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The Use of Finite Loading to Guide Short-Term Capacity 

Adjustments in Make-To-Order Job Shops:  

An Assessment by Simulation 

 

 

Abstract 

Although there is a broad literature on capacity management, there has been only limited 

attention on how to support short-term capacity control decisions, especially in high-variety 

make-to-order shops. While finite loading has been identified as a potential means of guiding 

capacity adjustments, the actual performance impact of this solution has not been adequately 

assessed. Using a simulation model of a make-to-order job shop, we compare the 

performance impact of: (i) four different forward and backward finite loading methods that 

guide adjustments; and, (ii) a method recently presented in the literature that uses a load 

threshold to trigger when and where to adjust capacity. Results confirm the potential of finite 

loading to improve performance when compared to a general capacity increase. Yet all four 

methods are outperformed by the load trigger method. The capacity adjustments made under 

finite loading methods are determined by individual jobs and their properties. This may lead 

to no adjustments despite an overload period (e.g. if a job has a long due date but only one 

overload station in its routing) or to unnecessary adjustments when there is no overload (e.g. 

if a large job has a tight due date). This finding draws into question the use of finite loading 

altogether and reinforces the importance of the load trigger method.  

 

Keywords:  Capacity Planning; Workload Control; Job Shop; Make-To-Order 

Production; Finite Loading. 
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1. Introduction 

Capacity management is an important production control function that significantly 

influences firm performance. It is often divided into different time horizons and stages in 

manufacturing firms, ranging from long-term capacity planning through to short-term 

capacity control (Wortmann et al., 1996; Olhager et al., 2011). More recently, Tenhiälä 

(2011) divided capacity management into rough-cut capacity planning, capacity requirements 

planning, and finite loading. Finite loading precedes the actual execution of capacity 

management decisions and exercises capacity control, i.e. it determines when and where 

short-term capacity adjustments such as overtime, additional shifts, or reduced working hours 

are required (Lödding, 2012). In this study, we use simulation to explore the performance 

impact of four different forward and backward finite loading methodologies in a make-to-

order job shop and compare their performance with that of a load trigger method recently 

presented in the literature (Land et al., 2015). 

Most capacity management research to date has focused on long-term or medium-term 

capacity decisions. Mathematical modelling has dominated this literature, arguably because 

this approach is able to optimize the use of capacity when presented with a fixed set of jobs 

for a given period of time; see, for example, Martinez-Costa et al. (2014) for a recent review 

on mathematical programming models in this context. This deterministic context is also 

present in most studies on stochastic capacity planning. (e.g. Chen et al. 2002; Hood et al., 

2003; Geng et al., 2009; Lin et al., 2014), where the stochastic element is the demand in the 

time period. But this demand is assumed to be certain, i.e. it is known or given beforehand. 

When demand is uncertain, this is typically modelled by a set of scenarios with different 

probabilities of occurrence, which are then evaluated to create a robust solution (Geng & 

Jiang, 2009). Similarly, studies on production scheduling that consider finite capacity – e.g. 

in the context of Material Requirements Planning (MRP; e.g. Chen & Ji, 2007; Rossi et al., 

2017) – rely on a given demand for which the schedule is then optimized.  

From the above, it follows that the assumption in most studies on capacity management is 

that demand is deterministic; but this assumption is violated in high-variety make-to-order 

shops, where demand may arrive at any moment in time. Thus, make-to-order shops need to 

be able to evaluate, at any moment in time, if capacity needs to be adjusted and subsequently 

when and where it should be adjusted. In this context, short-term capacity decisions play a 

key role. Further, in such a context it is argued that optimization algorithms do not present a 

feasible solution, since: (i) the optimization would need to be executed each time a new job 
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arrives; and, (ii) a previously optimal solution may turn out to be far from optimal when a 

new job arrives and needs to be incorporated into the existing schedule.  

One method specifically designed to accomplish the challenging task of guiding short-term 

capacity decisions in a make-to-order context is finite loading, including both forward and 

backward finite loading methods. These finite loading methods are an essential part of 

workload controlling methods that build upon input/output control (I/OC, from Plossl & 

Wight 1971), such as the Workload Control concept developed in the UK at Lancaster 

University (e.g. Kingsman et al., 1989; Hendry & Kingsman, 1993) and Load Oriented 

Manufacturing Control (LOMC) developed at Hanover University in Germany (e.g. Bechte, 

1994; Wiendahl, 1995).  However, although this body of Workload Control literature has 

theoretically developed this method and advocated its potential use for capacity (or output) 

control, the actual performance impact of capacity adjustments based on finite loading in 

make-to-order shops has, to the best of our knowledge, not been assessed. A few simulation 

studies have assessed the performance impact of capacity adjustments (e.g. Hendry et al., 

1989; Kingsman & Hendry, 2002), but these studies only considered the capacity of the 

system as a whole system. They did not consider the capacity of individual stations, which is 

key to understanding where adjustments should be made. In response, we use simulation to 

explore the performance impact of different forward and backward finite loading methods 

and compare their performance with that of a workload trigger method recently presented in 

the literature (Land et al., 2015). The objective is to provide guidance to managers of make-

to-order shops concerning which method to apply in practice to support capacity control 

decisions. 

The remainder of this paper is structured as follows. In Section 2, we review theory on 

finite loading to provide the background to our study. The simulation model used to evaluate 

the performance of the different capacity control methods is then described in Section 3 

before the results are presented, discussed, and analysed in Section 4. Finally, conclusions are 

provided in Section 5. 

 

2. Background 

This study focuses on finite loading and how it can be used to determine if, when, and where 

short-term capacity adjustments should take place. It does not focus on the actual execution 

of capacity management decisions, nor does it seek to answer the question of how capacity 

adjustments eventually should and/or can be realized, e.g. through overtime or additional 

shifts. Capacity control through finite loading is considered to precede this question. Section 
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2.1 first discusses the use of finite loading in make-to-order contexts to identify the finite 

loading methods that should be considered in our study. Our research motivation and 

questions are then outlined in Section 2.2. 

 

2.1 Finite Loading Mechanisms in Make-to-Order Contexts 

Finite loading has many uses within production control. It has been used to determine short 

yet feasible due dates (e.g. Bertrand, 1983a, 1983b; Moses et al., 2004; Thürer et al., 2013), 

to decide on the acceptance of orders (e.g. Corti et al. 2006), to decide on the sub-contracting 

of orders (e.g. Thürer et al., 2014), and to guide the decision concerning when an order 

should be released to the shop floor (e.g. Ragatz & Mabert, 1988; Bobrowski, 1989; Ahmed 

& Fisher, 1992; Kim & Bobrowski, 1995; Cigolini et al., 1998), Yet although finite loading 

mechanisms have also been advocated as means to guide short-term capacity adjustments, 

their actual usage has seldom been reported in the literature. The main exceptions are Hendry 

et al. (1989) and Kingsman & Hendry (2002), but these two studies focused on the capacity 

of the whole system (instead of scheduling capacity for each individual station).  

 

2.1.1 Forward and Backward Finite Loading Methods from the Literature 

Both forward and backward finite scheduling determine an allowance for operation 

throughput times by fitting the workload to the available capacity. Take Rj to be the ordered 

set of operations (i, … nj) in the routing of job j. For forward scheduling, operation due dates 

ijd  for each operation i in Rj are calculated starting from the arrival date. Under finite 

loading, a dynamic factor ),( ststij CWF  dependent on both the workload (Wst
) and time-

phased capacity ( stC ) at time t at station s performing operation i of job j is added to the 

operation due date that would otherwise be determined by assuming infinite capacity (see 

Equation (1)). 

 

1 ( , )ij i j ij ij st std d p a F W C            (1) 

 

pij processing time of operation i 

a minimum allowance for the operation throughput time 

 

For backward loading, a similar procedure is applied but operation start dates 
ijr  for each 

operation in the routing of a job are scheduled, where 
jnr 1
 is equal to the due date and n is the 

number of operations in the routing of the job (see Equation (2)). 
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1 ( , )ij i j ij ij st str r p a F W C            (2) 

There are different ways to calculate ),( ststij CWF where the main differences concern how 

workload and capacity are calculated. Arguably the simplest way is subdividing the future 

time horizon into time buckets t and calculating a straightforward measure for each time 

bucket. This is known as Forward Finite Loading (FFL) and Backward Finite Loading (BFL). 

Only the FFL procedure is described here as the procedure for BFL is the same but in reverse, 

i.e. scheduling takes place from the due date backwards. 

 If ijd  calculated assuming infinite capacity (i.e. ),( ststij CWF  is zero) falls in a time 

bucket where the station to perform operation i has sufficient free capacity to include the 

workload contribution of the job
ijp , that is stijst NpW   with 

stN  representing the 

capacity norm of the time bucket, then the operation is successfully scheduled into the 

time bucket.  

 If no or insufficient capacity is available, the next time bucket is considered until a time 

bucket is reached in which the (full) workload contribution can be successfully loaded.  

 

The above procedure is repeated for the next operation in the routing of a job until all 

operation due dates have been determined, with the last operation due date becoming the due 

date of the order. This forward loading procedure is efficient since: a new job’s workload is 

inserted into the schedule without adjusting previously scheduled orders (Moses et al., 2004); 

and, the search direction is restricted so that only t capacity checks need to be performed 

(Bertrand & Wortmann, 1981, p 228). 

This simple FFL/BFL procedure follows previous studies in the sense that the entire 

processing time of the operation must be loaded into the time bucket (e.g. Bobrowski, 1989; 

Cigolini et al., 1998). This avoids that the workload that is already loaded in a time bucket is 

pushed forward, if no pre-emption is allowed. However, at the same time, this arguably 

represents a first major weakness (Thürer et al., 2013). A second major weakness is that the 

workload distribution is based on the scheduled workload only – feedback regarding 

deviations from the schedule that occur on the shop floor is neglected. As a consequence, two 

additional forward finite loading rules that address these two weaknesses can be identified in 

the literature: Forward Finite Loading considering Schedule Deviations (FFLSD) and 

Cumulative Forward Finite Loading considering Schedule Deviations (CFFLSD).  

 FFLSD applies the same methodology as FFL except that the schedule deviation or 

‘backlog’ is considered. This methodology is similar to the one applied by Kim & 
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Bobrowski (1995) in the context of order release to account for the positive backlog. In 

our study, both positive and negative backlogs are considered where a backlog is defined 

as the load that should have been completed in the past minus the load that has actually 

been completed. The backlog is added to the currently loaded work for calculation by 

distributing it over the time buckets.  

 CFFLSD is based on the work of Bertrand (1983a, 1983b). It is equivalent to FFLSD, but 

a cumulative load is applied. This allows the load of an operation to be spread across 

multiple time buckets. The load of each operation contributes to the cumulative load until 

it is complete. This accounts for schedule deviations: operations behind schedule 

contribute to all cumulative loads, while operations that are ahead of schedule are 

subtracted from the cumulative loads.  

 

Finally, note that using the principles of FFLSD and CFFLSD in combination with 

backward finite loading (i.e. BFLSD and CBFLSD) is not meaningful for two main reasons. 

First, there is no consistent rule for determining how to distribute the backlog if FFLSD is 

applied backwards (Nyhuis & Pereira Filho, 2002). Second, for CFFLSD, the distance 

between the cumulative workload and the capacity curve increases with time, since only a 

part of the future workload is confirmed; hence all operations are likely to be loaded close to 

the due date if this method is transformed into backward loading. As a result, while three 

forward finite loading alternatives have been identified – FFL, FFLSD, and CFFLSD – only 

one backward loading method will be considered in this study – BFL. 

 

2.1.2 If, When, and Where Should Capacity be Adjusted? 

There are arguably two ways of using finite loading to determine if capacity needs to be 

adjusted (Nyhuis & Pereira Filho, 2002):  

 Forward Scheduling, whereby a due date is calculated by forward scheduling from the 

current date. If this due date violates the due date given by the customer then capacity 

needs to be adjusted. 

 Backward Scheduling, whereby a planned release date is calculated by backward 

scheduling from the due date given by the customer. If this planned release date lies in the 

past then capacity needs to be adjusted. 

 

Meanwhile, the decision concerning when capacity should be adjusted is driven by two 

alternatives: (i) adjusting capacity as soon as possible; or, (ii) adjusting capacity just-in-time. 

Finally, in answer to the question concerning where capacity should be adjusted, capacity 
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should arguably be adjusted at the station with the longest operation throughput time 

calculated by the forward-backward loading procedure, since this station is most likely to be 

the bottleneck (e.g. Bechte, 1994). 

 

2.2 Research Motivation 

Our literature review identified four different finite loading methods that can be used to guide 

short-term capacity adjustments in make-to-order shops. These methods are summarized in 

Table 1.  

 

[Take in Table 1] 

 

The performance impact of the different methods however remains unclear. While the 

literature has advocated finite loading as potential means of guiding capacity adjustments, 

their actual operational impact is yet to be adequately assessed. Rather, the use of finite 

loading has typically been restricted to determining due dates, guiding order acceptance 

decisions, identifying which jobs to subcontract, or guiding the order release decision. In 

response, this study asks: 

 

RQ1: What is the best forward/backward finite loading method to guide capacity 

adjustments in the context of make-to-order production? 

 

In addition to the above, a workload trigger method to guide capacity adjustments in 

make-to-order shops has recently been presented by Land et al. (2015). This method monitors 

the workload (both on its way and not yet completed at each station) and uses a triggering 

workload threshold to determine when and where to adjust capacity. This represents an 

alternative to finite loading. However, while this method was shown to be a simple and 

effective solution for capacity control in make-to-order job shops, it completely neglects the 

urgency of orders. Thus, a very costly capacity increase could potentially be triggered, 

although the due date of orders lies long enough into the future to allow for the higher 

workload to be accommodated without adjustment. In contrast, finite loading considers both 

capacity and the urgency of orders. Our second research question therefore asks: 

 

RQ2: How does the performance of the best forward/backward finite loading method 

compare with that of a load trigger method (namely, Land et al., 2015)?  

 

To answer these two questions, we will use a controlled simulation environment of a 

make-to-order job shop.  



 9 

 

3. Simulation Model 

In Section 3.1, we outline how we model the different capacity control mechanisms before 

the dispatching rule that controls the progress of jobs on the shop floor is introduced in 

Section 3.2. The shop and job characteristics modeled in the simulations are then described in 

Section 3.3. Finally, the experimental setting is outlined and the measures used to evaluate 

performance are presented in Section 3.4. 

 

3.1 Capacity Control 

In this study, we are not interested in the specific adjustment mechanisms used (e.g. overtime 

or additional shifts) but in determining if, when, and where capacity should be adjusted. To 

model a capacity adjustment, we therefore follow Land et al. (2015) and simply decrease the 

operation processing time by a predetermined percentage α. To assess the impact of this 

factor, four different scenarios for the adjustment size α are considered: 0 (i.e. no capacity 

adjustment), 10, 20, and a 30% reduction in the operation processing time.  

 

3.1.1 Finite Loading Mechanism 

To answer our first research question – What is the best forward/backward finite loading 

method to guide capacity adjustments in the context of make-to-order production? – all four 

finite loading methods identified from the literature review (see Table 1) are considered. As 

in previous simulation studies on finite loading (e.g. Bobrowski, 1989; Cigolini et al., 1998; 

Thürer et al., 2013) it is assumed that all materials are available, and all necessary 

information regarding shop floor routings, processing times, etc. is known. For forward finite 

loading, the following procedure is executed when the order arrives at the shop: 

 A customer due date is calculated by forward finite loading.  

 If the calculated due date exceeds the given (customer) due date then capacity adjustments 

are required. Otherwise, the order’s processing times are loaded into the corresponding 

time buckets and the procedure is complete.  

 If capacity needs to be adjusted, the where and when questions need to be answered. The 

capacity adjustment should take place at the station which is most likely to be the 

bottleneck. As an indicator, we use the operation throughput time calculated by the 

forward finite loading procedure (Bechte, 1994). In other words, capacity is adjusted at the 

station with the longest estimated operation throughput time. Similar to Land et al. (2015), 

capacity adjustments are started as early as possible; this is with the next imminent time 
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bucket. If a capacity adjustment is already active at the station in this time bucket, the 

adjustment duration is increased by considering the next time bucket until a time bucket 

without adjustment that lies before the calculated operation due date at this station is found. 

Hence, the maximum duration of adjustment is from the imminent time to the operation 

due date of the job. If such a time bucket is found, a new due date is calculated considering 

the additional capacity adjustments and the above steps are repeated. Otherwise, the 

procedure is complete and the job could not be fit into the station’s capacity. Once the 

procedure is complete, the job is released onto the shop floor. 

 

If capacity is adjusted in a time bucket then the workload loaded in the time bucket is 

reduced by the adjustment size α. Increasing the duration of the adjustment stepwise 

increases the likelihood of the job’s workload being fit. At the end of the procedure, there are 

three options: the job did not require any capacity adjustments (and therefore did not need to 

be fit), the job required capacity adjustments and could be fit, and the job required capacity 

adjustments but could not be fit. If there would be no time period (of the size of the lead time 

allowance) in which the incoming workload exceeds the capacity (i.e. the job cannot be fit) 

then the percentage tardy and mean tardiness would be zero. Yet Land et al. (2015) showed 

that, in the kind of job shop environment simulated in our study, significant overload 

situations necessarily occur. Performance differences across control solutions are determined 

by the timeliness and strength of response to these overload situations. 

For backward finite loading, the same procedure is applied but backwards; hence capacity 

is adjusted if the planned release date is in the past. The time bucket for FFL, FFLSD, and 

BFL is set to 4 time units, which is the maximum processing time. The capacity norm for 

FFL is set to 4.1 and for FFLSD and BFL to 4.5 time units. These parameters are based on 

preliminary simulation experiments and result in the best overall performance. The capacity 

norm is larger than the time bucket size to allow for the granularity of the loaded workload. 

For CFFLSD, the time bucket size is arbitrarily set to 1 time unit. Additional simulation 

experiments showed no significant differences compared to the use of smaller time buckets. 

Meanwhile, four settings are considered for the minimum time allowance for the operation 

throughput time: 0, 1, 2, and 3 time units. 

 

3.1.2 Reference Methods 

To answer our second research question – How does the performance of the best 

forward/backward finite loading method compare with that of a load trigger method (namely, 

Land et al., 2015)?  – we introduce the procedure outlined by Land et al. (2015) as a 
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reference method. The if, when, and where dimensions of the capacity adjustment are 

determined based on two load thresholds: (i) a load threshold that triggers the commencement 

of the capacity adjustment (β); and, (ii) a load threshold that signals the load has reduced 

sufficiently to cease the adjustment (γ). In this study, we only use one level of β and one level 

of γ, which is justified by the performance frontier observed in Land et al. (2015). The 

threshold values have been determined numerically based on preliminary simulation 

experiments. For each station, we recorded the cumulative frequency distribution of the 

workload that is still to be completed at a station (measured in terms of the corrected load) 

that emerges without capacity adjustment. The corrected load divides the workload 

contribution of a job at a particular station by the position of the station in the routing of a 

job. It gives the best representation of the future expected direct load of a station based on the 

mix of routings actually present on the shop floor (Oosterman et al., 2000). The load 

threshold was then derived using a percentile of this distribution: for β the 90th percentile 

(β=18.32) and for γ the 85th percentile (γ=16.02). 

Finally, and as a control, we also consider a general increase in capacity at each station, 

i.e. without specific consideration for if, when, and where capacity should be adjusted. 

 

3.2 Priority Dispatching 

This study focuses on the performance of the finite loading methods; therefore, once the 

finite loading procedure is executed, the order enters the shop floor. In other words, jobs are 

released immediately, and no specific order release procedure is executed. For capacity 

control to be effective, the dispatching rule applied on the shop floor should use the operation 

due dates or operation start dates determined by the capacity control mechanism. This ensures 

that capacity control takes place, i.e. that capacity is used as planned.  

Since the reference capacity control method from Land et al. (2015) does not calculate 

operation due dates, the operation due dates are calculated by successively backward 

scheduling a constant allowance for the operation throughput time of each operation in the 

routing of a job. This constant allowance was set to 3 time units, since this setting resulted in 

the best overall performance in preliminary simulation experiments. The same procedure was 

used for our second reference method considering a general increase in capacity. 

 

3.3 Overview of Modeled Shop and Job Characteristics 

A simple job shop model is used to avoid interactions that may interfere with our 

understanding of the effects of the experimental factors. A simulation model of a randomly 

routed job shop (Conway et al., 1967) – later referred to as a pure job shop (Melnyk & 
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Ragatz, 1989) – has been implemented in the Python© programming language using the 

SimPy© simulation module. The model is stochastic, whereby job routings, processing times, 

inter-arrival times and due dates are stochastic (random) variables. We did not consider rush 

orders given that the impact of rush orders has been assessed previously in Thürer et al. 

(2010) and, more recently, in Jäger & Roser (2018). A generally accepted rule of thumb is 

that the amount of prioritized workload should be below 30%. We also did not consider 

machine breakdown or quality issues since creating additional uncertainty via differences 

between the estimated and realized processing time did not significantly influence the relative 

performance of the forward finite loading methods in Thürer et al. (2013). 

The shop contains six stations, where each station is a single, constant capacity resource. 

The routing length of jobs varies uniformly from one to six operations. All stations have an 

equal probability of being visited and a particular station is required at most once in the 

routing of a job. Operation processing times follow a truncated 2-Erlang distribution with a 

mean of 1 time unit after truncation and a maximum of 4 time units. The inter-arrival time of 

jobs follows an exponential distribution with a mean of 0.648, which – based on the average 

number of stations in the routing of a job – deliberately results in a utilization level of 90% 

without capacity adjustments. Due dates are set exogenously by adding a uniformly 

distributed random allowance factor. Three levels of due date tightness are considered: tight 

due dates, with an allowance factor between 28 and 36 time units; medium due dates, with an 

allowance factor between 32 and 40 time units; and loose due dates, with an allowance factor 

between 36 and 44 time units.  

The modelled shop and job characteristics are summarized in Table 2. While any 

individual job shop in practice will differ in many aspects from this stylized environment, it 

captures the typical job shop characteristics of high routing variability, processing time 

variability, and arrival variability. 

 

[Take in Table 2] 

 

3.4 Experimental Design and Performance Measures 

The (main) experimental factors are summarized in Table 3. A full factorial design was used 

with 192 (4x4x4x3) scenarios. In addition to the full factorial design, we also included 

experiments with the load trigger method presented in Land et al. (2015) and experiments 

with a general increase in capacity. Each scenario was replicated 100 times while results were 

collected over 10,000 time units following a warm-up period of 3,000 time units. These 

parameters are in line with those used in previous studies that have applied similar job shop 
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models and allow us to obtain stable results while keeping the simulation run time 

reasonable. 

 

[Take in Table 3] 

 

Since we focus on a make-to-order shop, our main performance indicator will be delivery 

performance. This is motivated by the fact that although the underlying concern of a firm 

may be cost, it is important to recognize that cost structures are firm-specific; hence, it is 

extremely difficult to objectively evaluate the performance of the different rules based on 

cost. The best rule to choose will depend on a firm’s idiosyncratic cost structure. Delivery 

performance will be measured by: the percentage tardy – the percentage of jobs completed 

after the due date; and, the mean tardiness, that is ),0max( jj LT  , with 
jL  being the lateness 

of job j (i.e. the actual delivery date minus the due date of job j). In addition, we also measure 

the mean lead time, i.e. the mean of the completion date minus the entry date across jobs. The 

mean lead time also reflects the average workload in the system. In order to measure the 

capacity increase that is incurred in order to realize a given level of delivery performance, we 

measure the average utilization level. 

 

4. Results 

An Analysis of Variance (ANOVA) has been used to obtain a first indication of the relative 

impact of the experimental factors. The ANOVA is here based on a block design, which is 

typically used to account for known sources of variation in an experiment. In our ANOVA, 

we treat due date tightness as the blocking factor. This allows the main effects of this 

environmental factor and the main and interaction effects of our other three finite loading 

related factors (finite loading method, minimum allowance, and adjustment size) to be 

captured. The results are presented in Table 4. 

 

[Take in Table 4] 

 

All main effects, two-way interactions, and the three-way interaction were shown to be 

statistically significant. To obtain a first indication of the direction and size of the 

performance differences between the different finite loading methods, the Scheffé multiple 

comparison procedure was applied. The results in Table 5 suggest that CFFLSD has the 

potential to outperform the three other finite loading methods. To further assess performance 

differences, detailed performance results will be presented next in Section 4.1 where we 
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assess performance under different levels of due date tightness. A performance analysis is 

then provided in Section 4.2. Finally, the impact of the minimum allowance is assessed in 

Section 4.3. 

 

[Take in Table 5] 

 

4.1 Performance Assessment 

A major challenge when comparing different control methods is the creation of comparable 

states – a certain parameter setting may favor one method over another thereby making 

conclusions dependent on parameter settings rather than on the actual performance of the 

different methods applied. A means of realizing a ‘fair’ comparison is via the use of operating 

characteristic curves (Olhager & Persson, 2008). Rather than comparing one specific 

parameter setting, parameters are varied for each control method and the results are presented 

in the form of performance curves. The relative positioning of the different curves (each 

representing one control method) then allows the relative performance of each method to be 

compared. In our study, the left-hand starting point of the curves represents the highest level 

of alpha. The level of alpha decreases step-wise by moving from left to right in each graph, 

with each data point representing one alpha level (i.e. a 30%, 20%, 10%, and 0% capacity 

adjustment). Decreasing alpha reduces the total overall amount of the capacity adjustment 

and, as a result, increases the utilization level. This utilization level is an indicator of the 

capacity adjustment required to achieve a certain performance improvement.  

Figure 1 shows the percentage tardy, mean tardiness, and lead time over the resulting 

average utilization level. Figure 1a gives the results for a tight due date, Figure 1b for a 

medium due date, and Figure 1c for a loose due date. Only results for a minimum allowance 

of zero are shown, with the impact of this allowance being assessed in the next section. 

 

[Take in Figure 1] 

 

In addition to the four curves in Figure 1 representing the four different finite loading 

methods, we provide one further graph that gives the results obtained using the load trigger 

method presented in Land et al. (2015) and one graph that gives the results for a general 

increase in capacity, i.e. without specific consideration for when and where capacity should 

be adjusted, referred to as the “all adjusted” method. The following can be observed from the 

results: 

 General Performance of Finite Loading Methods: If the curve of a finite loading method 

lies below the dashed line then performance is better than when a general increase in 
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capacity is applied (i.e. our baseline comparison). We can observe that all finite loading 

methods have the potential to improve performance in terms of the percentage tardy and 

mean tardiness if the adjustment size is set appropriately. CFFLSD leads to the best 

performance. FFL and BFL realize a similar level of mean tardiness, although neither 

considers feedback from the shop floor. In terms of the lead time, BFL performs the worst 

due to the backward scheduling of operation due dates. This means that BFL improves 

tardiness performance through a reduction in the standard deviation of lateness. 

 Finite Loading Methods vs. The Load Trigger Method: Our results demonstrate that a far 

superior level of performance can be achieved in terms of percentage tardy and mean 

tardiness by the load trigger method from Land et al. (2015). Similar to Wein & Chevallier 

(1992) in the context of job shop scheduling, better due date performance can be achieved 

by ignoring due dates on the shop floor. 

 The Impact of Due Date Tightness: The impact of due date tightness can be observed by 

moving from Figure 1a (tight due dates) to Figure 1c (loose due dates). While there is (as 

expected) a general improvement in tardiness performance, the relative performance 

impact of the different finite loading methods is not affected. We can also observe a shift 

to the right, which indicates that fewer jobs require capacity adjustments if due dates 

increase, i.e. delivery lead times become longer.  

 

4.2 Performance Analysis 

This section seeks to gain a better understanding into where each method has its strongholds 

and where it performs weakly, taking into account three criteria: the capability to identify a 

tardy order correctly, the capability to adjust capacity so an order can be fit into the schedule, 

and the effectiveness of these adjustments, i.e. how many of the fitted orders are actually 

delivered on time. To evaluate each criterion, we collected data on the following four 

measures: (i) the percentage of orders that needed a capacity adjustment according to the 

finite loading method (referred to as “need adj.”); (ii) the percentage of tardy orders that were 

correctly identified by the finite loading method (referred to as “tardy id.”); (iii) the 

percentage of orders that needed to be fit and could eventually be fit (referred to as “fit”); 

and, (iv) the percentage of orders which could be fit and that could be delivered on time (“on 

time”). All four measures are given in Table 6. 

 

[Take in Table 6] 
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If we focus on the scenario where alpha is zero, i.e. no capacity adjustments are made, 

then we can observe that FFL and CFFLSD obtain the most accurate predictions that an order 

will be tardy, with around 80% of the tardy orders being correctly identified. If we look at the 

percentage of orders that could actually be fit, then we observe substantial differences 

between FFL and CFFLSD, whereby CFFLSD is able to fit significantly more orders within 

the available capacity. However, this does not mean that all of these orders are delivered on 

time. While, under FFL, almost 100% of orders that are fit are also delivered on time, this is 

not the case for CFFLSD. In fact, CFFLSD is the worst performing finite loading method in 

terms of this measure (“on time”), although the total amount of orders delivered tardy is still 

below the other methods. One possible explanation is the cumulative measure that allows for 

a tighter, less granular schedule; in other words, no buffers are introduced. In contrast, the 

granular schedule of FFL introduces buffers. The importance of granularity and the 

associated buffer is also highlighted by the results for BFL. While BFL is by far the worst 

performing method in terms of predicting whether an order will be tardy (“tardy id.”), more 

than 90% of the orders that were fit could be delivered on time.  

 

4.3 The Impact of the Minimum Allowance 

Figure 2 shows the percentage tardy, mean tardiness, and lead time over the resulting average 

utilization level for the different levels of the minimum allowance. Figure 2a gives the results 

for an allowance of 1 time unit, Figure 2b for an allowance of 2 time units, and Figure 2c for 

an allowance of 3 time units. Only results for a medium due date tightness are shown here as 

the performance impact is similar across the three different levels of this factor. 

 

[Take in Figure 2] 

 

As somewhat expected, if the minimum allowance is increased (i.e. by moving from 

Figure 2a to Figure 2c) stronger capacity adjustments are realized, i.e. the graphs extend to 

the left. The following can be observed from the results: 

 General Performance of Finite Loading Methods: FFL and especially FFLSD improve in 

performance as the minimum allowance is increased. For example, FFLSD improves 

performance from 10% tardy to 5% tardy at a utilization level of 89%.  

 Finite Loading Methods vs. The Load Trigger Method: Our results demonstrate that the far 

superior level of performance that can be achieved in terms of percentage tardy and mean 

tardiness by the load trigger method from Land et al. (2015) is maintained. 
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To better understand the improvement for FFL and FFLSD, we monitored the 

development of the corrected workload and the adjustment periods over time. We focused on 

the corrected workload since this is the best estimate of the future direct load when a job 

enters the shop floor (Oosterman et al., 2000). Figure 3 gives the results for FFL and an 

arbitrary chosen work center based on 7,000 time units of a representative simulation run. 

Focusing on the overload period around 5,000 time units, we observe that the connectedness 

of the adjustment period that occurs at a minimum allowance of 2 significantly reduces the 

impact of this overload period. Increasing the minimum allowance increases the likelihood 

that an order is loaded into the next time bucket and consequently the estimated due dates. 

This in turn increases the adjustment periods.  

 

 [Take in Figure 3] 

 

FFLSD shows similar behavior for the overload period, but the method shows less 

overreaction in periods with lower loads since it considers the backlog. Thus, it realizes the 

performance improvement with a lesser amount of capacity adjustment. Compared to FFL, 

the number of adjustments reduces from XXX to XXX and the duration reduces from XXX 

to XXX. The best performance is achieved by the load trigger method, which shows no 

overreaction but only adjusts capacity during overload periods. This can be observed from 

Figure 4, which gives the overtime results for the remaining capacity adjustment methods: 

FFLSD, CFFLSD, BFL and the load trigger method. For FFLSD, CFFLSD, and BFL the 

results for a minimum allowance of 3 are given. Meanwhile, CFFLSD is not able to reduce 

the overload period. An explanation for this is that there are periods in which no capacity 

adjustments take place since CFFLSD realizes a better fit.  

 

 [Take in Figure 4] 

 

The main difference between the load trigger method and the finite loading methods is 

that, for the latter, it is the individual jobs that trigger the adjustments whereas, for the 

former, the aggregate of the workload of all jobs on the shop floor triggers the adjustment. If 

the individual job triggers the adjustments, then one of the following may occur: 

 Capacity adjustments are not triggered although there is an overload period (this can be 

observed by adjustments that are not sustained). For example, jobs with one operation and 

a large due date, or large jobs with only one overloaded station in their routing, are fit into 

their due dates although there is an overload period. This results in a performance loss 

compared to the load trigger method. 
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 Capacity adjustments are triggered although there is no overload period since, e.g. a large 

job with a tight due date cannot be fit. This results in more capacity adjustments compared 

to the load trigger method. 

 

Increasing the minimum allowance or the due date tightness reduces the risk of not making 

necessary adjustments during overload periods but increases the risk of unnecessary 

adjustments when there is no overload. If finite loading methods sustain the adjustment over 

the whole overload period then performance is similar to the load trigger method. But this 

parity of performance only happens at the cost of many unnecessary capacity adjustments; 

hence, the total amount of realized capacity adjustment is increased.  

 

5. Conclusions 

Capacity management is an important production control function that significantly 

influences firm performance. It spans from long-term capacity planning through to short-term 

capacity control. However, most capacity management research to date has focused on long-

term or medium-term capacity decisions in the context of known or deterministic customer 

demand. There has been only limited attention on short-term capacity management, 

especially in a make-to-order context where demand is uncertain or non-deterministic. In 

such a context, the optimization algorithms that dominate the literature are arguably not 

feasible given, for example, that the optimization procedure would have to be re-executed 

every time a new job arrived at the shop.  

One method specifically designed to accomplish the challenging task of guiding short-

term capacity adjustments in a high-variety, make-to-order context is the use of finite 

loading. However, while research has developed this method theoretically, the actual 

performance impact of finite loading methods has not been adequately assessed. In response, 

our first research question asked: What is the best forward/backward finite loading method to 

guide capacity adjustments in the context of make-to-order production? Our simulation 

results have demonstrated that a forward finite loading mechanism that considers schedule 

deviations, i.e. FFLSD, has the potential to outperform all other methods if the minimum 

allowance is set appropriately. Yet, more fundamentally, our simulation results draw into 

question the use of finite loading as advocated in the literature. In answer to our second 

research question – How does the performance of the best forward/backward finite loading 

method compare with that of a load trigger method (namely, Land et al., 2015)? – our 

simulation results have demonstrated that all four methods are outperformed by the load 
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trigger method from Land et al. (2015). Both findings have important implications for 

practice and future research. 

 

5.1 Managerial Implications 

Forward finite loading that considers schedule deviations outperformed all other finite 

loading methods in our study. But already the simplest form of forward and backward finite 

loading methods, which do not consider any feedback from the shop floor, has the potential 

to improve performance compared to a general capacity increase. This highlights the 

potential of transferring from infinite loading via the use of lead time off-sets, as typically 

implemented in MRP/ERP systems, to finite loading. However, at the same time, our study 

has questioned the use of finite loading in its current form as a load trigger method 

outperformed all finite loading methods identified from the literature. These results suggest 

that this method should be the first choice in high-variety make-to-order shops in practice. 

Rather than scheduling operation throughput times under capacity constraints the workload is 

directly measured and monitored, using this workload information to inform and guide 

production control decisions. In other words, our results reemphasize Bertrand & Wortmann 

(1981) in that the proper modeling and measuring of the workload should be the bedrock of 

production control. 

 

5.2 Limitations and Future Research 

This study has focused on finite loading methods. Hence, a limitation is its neglect of other 

means of considering urgency in capacity adjustment decisions. Further, our focus has been 

on make-to-order job shops characterized by three stochastic elements: the inter-arrival time, 

the routing, and processing times. Finite loading methods are likely to be more effective in 

repetitive environments. More repetitive environments would also allow for the application of 

optimization based approaches, which were neglected in our study due to its highly stochastic 

context. Hence, future research could compare the performance of finite loading methods 

with optimization based approaches in more repetitive production environments, considering 

potential trade-offs between performance and solution complexity. Finally, we observed that 

one of the main weaknesses of finite loading is that it does not sustain the capacity 

adjustment during an overload period. The adjustment can only be sustained if an 

overreaction during underload periods is accepted. The main cause is that, for finite loading, 

the capacity adjustment depends on individual jobs and their properties, such as the due date 

or routing. Hence, an adjustment may not be triggered in an overload period since there is 

only one overloaded station in the routing of a job or an adjustment may be triggered 
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unnecessarily since a large job has a tight due date. The former deteriorates performance and 

the latter increases the amount of capacity adjustments compared to the load trigger method. 

Future research could build on this finding and develop new methods that consider different 

measures for integrating urgency considerations into the capacity adjustment decision, e.g. 

based on expected lateness (Van Ooijen & Bertrand, 2018).  
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Table 1: Summary of Forward and Backward Finite Loading Procedures from the Literature 

 

Category Acronym Name of Rule Brief Description 

Forward 
Finite 
Loading 

FFL 
Forward Finite 
Loading 

Operation due dates are determined step by step, fitting 
operations to the remaining capacity. The planning 
horizon is broken down into time buckets. An operation 
is scheduled into the first time bucket with sufficient 
capacity after the previous operation due date and 
considering a minimum flow time allowance. The 
operation due date of the last operation determines the 
job due date. 

FFLSD 
FFL considering 
Schedule 
Deviations 

As for FFL but considering schedule deviations. The 
backlog resulting from schedule deviations is distributed 
over the time buckets. 

CFFLSD 

Cumulative FFL 
considering 
Schedule 
Deviations 

As for FFLSD but operation due dates are determined by 
fitting the cumulative workload to the cumulative 
capacity. 

Backward 
Finite 
Loading 

BFFL 
Backward Finite 
Loading 

As for FFL but backwards. Operation start dates are 
determined step by step, fitting operations to the 
remaining capacity. The planning horizon is broken 
down into time buckets. An operation is scheduled into 
the first available time bucket with sufficient capacity. 
The start date of the first operation determines the 
planned release date. 

 

Table 2: Summary of Simulated Shop and Job Characteristics 
 

S
h

o
p

 

C
h
a

ra
c
te

ri
s
ti
c
s
  

Routing Variability 
No. of Stations 

Interchange-ability of Stations 
Station Capacities 

 

 
Random routing; no-re-entrant flows 
6 
No interchange-ability 
All equal; output control is exercised 
 

J
o

b
 

C
h
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ri
s
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c
s
  

No. of Operations per Job 
Operation Processing Times 

Due Date Determination Procedure 
Inter-Arrival Times 

 

 
Discrete Uniform[1, 6] 
Truncated 2–Erlang; (mean = 1; max = 4) 
Due Date = Entry Time+ d; d U ~ [28,36], [32,40], [36,44] 
Exp. Distribution; mean = 0.648 
 

 

Table 3: Experimental Settings 

 

Factors Levels 

Finite Loading Method FFL, FFLSD, CFFLSD, and BFL 

Minimum Allowance 0, 1, 2 and 3 time units 

Adjustment Size (α) 0, 10, 20 and 30% 

Due Date Tightness [time units] Tight [28, 36], Medium [32, 40] and Loose due dates [36, 44] 
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Table 4: ANOVA Results 
 

 Source of Variance 
Sum of 

Squares 
Degree of 
Freedom 

Mean 
Squares 

F-Ratio 
p-

Value 

Percentage 
Tardy 

Due Date Tightness 12.52 2 6.26 5862.39 0.00 

Finite Loading (FL) 10.00 3 3.33 3121.89 0.00 

Minimum Allowance (A) 5.85 3 1.95 1825.17 0.00 

Adjustment Size (Alpha) 42.04 3 14.01 13120.14 0.00 

FL x A 1.50 9 0.17 156.27 0.00 

FL x Alpha 2.99 9 0.33 311.46 0.00 

Allowance x Alpha 1.95 9 0.22 202.59 0.00 

FL x Allowance x Alpha 0.17 27 0.01 5.84 0.00 

Residual 20.43 19134 0.00   

Mean  
Tardiness 

Due Date Tightness 961.83 2 480.92 1920.32 0.00 

Finite Loading (FL) 535.60 3 178.53 712.89 0.00 

Minimum Allowance (A) 301.87 3 100.62 401.79 0.00 

Adjustment Size (Alpha) 6133.15 3 2044.38 8163.31 0.00 

FL x A 128.22 9 14.25 56.89 0.00 

FL x Alpha 564.57 9 62.73 250.48 0.00 

Allowance x Alpha 127.21 9 14.13 56.44 0.00 

FL x Allowance x Alpha 15.24 27 0.56 2.25 0.00 

Residual 4791.83 19134 0.25   

Lead Time 

Due Date Tightness 6128.11 2 3064.05 1899.87 0.00 

Finite Loading (FL) 62980.66 3 20993.55 13017.09 0.00 

Minimum Allowance (A) 19040.15 3 6346.72 3935.29 0.00 

Adjustment Size (Alpha) 68503.69 3 22834.56 14158.61 0.00 

FL x A 4273.30 9 474.81 294.41 0.00 

FL x Alpha 3781.14 9 420.13 260.50 0.00 

Allowance x Alpha 4880.10 9 542.23 336.21 0.00 

FL x Allowance x Alpha 255.36 27 9.46 5.86 0.00 

Residual 30858.71 19134 1.61   

 

 

 

 

Table 5: Results for the Scheffé Multiple Comparison Procedure 
 

FL 
Method (x) 

FL 
Method (y) 

Percentage  
Tardy 

Mean  
Tardiness 

Lead Time 

lower1) upper lower upper lower upper 

FFLSD FFL 0.035 0.039 0.232 0.289 2.414 2.559 

CFLLSD FFL -0.008 -0.005 -0.014* 0.043 -0.920 -0.775 

BFL FFL 0.044 0.048 0.366 0.423 3.554 3.699 

CFFLSD FFLSD -0.045 -0.042 -0.274 -0.217 -3.406 -3.262 

BFL FFLSD 0.008 0.011 0.106 0.163 1.068 1.213 

BFL CFFLSD 0.051 0.055 0.352 0.409 4.402 4.547 

1) 95% confidence interval; * not significant at α=0.05 
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Table 6: Percentage of Orders that Needed to be Fit and the Orders that were Actually Fit 

for the Different Levels of Due Date Tightness  
 

Method α 

Tight Due Date Medium Due Date Loose Due Date 

need 
adj. 

tardy 
id. 

fit 
on  

time 
need  
adj. 

tardy 
id. 

fit 
on  

time 
need  
adj. 

tardy 
id. 

fit 
on  

time 

FFL 0 17.2% 79.5% N/A 11.4% 77.4% N/A 7.3% 75.7% N/A 

FFL 10% 8.4% 69.2% 2.0% 95.4% 5.4% 67.2% 2.0% 95.8% 3.5% 65.4% 1.9% 96.9% 

FFL 20% 6.9% 66.1% 3.3% 97.8% 4.6% 64.6% 3.3% 97.6% 3.0% 62.9% 3.0% 98.0% 

FFL 30% 6.4% 65.0% 4.0% 98.7% 4.4% 64.2% 3.7% 98.5% 2.9% 61.6% 3.6% 98.6% 

FFLSD 0 9.5% 40.5% N/A 5.7% 35.4% N/A 3.4% 31.4% N/A 

FFLSD 10% 5.0% 28.9% 2.1% 48.0% 3.2% 25.8% 2.0% 47.4% 1.9% 23.2% 2.0% 51.1% 

FFLSD 20% 4.4% 27.8% 2.5% 67.9% 2.8% 24.7% 2.4% 68.6% 1.7% 22.0% 2.3% 68.5% 

FFLSD 30% 4.2% 27.1% 2.6% 77.8% 2.6% 24.2% 2.4% 80.7% 1.7% 21.8% 2.1% 80.1% 

CFFLSD 0 16.3% 81.1% N/A 11.2% 79.2% N/A 7.6% 77.6% N/A 

CFFLSD 10% 6.9% 69.5% 5.2% 41.0% 4.5% 67.2% 5.4% 39.3% 2.9% 65.6% 5.5% 38.9% 

CFFLSD 20% 5.1% 67.0% 8.1% 50.2% 3.4% 64.7% 8.1% 50.6% 2.3% 65.1% 8.3% 49.7% 

CFFLSD 30% 4.7% 67.5% 9.3% 59.5% 3.4% 67.9% 8.8% 59.1% 2.2% 64.9% 9.6% 59.7% 

BFL 0 4.1% 3.5% N/A 2.9% 2.9% N/A 1.9% 2.5% N/A 

BFL 10% 2.9% 2.2% 4.8% 91.7% 1.9% 1.7% 5.1% 94.1% 1.2% 1.4% 5.2% 95.1% 

BFL 20% 2.0% 1.3% 13.7% 95.0% 1.3% 1.0% 14.4% 96.7% 0.9% 0.7% 14.4% 96.7% 

BFL 30% 1.5% 0.9% 23.8% 96.2% 1.0% 0.7% 24.4% 97.3% 0.6% 0.5% 25.2% 97.8% 
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 (a) Tight DD (b) Medium DD (c) Loose DD  
 

Figure 1: Performance Results for Different Levels of Due Date Tightness (Tight, Medium, and Loose Due Dates) with No Minimum Allowance 
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 (a) Allowance: 1 Time Unit (b) Allowance: 2 Time Units (c) Allowance: 3 Time Units   
 

Figure 2: Performance Results for Different Levels of the Minimum Allowance (1, 2, and 3 Time Units) at Medium Due Date Tightness
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Figure 3: Workload Development under Different Minimum Allowances Over Time: FFL  
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Figure 4: Workload Development for a Minimum Allowance of 3 Times Units: FFLSD, 

CFFLSD, and BFL 

 


