack, C. J. (2017a). Tinnitus with a normal audiogram: Role of high-frequency 1058 

sensitivity and reanalysis of brainstem-response measures to avoid audiometric over-matching. 1059 

Hear Res, 356, 116-117. 1060 

Guest, H., Munro, K. J., Prendergast, G., et al. (2017b). Tinnitus with a normal audiogram: Relation to 1061 

noise exposure but no evidence for cochlear synaptopathy. Hear Res, 344, 265-274. 1062 

Guest, H., Munro, K. J., Prendergast, G., et al. (2018). Impaired speech perception in noise with a normal 1063 

audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure. 1064 

Hear Res. 1065 

Hall, J. W. I. (1992). Handbook of Auditory Evoked Responses. Boston: Allyn and Bacon. 1066 

Henry, J. A., Roberts, L. E., Caspary, D. M., et al. (2014). Underlying mechanisms of tinnitus: review and 1067 

clinical implications. J Am Acad Audiol, 25, 5-22; quiz 126. 1068 

Hickox, A. E., Larsen, E., Heinz, M. G., et al. (2017). Translational issues in cochlear synaptopathy. Hear 1069 

Res, 349, 164-171. 1070 



36 
 

Holtegaard, P., Epp, B. (2018). Correlation of ABR wave I level-growth and amplitude modulation 1071 

discrimination in listeners with poor word recognition in noise. In ARO MidWinter Meeting. San 1072 

Diego, CA. 1073 

Hopkins, K., Moore, B. C. (2011). The effects of age and cochlear hearing loss on temporal fine structure 1074 

sensitivity, frequency selectivity, and speech reception in noise. J Acoust Soc Am, 130, 334-349. 1075 

Johannesen, P. T., Buzo, B. C., Lopez-Poveda, E. A. (2019). Evidence for age-related cochlear 1076 

synaptopathy in humans unconnected to speech-in-noise intelligibility deficits. Hearing 1077 

Research. 1078 

Johannesen, P. T., Perez-Gonzalez, P., Kalluri, S., et al. (2016). The Influence of Cochlear Mechanical 1079 

Dysfunction, Temporal Processing Deficits, and Age on the Intelligibility of Audible Speech in 1080 

Noise for Hearing-Impaired Listeners. Trends Hear, 20. 1081 

Kimura, R. S., Ota, C. Y., Takahashi, T. (1979). Nerve fiber synapses on spiral ganglion cells in the human 1082 

cochlea. Annals of Otology, Rhinology & Laryngology, 88, 1-17. 1083 

Kujawa, S. G., Liberman, M. C. (2009). Adding insult to injury: cochlear nerve degeneration after 1084 

"temporary" noise-induced hearing loss. J Neurosci, 29, 14077-14085. 1085 

Kujawa, S. G., Liberman, M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: Primary 1086 

neural degeneration in acquired sensorineural hearing loss. Hear Res, 330, 191-199. 1087 

Le Prell, C. G. (2019). Effects of noise exposure on auditory brainstem response and speech-in-noise 1088 

tasks: a review of the literature. Int J Audiol, 58, S3-S32. 1089 

Lewis, J. D., Kopun, J., Neely, S. T., et al. (2015). Tone-burst auditory brainstem response wave V latencies 1090 

in normal-hearing and hearing-impaired ears. J Acoust Soc Am, 138, 3210-3219. 1091 

Liberman, M. C., Epstein, M. J., Cleveland, S. S., et al. (2016). Toward a Differential Diagnosis of Hidden 1092 

Hearing Loss in Humans. PLoS One, 11, e0162726. 1093 

Lin, H. W., Furman, A. C., Kujawa, S. G., et al. (2011). Primary neural degeneration in the Guinea pig 1094 

cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol, 12, 605-616. 1095 

Liu, C., Bu, X., Wu, F., et al. (2012). Unilateral auditory neuropathy caused by cochlear nerve deficiency. 1096 

Int J Otolaryngol, 2012, 914986. 1097 

Lobarinas, E., Salvi, R., Ding, D. (2016). Selective Inner Hair Cell Dysfunction in Chinchillas Impairs 1098 

Hearing-in-Noise in the Absence of Outer Hair Cell Loss. J Assoc Res Otolaryngol, 17, 89-101. 1099 

Lobarinas, E., Spankovich, C., Le Prell, C. G. (2017). Evidence of “hidden hearing loss” following noise 1100 

exposures that produce robust TTS and ABR wave-I amplitude reductions. Hearing research, 349, 1101 

155-163. 1102 



37 
 

Lopez-Poveda, E. A. (2014). Why do I hear but not understand? Stochastic undersampling as a model of 1103 

degraded neural encoding of speech. Frontiers in neuroscience, 8, 348. 1104 

Lopez-Poveda, E. A., Barrios, P. (2013). Perception of stochastically undersampled sound waveforms: a 1105 

model of auditory deafferentation. Front Neurosci, 7, 124. 1106 

Lopez-Poveda, E. A., Johannesen, P. T., Perez-Gonzalez, P., et al. (2017). Predictors of Hearing-Aid 1107 

Outcomes. Trends Hear, 21, 2331216517730526. 1108 

Makary, C. A., Shin, J., Kujawa, S. G., et al. (2011). Age-related primary cochlear neuronal degeneration in 1109 

human temporal bones. J Assoc Res Otolaryngol, 12, 711-717. 1110 

Marmel, F., Rodríguez-Mendoza, M. A., Lopez-Poveda, E. A. (2015). Stochastic undersampling steepens 1111 

auditory threshold/duration functions: implications for understanding auditory deafferentation 1112 

and aging. Frontiers in aging neuroscience, 7, 63. 1113 

Marshall, L., Lapsley Miller, J. A., Heller, L. M., et al. (2009). Detecting incipient inner-ear damage from 1114 

impulse noise with otoacoustic emissions. The Journal of the Acoustical Society of America, 125, 1115 

995-1013. 1116 

McGregor, K. D., Flamme, G. A., Tasko, S. M., et al. (2018). Acoustic reflexes are common but not 1117 

pervasive: evidence using a diagnostic middle ear analyser. Int J Audiol, 57, S42-S50. 1118 

Mehraei, G., Hickox, A. E., Bharadwaj, H. M., et al. (2016). Auditory brainstem response latency in noise 1119 

as a marker of cochlear synaptopathy. Journal of Neuroscience, 36, 3755-3764. 1120 

Melcher, J. R., Kiang, N. Y. (1996). Generators of the brainstem auditory evoked potential in cat. III: 1121 

Identified cell populations. Hear Res, 93, 52-71. 1122 

Mitchell, C., Phillips, D. S., Trune, D. R. (1989). Variables affecting the auditory brainstem response: 1123 

audiogram, age, gender and head size. Hear Res, 40, 75-85. 1124 

Möhrle, D., Ni, K., Varakina, K., et al. (2016). Loss of auditory sensitivity from inner hair cell synaptopathy 1125 

can be centrally compensated in the young but not old brain. Neurobiology of aging, 44, 173-1126 

184. 1127 

Nadol Jr, J. B. (1988). Comparative anatomy of the cochlea and auditory nerve in mammals. Hearing 1128 

research, 34, 253-266. 1129 

Otte, J., Schunknecht, H. F., Kerr, A. G. (1978). Ganglion cell populations in normal and pathological 1130 

human cochleae. Implications for cochlear implantation. Laryngoscope, 88, 1231-1246. 1131 

Oxenham, A. J. (2016). Predicting the Perceptual Consequences of Hidden Hearing Loss. Trends Hear, 20, 1132 

2331216516686768. 1133 



38 
 

Parthasarathy, A., Kujawa, S. G. (2018). Synaptopathy in the Aging Cochlea: Characterizing Early-Neural 1134 

Deficits in Auditory Temporal Envelope Processing. J Neurosci, 38, 7108-7119. 1135 

Paul, B. T., Bruce, I. C., Roberts, L. E. (2017). Evidence that hidden hearing loss underlies amplitude 1136 

modulation encoding deficits in individuals with and without tinnitus. Hearing research, 344, 1137 

170-182. 1138 

Prendergast, G., Guest, H., Munro, K. J., et al. (2017a). Effects of noise exposure on young adults with 1139 

normal audiograms I: Electrophysiology. Hear Res, 344, 68-81. 1140 

Prendergast, G., Millman, R. E., Guest, H., et al. (2017b). Effects of noise exposure on young adults with 1141 

normal audiograms II: Behavioral measures. Hear Res, 356, 74-86. 1142 

Prendergast, G., Tu, W., Guest, H., et al. (2018). Supra-threshold auditory brainstem response amplitudes 1143 

in humans: Test-retest reliability, electrode montage and noise exposure. Hear Res. 1144 

Rasetshwane, D. M., Argenyi, M., Neely, S. T., et al. (2013). Latency of tone-burst-evoked auditory brain 1145 

stem responses and otoacoustic emissions: level, frequency, and rise-time effects. The Journal of 1146 

the Acoustical Society of America, 133, 2803-2817. 1147 

Ridley, C. L., Kopun, J. G., Neely, S. T., et al. (2018). Using Thresholds in Noise to Identify Hidden Hearing 1148 

Loss in Humans. Ear Hear, 39, 829-844. 1149 

Roberts, L. E., Paul, B. T., Bruce, I. C. (2018). Erratum and comment: Envelope following responses in 1150 

normal hearing and in tinnitus. Hear Res, 361, 157-158. 1151 

Salvi, R., Sun, W., Ding, D., et al. (2017). Inner hair cell loss disrupts hearing and cochlear function leading 1152 

to sensory deprivation and enhanced central auditory gain. Frontiers in neuroscience, 10, 621. 1153 

Salvi, R., Sun, W., Ding, D., et al. (2016). Inner Hair Cell Loss Disrupts Hearing and Cochlear Function 1154 

Leading to Sensory Deprivation and Enhanced Central Auditory Gain. Front Neurosci, 10, 621. 1155 

Sato, H., Sando, I., Takahashi, H. (1991). Sexual dimorphism and development of the human cochlea. 1156 

Computer 3-D measurement. Acta Otolaryngol, 111, 1037-1040. 1157 

Schaette, R., McAlpine, D. (2011). Tinnitus with a normal audiogram: physiological evidence for hidden 1158 

hearing loss and computational model. J Neurosci, 31, 13452-13457. 1159 

Seixas, N., Goldman, B., Sheppard, L., et al. (2005). Prospective noise induced changes to hearing among 1160 

construction industry apprentices. Occupational and environmental medicine, 62, 309-317. 1161 

Sergeyenko, Y., Lall, K., Liberman, M. C., et al. (2013). Age-related cochlear synaptopathy: an early-onset 1162 

contributor to auditory functional decline. J Neurosci, 33, 13686-13694. 1163 

Shaheen, L. A., Valero, M. D., Liberman, M. C. (2015). Towards a Diagnosis of Cochlear Neuropathy with 1164 

Envelope Following Responses. J Assoc Res Otolaryngol, 16, 727-745. 1165 



39 
 

Sheldrake, J., Diehl, P. U., Schaette, R. (2015). Audiometric characteristics of hyperacusis patients. Front 1166 

Neurol, 6, 105. 1167 

Shi, L., Chang, Y., Li, X., et al. (2016). Coding Deficits in Noise-Induced Hidden Hearing Loss May Stem 1168 

from Incomplete Repair of Ribbon Synapses in the Cochlea. Front Neurosci, 10, 231. 1169 

Shim, H. J., An, Y. H., Kim, D. H., et al. (2017). Comparisons of auditory brainstem response and sound 1170 

level tolerance in tinnitus ears and non-tinnitus ears in unilateral tinnitus patients with normal 1171 

audiograms. PLoS One, 12, e0189157. 1172 

Spankovich, C., Le Prell, C. G., Lobarinas, E., et al. (2017). Noise History and Auditory Function in Young 1173 

Adults With and Without Type 1 Diabetes Mellitus. Ear Hear, 38, 724-735. 1174 

Stamper, G. C., Johnson, T. A. (2015a). Auditory function in normal-hearing, noise-exposed human ears. 1175 

Ear Hear, 36, 172-184. 1176 

Stamper, G. C., Johnson, T. A. (2015b). Letter to the Editor: Examination of Potential Sex Influences in 1177 

Stamper, G. C., & Johnson, T.A. (2015).  Auditory Function in Normal-Hearing, Noise-Exposed 1178 

Human Ears, Ear Hear, 36, 172-184. Ear Hear, 36, 738-740. 1179 

Stone, M. A., Moore, B. C. (2014). Amplitude-modulation detection by recreational-noise-exposed 1180 

humans with near-normal hearing thresholds and its medium-term progression. Hear Res, 317, 1181 

50-62. 1182 

Strelcyk, O., Dau, T. (2009). Relations between frequency selectivity, temporal fine-structure processing, 1183 

and speech reception in impaired hearing. J Acoust Soc Am, 125, 3328-3345. 1184 

Subramaniam, M., Henderson, D., Spongr, V. (1994a). The relationship among distortion-product 1185 

otoacoustic emissions, evoked potential thresholds, and outer hair cells following interrupted 1186 

noise exposures. Ear Hear, 15, 299-309. 1187 

Subramaniam, M., Salvi, R. J., Spongr, V. P., et al. (1994b). Changes in distortion product otoacoustic 1188 

emissions and outer hair cells following interrupted noise exposures. Hear Res, 74, 204-216. 1189 

Thong, J. F., Low, D., Tham, A., et al. (2017). Cochlear duct length-one size fits all? Am J Otolaryngol, 38, 1190 

218-221. 1191 

Valderrama, J. T., Beach, E. F., Yeend, I., et al. (2018). Effects of lifetime noise exposure on the middle-1192 

age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Hear Res, 1193 

365, 36-48. 1194 

Valero, M. D., Burton, J. A., Hauser, S. N., et al. (2017). Noise-induced cochlear synaptopathy in rhesus 1195 

monkeys (Macaca mulatta). Hear Res, 353, 213-223. 1196 



40 
 

Valero, M. D., Hancock, K. E., Liberman, M. C. (2016). The middle ear muscle reflex in the diagnosis of 1197 

cochlear neuropathy. Hear Res, 332, 29-38. 1198 

Valero, M. D., Hancock, K. E., Maison, S. F., et al. (2018). Effects of cochlear synaptopathy on middle-ear 1199 

muscle reflexes in unanesthetized mice. Hear Res, 363, 109-118. 1200 

Verhulst, S., Altoe, A., Vasilkov, V. (2018a). Computational modeling of the human auditory periphery: 1201 

Auditory-nerve responses, evoked potentials and hearing loss. Hear Res, 360, 55-75. 1202 

Verhulst, S., Ernst, F., Garrett, M., et al. (2018b). Supra-threshold psychoacoustics and envelope-1203 

following response relations: normal-hearing, synaptopathy and cochlear gain loss. Acta Acustica 1204 

united with Acustica, 104, 800-804. 1205 

Verhulst, S., Jagadeesh, A., Mauermann, M., et al. (2016). Individual Differences in Auditory Brainstem 1206 

Response Wave Characteristics: Relations to Different Aspects of Peripheral Hearing Loss. Trends 1207 

Hear, 20. 1208 

Viana, L. M., O'Malley, J. T., Burgess, B. J., et al. (2015). Cochlear neuropathy in human presbycusis: 1209 

Confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res, 327, 78-88. 1210 

Wojtczak, M., Beim, J. A., Oxenham, A. J. (2017). Weak Middle-Ear-Muscle Reflex in Humans with Noise-1211 

Induced Tinnitus and Normal Hearing May Reflect Cochlear Synaptopathy. eNeuro, 4. 1212 

Wong, S. J., Abrams, K. S., Amburgey, K. N., et al. (2019). Effects of selective auditory-nerve damage on 1213 

the behavioral audiogram and temporal integration in the budgerigar. Hearing research. 1214 

Wu, P. Z., Liberman, L. D., Bennett, K., et al. (2018). Primary Neural Degeneration in the Human Cochlea: 1215 

Evidence for Hidden Hearing Loss in the Aging Ear. Neuroscience. 1216 

Yeend, I., Beach, E. F., Sharma, M., et al. (2017). The effects of noise exposure and musical training on 1217 

suprathreshold auditory processing and speech perception in noise. Hearing research, 353, 224-1218 

236. 1219 

Zaugg, T. L., Thielman, E. J., Griest, S., et al. (2016). Subjective Reports of Trouble Tolerating Sound in 1220 

Daily Life versus Loudness Discomfort Levels. Am J Audiol, 25, 359-363. 1221 

Zilany, M. S., Bruce, I. C., Carney, L. H. (2014). Updated parameters and expanded simulation options for 1222 

a model of the auditory periphery. J Acoust Soc Am, 135, 283-286. 1223 

 1224 

 1225 

 1226 



41 
 

1227 



42 
 

1228 



43 
 

1229 



44 
 

1230 

1231 



45 
 

 1232 


	The search for noise-induced cochlear synaptopathy in humans: Mission impossible?
	ABSTRACT
	Introduction
	Data Consistent with Noise-Induced Synaptopathy in Humans
	Suggestions for Methodological Approaches to Investigate Synaptopathy in Humans
	Conclusions

