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Abstract

This thesis describes the search for resonant and non-resonant Higgs boson pair
production in the bb̄τ+τ− decay channel. The main focus of this document is on
the final state where both τ -leptons decay hadronically. The search is performed
using 36.1 fb−1 of data collected by the ATLAS detector in proton-proton
collisions at a centre-of-mass energy of 13 TeV during 2015 and 2016. The
cross-section for non-resonant di-Higgs production is found to be 16.4 times the
Standard Model prediction in the fully hadronic channel at a 95% confidence
level. Combining the result with the semi-leptonic channel produces a measured
signal strength of µ = 12.7 at a 95% confidence level when compared to the
Standard Model prediction.

Resonant Higgs boson pair production excludes bulk Randall-Sundrum gravitons
GKK in the mass range 325 GeV < mGKK

< 885 GeV for k/MPL = 1. For the
simplified hMSSM minimal supersymmetric model for tanβ = 2, resonances are
excluded in the mass range 305 GeV < mH < 402 GeV.

Finally, a re-interpretation of the Higgs boson pair production analysis is
presented as a search for third-generation scalar leptoquarks. Pair-produced
third-generation scalar leptoquarks decaying to bτbτ are excluded at 95%
confidence level for mLQ < 1030 GeV.
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Chapter 1

Introduction

The discovery of the Standard Model Higgs boson at the Large Hadron Collider in 2012

[1, 2] by the ATLAS [3] and CMS [4] experiments was a huge success for particle physics.

A new generation of physics quickly followed focusing on the measurement of the Higgs

boson properties. The discovery prompted many searches for physics beyond the Standard

Model and continues to drive a large amount of research currently taking place at the Large

Hadron Collider and future experiments.

The main topic of this thesis is a search for resonant and non-resonant Higgs boson pair

production in the bb̄τ+τ− final state in pp collisions at
√
s = 13 TeV with the ATLAS

detector. The search addressed here focuses primarily on the fully hadronic channel, but

also presents a full combination with the semi-leptonic analysis. The resonant search

concentrates on theories predicting the decay to two Standard Model Higgs bosons, such as a

spin-2 Kaluza-Klein (KK) graviton in the bulk Randall-Sundrum (RS) model [5] and a heavy

spin-0 scalar in the two Higgs doublet model (2HDM) [6]. Whereas the non-resonant search

aims to test the electroweak symmetry breaking of the Standard Model by establishing the

strength of the Higgs boson tri-linear self-coupling (λhhh). Deviations from the Standard

Model could introduce new physics through modifications to the top Yukawa coupling

and/or λhhh.

Various methods are used throughout this analysis to boost the sensitivity to a di-Higgs

signal such as: boosted decision tree multivariate techniques, statistical evaluation and

data-driven background estimators. The bb̄ττ channel suffers from a large multi-jet

background that reproduces the signature of two hadronically decaying τ -leptons. This

thesis describes a data-driven multi-jet background estimation using an ABCD method as

an alternative to Monte Carlo predictions for this background.
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The interest in searches for di-Higgs production has recently grown in both the theory

sector and collider experiments. The di-Higgs analysis outlined in this thesis has presented

results at ICHEP 2018 and has been submitted to Physics Review Letters. A search for

di-Higgs production in the bbττ channel was previously completed by ATLAS using data

collected in 2012 with a centre-of-mass energy of
√
s = 8 TeV. The analysis set upper limits

on the cross-section for non-resonant di-Higgs production of 160 times the SM prediction

(1.6 pb) using 20.3 fb−1 and set limits on the production cross-section for resonances

within a mass range 260 GeV < mX < 1 TeV. However, only the semileptonic channel

was considered [7]. A combination of the bbbb [8], bbγγ [9] and WWγγ [7] channels by the

ATLAS experiment yielded an upper limit on the non-resonant di-Higgs production of 70

times the SM prediction (0.67 pb). The CMS experiment has also performed a search for

resonant and non-resonant di-Higgs production in the bbττ mode at
√
s = 13 TeV with

35.9 fb−1 [10]. Non-resonant di-Higgs production was excluded for cross-sections greater

than 28 times the SM prediction.

The most sensitive result to date for non-resonant Higgs boson pair production comes from

the ATLAS search in the bb̄bb̄ channel, the observed (expected) limit excludes a cross-section

greater than 13.0 (20.7) times the SM prediction at 95% confidence level.

Additionally, this document briefly presents a search for pair production of scalar

leptoquarks [11–17] decaying to bτ at
√
s = 13 TeV with the ATLAS detector. The di-Higgs

analysis is re-interpreted to become sensitive to decays from resonant third-generation

leptoquarks. The strategy for both analyses is very similar and they share many techniques

but any differences are cleared stated in the relevant analysis chapters.

ATLAS has already excluded leptoquarks decaying to bτbτ final states below masses of 534

GeV using 4.7 fb−1 collected at
√
s = 7 TeV [18]. CMS has also performed a search for

pair-produced leptoquarks decaying to bτbτ , excluding them below 740 GeV using 19.7 fb−1

collected at = 8 TeV [19].

The structure of this thesis is as follows. Chapter 2 describes the theoretical background of

the Standard Model and the relevant theory and motivation for the di-Higgs and leptoquark

analyses. Details of the CERN accelerator complex are provided in Chapter 3 along with
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specifics of the ATLAS detector. Object reconstruction for the ATLAS experiment is

described in Chapter 4 before discussing a τ -lepton vertex study in Chapter 5. The study

was performed in 2015 as an ATLAS authorship task and aimed to improve current τ -lepton

vertex association.

The common analysis strategy for the two analyses discussed is described in Chapter 6,

including preselection, multivariate techniques, statistical analysis and systematics.

Chapter 7 outlines in detail the ABCD method for the data-driven multi-jet estimation

and the results of the di-Higgs and leptoquark analyses are presented in Chapters 8 and 9,

respectively. Finally, Chapter 10 summarises the thesis and provides any concluding

remarks. Any additional material is given in the Appendices.
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The author joined the experimental particle physics group at Lancaster University in 2014

and shortly after became a member of the ATLAS collaboration. Throughout the PhD

qualification, the author has been a main contributor to the hh → bb̄ττ analysis group

during Run 2 of the LHC and has also helped towards the operation of the ATLAS

experiment. The author was a part of the Run 2 di-Higgs analysis for its entirety

and contributed mostly to the fully hadronic decay channel. Overseeing the cut-based

analysis was the initial focus before becoming a more integral part of the recently released

Run 2 result published in Physics Review Letters [20]. Many of the authors significant

contributions are documented within this thesis.

The vertex association study for tau-jet reconstruction set out in Chapter 5 was performed

by the author and implemented in the upcoming ATLAS software release. The algorithm

and performance plots are documented in an ATLAS public note [21]. The di-Higgs analysis

was originally a cut-based analysis and unblinded data in late 2015. However, the result was

never published and the analysis moved to multivariate techniques. It is not documented

here but the author was one of the few involved in the cut-based result and made significant

contributions to the running of the analysis and helped produce final limits. During the

multivariate di-Higgs analysis presented, the author was responsible for the running of the

fully hadronic channel analysis framework and producing input files and histograms for the

final statistical evaluation and limit setting. The analysis strategy outlined in Chapter 6 was

implemented in the MIA analysis framework before histograms in the relevant signal and

control regions are filled and background modelling studies were performed. The boosted

decision tree (BDT) classifiers were introduced to MIA and the author provided BDT score

distributions to other members of the group for limit setting. The Run 2 Higgs boson pair

production result is presented in Chapter 8.

The main contribution of the author was to develop a data-driven multi-jet background

estimation. The technique was based on a fake factor method and was optimised to include

momentum information from both τ -leptons. The method and relevant systematics are

outlined in Chapter 7. The data-driven multi-jet background estimation was used in the

final di-Higgs result and was later re-optimised for the third-dimension scalar leptoquark

analysis presented in Chapter 9. The scalar leptoquark result is currently being combined

with other analyses and hopes to publish soon [22].
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The author made substantial contributions to other areas throughout the four years of PhD

study but they could not be presented in this document. These include: making significant

efforts to develop the CxAOD derivation framework and the MIA analysis framework,

maintenance of the framework trigger tool and performing numerous additional studies

needed for the data-driven multi-jet background estimation.





Chapter 2

Theory

This Chapter describes the theoretical framework of particle physics in brief, known as

the Standard Model, in Section 2.1. Theory for the behaviour of subatomic particles is

presented, in addition to the Higgs boson and the mechanism responsible for mass generation

in Section 2.1.1. Finally, a summarised overview of theoretical interpretations beyond the

Standard Model is outlined for di-Higgs production and third-generation scalar leptoquarks

in Section 2.2.1, two analyses addressed throughout this thesis.

2.1 The Standard Model of Particle Physics

The Standard Model (SM) [23–31] is currently the most successful theory in describing how

fundamental particles behave and the interactions acting between them. The SM has been

praised for its ability to not only propose the existence of previously unknown matter but

also predict their associated properties.

However, the SM does not currently account for unexplained phenomena such as: neutrino

oscillations, gravitational interaction and matter-antimatter asymmetry of the known

universe. Despite this, the SM provides a powerful description of the world around us.

The known matter in the universe is made up of quarks and leptons. These half-integer spin

elementary particles are known as fermions; interactions between fermions are mediated by

integer spin particles called bosons. The strong, electromagnetic and weak interactions are

mediated by spin one vector bosons in the SM. The massless gluon and massless photon

govern the strong and electromagnetic forces, respectively, while the massive Z and W±

bosons mediate the weak interaction.

7



2.1. The Standard Model of Particle Physics 8

The gravitational interaction currently has no place in the Standard Model but is not

expected to greatly contribute due to its weaker nature. The strength of the gravitational

force is measured to be orders of magnitude lower than the other forces, in particular it can

be roughly 40 orders smaller than the strong nuclear force experienced at collider energies

today.

The Standard Model is described by a non-abelian gauge theory based on the product of

the groups SU(3)C ⊗ SU(2)L ⊗ U(1)Y. The non-abelian SU(3)C group describes the strong

interactions between quarks and gluons formerly known as Quantum Chromodynamics

(QCD). The electroweak sector and the hypercharge sector are governed by

SU(2)L ⊗ U(1)Y respectively.
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Figure 2.1: A simplified illustration of the Standard Model’s fundamental particles, showing
the spin, charge and mass of each. The quarks, shown in blue, and the gluon also carry
colour charge. Values are taken from [32].

The fermionic content of the SM is arranged into three generations and consists of six quarks

and six leptons. Each fermion has its own anti-particle according to relativistic quantum

mechanics. SM particle content and fundamental properties are shown in Figure 2.1.
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Quantum Chromodynamics is the description of the strong interaction between quarks

and gluons described by the non-abelian SU(3)C colour symmetry group. The simplest

respresentation of the theory allows for the families of quarks for each flavour, Nc = 3,

along with (N2
c - 1) = 8 massless gluons all carrying colour charge. The theory proposes

when gluons, mediating the strong force, interact with quarks they rotate the quark’s colour

in SU(3) space through the orthogonal colour states of QCD.

q

q

g

g

g

g

g

gg

g

Figure 2.2: The Feynman diagrams for leading order QCD interactions

Due to the non-abelian nature of QCD, the eight massless gluons carry colour charge unlike

the neutral photon in the similarly charged environment of QED. The fact the gluons

carry a colour charge allows them to couple to each other and produce multiple-gluon

interaction vertices shown in Figure 2.2. The gluon self-interaction in QCD has interesting

consequences on the strong coupling constant dependence, αs, to the momentum scale,

Q2, of the interaction. The running coupling of αs leads to asymptotic freedom when

Q2 � 1 GeV; αs(Q
2) is small at short distances so quarks and gluons are weakly coupled

and can be described almost as free particles. Therefore, perturbative theory can be used

in production calculations at high energy colliders. Furthermore, large αs(Q
2) at large

distances (small Q2 values) leads to colour confinement where quarks and gluons can only

exist as colour-singlet (colour-neutral) bound states known as mesons or baryons.

Electroweak (EW) theory unifies the SU(2)L weak isospin symmetry with the U(1)Y

group from weak hypercharge. The violation of parity conservation in the SU(2)L gauge

group implies that the weak isospin current couples only to left-handed fermions where the

spin projection onto the particles momentum is negative. Neutral currents conserve lepton

flavour, whereas the charged currents change the flavour of left-handed fermion fields.
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The electroweak (EW) gauge symmetry group SU(2)L ⊗ U(1)Y is associated with weak

hypercharge, Y W and the weak analogue of isospin, weak isospin, T . The electric charge Q

can be expressed as the sum of the weak hypercharge and the third component of the weak

isospin: Q = (T 3 + 1
2Y

W ). The full family of fermions in the electroweak sector are shown

in Table 2.1.

Fermion Electric Charge Weak Hypercharge Weak Isospin

Q Y W T 3

νlL 0 -1 +1
2

l−L -1 -1 -12

l−R -1 -2 0

uL, cL, tL +2
3 +1

3 +1
2

dL, sL, bL -13 +1
3 -12

uR, cR, tR +2
3 +4

3 0

dR, sR, bR -13 -23 0

Table 2.1: The full family of fermions in the electroweak sector with their corresponding
values of weak isospin and weak hypercharge.

The theory requires the existence of four massless mediating particles to carry the unified

EW interaction. However, the existence of massive EW mediators is suggested by the

apparent short range of the weak interaction. For this to be the case, there must be a

breaking of the underlying SU(2)L ⊗ U(1)Y symmetry that gives rise to the masses of the

W± and Z vector bosons but also omits the massless photon.

Between 1964-1965, the idea of symmetry breaking was implemented by Kibble, Guralnik

and Hagen [33], Brout and Englert [34] and Higgs [35, 36] to give what is now known

as the Brout-Englert-Higgs (BEH) mechanism. The theory was later applied in 1967 by

Weinberg [24] and Salam [37] to the original SU(2)L ⊗ U(1)Y EW gauge theory introduced

by Glashow. The ATLAS and CMS collaborations reported the discovery of a new particle

in 2012 [38, 39] which seems consistent with the associated spin-0 Higgs boson of the BEH

mechanism.
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2.1.1 Brout-Englert-Higgs Mechanism and Spontaneous

Symmetry Breaking

The Brout-Englert-Higgs mechanism introduces spontaneous symmetry breaking of the

SU(2)L ⊗ U(1)Y symmetry group through the addition of a complex scalar field, φ, which

takes the form of a self-interacting SU(2) doublet in the SM.

Introducing a scalar field doublet with a weak hypercharge Y = 1
2 relative to U(1)Y

φ =

φ+
φ0

 =

φ1 + iφ2

φ3 + iφ4

 , (2.1)

where φ3 and φ4 are the CP-even and CP-odd neutral components and φ+ is the complex

charged component of the Higgs doublet. The scalar Higgs part of the Lagrangian now

takes the form

LHiggs = (Dµφ)†(Dµφ)− V (φ). (2.2)

The covariant derivative of φ, in this case

Dµφ =
(
∂µ +

i

2
gσaW a

µ +
i

2
g′Bµ

)
φ, (2.3)

where W a and B represent the SU(2)L and U(1)Y gauge fields, respectively, with their

gauge couplings g and g′. The Pauli matrices are given by σa (a = 1,2,3).

To maintain SU(2)L ⊗ U(1)Y invariance, the Higgs potential V (φ) must take the form of

the most general renormalisable scalar potential with constants λ, µ ∈ R given by

V (φ) = −µ2φ†φ+ λ
(
φ†φ
)2

. (2.4)

The values of µ and λ have consequences on the configuration of the potential.

– A negative value for λ leads to V (φ) having no stable minima;
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– values of −µ2φ†φ, λ > 0 gives a potential well with minimum energy at φ = 0,

preserving the symmetries of the Lagrangian.

– The case where −µ2 is negative and λ is positive results in the interesting potential

where the minimum energy does not sit at φ = 0.

The Higgs potential does not have a minimum at φ = 0 and produces the so-called

Mexican hat potential shown in Figure 2.3. The neutral component of the scalar field

acquires a nonzero vacuum expectation value (VEV), v, for the ground state which induces

the spontaneous symmetry breaking of the SM gauge symmetry. Note that there are an

infinite number of degenerate states with minimum energy satisfying the Higgs potential;

the convention is arbitrarily choosing the ground state to be

〈φ〉 = 1√
2

0

v

 with v =

√
−µ2
λ

. (2.5)

φIM

φRE

V (φ)

Figure 2.3: Representation of the scalar field potential V (φ), commonly known as the
Mexican hat potential.
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By using a unitary gauge configuration and rewriting φ3 as an expansion of the VEV, v,

small perturbations around the ground state are considered in the scalar doublet as

φ =
1√
2

 0

v + h

 , (2.6)

where h is a real scalar field. The expression for φ in the potential leads to a λv2h2 term in

the Lagrangian, representing the physical scalar Higgs boson with mass mh = v
√
2λ.

The Higgs field couples to the W and B gauge fields associated with SU(2)L ⊗ U(1)Y local

symmetry through the covariant derivative shown in equation 2.3. As a result of choosing

the unitary gauge, the values of φ1 = φ2 = φ4 have vanished from the original complex scalar

field. The fields represent three massless Goldstone degrees of freedom which are actually

absorbed to become the longitudinal components of the W and Z physical gauge bosons.

The extra degree of freedom is manifested as mass and through the covariant derivative of

the kinetic term in the Higgs Lagrangian, the Z and W gauge bosons acquire mass.

Simplifying the Higgs potential to omit any h-mixed terms from equation 2.8 demonstrates

this generation of the gauge boson masses, the idea follows from

Dµφ =
(
∂µ +

i

2
gσaW a

µ +
i

2
g′Bµ

) 1√
2

0

v



=
v2

8

 gW 1
µ − igW 2

µ

−gW 3
µ + g′Bµ

 .

(2.7)

The kinetic term of the Lagrangian with the simplified Higgs field becomes

(Dµφ)†(Dµφ) =
v2g2

8
(W 1µ − iW 2µ)(W 1

µ + iW 2
µ) +

v2

8
(g′Bµ − gW 3µ)2 (2.8)
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This term of the Lagrangian density describes a linear combination of fields, which can be

interpreted as new fields, corresponding to massive particles. The physical gauge fields can

now be defined as

W+
µ ≡ 1√

2
(W 1

µ − iW 2
µ), (2.9)

W−
µ ≡ 1√

2
(W 1

µ + iW 2
µ). (2.10)

Thereby the Lagrangian term becomes

1

2

(gv
2

)2
W †

µW
µ (2.11)

with the corresponding W mass

mW =
gv

2
(2.12)

The remaining neutral gauge bosons, Z and A, are defined as

Zµ ≡ 1√
g2 + g′2

(gW 3
µ − g′Bµ) with mass mZ =

v

2

√
g2 + g′2, (2.13)

Aµ ≡ 1√
g2 + g′2

(g′W 3
µ + gBµ) with mass mA = 0. (2.14)

Aµ describes the massless vector field associated to the EM photon field, the nonzero

VEV yields the breaking scheme SU(2)L ⊗ U(1)Y → U(1)EM which remains conserved

in electroweak spontaneous symmetry breaking (EWSSB). Finally to note, including the

h term in the scalar doublet and allowing it to propagate through to the SM Lagrangian,

interaction terms arise between the gauge fields and the scalar Higgs field. Additionally, the

quadratic term of the Higgs potential (2.4) leads to three and four self-interaction vertices

of the Higgs field.
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Fermion masses appear from the Yukawa term of the Lagrangian through the Yukawa

coupling to the Higgs field,

LYukawa = −gf (χ̄L,fφψR,f + ψ̄R,f φ̄χL,f ) (2.15)

where the isospin doublet of the left-handed fermions χ and the isospin singlet states for

right-handed fermions ψ are included. The coupling of the Higgs field to the fermion field is

necessary to ensure the Lagrangian is invariant under SU(2)L ⊗ U(1)Y and forms a singlet

vertex χ̄L,fφψR,f with coupling gf for all fermion flavours.

Using the Higgs field from Equation 2.6, the Yukawa Lagrangian for leptons becomes

Lleptons
Yukawa = − gl√

2

(
(ν̄, l̄)L

 0

v + h

 lR + l̄R(0, v + h)

ν
l


L

)
(2.16)

= −gl(v + h)√
2

(l̄LlR + l̄RlL) (2.17)

=
gl√
2
vl̄l − gl√

2
hl̄l. (2.18)

From this it can be seen that the non-zero vacuum expectation value of the Higgs field leads

to lepton masses given by

ml =
glv√
2
, (2.19)

and a lepton-Higgs coupling term arises in the Lagrangian in the form

g(hl̄l) =
ml

v
. (2.20)

The model does not predict the lepton masses but it can be seen that the Higgs coupling is

proportional to the lepton mass. τ -lepton signatures are therefore very important at collider

experiments for Higgs searches. In the quark sector, it is little more difficult to obtain mass

terms because of quark-mixing but the final result is very similar to leptons. Equation 2.19

for the lepton masses stands for all fermions with coupling gf .
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2.1.2 Higgs Production

The SM Higgs boson couples to both fermions and weak vector bosons. The main processes

for Higgs production at hadron colliders are illustrated in Table 2.2. The primary production

mechanisms include: gluon-gluon fusion (ggF), vector boson fusion (VBF), associated Wh

and Zh production (V h) and processes involving the production of a Higgs with a tt̄ or bb̄

pair.

The cross-sections for these processes in proton-proton collisions at the LHC are shown in

Figure 2.4 for a centre-of-mass energy of 13 TeV versus the mass of the Higgs boson.

Production Mechanism Cross-section Diagram

Gluon-gluon fusion 43.92 pb

t

g

g

h

Vector boson fusion 3.748 pb

W/Z

q

q

q

q

h

V -associated
Wh: 1.380 pb
Zh: 0.8696 pb

q

q h

W/Z

tt̄-associated 0.5085 pb

t

t

g

t

g

t

h

Table 2.2: The main production mechanisms for Standard Model Higgs boson production
and their corresponding cross-sections for a mh = 125.0 GeV Higgs boson at

√
s = 13 TeV.

[40]
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Gluon-gluon fusion

The dominant Higgs production mechanism is gluon-gluon fusion, gg → h+X (ggF). The

leading order Feynman diagram for ggF features a quark loop in the SM usually through

the exchange of a virtual heavy top quark. Although the cross-section is dominated heavily

by the contribution from the top quark because of its comparable mass to the Higgs boson,

other lighter quark can contribute. However, cross sections for lighter quark contributions

are proportional to m2
q and are therefore heavily suppressed. The cross-section depends

on the parton distribution function (PDF) of the colliding protons and also QCD radiative

corrections with the next-to-leading order (NLO) corrections in αs [41, 42].

The majority of corrections to the cross-section come from the emission of soft, virtual

and collinear gluons. This is the leading contribution in the soft limit where the partonic

centre of mass, ŝ, edges towards the Higgs mass m2
h. Corrections due to soft-gluon radiation

have been performed at next-to-next-to-leading logarithmic (NNLL) and partial NNNLL

accuracy [43, 44].

The cross-section has been approximated by evaluating the leading top-quark contribution

in the limit mt → ∞ where the ggH coupling becomes pointlike. The corresponding

Feynman diagrams have one less loop; N3LO [45], NNLO [46–48] and NLO [49, 50]

calculations have been completed using this approximation. Higher-order QCD corrections

are necessary in the ggF cross-section predictions because of the slow convergence in αs

of the perturbative expansion. However, N3LO corrections show perturbation series to be

rather stable with a small 3% enhancement [45] and insensitivity to resummation effects.

The current cross-section value for ggF production to a 125 GeV Higgs boson is shown in

Table 2.2 with a 13 TeV centre-of-mass energy at the LHC. N3LO corrections are combined

with soft-gluon resummations at NNLL, and partial NNNLL accuracy along with secondary

EW corrections [51, 52].

Vector boson fusion

The Higgs boson production mode with the second largest cross-section in the SM is vector

boson fusion, qq → qqh (VBF). Despite the cross section being an order of magnitude

below ggF production, VBF is very important in discriminating signal from background in
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pp collisions because of its characteristic final state. The mechanism occurs by the scattering

of two (anti-)quarks through the exchange of a W or Z boson in the t- or u-channel; the

Higgs boson radiates from the weak propagator. The resulting quarks in the final state

produce two hard jets at high rapidities due to the momentum transfer of the scattering

quarks being of the order mV �
√
s. Gluon emission is strongly suppressed because of the

color-singlet state of the W and Z bosons. The two scattering quarks are not interacting

through colour fields and so jets develop mostly in the quark directions.

Computation of the cross section with full QCD corrections have been completed to an

accuracy of NLO [53, 54] with additional EW corrections of the order 10% at NLO.

Approximate NNLO corrections are presented in Ref. [55].

Vector boson associated production V h

The production of a Higgs boson in association with a weak vector boson, also known

as Higgs-strahlung, has a very small cross-section compared with ggF. Vh production is

dominated by quark-quark induced subprocesses (qq̄V h). However, in the case of a Z

boson produced in association with the Higgs, there are large contributions from gluon-gluon

initiated mechanisms. The gluon component leads to larger QCD corrections and the top

quark loop introduces a scale dependence to the scattering amplitude.

Full QCD corrections to the cross section are available up to NNLO with NLO EW and

gluon-gluon channel corrections in Vh@NNLO [56].

tt̄ associated production

Despite having one of the smallest cross sections, Higgs production in association with a tt̄

pair has great importance to the SM because it gives the opportunity to probe the top-Higgs

Yukawa coupling which other mechanisms do not provide. QCD corrections to the order of

NLO are presented in Refs. [57–60].
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Figure 2.4: Standard Model Higgs Boson production cross-sections at
√
s = 13 TeV as a

function of the Higgs mass [61].

2.1.3 Higgs Boson Decay

The Standard Model Higgs is unstable and the couplings of the Higgs to the different final

state particles determines the decay branching ratios. Vertex diagrams for all processes and

associated couplings are depicted in Figure 2.5.

h

f

f

ghff ∝ mf

v

(a)

h

V

V

ghhV ∝ M2
V
v

(b)

V

Vh

h

ghhV V ∝ M2
V

v2

(c)

Figure 2.5: Higgs interaction vertices and their associated coupling, Higgs-fermion (a) and
Higgs-vector boson (b) triple and (c) quartic interaction vertices.
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For a 125 GeV Higgs boson, the dominant decay modes are to pairs of fermions through the

Yukawa interactions and also into pairs of W or Z bosons, where one of which is off-shell.

Additionally, di-photon pairs can be produced through a fermion loop similar to the gluon

pair decay mode mediated by quark loops.
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Figure 2.6: Standard Model Higgs boson decay branching ratios [61].

The main decay mode for a Standard Model Higgs boson is to a pair of b-quarks, h → bb̄,

because this is the heaviest particle which can be produced on-shell from a Higgs decay.

The branching ratio of h → γγ is small but has a very clean signature in hadron collider

experiments of two energetic photons. The di-photon decay mode was the first confirmed

discovery channel for the Higgs boson due to the high γγ invariant mass resolution of both

ATLAS and CMS [1, 2]. Other Higgs decay modes include h → WW ∗, h → ZZ∗, h → cc̄

and h→ gg; however, the latter two suffer from a high QCD di-jet background. The decay

branching ratios (BR) are given in Figure 2.6 as a function of the Higgs mass.
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2.2 Di-Higgs Boson Production

The production of a Higgs boson with another Higgs is a process of particular interest at

the LHC. One of the primary aims of the proposed high luminosity LHC (HL-LHC) [62] is

to probe the di-Higgs production mechanism because of the many implications it can have

beyond the Standard Model (BSM). Many theories exist to describe di-Higgs production at

the LHC.

In the standard model, Higgs bosons can be pair-produced via top loops or the Higgs boson

self-coupling. Establishing the strength of the Higgs boson tri-linear self-coupling (λhhh) is

a crucial test of EWSSB and can act as a closure test for the Standard Model.

The cross-section for Higgs boson pair-production is very small in current theories and would

be impossible to measure with the current data collected by the LHC. However, extensions

to the Standard Model can enhance this cross-section. Higgs pair-production at the LHC

is dominated by gluon-gluon fusion and is loop-initiated at LO. Contributing diagrams are

shown in Figure 2.7 where the box top-loop and Higgs self-interacting spin-0 configurations

destructively interfere. Consequently, the SM cross-section for Higgs pair-production at

13 TeV centre-of-mass energy with mh = 125.09 GeV, is very small, 33.41+4.3%
−6.0% ± 5.0% ±

2.3% ± 2.1% pb [61, 63–65]. The uncertainties quoted are the scale uncertainty, theory

uncertainty, αs uncertainty and parton distribution function (PDF) uncertainty. This value

of the cross-section is NNLO matched to NNLO cross-sections for gg → hh and also includes

reweighting (RW) for all top-quark mass effects at NLO taken from [65]. This cross-section

corresponds to a cross-section times branching ratio to the bb̄ττ final state of 2.44+0.18
−0.22.

It is also important to note that results are also presented in this thesis with a cross-section

37.91+2.2%
−5.0% ± 2.6% ± 2.1% ± 2.1% ± 3.0% pb[61, 63, 64] without the full top-quark mass

reweight at NLO.
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g h
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(b)

Figure 2.7: The contributing diagrams to non-resonant di-Higgs production at leading order.
The triangle process is shown in (a) and the box-diagram is shown in (b).

2.2.1 Beyond the Standard Model

In the search for new physics beyond the Standard Model (BSM), many theories exist for

Higgs pair-production. A heavy spin-0 scalar, H, in the two Higgs doublet model (2HDM)

[6, 66–68] and spin-2 Kaluza Klein (KK) excitations of the graviton G∗
KK in the bulk

Randall-Sundrum (RS) model [69, 70] are examples of heavy resonances decaying to a pair

of Higgs bosons.

Additionally, modifications to λhhh or the existing top Yukawa coupling result in significent

enhancements to non-resonant cross-sections along with introducing new couplings [71–74].

Other theories exist for extensions to the Standard Model such as: MSSM [75, 76], NMSSM

[77–79], Little Higgs [74, 80], Higgs Portal [81, 82] and Composite Higgs models [73, 83] but

these are not addressed in this thesis.

g

g

X
h

h

Figure 2.8: An example process diagram for resonant Higgs pair production beyond the
Standard Model, X can be replaced with a Heavy Higgs in the two Higgs doublet model
(2HDM) or a Kaluza Klein graviton.
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Randall-Sundrum Kaluza-Klein Model

Resonant Higgs pair-production can occur through the creation of a spin-2 Kaluza Klein

(KK) Graviton in Warped Extra Dimension (WED) models and can provide a solution to

the Planck-weak hierarchy problem of the Standard Model [84, 85]. The existence of new

particles at the ~TeV scale is an area of interest at the LHC, provided the new states have

a non-negligible coupling to the SM particles. One scenario explains the hierarchy problem

through the introduction of an anti-de Sitter (AdS) geometry in an extra dimension.

The solution is based on the Randall-Sundrum framework with a five dimensional Graviton

field arising from the space-time quantum fluctuations of the metric after the inclusion of the

additional dimension. Definition of the ultraviolet (UV) and infrared branes (IR) addresses

the large hierarchy and pertubations on the space-time project to the four dimensional

effective theory as a tower of KK states. The zero mode corresponds to the massless

four-dimensional graviton whereas the first massive excitation is the KK-graviton.

Depending on the scenario, SM fields can be localized in the IR brane (“RS1”) or be allowed

to explore the 5th dimension as well. A well motivated configuration (known as the bulk-RS

model) [5], predicts that the Higgs doublet is localized in the IR brane with the gauge bosons,

while the other SM matter fields are localized in the UV brane and are allowed to propagate

in the extra dimensional bulk. The KK-Graviton couples preferentially with the h, Z, W

and t and the couplings to light fermions would be dramatically reduced in the bulk-RS

model. Since couplings to fermions are suppressed, gluon fusion through a tt̄ loop is the

dominant process for KK-Graviton production at the LHC [86].

The decay widths of the KK-gravitons are proportional to the value of

c =
k

MPl
, (2.21)

where k corresponds to the curvature of the warped extra dimension and

MPl = 2.4 × 1018 GeV is the reduced four-dimensional Planck scale.

WEDs are considered as a model resonant double Higgs production searches at the LHC.

Branching ratios of the massive KK-Graviton production are available in [85, 86]. The

KK-Graviton is considered in this thesis as a possible resonance decaying to two Standard

Model Higgs bosons for the c = 1 and c = 2 configurations.
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Two-Higgs Doublet Model

The two-Higgs Doublet Model (2HDM) is an alternative to the SM and a minimal

expansion that introduces additional Higgs bosons but maintains consistency with current

experimental data, making it an interesting model to probe at the LHC. It is possible to

build a CP-conserving theory that has been shown to be stable at LO [87, 88] and gives

rise to a general renormalisable potential that is invariant under SU(2) ⊗ U(1).

Following on from the general idea of the BEH mechanism by introducing a second

additional complex SU(2) doublet with 4 degrees of freedom (similar to Equation 2.1),

the potential then becomes

V (Ψ1,Ψ2) = m2
1Ψ

†
1Ψ1 +m2

2Ψ
†
2Ψ2 + (m2

12Ψ
†
1Ψ2 + h.c) +

1

2
λ1(Ψ

†
1Ψ1)

2 +
1

2
λ2(Ψ

†
2Ψ2)

2

+ λ3(Ψ
†
1Ψ1)(Ψ

†
2Ψ2) + λ4(Ψ

†
1Ψ2)(Ψ

†
2Ψ1) +

1

2
λ5[(Ψ

†
1Ψ2)

2 + h.c],

(2.22)

where Ψi are the complex SU(2) doublets. If the SU(2) symmetry is broken, analogous

to the BEH mechanism, the theory produces two charged Higgs bosons, H±, one CP-odd

state, A0, and two CP-even Higgs states denoted by h and H [6].

Two-Higgs doublet models are often characterised by the value of tanβ = v2/v1, the ratio of

the vacuum expectation values of the two Higgs doublets. A particular case of the 2HDM

is a model where the up-type quarks couple to Ψ2, down-type quarks couple to Ψ1 and

charged leptons couple to Ψ1. One particular model that describes this scenario is known

as the Minimal Supersymmetric Standard Model (MSSM) [75, 76].

After the discovery of the Higgs boson, the MSSM finds it difficult satisfy the constraint of

the Higgs mass mh ≈ 125 GeV and so a simpler and almost model independent approach

was put forward, called the hMSSM [89, 90]. In this framework, the mass of the Higgs is

accounted for and the model can access the full (mA, β) parameter space without conflicting

current LHC data. The hMSSM is considered in this thesis with a value of tanβ = 2 as a

possible heavy Higgs resonance decaying to two Standard Model Higgs bosons.
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2.2.2 Exotics in the bτ b̄τ Final State

The existence of leptoquarks is predicted by many theories beyond the Standard Model

such as techni-colour, superstrings, composite models, PatiSalam SU(4), and SU(5) grand

unification [11–17]. Leptoquarks are hypothesised to couple to both quarks and leptons via

the Yukawa interaction for all three fermion generations. They are said to carry non-zero

lepton and baryon number, colour charge and fractional electric charge. Figure 2.9 shows

gluon-initiated diagrams which dominate below very large leptoquark masses. At the LHC,

leptoquarks could be produced in pairs through gluon-gluon fusion and quark-antiquark

annihilation. Not only are leptoquarks well theoretically motivated, they have the potential

to explain deviations from SM measurements given by Belle, BaBar and LHCb [91–93] in

the branching ratios for B meson decays to leptons,

R(D∗) =
BR(B0 → D∗τν)

BR(B0 → D∗µν)
. (2.23)

This thesis describes a search for pair-produced scalar leptoquarks decaying to bτbτ final

states in the ATLAS detector. The analysis is based on reinterpreting the di-Higgs→ bbττ

search for evidence of leptoquarks and examine the sensitivity available. The search is

carried out for an up-type (LQu
3 → tν/bτ) and a down-type (LQd

3 → bν/tτ), where the

di-Higgs reinterpretation is sensitive to both. The branching ratio, B, of the leptoquarks

decaying to charged leptons is considered to be B = 1 for the results presented in this

document.
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Figure 2.9: Dominant leptoquark pair production at the LHC.



Chapter 3

The ATLAS Experiment

In this chapter, an introduction to CERN and the ATLAS experiment is presented.

Section 3.1 describes the Large Hadron Collider and the ATLAS experiment is then outlined

in detail in Section 3.2 including all detector sub-components, the trigger system and the

common nomenclature. All data presented in the analysis results of this thesis has been

collected with the ATLAS experiment at the LHC.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a 26.7 km superconducting ring accelerator located

approximately 100 m below the surface at the CERN facility near to the French-Swiss

border. The CERN accelerator complex [94, 95], shown in Figure 1, is capable of

proton-proton (pp), proton-lead (p-Pb) or lead-lead (Pb-Pb) collisions where the beams

are designed to intersect at four main experiments around the circumference of the ring:

ATLAS [3], CMS [4], LHCb [96] and ALICE [97]. The current collision centre-of-mass

energy is
√
s = 13 TeV with the intention of upgrading to 14 TeV in the near future. The

main aim of the LHC is to probe physics beyond the Standard Model.

During pp-collisions, protons are accelerated through several stages inside the CERN

accelerator complex before emerging from the Super Proton Synchrotron (SPS) to be

injected into the main collider ring at 450 GeV. The two proton beams are then accelerated

further, up to world leading energy of 6.5 TeV per beam (
√
s = 13 TeV). Collisions occur

at precise interaction points in each experiment when the proton bunches are orientated to

cross paths.

27
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The two general purpose detectors, ATLAS (A Toroidal LHC ApparatuS) [3] and

CMS (Compact Muon Solenoid) [4], both boast a peak instantaneous luminosity of

L = 1034 cm2s−1 for proton operation. The two detectors are sensitive to a wide range of

physics at this high luminosity such as: extensions to the Standard Model, supersymmetric

searches and precise Higgs boson measurements. The one dedicated LHC heavy ion

experiment, ALICE (A Large Ion Collider Experiment), researches heavy ion collions and

quark-gluon plasma, whereas LHCb specialises more in studying b-physics.

During 2015 and 2016, many months of successful data taking with a reduced bunch spacing

(25 ns) resulted in a total integrated luminosity of 36.1 fb−1 collected data. Run 2 aims to

deliver 100-300 fb−1 over the coming years.

Figure 3.1: The CERN accelerator complex and the major experimental collaborations [98].
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3.2 The ATLAS Detector

3.2.1 Overview

As previously stated, the ATLAS detector is one of two multi-purpose detectors on the

LHC ring located approximately 93 m underground at Point 1. The detector has an almost

cylindrical forward-backward symmetric design with a diameter of 25 m and an overall

length of 44 m. The purpose of the ATLAS detector is to record the energies and trajectories

of particles emerging from the collisions with the help of numerous sub-detector components.

The inner detector (ID) surrounds the interaction point and is made up of high-resolution

semiconductor pixels, silicon microstrip trackers (SCT) and a transition radiation tracker

(TRT) all encompassed within a 2 T solenoidal magnetic field. In 2014, the ATLAS

insertable B-layer (IBL) was introduced as a fourth layer to the present pixel detector around

the beam pipe. This was to ensure tracking efficiency and precision throughout Run-2 and

the future HL-LHC operations and protect against any degradation of the equipment over

time.

Electromagnetic (ECAL) and hadronic (HCAL) sampling calorimeters make up a large

portion of the ATLAS detector. High granularity liquid-argon (LAr) is used with lead

for the ECAL, whereas the HCAL uses an arrangement of steel and scintillator tiles for

a large majority of the rapidity range, discussed in more detail in a following section.

Both calorimeters ensure good containment of electromagnetic and hadronic showers while

providing excellent performance in terms of energy and position resolution.

Surrounding the two calorimeters is a muon spectrometer (MS) which defines the overall

dimension of the ATLAS detector. Utilising the combination of precision measurement and

fast-trigger detectors, the MS achieves excellent muon momentum resolution.

A full cut-away view of the ATLAS detector components is presented in Figure 3.2.
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Figure 3.2: The ATLAS detector, taken from [3].

3.2.2 The ATLAS Coordinate System

The coordinate system used by ATLAS aims to consistently describe the particles emerging

from pp collisions and the orientation with respect to the detector. The system is

right-handed with the origin defined as the nominal collision interaction point. Beam

direction is said to be the z-axis and the x-y plane is transverse to this. The y-axis is

designed to be positive pointing upwards and the positive x direction points towards the

centre of the LHC ring from the interaction point.

The coordinates are based on a cylindrical system with the transverse plane often described

in terms of r and φ. The azimuthal angle φ is measured around the beam axis and the

radial coordinate measures the distance from the beam line.

The polar angle θ is the angle from the beam line in the positive z direction which directly

relates to a popular variable known as pseudorapidity, defined as

η = − ln

(
tan

θ

2

)
. (3.1)
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Alternatively in the case of massive objects such as jets, rapidity is used

y =
1

2
ln

(
E + pz
E − pz

)
, (3.2)

where E is a particles energy and pz is the z-component of the momentum.

Finally, the distance ∆R in the pseudorapidity-azimuthal angle space within the detector

is given by

∆R =
√
∆η2 +∆φ2. (3.3)

The convention is usually to express the kinematics of objects in the x-y plane of the

detector, the momentum and energy of the particles can be expressed as variables transverse

to the beam line using θ relations. The transverse momentum and energy are given by

pT = |p| sin θ, (3.4)

ET = E sin θ, (3.5)

where p is the three-momentum vector of the particle.

3.2.3 Inner Detector

The inner detector (ID) [99, 100] is a sophisticated collection of sensors designed to measure

the trajectory of charged particles as they traverse through the early stages of the detector.

The resolution requirements needed for standard physics processes are difficult to reach,

especially in a high track density environment emerging from the interaction point (IP)

every 25 ns. The ID works with the combination of high granularity pixel and silicon

microstrip (SCT) trackers, and the straw tubes of the TRT. The sub-detectors are based

on two technologies: silicon sensors and straw drift tubes. Incident particles pass through

the silicon sensors and deposit energy, generating electron-hole pairs which are accelerated

in the electric field and drift to the nearest electrodes determining the local position of the

particle. Straw drift tubes work in a similar manner where charged particles ionise a gas

contained within the straw and the excited electrons drift to a central wire. The combination

of three separate sub-detectors shown in Figure 3.3, all utilising different technologies, is

designed to achieve optimal momentum and spatial resolution while minimising cost.
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The silicon pixel detector [101] is located closest to the beam pipe and spans the radial

distance of 33–150 mm. It is arranged as three concentric cyclindrical layers in the barrel

region |η| < 1 and two end-caps with three disks each.

With over 80 million pixels in total, the pixel detector hosts 1744 identical pixel-sensor

modules and each module contains 46080 pixels with a size of 50 µm (r-φ) × 400 µm

(z). The arrangement of the cylinders and end-caps ensures three pixel layers are typically

traversed by each particle track.

Figure 3.3: A cut-away view of the ATLAS inner detector showing the many sub-detectors
and systems. Taken from [3]

The SCT covers the radial region 299–560 mm and consists of 4088 silicon microstrip

modules distributed between four barrel layers and two end-caps with nine disks each.

In the barrel region, each module consists of two 6.4 cm layers of silicon microstrip sensors

glued back to back with a relative stereo angle of 40 mrad. Typically the SCT provides

between four and nine spatial measurments from a particle track crossing eight strip layers.

The transition radiation tracker is the largest sub-detector and makes up the outermost

layer of the ID, it is comprised of more than 350,000 gas-filled straw tubes with a diameter

of 4 mm. These tubes typically provide an average of 36 (at least 32) hits per track and

enable track-following up to |η| = 2.0. Each tube is around 1.5 m in length in the barrel and
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0.4 m in length in the end-caps. The gas mixture filling the tubes consists of 70% Xe, 27%

CO2 and 3% O2 and the spaces between the straws are filled with polymer fibres. In addition

to tracking information, the TRT can provide particle identication through the detection

of transition radition. The transition radiation emitted by charged particles propagating

through the TRT differs for electrons compared to charged hadrons at the same momentum

so separation is possible.

In 2014, the insertable B-layer (IBL) was newly installed and is now the innermost pixel

layer of the ID and boasts over 12 million silicon pixels covering the region |η| < 3.03.

The IBL was designed to maintain robust tracking while directly improving track and

vertex reconstruction until the planned inner detector replacement in 2025. Performance

measurements of the IBL show a 40% increase in both transverse and longitudinal impact

parameter resolution for tracks with a pT around 0.5 GeV [102].

Figure 3.4 provide a detailed view of the inner detector sub-components.

Figure 3.4: Schematic view of (a) the ATLAS detector, with (b) a detailed layout of the
Inner Detector (ID), including the new Insertable B-Layer (IBL). Taken from [103].
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3.2.4 Calorimeters

Calorimeters within the ATLAS detector, shown in Figure 3.5, are designed to measure

the energy and trajectory of both charged and neutral particle showers. The ATLAS

calorimeters only measure a fraction of the energy deposited by an incident particle and then

deduce the full energy of the shower from the observed deposit, this is known as sampling

calorimetry. The setup of the calorimeters covers the range |η| < 4.9 and incorporates

many different techniques to investigate the physics processes of interest across this full

scope. The ECAL within the barrel is more suited to the precise measurement of electrons

and photons due to the fine granularity but the remaining calorimetry equipment is required

for jet reconstruction and Emiss
T . Both the ECAL and HCAL deliver good containment of

particle showers with minimal punch-through into the muon system [104].

Figure 3.5: A cut-out view of ATLAS calorimeters, taken from [105]

Electromagnetic Calorimeters

The electromagnetic calorimeters encompass the ID and separate into two main parts. A

barrel component is made up of two identical half-barrels isolated from each other by a

4 mm gap at z = 0 and covers |η| < 1.475. Two coaxial wheels make up the end-caps of

the EM calorimeter with the outer wheel spanning the region 1.375 < |η| < 2.5 and the
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inner wheel responsible for 2.5 < |η| < 3.2. The EM calorimeter is a lead-LAr detector

with kapton electrodes assembled into an accordian-shape. The complex geometry avoids

azimuthal cracks and gives complete symmetry in φ [106].

Hadronic Calorimeters

Hadronic calorimetry is provided by a scintillator/steel-tile calorimeter (TileCal) [107]

within |η| < 1.7. Steel is used as the absorber and scintillating tile is the active material

in this case. A TileCal barrel provides coverage up to |η| < 1.0 and two additional barrels

extend past this to cover the rapidity range quoted above and provide enough depth to

successfully capture the full collimated shower from incident particles. The tile calorimeter

is divided azimuthally into 64 modules and separated in depth into three layers. With a

total thickness of 9.7 interaction lengths at the outer edge of the tiles perpendicular to the

beam line, the tile calorimeter makes up a significant portion of the ATLAS detector.

Wavelength shifting fibres read from both sides of the scintillator and travel into two

separate photomultiplier tubes.

To complement the tile calorimeter, two additional parellel-plate copper-LAr hadronic

endcaps (HEC) cover the 1.5 < |η| < 3.2 region. The two independent wheels are built

from 32 identical wedge-shaped modules and provide four longitudinal calorimeter layers.

The HEC is positioned directly behind the EM end-cap calorimeter and shares the same

LAr cryostats. The inner wheels are constructed from 25 mm parallel copper plates with

a radius of 0.475 m. The wheel end-caps furthest from the interaction point use 50 mm

copper plates and possess a radius of 2.03 m. The copper plates are partitioned by 8.5 mm

LAr gaps and act as the active medium for the calorimeter.

Finally, the forward calorimeter (FCal) provides coverage over the range 3.1 < |η| < 4.9,

close to parallel with the beam line. The FCal uses cylindrical modules comprised of tubes

parallel to the beam axis with concentrically positioned rod electrodes on the inside. LAr

was chosen again to fill the narrow gaps and avoid ion buildup at high rates, the whole

apparatus is around 10 interaction lengths deep. The immediate module electrode is made

of copper and has been optimised for electromagnetic measurements with 269 µm gaps.

Whereas, the subsequent two modules are made from tungsten and predominantly measures

hadronic interaction energy with gaps of 375 and 500 µm, respectively.
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3.2.5 Muon Spectrometer

The muon spectrometer (MS) is the outermost ATLAS sub-detector, the layout is shown

in Figure 3.6. A system of three large air-core superconducting toroid magnets provide a

0.5 T magnetic field to deflect muon tracks in the high-precision tracking chambers. One

barrel (|η| < 1.05) and two end-cap sections make up the MS. Resistive plate chambers

(RPCs) are used for low pseudorapidity ranges, |η| < 1.05, and thin gap chambers continue

up to |η| < 2.4. These are arranged in layers of three and serve as trigger chambers for

detection. Position measurements (η,φ) are achieved with a spatial resolution of 5-10 mm

and precise muon momentum measurements are provided by three layers of monitored drift

tube (MDTs) chambers (η < 2.7).

Figure 3.6: A cut away diagram of the ATLAS muon spectrometer, [108]
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3.2.6 Magnets

The ATLAS detector takes advantage of three separate magnet systems [109] to alter the

trajectory of traversing charged particles and measure their momentum. The magnetic

fields are generated using coils of NbTi/Cu superconductor, stabilised by Al and cooled by

a liquid He system. A solenoidal magnet surrounds the inner detectors and an array of

three large air-core toroids generate the muon sprectrometer magnetic field. A schematic

of the ATLAS magnet components is shown in Figure 3.7.

The solenoidal magnet [110] is around 5.8 m in length and 10 cm thick and immerses the

inner detector while providing a 2 T, approximately uniform, longitudinal magnetic field.

The muon spectrometer and calorimeters are surrounded by the system of toroid magnets

that produce an azimuthal magnetic field. The toroid coils are designed into a discorectangle

or ‘racetrack’ shape and split into a barrel toroid and two end-cap toroids. The barrel

toroid magnet [111] covers |η| < 1.4 and the eight coils are arranged symmetrically around

the central region, each contained in their own cryostat. Two end-cap toroids [112]

are positioned at the sides of the detector, each with eight coils, and cover a range of

1.6 < |η| < 2.7. The barrel and end-cap magnets are capable of providing a magnetic field

strength of 0.5 T and 1.0 T, respectively. The bending power is lower in the transition

regions where the two magnets overlap (1.4 < |η| < 1.6).

Figure 3.7: A schematic of the ATLAS magnet systems, taken from [113]
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3.2.7 Trigger and Data Acquisition

Data acquisition is an important part of the ATLAS experiment and introduces a challenge

of recording the properties of processes of interest. The LHC must operate at a high rate to

produce analysable quantities of rare events. The ATLAS detector must deal with a bunch

crossing rate of 40 MHz and filter out events to an acceptable rate for storage while still

capturing the most important physics processes. The ATLAS Trigger and Data Acquisition

system (TDAQ) is in place to reduce data to an adequate level for storage but this must be

done in real-time. Decision-making and reconstruction at the triggering stage is known as

online, whereas general ATLAS reconstruction is referred to as offline. The trigger works

in two stages, firstly a hardware trigger is in place followed by a secondary software based

trigger system. The hardware component is known as the Level 1 (L1) [114] trigger which

first encounters all pp collisions. The rejection of events to ultimately reduce the rate to

7̃0 kHZ is mostly based on calorimeter and muon sub-detector information. The L1 trigger

is the fastest part of the system and the inner detector algorithms cannot process events

at such a high rate so ID information is omitted at this stage. The High Level Trigger

(HLT) [115] is composed of the software triggers and is split into two parts: Level 2 (L2)

and the Event Filter (EF). The HLT reduces the event storage rate even further to around

7̃00-1000 Hz.

The initial stages of the L1 trigger are based on identifying high-pT objects or events

with high Emiss
T using basic calorimeter clustering and track information from the muon

spectrometer. The performance of the detector is sacrificed for the purpose of speed.

Granularity of the EM calorimeter is reduced and only some compartments of the muon

system are used for read out. Regions of Interest (RoIs) are identified by the L1 trigger in

η−φ space for each event if they pass certain threshold requirements, these are then passed

on the Central Trigger Processor (CTP) to be matched to a set menu of triggers.

The HLT receives the RoIs from L1 and begins to process the events using full

reconstruction, calibration and identification algorithms similar to those applied offline.

The L2 stage utilises additional detector information where necessary and then transfers

the events to the EF to fully reconstruct the entire event and perform the final selection.



Chapter 4

Object Reconstruction

The ATLAS experiment relies heavily on the reconstruction, identification and calibration

of objects within the detector for all physics analyses. Reconstructing tracks from

charged particles and locating collision and decay vertices constitute the basis of ATLAS

reconstruction. The association of tracks to the primary vertex (PV) and determination of

track parameters with respect to a given vertex offers the opportunity to suppress pile-up

effects. Pile-up is where physics objects are reconstructed from interactions other than the

hard scatter collision within a bunch crossing.

Energy deposits in the calorimeters form the basic constituents of jets which are

supplemented by track and vertex information to define objects such a b-jets and τ -leptons.

Both of which are important for the final state addressed in this thesis. This chapters aims

to give an overview of the reconstruction algorithms and identification procedures for all

physics objects used within ATLAS.

4.1 Tracks and Vertices

Track reconstruction for charged particles begins in the pixel and SCT detectors with

cluster creation. Hits in the pixel and strip sensors are grouped into clusters where

the energy produces a charge above threshold. Three-dimensional measurements called

space-points are created from the clusters to represent the point at which the particle

crossed the sensor. The total collected charge in a pixel sensor is proportional to the length

of the traversing path through the medium. Calorimeter cell clustering can aid in recovering

trajectory information using the incident angle of the particle and the intersection point.

Additional information utilising the TRT can be found in [116].

39
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Track seeds are defined as a combination of three space-points and must satisfy strict criteria

to be identified as a track. An iterative track finding algorithm uses a combinatorial Kalman

filter [117] to build track candidates and combine additional space-points compatible with

the preliminary trajectory. Following this, ambiguity solving and track-fitting rejects track

candidates and calculates more precise track parameters [118, 119].

Basic track quality criteria includes:

• pT > 400 MeV,

• |η| < 2.5,

• minimum of 7 pixel and SCT clusters (12 are expected),

• maximum of one shared pixel cluster or two shared SCT clusters on the same layer,

• |dBL
0 | < 2.0 mm,

• and |zBL
0 sin θ| < 3.0 mm.

Impact parameters of a track, shown in Figure 4.1, are estimated using a perfect helical

trajectory in a uniform magnetic field but compensated by particle energy loss throughout

the material. Once the track candidates are fully reconstructed particle charge and

momentum are calculated and added to perigee parameters particular to each track. The

charged particles follow a circular trajectory in the transverse plane of the ID magnetic field

and are described by a set of parameters with respect to the primary vertex. Parameters

include: the inverse transverse momentum q/pT, where q is the particle charge, the

azimuthal (φ) and polar (θ) angles, and the transverse (d0) and longitudinal (z0) impact

parameters. The impact parameters are defined as the point of closest approach to the

beam line (BL).

The vertex reconstruction strategy for ATLAS Run-2 mirrors that used in Run-1 where

an iterative vertex finding algorithm aims to find a common origin point from the several

charged particle tracks tagged in the ID. Vertex seeds are constructed from the reconstructed

tracks z-positions at the crossing point with the beam line [120, 121]. The general algorithm

is as follows.
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Figure 4.1: Diagrams of the transverse and longitudinal coordinate systems to define impact
parameters with respect to the point of closest approach to the primary vertex.

• Select tracks that pass vertex reconstruction selection criteria [122].

• Perform a χ2 fit to find a common vertex using a jet seed and collected tracks.

• Iteratively perform the fit procedure and down-weight tracks as they become more

incompatible and recompute the vertex position. Tracks displaced from the fitted

vertex by > 7σ of the three-dimensional Gaussian distribution are removed and used

to seed a new one.

• After determining a vertex position, incompatible tracks are removed from the

associated set and can be used to refit another vertex.

• The procedure is repeated until there are no free tracks left in the event or no

additional vertex can be computed from the remaining tracks.

- All vertices require association to at least two tracks.

The algorithm outputs a set of the vertex objects with their three-dimensional vertex

position, covariance matrices and the associated tracks. A luminous region inside the

ATLAS detector where proton collisions occur is known as the beamspot position. The

shape and position of the beamspot can be used to constrain the transverse position

resolution of vertices reconstructed from a small collection of tracks [123, 124].

The efficiency of the vertex reconstruction is dependent on the average number of inelastic

pp interactions per bunch crossing, <µ>. Ideally the reconstruction efficiency would remain
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constant as a function of <µ> but effects such as vertex merging, fake tracks and split

vertices cause the efficiency to decrease. The main primary vertex where the hard scatter

collision of the event occurred is identified as the vertex with the largest sum-pT -squared of

associated tracks. ATLAS vertex reconstruction performance plots are shown in Figure 4.2.
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Figure 4.2: ATLAS performance plots with (a) showing the comparison between the number
of tracks associated to the reconstructed vertex for all vertices in high-µ 2015 data and
simulation. The vertex reconstruction efficiency as a function of the number of tracks in
low-µ data compared to Monte Carlo simulation is shown in (b). Taken from [124].

4.2 Lepton Reconstruction

Electrons within the ATLAS detector are reconstructed using the energy clusters in

the ECAL and an associated ID reconstructed track. High energy electrons dominantly

interact with matter by the emission of a photon through a Bremsstrahlung radiation

process, whereas high energy photons primarily produce an electron-positron pair in the

active material. Electron reconstruction relies heavily on the properties of the resulting

electromagnetic showers in the calorimeters. The longitudinal and tranverse shapes of the

EM calorimeter showers, ID tracking and the track-to-cluster matching quantities are of

particularly use in electron object determination [125, 126]. The efficiency of this ECAL

cluster search ranges from 95% at ET = 7 GeV to more than 99% above ET = 15 GeV [127].
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The EM clusters in the calorimeter are formed by using a sliding window algorithm

and seeded by deposits with a total cluster transverse energy above 2.5 GeV. A sliding

window size, corresponding to the granularity of the ECAL middle layer (3 x 5 in units of

0.025 x 0.025), is used to search for seed electron clusters. Selected tracks consistent with

electron candidates are then loosely matched to EM clusters based on the η− φ position in

relation to the cluster barycentre. The four-momentum of the reconstructed electrons are

computed using the properties of the associated track (matched to the primary interaction

vertex) and the final calibrated energy of the EM cluster.

Candidates go through a separate identification procedure to distinguish electrons from

background-like objects such as hadronic jets, electrons from photon conversions and

non-isolated electrons. The distinguishing variables for the identification algorithms are

defined in detail in [127]. Several changes were made to the input variables for Run-2

to take advantage of the IBL. Three levels of identification operating points are output

using a multivariate (MVA) technique to separate signal- and background-like electrons,

Loose, Medium and Tight, in order of increasing background rejection. Many analyses

require a separate isolation criteria on electrons to further discriminate between signal and

background. Run 2 electron reconstruction efficiency remains very similar to the Run 1

performance, the efficiencies for each ID working point are shown in Figure 4.3.
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Figure 4.3: Electron identification efficiency to identify electrons from Z → ee decays
obtained using Monte Carlo simulations and measured with respect to reconstructed
electrons [128].
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Muons produced by pp collisions are approximated by minimum ionising particle with a

momentum of 1 to 100 GeV. Therefore, they can traverse the entire detector before decaying

due to their 2.2 x 10−6 s mean life time. Reconstruction has to combine information from

both the MS and the ID. Calorimeters can additionally be used to improve pseudorapidity

coverage and momentum resolution but is not always used.

Muon reconstruction is first done independently by the two ATLAS sub-detector systems.

Track reconstruction is performed in the ID like any other charged particle, whereas, tracks

in the MS are pieced together by identifying hit patterns inside the muon chamber to form

segments. Muon track candidates are then built by fitting hits from multiple segments in

different layers. The acceptance of the ID and MS however is limited and some regions

are not adequately equipped for this reconstruction. This is where calorimeter cluster

information is often utilised. The combination of the sub-detectors leads to the classification

of four types of muon objects [129, 130].

• Extrapolated muons (ME)

Muons are reconstructed solely within the MS where muons that traverse two layers

of MS chambers are considered track candidates. These are then extrapolated back

to the beam line to determine track parameters with respect to the interaction point

after energy loss throughout the calorimeters has been taken into account.

• Calorimeter-tagged muons (CT)

When only an ID track is available, energy deposits within the calorimeter consistent

with that of a minimum ionising particle are used. Deposits are matched to the track

from the ID to define the muon candidate. No information from the MS is used so the

purity of CT muons is the lowest, but utilising the calorimeters recovers acceptance

in regions where the ATLAS muon system is partially implemented.

• Segment-tagged muons (ST):

Tracks reconstructed in the ID that can be extrapolated and matched to a track in

the MS that crosses at least one segment, are considered to be a muon object. This

muon type is necessary to recover low-pT muons that only traverse one layer or appear

in a region with reduced MS acceptance.
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• Combined muons (CB):

Track candidates are independently built in the ID and MS and then combined to a

single track. Many algorithms exist for the global fit procedure but the most common

is an outside-in pattern recognition, where muon reconstruction is first performed in

the MS and then extrapolated towards the beam line to link up with an ID track.

The four-momentum and charge of these muons is obtained from the combined track,

exhibiting excellent efficiency and resolution for muons with pT below 100 GeV.

Corrections are made to the simulated muon momentum scale and resolutions to obtain

agreement between data and simulation. MC events are also adjusted to compensate for

isolation and trigger mismodelling. Finally, before physics analysis takes place, muons are

classified as Tight, Medium and Loose at the identification stage, similar to that of electrons

[130]. Figure 4.4 shows the performance of muon reconstruction and isolation algorithms.
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Figure 4.4: ATLAS muon performance plots with (a) showing the reconstruction efficiency
for Medium muon selection as a function of the pT of the muon in the region 0.1< |η| < 2.5.
The isolation efficiency for the Loose muon isolation working point is shown in (b) as a
function of the muon transverse momentum pT , measured in Z → µµ events. Taken from
[124].
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4.3 Jets

Whenever partons are produced in pp collisions at the LHC they hadronise. Quarks and

gluons are unable to exist as free particles due to confinement and therefore fragment and

become collimated sprays of energetic colourless hadrons. The radiation of gluons and

splitting into qq̄ pairs continues until the partons bind to colourless states. However, states

are often themselves unstable which leads to the production of more hadrons, leptons and

photons. The resulting shower is the experimental signature in particle detectors known

as a jet. As a dominant final state in high-energy collisions, jets play a significant part in

precision measurements and searches for new phenomena.

The hadronisation mechanism for parton showers is not well described by theory but with

a standard definition of jet objects between theory and experiment [131], the features of a

jet can fit experimental observations to physical objects. For example, it is implied that the

momenta and parameters associated to that of the hadron closest to the jet axis mirrors

that of the original parton. Throughout hadron collider experiments, the accepted definition

requires a clustering of calorimeter cells in the η − φ plane.

Several algorithms exist for jet formation and they are mostly defined as either sequential

or cone algorithms. An important feature of jet finding algorithms is how they evolve

and handle the emission of soft or collinear particles throughout hadronisation. Sequential

algorithms work by adding objects together without being restricted by a predefined shape,

their configuration is by construction insensitive to soft and collinear emission. For the

calculation of cross-sections in perturbation theory, the jet must be defined in a way as to

which it remains independent of the presence of infinitesimally soft gluons. Cone based jets

tend to be collinear unsafe due to the seeding objects being heavily affected by splitting.

The anti-kT jet reconstruction algorithm [132, 133] is the sequential algorithm of

choice within ATLAS, the close to conical shape and almost insensitivity to soft radiation is

beneficial in high pile-up conditions seen at the LHC. ATLAS uses a topological cluster

(topocluster) to act as input to the jet finding algorithms. Topoclusters have both

three-dimensional shape and location information and are created by grouping neighbouring

cells that have significant energy relative to expected noise. Cells with a large energy

significance above a large threshold act as a seed and surrounding clusters are added if
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their energy exceeds a secondary smaller energy threshold. Contrary to a sliding window

algorithm for cluster grouping with a fixed-size, topological clustering leads to clusters with

a variable number of cells [134, 135].

Sequential algorithms in general work by calculating the distance between these clusters,

dij , and then iteratively combining these objects until no clusters are left in the event. The

distance parameter is defined as

dij = min(p2·pT,i, p
2·p
T,j)

∆R2
ij

R2
. (4.1)

The definitions of pT and ∆R can be found in Chapter 3.2.2. In the case of the anti-kT

algorithm the parameter p is chosen to be p = −1 to prioritise clusters from hard particles so

jets grow outwards around the hard seed. The energy weighted distance parameter becomes

dij = min
( 1

p2T,i

,
1

p2T,j

)∆R2
ij

R2
. (4.2)

ATLAS tends to choose the value of 0.4 for the radius parameter R. The full algorithm is

labelled as follows, using topologically-related calorimeter clusters:

• Scan objects and calculate dij between all pair combinations. Recognise the pair of

objects with the smallest value of dij .

• If dij is smaller than min
(

1
p2T,i

, 1
p2T,j

)
, the two objects are merged using a

four-momentum recombination scheme.

• However, object i is considered a jet and removed from the list if dij is greater than
1

p2T,i
.

• The procedure is repeated until no clusters are left in the event.

After the jet candidates are reconstructed, ATLAS employs a rigorous jet energy scale

calibration scheme. At each stage of the calibration, the full four-momentum of the jet

is corrected with adjustments aiming to reduce pile-up effects. The complete chain of

corrections is shown in Figure 4.5 but some of the more important are described here in

detail. The origin correction redefines the jet direction to coincide with the hard scatter

vertex and the momentum is recalculated and keeping the energy constant.
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Additionally, the jets four-momentum is corrected to the particle-level energy scale derived

using truth jets in dijet MC events [136–138].

EM-scale jets Origin correction
Jet area-based pile-

up correction
Residual pile-up 

correction

Absolute MC-based 
calibration

Global sequential 
calibration

Residual in situ 
calibration

Jet finding applied to 
topological clusters at 

the EM scale.

Changes the jet direction 
to point to the hard-scatter 
vertex. Does not affect E.

Applied as a function of 
event pile-up pT density 

and jet area.

Removes residual pile-up 
dependence, as a 

function of 𝜇 and NPV.

Corrects jet 4-momentum 
to the particle-level energy 
scale. Both the energy and 

direction are calibrated.

Reduces flavor dependence 
and energy leakage effects 
using calorimeter, track, and 

muon-segment variables.

A residual calibration 
is derived using in situ 
measurements and is 
applied only to data.

Figure 4.5: The many stages of the EM-scale jets calibration, taken from [138], all
calibrations are applied to the four-momentum of the jet.

Accounting for pile-up is a challenge in ATLAS jet reconstruction, especially looking forward

to the future at the LHC and the HL-LHC. With the switch from 50 to 25 ns bunch

spacing, the amount of out-of-time pile-up has increased and topocluster thresholds have

to be increased to control the impact of pile-up on the jet energy scale (JES). The main

changes from Run 1 to Run 2 are explained in detail in [137] but it is worth noting that jet

reconstruction has a separate regime to remove spurious pileup jets originating from other

pile-up vertices.

A jet vertex fraction (JVF) variable is defined as the scalar transverse momentum sum of

the tracks that are associated to the jet and originate from the hard-scatter vertex (PV0)

divided by the scalar pT sum of all associated tracks [139]. Including those originating from

the n-th primary vertex (PVn). JVF is defined as follows

JVF =
Σk p

trkk
T (PV0)

Σl p
trkl
T (PV0) + Σn≥1Σl p

trkl
T (PVn)

. (4.3)
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The jet vertex fraction is bound between 0 and 1 with -1 reserved for jets with no associated

tracks. This parameter measures the fractional pT from tracks associated to the hard-scatter

vertex and was initially used as a minimum criteria to reject pile-up jets. However, JVF

has a strong dependence on the number of reconstructed primary vertices in an event

(Nvtx). Therefore the jet reconstruction group developed the jet-vertex-tagger, where two

new variables RpT and corrJVF are introduced as

corrJVF =
Σk p

trkk
T (PV0)

Σl p
trkl
T (PV0) +

Σn≥1Σl p
trkl
T (PVn)

k·ntrkPU

, (4.4)

RpT =
Σptrkk

T (PV0)

pjetT
. (4.5)

Where the scaling factor k is roughly taken as the slope of pPU
T with nPU

trk , in this case

pileup values are defined using PU. CorrJVF is a modified JVF variable to remain stable

against the number of reconstructed vertices in the event, whereas RpT combines calorimeter

and tracking information to further identify pileup jets. The jet-vertex-tagger (JVT) is

constructed using these two parameters as a two-dimensional likelihood discriminant to

suppress pileup jets in the event, depicted in Figure 4.6 [139, 140]. The idea of the JVF is

applied to tau-jets in Chapter 5.
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Figure 4.6: The 2-dimensional JVT likelihood as a function of corrJVF and RpT is shown
in (a), the distribution of JVT for pileup and hard-scatter jets with 20 < pT < 30 GeV is
shown in (b) [139].
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4.4 b-tagging

The ability to distinguish jets originating from b-quarks rather than those with different

flavour origin such as c-jets or light(u, d, s-quark or gluon g)-jets is clearly crucial in an

analysis with b-quarks in the final state. The performance of b-jet identification, known

as b-tagging, can have significant impact on the signal sensitivity of an analysis. Many

algorithms have been developed at ATLAS to ‘tag’ b-jets and these are either lifetime-based

or based on the decay of b- and c-hadrons, usually to soft muons. The b- and c-hadrons

are relatively short lived particles but are able to relativistically traverse a few mm inside

the detector before decaying. Therefore, at least one displaced vertex can be reconstructed

within the jets. Impact parameters of the tracks emerging from the flavour decay and the

reconstruction of a secondary displaced vertex are crucial to b-tagging algorithms. The

impact parameter represent the point of closest approach to the primary vertex (PV) of the

extrapolated tracks from the b-hadron decay, illustrated in Figure 4.7.

primary vertex

xy
decay length L

secondary vertex

jet axis

track
impact
parameter

Figure 4.7: Schematic view of a b-hadron decay inside a jet resulting in a secondary vertex
with three charged particle tracks. The vertex is significantly displaced with respect to the
primary vertex, thus the decay length is macroscopic and well measurable [141].
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Impact parameter based algorithms:

• IP2D tagger uses the transverse impact parameter significance, d0/σd0 , as the

discriminating variable to distinguish between tracks coming from the PV and those

produced from a b-hadron decay.

• IP3D tagger makes use of both the tranverse impact parameter information and also

the longitudinal impact parameter significance, z0 sin θ/σz0 sin θ, in a two-dimensional

template to account for correlation and produce a more powerful discriminator.

Both the IP2D and IP3D taggers compare predetermined two-dimensional probability

density functions (PDF) for b-jets, c-jets and light-jets obtained from reference histograms

derived from Monte Carlo simulation. The ratio of the template PDF for the different jet

flavour hypotheses is used as input to a log-likelihood ratio (LLR) method. Each ratio

of the probabilities defines the track weight. The LLR discriminant is computed as the

sum of the per-track contributions, ΣN
i=1log Pb

Plight
, where N is the number of tracks of a

given jet and P defines the particular likelihood. Pb and Plight are the template probability

density functions (PDF) for the b- and light-flavour jet flavour hypotheses, respectively.

The discriminating power of the LLR can be applied to separate b-jets from c-jets and also

c-jets from light-flavour jets. Example LLR outputs are shown in Figure 4.8.
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Figure 4.8: The log-likelihood ratio for for b- (solid blue), c- (dashed green) and light-flavour
(dotted red) jets in tt̄ events for the IP2D (a) and IP3D (b) [142].
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Vertex based algorithms

Secondary vertex-based algorithms (SV) aim to explicitly reconstruct a displaced

secondary vertex within the jet. Two-track pairs within the jet are tested to form vertex

candidates which are then rejected if they are likely to have originated from the decay of a

long-lived particle or from interactions within the detector material [143]. The secondary

vertex can provide a number of discriminating variables for different jet-flavours such as:

the invariant mass of the tracks, m(SV), at the secondary vertex assuming pion masses and

also the distance between primary and secondary vertices divided by its uncertainty, Sxyz.

JetFitter is a decay chain multi-vertex algorithm [144] that aims to fully reconstruct the

b-hadron decay chain. The decay of b-hadrons primarily results in at least one c-hadron

inside the jet and additional vertices can then be reconstructed. JetFitter takes advantage of

the b- and c-hadron topological structure to resolve multiple vertices and flight paths along

the approximated original b-hadron flight path, even when only a single track is attached.

Again, the JetFitter algorithm produces discriminating variables and these can be used as

input to more sophisticated b-tagging algorithms. Secondary vertex reconstruction rates

are shown in Figure 4.9.
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Figure 4.9: Secondary vertex reconstruction rates as a function of jet pT (a) and jet η (b)
[142]
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MV2 multivariate b-tagging algorithm

The basic b-tagging algorithms addressed above are combined to achieve greater

discriminating power using a Boosted Decision Tree (BDT) algorithm known as the MV2

algorithm [142, 145]. The BDT takes variables from the basic algorithms as input and

combines kinematic properties of the jets, namely pT and |η|, to take advantage of

correlations between input variables [145]. The efficiency working point of the multivariate

classifier chosen can produce a gain in b-tagging efficiency but in turn changes the light and

c-jet rejection depending on the physics analysis requirements. MV2 has been optimised

to produce three variants, MV2c00, MV2c10 and MV2c20, where the names of the taggers

indicate the c-jet percentage in the BDT training. More information on b-tagging calibration

and performance can be found in [146].

4.5 Tau Reconstruction

The reconstruction of hadronically decaying tau objects is based on information from the ID

and the calorimeters. The τ -lepton candidates are seeded by a jet formed using the anti-kT

algorithm with a distance parameter R = 0.4. As with general jet reconstruction, inputs to

the τ -jets algorithm are TopoClusters calibrated using the local hadronic calibration scale

(LC) [147]. Additionally, b-tagging is performed at a 77% efficiency working point to veto

jets associated to a b-quark decay. Jets seeding taus are also required to have pT > 20 GeV

and |η| < 2.5. Jets within the transition region, 1.37 < |η| < 1.52, are vetoed.

The vertex association for tau candidates incorporates the idea of the JVF in jet pileup

suppression to pair the tau candidate to the vertex with the largest fraction of momentum

from tracks in a core region (0 < ∆R < 0.2). This idea is explained in more detail in

Chapter 5 with an accompanying study and optimisation for tau-jet vertex association.

Tracks from the jet are associated to the tau core and isolation (0.2 < ∆R < 0.4) regions

if the following criteria are met with respect to the tau vertex (TV):

• pT > 1 GeV,

• at least two associated hits in the pixel detector,

• at least seven hits in total in the pixel and SCT detectors,
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• |d0| < 1 mm,

• |∆z0 sin(θ)| < 1.5 mm.

The vertex is used to determine the direction of the hadronic tau and build a coordinate

system for the object which identification variables are calculated with respect to. The

vectorial sum of three-dimensional TopoClusters found within ∆R < 0.2 of the seed

barycentre are combined with the tau vertex origin point to define a tau axis and direction.

The mass of the tau candidate is initially defined to be zero and therefore the tau momentum

is computed from the transverse energy, ET.

Note the reconstructable visible hadronic components of the tau decay, often indicated as

τhad-vis, are being referenced when mentioning hadronic tau candidates and calculating

variables. The tau candidate is defined according to the number of associated tracks

(charged particles) in the core region: 1-prong, 3-prong or multi-prong. Track selection

is optimised to maximise the fraction of 1- and 3-prong tau decays reconstructed with the

correct number of charged particles [21, 148].

Leptonically decaying taus rely on general lepton reconstruction with particular isolation

criteria and fake rejection taken into account. Classification of τlep takes place at an

identification stage later.

4.5.1 Tau Energy Calibration

Similar to the jet energy, tau-jets are reconstructed from energy deposits in the

electromagnetic and hadronic calorimeters and need to be calibrated to correct the measured

tau energy to the true tau-jet energy. Due to the larger fraction of electromagnetic energy

in tau-jets compared to QCD jets, the tau energy scale (TES) is different to that of jet

energy scale calibrations. Tau energy calibration has two stages, firstly energy contributions

originating from pileup interactions are subtracted and secondly a correction is applied

to remedy effects where the tau decay products do not deposit enough energy to form

TopoClusters, fall outside of the tau-jet core region or simply do not reach the calorimeter.

Calibration functions are described in detail in [148] where a newly implemented technique

known as “Tau Particle Flow” [149] is introduced to improve energy resolution at low-pT.
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4.5.2 Tau Identification

Hadronic tau objects and QCD jets have a similar signature in the detector. The aim of tau

identification is to identify real taus and minimise the number of quark- and gluon-initiated

jets mis-identified as taus. This is of high importance for physics analyses with a hadronic

tau final state. Identification uses a boosted decision tree (BDT) where 1-prong and 3-prong

taus are trained separately. The identification working points for 1-prong (3-prong) are

labelled loose, medium and tight and target efficiencies of 0.6 (0.5), 0.55 (0.4), 0.45 (0.3)

respectively. The full list of BDT input variables in Run-2 reconstruction is given in [148].

All taus considered in this thesis use the Medium tau-ID working point because of the

relatively high efficiency and sufficient fake tau rejection.

4.6 Missing Transverse Energy

Missing tranverse momentum (Emiss
T ) is defined as the momentum carried by particles

undetected by the ATLAS detector. A non-zero value implies the existence of SM neutrinos

but could also suggest the production of new particles beyond the standard model.

Emiss
x(y) = −Σpx(y),i (4.6)

Calculating Emiss
T is difficult because it depends on the reconstruction of all the other objects

in the event after calibration, involves all of the detector subsystems and is restricted by

the limitations of the detector and pileup interactions [150, 151].

The Emiss
T is determined from x- and y-components of the Emiss given by

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2, (4.7)

Emiss
x(y) = Emiss,e

x(y) + Emiss,γ
x(y) + Emiss,τhad

x(y) + Emiss,jets
x(y) + Emiss,µ

x(y) + Emiss, Soft term
x(y) , (4.8)

φmiss = tan−1
(Emiss

y

Emiss
x

)
, (4.9)
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where in the transverse plane:

• Emiss,e
x(y) is the total energy associated to electrons,

• Emiss,γ
x(y) is the total energy associated to photons,

• Emiss,τhad
x(y) is the total energy associated to hadronically decaying taus,

• Emiss,jets
x(y) is the total energy associated to jets,

• Emiss,µ
x(y) is the total energy associated to muons,

• Emiss, Soft term
x(y) is the total energy of topological clusters or ID tracks not associated to

any previously reconstructed object.



Chapter 5

Tau-Jet Vertex Association

As briefly described in Chapter 4, ATLAS reconstructs many vertices per bunch crossing.

The hard scatter vertex, where the main physics collision occured, is identified as the vertex

with the highest
∑
p2T of all the tracks associated to it. The remaining reconstructed vertices

within the event come from pile-up interactions.

The majority of ATLAS objects are associated to the highest
∑
p2T vertex. However, truth

information from MC shows this is not always the vertex tau objects originate from in

the event. Tau-jet vertex association (TJVA) is a necessary step in tau reconstruction

and calibration. This chapter outlines the details of the TJVA and presents a study

on track selection optimisation for the algorithm to be included in an upcoming ATLAS

reconstruction software release.

This study was the main part of the author’s qualification task for ATLAS authorship.

5.0.1 Tau-Jet Vertex Association Algorithm

The τhad-vis track selection and reconstruction is sensitive to the vertex associated to the

tau candidate, particularly at high pile-up conditions at
√
s = 13 TeV. Tracks can fail a |z0|

requirement if the tau is assigned to the incorrect vertex or a pile-up interaction is defined

as the hard scatter vertex.

A vertex is associated to the tau candidate by the tau-jet vertex association algorithm

(TJVA) which is based on the JVF pileup suppression variable used in jet reconstruction.

The JVF is calculated for each jet with respect to the hard scatter vertex, shown in

Equation 4.3. JVF is defined as the scalar pT sum of tracks associated to the jet and

that originate from the primary vertex divided by the scalar sum pT of all tracks regardless

57
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of which vertex they originated as long as they pass selection criteria. The idea follows that

the JVF output is used as a discriminator and a threshold is chosen to distinguish between

jets originating from the primary vertex and those coming from pile-up vertices.

Figure 5.1 depicts the JVF and corresponding values for a scenario involving two jets. The

JVF is described in detail in Section 4.3.

Figure 5.1: A representation of the jet vertex fraction (JVF) discriminant corresponding to
the fraction of a jet, f , originating from a particular vertex [152].

Tau reconstruction can adapt the JVF variable to calculate a tau-jet vertex fraction (TJVF)

where a tau-jet is evaluated with respect to each reconstructed vertex vtxj using the

associated tracks trkk of the tau-jet τi, defined as

TJVF(τi, vtxj) =

∑
k

pT(trkτik , vtxj)∑
n,l

pT(trkτil , vtxn)
. (5.1)

The TJVF can be thought of as the scalar sum pT of the tracks, from the tau, associated

to the vertex in question divided by the total scalar sum pT of all tracks within the tau-jet.

The vertex with the highest TJVF value is taken as the primary vertex the tau originated

from.
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Traditionally, the tracks used to evaluate the TJVF are those passing the track selection

criteria given in Section 4.1 and fall within ∆R < 0.2 with respect to the TopoCluster

barycentre of the reconstructed tau object. However, this track selection is not always

optimal and a study was necessary to investigate the efficiency of the TJVA algorithm in

selecting the correct vertex for the current ATLAS software release.

5.1 TJVA Algorithm Efficiency Study

Associating the reconstructed tau candidate to the correct primary vertex, where the tau

originated, is important and can impact the characteristics of the final tau object. The

efficiency of the TJVA algorithm can be assessed by its ability to associate a τ -lepton to the

correct production vertex in MC events. Truth information in MC provides the coordinates

of the primary vertex in the detector and the correct reconstructed vertex is considered to

be the one closest to the truth vertex in z.

The TJVA algorithm is validated with events at
√
s = 8 TeV and then the algorithm track

selection is optimised for
√
s = 13 TeV events. All studies are performed using Z → ττ MC

samples generated by Pythia8

Note, analysis tools provided by the ATLAS tau working group were implemented to apply

the tau selection and also match objects in the sample to truth particles. Hadronic tau

candidates used in the efficiency calculations and following plots were required to have met

basic criteria: all reconstructed tau leptons were required to have been matched to a truth

tau, pT > 20 GeV and |η| < 2.5. The crack region of the ATLAS detector is excluded.

5.1.1 TJVA Efficiency at 8 TeV

The TJVA algorithm performed well in Run 1 analyses at
√
s = 8 TeV. The technique

was implemented in this study to validate and to provide benchmark efficiency results to

improve on at 13 TeV. Efficiency tests were performed for both 1-prong and 3-prong taus

separately. Plots for 8 TeV showed a recovery in efficiency for the TJVA algorithm over

the default primary vertex chosen in reconstruction, the highest
∑
p2T of the associated

tracks to the vertex. It is important to note there was a BDTMedium requirement on the
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taus which unknowingly introduced a bias to the TJVA algorithm causing an almost 100%

efficiency, particularly for 3-prong decays. This requirement was removed for the remainder

of the study.

The efficiency of the TJVA algorithm in identifying the correct primary vertex experienced

the highest gain at low pτT when compared to the default primary vertex, an almost 10%

increase in efficency is shown in Figure 5.2a. Additionally, the TJVA method improves

efficiency when there is a high number of reconstructed vertices, which is important in

higher pile-up environments.

5.1.2 Split Vertices

Events where the TJVA selected an incorrect vertex were suspected to be because of split

vertices, where a truth vertex is reconstructed as two vertices very close to each other. The

cases where the TJVA algorithm was incorrect could have been because the other vertex of

the split which was in fact not closest to the truth vertex, therefore labelled as incorrect.

A simple sorting algorithm was used to identify the closest and second closest vertex to

the truth vertex from the container of reconstructed vertices. The distance used here is in

the longitudinal direction along the beam line. The algorithm aims to find the closest and

second closest vertex by minimising ∆z = (zTruth - zi) where zi is the position of vertex

i along the z-axis between the truth vertex and the reconstructed vertices. The distance

transverse to the beampipe was negligible.

Figure 5.3 shows the ∆z between the truth vertex and the second closest vertex. Events

where the distance between the second closest and the truth is comparable to the vertex

resolution of the detector implies splitting. It is unlikely to be this close and still not be

the closest reconstructed vertex with current vertex reconstruction.

It is important to identify vertices that were split using the ∆z between the truth vertex

and the tau vertex (TV) chosen by the TJVA method. The distribution of ∆z produced

three regions of interest: |∆z| < 0.5 mm, 0.5 mm ≤ |∆z| < 3 mm and |∆z| ≥ 3 mm. These

values for |∆z| between the truth vertex and the TJVA chosen vertex, when incorrect, were

used to separate regions of |∆z| between the closest and second closest vertices. If this |∆z|
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is less than 0.5 mm, the vertices are considered to be one vertex for this event that have

been reconstructed as two.

Primary vertex resolution for taus from events with split vertices was similar to that of the

primary vertex resolution for all taus. Taking into account all of the cases where the TJVA

algorithm identifies the wrong vertex, only 2% of the time it is due to splitting. More is

shown in Appendix B.1.

5.1.3 TJVA Efficiency at 13 TeV

The TJVA was implemented for Run 2 using a track selection criteria where all tracks

associated to the τhad-vis candidate were used in the calculation and the efficiency shown

in Fig. 5.5. Although the TJVA method performed better than the default primary vertex

association method, it was still not optimised and gave the opportunity to maximise

efficiency.

To optimise the track selection for the TJVF calculation, the d0 and z0 sin θ restrictions are

removed. The expected recovery of efficiency is seen particularly at low pT and high pileup

conditions, performance is similar to that of 8 TeV. The optimised track selection efficiencies

are shown in Figure 5.6 and resulted in a ∼1-2% efficiency increase. The TJVA technique

with optimised track selection is implemented in Release 21 of ATLAS reconstruction.
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Figure 5.3: The ∆z between the truth vertex and the second closest reconstructed vertex
for 1-prong τ decays (a) and 3-prong τ decays (b).
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Figure 5.4: The ∆z between the truth vertex and reconstructed vertex chosen by the TJVA
algorithm when it is incorrect at different distances between the closest and second closest
vertices to the truth vertex. (a) shows taus from events with a distance of less than 0.5 mm
between the closest and second closest vertices and 0.5 mm - 3.0 mm, (b).
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Figure 5.5: Efficiency for production vertex assignment in 1-prong and 3-prong τ decays
for the tau reconstruction algorithm without optimal track selection and the default choice
of the vertex with the highest

∑
p2T, as a function of τhad-vis pT (a,c) and of the number of

reconstructed vertices in the event (b,d) from MC.
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Figure 5.6: Efficiency for production vertex assignment without optimal track selection in
1-prong τ decays for the tau reconstruction algorithm and the default choice of the vertex
with the highest

∑
p2T, compared to the correct production vertex assignment. Efficiency

as a function of τhad-vis pT (a) and of the number of reconstructed vertices in the event (b)
from MC.



Chapter 6

Analysis Strategy

This chapter describes the strategy employed in the di-Higgs analysis where a selection is

applied to select events compatible with a bbτhadτhad + Emiss
T final state. This analysis

is then reinterpreted for a third-generation scalar leptoquark search with a final state of

bτhadbτhad. Both anaylses are very similar in their method and the commonalities associated

are explained in detail throughout this chapter, including preselection, final multivariate

discriminant strategy, signal and backgrounds used and also systematic uncertainties. Any

figures and tables shown in this chapter are taken from the di-Higgs analysis.

The two analyses differ in a few areas such as signal samples used, boosted decision tree

(BDT) discriminating variables and selection. All details of differences are stated within

each relevant results chapters and references to this common analysis strategy chapter are

made very clear to avoid confusion.

6.1 General Strategy

The general strategy for analyses addressed in this thesis begins with initial preselection

with trigger matching for a final state of two hadronically decaying taus and two anti-kT

jets with a radius parameter of R = 0.4. Control regions are then defined to validate

background modelling and develop data-driven methods if MC is inadequate. Events are

divided into subcategories depending on the number of b-tagged jets, primarily 0-tag, 1-tag

and 2-tag regions. Finally, a boosted decision tree is trained on major backgrounds and

when applied to the analysis, the final BDT score is used to compare to signal hypotheses

and set exclusion limits if no significant excess is present.

65
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6.1.1 Object Selection

In addition to the basic ATLAS object reconstruction, further object selection and

identification is required before the analysis specific event selection.

• Hadronic taus

- pT > 20 GeV

- |η| < 2.5 (veto 1.37 < |η| < 1.52)

- one or three tracks

- unit charge

- Pass BDTMedium ID working point.

• Jets

- Anti-kT with a radius parameter R = 0.4

- pT > 20 GeV

- |η| < 2.4 (veto 1.37 < |η| < 1.52)

• b-jets

- Jets originating from b-quarks are identified using the MV2c10 multivariate

discriminant described in Chapter 4

- Working point that corresponds to an average tagging efficiency of 70% for b-jets

in tt events.

6.1.2 Fake Taus

Jets are often mis-identified as tau candidates and can be notoriously difficult to model in

Monte Carlo estimations and in the signal region. To introduce an alternative method for

estimating fake taus, it is important to design a control region in which there is an abundance

of jets faking the experimental signature of hadronic taus (fakes) using an anti-tau selection.

Anti-taus are defined as tau candidates that have a tau-ID BDT score above the threshold

of 0.35, which is always less than loose selection. The minimum BDT score in the selection
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ensures the jets in the region still have tau-like properties and makes sure the composition of

gluon and quark jets is closer to the Medium ID signal region. Note, anti-taus are considered

to be tau candidates when it comes to Emiss
T calculations.

6.1.3 Triggers

To select events with a final state of two hadronic taus, both analyses use two unprescaled

triggers for the entire 2015-2016 dataset. Offline reconstructed τ -leptons are required to

match to online taus that pass either the Single Tau Trigger (STT) or the Di-Tau Trigger

(DTT) for the event to be considered. The specific triggers used changes depending on

the run period and in the scenario where both triggers are matched the STT events take

precedence.

The single τ trigger requires a pT threshold of 80, 125 or 160 GeV on the leading tau

(depending on the data-taking period), while the di-τ trigger requires a pT threshold of

35 (25) GeV on the leading (sub-leading) tau. During the 2016 data-taking period, the

di-tau trigger also required the presence of an additional jet at Level-1 passing a 25 GeV

pT threshold.

The triggers used are listed below.

• Single tau triggers:

- 2015 and 2016 Period A: HLT_tau80_medium1_tracktwo_L1TAU60

- 2016 Periods B - D3: HLT_tau125_medium1_tracktwo

- 2016 Periods D4 - end of 2016: HLT_tau160_medium1_tracktwo

• Di-tau triggers:

- 2015: HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo_L1TAU20IM_2TAU12IM

- 2016: HLT_tau35_medium1_tracktwo_tau25_medium1_tracktwo_L1TAU20IM_..._L1J25
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6.2 Mass Reconstruction

The invariant mass reconstruction of experimental final states is crucial in the search for new

physics and also in resonance precision measurements. Difficulty arises when a resonance

decays to a pair of τ -leptons. Neutrinos in the process can carry a significant portion of

energy and then evade detection leading to inaccurate reconstructed mass values. The

sensitivity of analyses searching for resonances in mass final discriminants depends on the

width of the signal invariant mass distributions compared to often wide background process

spread. In an analysis involving the reconstruction of a Higgs decay to two hadronic taus,

invariant mass reconstruction can directly impact final di-Higgs searches.

Hadronic tau decays involve the creation of one neutrino whose full energy cannot be

correctly determined in pp collisions. The missing transverse energy object used in ATLAS is

essentially the total transverse momentum of all neutrinos (and other undetected particles)

in the event. This can be a problem for processes with multiple neutrinos because more

than one particle is treated as one and information is lost. Heavy resonances decaying

to a di-tau system offers another level of complexity where the two τ -leptons are usually

produced back-to-back. In the decay of the τ -lepton pair, any missing energy from one

tau decay is carried away by a neutrino. However, this is partially counterbalanced by

the missing energy from another neutrino from the τ -lepton pair with respect to a missing

energy calculation. As a result, the invariant mass of the heavy resonance is not easily

reconstructed from visible τ -decay products and Emiss
T . Many techniques exist for di-tau

mass reconstruction.

Previously, common hadron collider methods to reconstruct the mass of di-tau final states

led to very broad distributions with long tails for signal processes which makes them difficult

to separate from background. For example, the “Collinear Approximation Technique” was

first proposed to reconstruct a Higgs boson decay to ττ with an additional energetic jet

requirement [153]. This method was frequently used at the LHC [154, 155]. As the name

suggests it relies on the assumption that the two neutrinos are collinear with respect to the

visible components of the tau decays and also all missing tranverse energy is due to solely

neutrinos in the event.
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The total momentum carried away by the neutrinos from each tau decay can be estimated

using these equations for the x and y components of the missing energy

Emiss
T,x = pmiss1 sin θvis1 cosφvis1 + pmiss2 sin θvis2 cosφvis2 , (6.1)

Emiss
T,y = pmiss1 sin θvis1 cosφvis1 + pmiss2 sin θvis2 cosφvis2 (6.2)

where:

– pmiss1,2 are the momenta of the missing component of the τ decay products,

– θvis1,2 and φvis1,2 are the polar and azimuthal angles of the missing τ decay products.

Then the invariant mass of the whole system can be described as

Mττ =
mvis√
x1 · x2

, (6.3)

x1,2 =
pvis1,2

pvis1,2 + pmiss1,2

, (6.4)

where:

– pvis1,2 are the momenta of the visible τ decay products,

– mvis1,2 are the invariant mass of the visible components of the di-τ decay products.

Although the collinear approximation technique is successful in achieving a reasonable mass

resolution for events where the di-tau system is boosted, this is only a small fraction of

events and the whole method is very sensitive to the Emiss
T resolution. This leads to an

over-estimation of the ττ mass and gives tails to the resulting mass distribution which in

turn causes undesirable consequences in the low-mass regime near the Higgs and Z → ττ

peak.

The Missing Mass Calculator

To improve upon the collinear approximation method, the Missing Mass Calculator (MMC)

[156] allows for a complete reconstruction estimation of the di-tau system without the

limitations of previous methods and without a sacrifice in reconstructed mass resolution.

Perfect detector resolution is assumed and that there are no other neutrinos in the event
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other than those resulting from ττ decays. Using the measured value for the tau lepton

invariant mass, Mτ , the equations to construct the MMC become

Emiss
T,x = pmiss1 sin θvis1 cosφvis1 + pmiss2 sin θvis2 cosφvis2 , (6.5)

Emiss
T,y = pmiss1 sin θvis1 cosφvis1 + pmiss2 sin θvis2 cosφvis2 , (6.6)

M 2
τ1 = m2

vis1 +m2
miss1 + 2

√
p2vis1 +m2

vis1

√
p2miss1

+m2
miss1

− 2pvis1pmiss1 cos∆θvm1 , (6.7)

M 2
τ2 = m2

vis2 +m2
miss2 + 2

√
p2vis2 +m2

vis2

√
p2miss2

+m2
miss2

− 2pvis2pmiss2 cos∆θvm2 , (6.8)

where:

– Emiss
T,x and Emiss

T,y are the x- and y-components of the Emiss
T vector,

– pvis1,2 are the momenta of the visible τ decay products,

– mvis1,2 are the invariant masses of the visible τ decay products,

– θvis1,2 and φvis1,2 are the polar and azimuthal angles of the visible τ decay products.

– Finally, ∆θvm1,2 is the angle between the vectors pmiss and pvis for each tau.

For hadronic decays, mmiss1,2 are set to 0 because of the single neutrino involved in the

decay. The number of unknown parameters exceeds the number of constraints so there

is not enough information to find an exact solution. However, knowledge of the τ -lepton

decay kinematics can distinguish between the more likely solutions from the rare cases.

The additional knowledge on the tau decay topologies is incorporated as probability density

functions in a global likelihood scan to provide additional constraints and obtain a better

estimation of Mττ . The MMC is the technique used to reconstruct the di-tau mass in this

thesis in the di-Higgs analysis, where mMMC
ττ acts as an important discriminating variable.

Note, this variable is omitted for the leptoquark search because the τ -leptons are not paired

and do not originate from the same parent particle, therefore the variable is not applicable.
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6.3 Event Preselection

Preselection is the first stage of the event selection to filter objects and introduce a number

of requirements to select signal-like events and reject unwanted events. The common

preselection for all analyses addressed in the thesis is summarised below.

• Good Runs List (GRL): During data recording in ATLAS, the quality of the data

is monitored continuously by online software and additional shifter monitoring. The

GRL is a list of data runs used by all analyses where the entire ATLAS detector was

completely operational and working as intended.

• Vertex Selection: Only events where at least one primary vertex with a minimum

of two associated tracks are used (track pT > 400 MeV).

• Jet Cleaning: Events containing bad jets are discarded. Bad jets are defined as those

not associated to any real energy deposits in the calorimeter due to beam conditions

and hardware problems.

• DTT events:

– A total of two hadronic taus with |η| < 2.5. The highest pT (leading) tau must

have a pT > 40 GeV and the second (sub-leading) tau is required to have a

pT > 30 GeV. Figure 6.1 shows a hadronic tau trigger efficiency turn on curve,

demonstrating the need for a large offline pT cut.

– At least two jets are required in each event. Due to the lowest unprescaled

DTT having a Level-1 trigger requirement, there is a pT threshold on both jets.

The leading (sub-leading) jet must have a pT > 80 (20) GeV to operate at an

acceptable trigger efficiency of approximately 90%.

• STT events:

– A total of two hadronic taus with |η| < 2.5. Depending on data taking period, the

leading tau is required to have a pT > 100, 140 or 180 GeV to ensure high trigger

efficiency with the trigger thresholds of 80, 125 or 160 GeV. The sub-leading tau

must have a pT > 20 GeV.

– At least two jets with pT > 45 (20) GeV in the event.
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• Leptons: Events with electrons or muons that meet the object selection criteria are

vetoed.

• Charge: Both taus are required to be of opposite charge.
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Figure 6.1: Efficiencies of the HLT tau25 medium trigger as a function of the pT of the
offine τhad probe selected in Z → µτhad [157].

6.3.1 Overlap Removal Strategy

When physics objects are reconstructed within a certain distance to each other, defined by

∆R between objects, a procedure must be in place to give priority and avoid bias in the

event. The table below describes the approach for a selected particle and the overlapping

object in η − φ space.
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Physics Object Overlapping Object Within ∆R Priority
Electron Jet 0.2 Electron

Jet Electron 0.4 Jet
Muon Jet 0.4 Muon

Jet Muon 0.4 Jet
Electron Muon 0.2 Muon

Muon Tau-jet 0.2 Muon
Electron Tau-jet 0.2 Electron
Tau-jet BDTMedium tau-jet 0.2 Best reconstructed object

b-tagged jet
Anti-tau
Light jet

Table 6.1: Overlap removal procedure.

6.4 Background Estimation

Accurately predicting background contributions is essential for any analysis to draw

meaningful conclusions from statistical interpretations of the observed data. The main

contributing backgrounds considered throughout this thesis are tt̄, Z/γ∗ → ττ produced

in association with heavy-flavour jets (bb, bc, cc), and multi-jet events. The majority of

background processes are taken from Monte Carlo simulations such as tt̄ events where both

hadronic taus are real, Z → ττ + heavy-flavour (HF) jets, W → τν+jets and di-boson

events.

Multi-jet and tt̄ events where one or more hadronic taus comes from mis-reconstructed jets

(so-called ‘fakes’ or ‘fake taus’) are estimated using data-driven methods. The complete

procedure for estimating multi-jet events is described in the following chapter where selected

hadronic taus are replaced by anti-taus to better represent the jet contribution to the

selection. Control regions and event categories are constructed to validate the performance

of the background modelling to develop trust in the method for final hypothesis testing.

6.4.1 Fake Tau Background Estimation for tt̄ Events

Estimating the portion of tt̄ events with at least one jet faking a τ -lepton is done by using

the MC as a template and then applying a fake rate correction that has been derived in a

control region. For the τhadτhad channel, a control region is constructed to calculate fake
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rates using a τlepτhad channel where one of the taus decays leptonically. The motivation for

this comes from the fact it is much easier to create a data sample rich in semi-leptonic tt̄

events to derive a fake rate (FR) compared to the fully hadronic channel. The selection for

this control region requires the use of a single lepton trigger (SLT) and additional selection

as follows:

• Single lepton triggers:

– 2015

- HLT_e24_lhmedium_iloose_L1EM20VH || HLT_e60_lhmedium || HLT_e120_lhloose

- HLT_mu24_imedium || HLT_mu50

– 2016 Periods A - D3

- HLT_e24_lhmedium_ivarloose || HLT_e60_lhmedium_nod0 ||

HLT_e140_lhloose_nod0

- HLT_mu24_imedium || HLT_mu50

– 2016 Periods D4 - end of 2016

- HLT_e26_lhtight_ivarloose || HLT_e60_lhmedium_nod0 || HLT_e140_lhloose_nod0

- HLT_mu26_ivarmedium || HLT_mu50

• SLT events:

– Exactly one tight electron or one medium muon at ID level with pT a minimum

of 1 GeV above the threshold for the trigger currently in use for that period of

data taking.

– One hadronic tau with pT > 20 GeV and |η| < 2.3.

– At least two jets with pT > 45 (20) GeV in the event.
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In addition to this selection, a cut is made on the transverse mass, mW
T , between the lepton

and Emiss
T . Given by

mW
T =

√
2plTE

miss
T (1− cos∆φ), (6.9)

where plT is the transverse momentum of the lepton. A cut of mW
T > 80 GeV is required

because signal events tend to have a lower mW
T than the tt̄ process. The transverse mass of a

lepton and neutrino decaying from a W boson in a tt̄ event tends to peak at mW ≈ 80 GeV.

The fake rate (FR) is defined as the probability for a jet to pass tau ID requirements

FR =
N(pass)
N(total)

, (6.10)

whereN(pass) is the total number of events in which a jet passes online tau ID and the offline

ID requirement of being at least medium. N(total) is all events passing SLT selection and

having a tau-ID BDT score > 0.35 but also failing ‘Medium’ ID. Fake rates are calculated

separately for 1-prong and 3-prong taus as a function of tau η inclusively across both

electron and muon channels. All tt̄ components and other backgrounds with true τ -leptons

are subtracted from the control region.

The template fake tau tt̄ events where the fake rates are applied are taken from MC and

selected as those that pass the τhadτhad channel event selection but fail any other trigger

or offline tau ID to avoid biasing the prediction. Threshold cuts on the pT to mimic DTT

selection are applied to be closer to that of the signal region. Fake rates are applied to all

tau candidates in this tt̄ selection that are not matched to a hadronic tau at generator level.

In the event where both reconstructed taus are fake the FR is applied separately to each

tau, not on a per-event basis.

Figures 6.2 shows the fake rates for the di-Higgs analysis for 1-prong and 3-prong taus

separately as a function of tau pT.



6.5. Boosted Decision Trees 76

T
 pvis

had
τ

20 25 30 35 40 45 50

F
a
k
e
 R

a
te

0

0.05

0.1

0.15

0.2

0.25 Fake­rates (1p)

inclusive

ehad

muhad

T
 pvis

had
τ

20 25 30 35 40 45 50

F
a
k
e
 R

a
te

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fake­rates (3p)

inclusive

ehad

muhad

Figure 6.2: Fake rates for 1-prong (left) and 3-prong (right) taus for the tt background
estimation procedure in the τhadτhad channel. The categories ‘ehad’ and ‘muhad’ refer to
the semi-leptonic decay modes with eτhad and µτhad final states, respectively for the di-Higgs
analysis.

6.5 Boosted Decision Trees

The main goal of any physics analysis is to maximally reject background while obtaining the

highest signal detection efficiency possible. Cut based analyses make use of several single

observables to consecutively discriminate and rarely have the desired differentiating power

and can fail where backgrounds have similar topologies to that of the signal. In addition

to this, cut based analyses often leave the signal region with too few events to statistically

evaluate, making it impossible to build meaningful results. High energy physics analyses

have widely used techniques to combine several observables to build a multivariate (MVA)

method and a more powerful final discriminant. This technique is used particularly in

analyses where cut based methods have reached their limitations.

Boosted decision trees (BDT) [158] are a type of machine learning classifier and work to

maximise signal and background separation through a multi-dimensional cut technique of

several chosen variables over the whole parameter space. A BDT is able to take into account

correlations between chosen input variables and optimise signal to background separation.

Decision trees [159] aim to automatically find the optimal way to split between two event

classes (signal and background in this case) based on a sequence of given parameter selection

requirements. Each sample is split multiple times until the specified number of splits for the

tree (MaxDepth) or the minimum number of events in the terminal nodes (MinNodeSize)

is reached. For many analyses the criterion used to maximise event class separation would
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BDT parameter Value
BoostType AdaBoost
AdaBoostBeta 0.15
NTrees 200
MaxDepth 4
MinNodeSize 5%
NCuts 100

Table 6.2: Parameters used for BDT training in the τhadτhad channel.

be the purity of the signal. Boosting [160, 161] is an extension to the method which can

improve the stability and performance of decision trees into a single final discriminant.

Several decision trees are combined into a ‘forest’ where events that were misidentified in

the first tree are given higher weights or a boost relative to the correctly-identified events.

The boosting technique employed by this analysis is the adaptive boosting implementation

of TMVA [158]. For adaptive boosting each new tree starts from the same initial sample

but the events are given a new weight αi based on how it was classed on the previous i-th

tree. The weight αi is defined as

αi =
(1− ε

ε

)β
, (6.11)

where ε is the fraction of misclassified events from the previous tree and β is a configurable

value. After boosting, a weighted average is taken from all trees and a final discriminant

is formed, known as the BDT response. This score undergoes a transformation to map the

response on the interval of −1 to +1. For analyses addressed in this thesis, signal-like events

have a score close to 1 and background-like events have score closer to −1. The criteria and

values concerning BDTs throughout this thesis are shown in Table 6.2.

A multivariate analysis using BDTs goes through two stages, training and application.

Using the information given by MC and the discriminating variables provided, the method

is trained to recognise signal events and distinguish against background. The resulting BDT

is then applied to data. Training and application samples are k-folded to make sure the

trained data and application data are statistically independent.
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In this case, training is performed on odd events which is then applied to even events and

vice versa (k=2). Specific information on the training and performance of the BDT strategy

is addressed in the retrospective following chapters.

For the analyses included in this thesis, training is performed using background events from

tt̄, Z → ττ + heavy-flavour jets, and multi-jet estimations.

6.6 Statistical Analysis Procedure

The yields of background and signal processes can be extracted from the statistical

analysis of the data and the MC predictions in the provided regions using the final BDT

discriminator previously described. The process begins with background predictions being

validated in control regions and a search is performed for a statistically deviation from the

background-only model hypothesis shortly after unblinding the data in the signal region.

In this thesis, the CLs method [162] approach is used to test the degree at which the data

is consistent with the background expectation given by MC. In the absence of a signal or

significant excess, limits are set to evaluate the compatibility of the data with a particular

model. The procedure described in this chapter describes the statistical techniques employed

for both, the di-Higgs analysis and the reinterpretation for a scalar leptoquark search.

Nuisance parameters (NP) are included in the final statistical model that relate to the

systematic uncertainties and floating normalisations of background contributions.

6.6.1 Input BDT Transformations

The output BDT score distributions are equally segmented into 1000 bins along the x–axis

between values −1 and +1. The binning of the BDT score distributions is optimised to

ensure that the background uncertainty is kept to below 50% of the signal fraction for all

cases and if there is no signal in that bin the background uncertainty is required to be below

1%. Bins are consecutively merged, starting at the upper edge of the BDT spectrum, if

the signal and background conditions are met and a minimum of 5 data events are within

each bin. The statistical uncertainty becomes well distributed across all bins and the total

background is now smooth after the transformation.
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6.6.2 Likelihood Functions and Profiling

Following unblinding, the presence of a signal in the data is tested by comparing to

background-only and signal-plus-background hypotheses. The test of a hypothesis is

generally performed in terms of a test statistic where the data is reduced to one value

which is able to distinguish between hypotheses and quantify the analysis. The number

of events in the bins of the BDT score distributions form the basis of the compatibility

measurement. The expected number of events in bin i (ni) can be expressed as

ni = µ · si + bi, (6.12)

where si and bi are the number of expected signal and background events in the bin i. The

signal strength factor µ is defined as the ratio of the observed or expected cross-section to

that of the SM cross-section

µ =
σobs
σSM

. (6.13)

A signal strength of µ = 0 represents the background-only hypothesis with an absence of

any signal. Whereas a value of µ = 1 agrees with the signal-plus-background hypothesis

where the signal is compatible with the SM.

The statistical analysis is based on a binned likelihood function L(µ) and the best estimate of

the signal strength is obtained when this likelihood is maximised. The effects of systematic

uncertainties on the predictions are encoded in the set of nuisance parameters θ and are

incorporated into the likelihood. The total number of events in a given bin depends on µ and

θ. The convention is for a value θ = ±1 to represent a ±1σ variation of a systematic while

a value of θ = 0 corresponds to the central nominal value of the prediction. These nuisance

parameters adjust the expected yields of background and signal in each bin according to a

particular uncertainty. The final values correspond to the values that best fit the data.
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Throughout this thesis, the test statistic is based on a profile likelihood ratio (qµ) defined

as follows

qµ = −2 ln

(
L(µ, ˆ̂θµ)
L(µ̂, θ̂)

)
, (6.14)

where µ̂ and θ̂ are the values of the parameters that maximise the likelihood function and
ˆ̂
θµ are the nuisance parameter values that maximise the likelihood function for a given value

of µ. This is known as profiling, where for each value µ the values of θ are chosen such that

the numerator log-likelihood function L(µ, ˆ̂θµ) is maximised.

The sensitivity and performance of an experiment can be characterised by the expectation

value under the assumption of a particular hypothesis and obtain a distribution of the test

statistic. One method is the toy-MC method where datasets are generated that randomly

sample the model at all points in the parameter space and calculate the value of the test

statistic for each individual dataset. On the other hand, an asymptotic approximation

can be used [163] for the final statistical fit procedure, the so-called Asimov dataset is

constructed in a way to deliver the median sensitivity. The Asimov dataset is formed

from MC prediction and is able to obtain the true value of all parameters when it is used

to evaluate estimators. Nuisance parameters by definition take the nominal value in the

Asimov dataset. This approach is less computationally demanding [164, 165] and is the

method considered in this thesis.

6.6.3 Limit Setting

In the absence of a statistically significant excess of events above the background

expectation, upper limits can be set on a signal hypothesis to a particular confidence

level (CL). Once the test statistic is identified, the agreement of data to a hypothesis is

quantified by a p-value [164]. Given the value of the test statistic on observed data qobs,

the compatibility of the result with respect to the signal-plus-background hypothesis (s+b)

and the background-only hypothesis (b) is given by the p-values
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ps+b =

∫ ∞

qobs

f(q‖s+ b)dq, (6.15)

pb =

∫ −∞

qobs

f(q‖b)dq. (6.16)

Following the asymptotic approximation, the value of µ can be adjusted in the fit to put

an upper limit on the cross section for a signal hypothesis following the CL approach

[166, 167]. The 95% CL upper limit is set on the signal hypothesis using

CLs =
CLs+b

CLb
=

ps+b

1− pb
(6.17)

and adjusting µ until the value of CLs = 0.05. The results quoted throughout this thesis

follow this approach.

6.6.4 Pulls and Impact

While maximising the likelihood function, the fit has to “pull” a nuisance parameter from

the expected value based on auxiliary measurement or MC study. The pull of a nuisance

parameter θ from its expectation value θ0 is defined as

pull(θ) = θ̂ − θ0
σθ

, (6.18)

where θ̂ is the post-fit value and σθ is the nuisance parameters associated uncertainty [168].

The parameter of interest calculated by the fit can change with the variation of a nuisance

parameter. The measure of how much a parameter of interest varies with respect to a

nuisance parameter change is known as the impact. For each nuisance parameter, the

impact is defined as

Impact(θ) = ∆µ± = ˆ̂µθ0±σθ
− µ̂, (6.19)
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where ˆ̂µθ0 is the maximum likelihood estimation (MLE) of µ when θ is set to its expectation

value plus or minus one standard deviation. All other nuisance parameters are profiled. Low

impact parameters are discarded to simplify the fit procedure. The impact is sometimes

given relative to the total uncertainty of the parameter of interest [165].

6.7 Heavy-Flavour Jets Background Normalisation

The Monte Carlo samples of Z boson production in association with heavy flavour (b, c)

jets were generated using Sherpa 2.2.1 [169]. These samples do not describe data very well

and have a normalisation issue for heavy-flavour jets. Figure 6.3 shows this, where the

mismodelling of Z → µµ + heavy-flavour jets is greatest. A control region has been defined

orthogonal to the signal selection to normalise this background to data and provide a much

better estimation. The control region is defined as Z → µµ + 2 heavy flavour jets (bb, bc, cc)

events that satisfy the criteria that

• each muon must pass a single muon trigger,

• both muons have pT > 27 GeV,

• di-muon invariant mass, 81 < mµµ < 101 GeV,

• at least two jets with pT > 45 (20) GeV in the event that fulfil b-tagging requirements,

• di-b-jet invariant mass, mbb < 80 GeV and mbb > 140 GeV to remove contributions

from SM V h(h→ bb)

This selection provides a high purity orthogonal sample which closely follows an event

selection to that of signal events in the semi-leptonic di-Higgs analysis.

The normalisation is determined from the final fit by adding the control region as a single

bin histogram and allowing the normalisation to float under the assumption the Z →

µµ+cc, bc, bb and Z → ττ+cc, bc, bb normalisation factors are correlated in the two regions.

The (background-only post-fit) yields of different background processes in this region are

given in Table 6.3.
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Sample Post-fit yield
Z → ll + (cc, bc, bb) 8420 ± 550
Top quark 3950 ± 510
Other (W + Z + (ll, lc, lb) + V V ) 520 ± 180
Total Background 12900 ± 110
Data 12897

Table 6.3: Event yields in the Z → µµ + 2 b-tag control region for a background-only fit.
The category ‘Other’ includes contributions from W+jets, Z/γ∗ + light-flavour jets, and
di-boson processes.
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Figure 6.3: Pre-fit distribution of the di-muon invariant mass in the Z → µµ + 2 b-tag
control region.

6.8 Systematic Uncertainties

Several sources of systematic uncertainty appear throughout the analysis and need to

be properly taken into account to evaluate how compatible the observed data is to the

background and signal estimations. Experimental uncertainties relate to the identification

and reconstruction of physics objects as well as uncertainties originating from purely

detector effects such as pile-up and integrated luminosity calculations. Measurements

of background contributions from control regions can also be included in this category.

Furthermore, theoretical uncertainties can arise from cross-section predictions and the

Monte-Carlo event generation used. Due to some background contributions being estimated
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from data, additional systematics are incorporated to address any uncertainties in the

methods. This section labels the details of the analysis systematics and expresses the

relative changes they may have on expected yields and distribution shapes. Note, the

systematics associated with the multi-jet tau fake estimation are explained separately in

detail in Chapter 7. All systematic uncertainties are included as normalisation and shape

variations in the final fit. A full list and breakdown of systematics is shown in Chapter 8.

6.8.1 Experimental Uncertainties

Luminosity and Pile-up

A systematic is applied to all signal and background processes to account for uncertainties in

the measurement of the integrated luminosity. It is derived from a preliminary measurement

following the methods outlined in [170], where x-y beam separation scans were performed

in August 2015 and May 2016. The value for the uncertainty on the integrated luminosity

of the dataset is 2.1%. An additional shape and normalisation variation is included to

account for any uncertainties on the pile-up reweighting procedure of the average number

of interactions per bunch crossing <µ> of MC to data.

Taus

The systematic uncertainties associated with taus correspond to the reconstruction,

identification and trigger efficiency. Additionally uncertainties are included for the

resolution and scale of the tau energy measurements. Often systematics are calculated

separately for 1- and 3-prong taus and tau objects at high-pT some examples are as follows.

• Systematic uncertainties are included for the efficiency of reconstructing the correct

number of tracks as the number of charged decay products originating from the tau

lepton. Detector material, pile-up and threshold contribute most to these variations.

• Identification efficiency systematics follow a similar prescription to give an uncertainty

on the efficiency for reconstructing taus but also satisfy the Medium working point

selection criteria. The largest contribution at low-pT comes from the detector material

where the calorimeter calibration and performance can affect tau identification input

variables. At high-pT pile-up uncertainties dominate.
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• Trigger efficiency systematics are applied separately for each year of data taking and

are statistically dominated.

• Systematic uncertainties concerning tau-jet energy scale calibrations (TES) are made

up of three independent components covering different pT ranges: in situ, detector

and modelling.

• Finally a systematic uncertainty is included for the tau-electron overlap removal.

Jets

Jets are complex objects compared to electrons or muons and depend heavily on calorimeter

information which leads to many associated systematics on the energy scale of simulated

jets (JES).

• The set of nuisance parameters associated to the jet energy scale are grouped and

reduced to a small set of total JES uncertainties. These include all in-situ corrections,

statistical, tracking and modelling uncertainty configurations as a function of pT and

η.

• A systematic uncertainty on the jet energy resolution (JER) is also taken into account.

• Finally, a small uncertainty is introduced for the efficiency of the jet-vertex-tagger

(JVT).

Jet flavour tagging

Systematic uncertainties are associated with the calibration of the b-tagging algorithm and

the misidentification of c and light-flavour jets as b-jets. Correction factors are applied

to account for the differences between data and simulation for flavour-tagging efficiencies.

Correction factors are calculated separately for the flavour of jet along with the associated

uncertainties.

Electrons and Muons

Although not directly used in the final state for the main analysis detailed in this thesis,

electrons and muons affect the final fit through control regions, overlap removal and the

combination with the semi-leptonic channel. Trigger, identification and reconstruction

efficiency uncertainties are included and electron isolation requirements have an associated
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uncertainty. Similar uncertainties arise for muons, as well as scaling and smearing

uncertainties on the corrections applied to muon pT. Note, uncertainties associated to

electrons and muon objects are small compared to those coming from jets and τ -leptons.

Missing Transverse Energy

The resolution, scale and reconstruction efficiency of tracks not associated to a physics object

are a main source of uncertainty on the missing transverse energy. Errors arising from the

underlying event modelling also contribute. Furthermore, the uncertainties on resolution

and energy scale of all physics objects are propagated through to the Emiss
T calculation and

enter the final result.

6.8.2 Uncertainties on the Fake Tau Component of tt̄ Background

The data-driven estimation of the fake tau contribution coming from the tt̄ background has

several sources of uncertainty associated to it.

• The MC events containing a true hadronic taus are subtracted from the region when

calculating fake rates. Varying the subtracted MC up and down by 50% to be

conservative and propagrating through to the final fit giving a acceptable uncertainty.

• A systematic where the mT cut is varied from the nominal value of 80 GeV to 65 GeV

to be closest to the signal region.

• Evaluation of the fake tau tt̄ component against each theoretical uncertainty.

• Vary the derived fake rates up and down by one standard deviation of the total

statistical uncertainty.

• Finally, a pT dependent systematic is applied to account for not applying both the

DTT and STT pT threshold cuts when calculating fake rates.



Chapter 7

Data-Driven Multi-jet Fake
Estimation

This chapter describes the data-driven multi-jet fake estimation used in both the di-Higgs

search and the scalar leptoquark analysis. The estimation is based on an ‘ABCD’ method

which is outlined in Section 7.1 and then the specifics of the application to the analyses in

this thesis are described in Section 7.2. Details of the trigger dependence on the method

and the associated systematic uncertainties follow before plots of the fake factors, detailed

in Section 7.1, themselves are presented. Note that all factors for fake estimation and plots

introduced in this chapter are associated with the di-Higgs analysis and the corresponding

leptoquark plots are given in Appendix C.

For many physics analyses, a large source of background comes from object

mis-identification. The rate of mis-identification is often not modelled accurately by MC, so

there is motivation to derive an estimation for this background from data. For a final state

of two b-jets and two hadronically decaying taus, a considerable contribution to the analysis

background comes from multi-jet processes where tau-jets are actually reconstructed from

mis-identified jets. The mis-identification of jets as taus originate from many sources such

as: Z(→ ll)+jets, top processes and W (→ lνl)+jets. However, a significant amount of fake

taus originate from multi-jet events via non-resonant production of quarks and gluons. The

production cross section of jets at the LHC is many orders of magnitudes higher than signal

processes.

Monte Carlo simulation does not accurately describe all features of the QCD background,

in particular poor modelling is observed for the detector performance of QCD jets

mis-identified as taus. Detector simulation of the calorimeter shower can be time consuming

and the need for non-Gaussian detector response modelling of multi-jet events leads to

87
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imperfections in the description. Moreover, multi-jet MC sample simulation suffers from

insufficient statistics in signal regions due to the stringent selection of the analysis design.

Therefore an alternative method derived from data is needed, especially for the final state

described in this thesis, where many jet types exist: gluon-initiated jets, quark-initiated

jets and heavy-flavour jets. The description for these types can be very different.

7.1 The ‘ABCD’ Method

ABCD methods are a commonly used data-driven procedure to estimate background

contributions coming from physics object mis-identification. The idea behind the method

is simple: use two uncorrelated variables to define four separate regions in two dimensions,

one of which is the signal region and the remaining control regions are used to extrapolate

an estimation of the background in the signal region. Similar to using an analysis side-band

region to interpolate the backgrounds within the signal region. The method requires the

definition of a control region rich in the desired background to be estimated and then relate

these events to the identification in the signal region using an extrapolation factor applied to

a template. The basis of the method relies on the fact that the background mis-identification

occurring in the control region can be related to the particle mis-indentification in the

signal region by this extrapolation factor only, meaning a reasonable estimation for the

mis-identified background is possible. For the purpose of this thesis, the factor described is

referred to as the fake factor .

Note, the fake factors used in this analysis are not those coming from a general fake factor

method [171, 172], used in many analyses, defined as the number of objects passing the

selection NPass over the number of objects failing the selection NFail,

FF =
NPass
NFail

. (7.1)

To describe the ABCD method clearly, the representation in Figure 7.1 shows the control

regions.
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A
Signal Region B

C DSelection control Region

Selection control Region

Figure 7.1: A simplified representation of the regions used in the ABCD method.

The fake factor (FF) can be calculated in the control region using the number of

reconstructed events satisfying the full particle selection (B) to the number of reconstructed

events passing the selection of the fake-rich control region (D).

FF =
NB

ND
(7.2)

The factors cannot be determined in a region matching the full selection of the signal region.

Derivation and application to the same region would not only bias the result but also be

circular and require prior knowledge of the background in that region. Not only this, this

would have significant signal contamination and would not give a good estimation for the

fake background. Therefore, an additional control region must be defined to effectively give

four regions with independent selections using the two uncorrelated variables.

The resulting estimation for the number of background events in the signal region (SR)

NSR,A described by this data-driven method is given by

NSR,A = FF × NC , (7.3)

where the event yield of the fake-rich control region template NC is weighted by the

extrapolation factor.
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Often the fake factors (FF) has a kinematic dependence on the rate of mis-identified objects

and must be calculated in bins of a particular variable to provide shape information to the

fake estimation. If the FF is applied bin-by-bin, the estimation becomes

Nj
SR,A =

∑
i

FFi × Ni,j
C , (7.4)

where the final yield Nj
SR,A in bins j of the distribution being modelled and i labels the bin

of the kinematic distribution where the FF was derived.

The calculation of FFs can become complicated but the general idea is simple so long as

careful consideration is taken when defining control regions and selection criteria to avoid

contamination from signal.

7.2 Implementation

The ABCD method is applied to the analyses in this thesis with a bbτhadτhad final state.

Firstly, to enrich a region with a high number of multi-jet events and jets faking hadronic

τ -leptons, the definition of anti-taus from Section 6.1.2 is used to define an anti-ID control

region as a selection with at least one anti-tau. The anti-ID selection region can have

either one BDTMedium tau with an anti-tau or two anti-taus passing selection. This

ensures complete orthogonality from the signal selection of two BDTMedium, opposite-sign

(OS), hadronic taus. The control region where the fake factor is derived is the so-called

“same-sign” (SS) selection where both objects selected (tau or anti-tau) have the same

electric charge. A summary of the regions for this fake factor procedure is shown in

Figure 7.2. The choice of the charge sign selection and tau-ID selection to define the

four separate regions of the ABCD separation led to the extrapolation factor being referred

to as the fake factor. The calculation of this comes from a ‘pass’ tau-ID region divided

by an anti-ID ‘fail’ region so the technique for fake estimation for this analysis is almost a

pseudo-fake factor method.

Note, fake contributions from other background sources are small and are considered to be

modelled correctly by MC. Subtracting MC from each region to give a pure QCD multi-jet
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Figure 7.2: A representation of the regions involved in the calculation and application of
fake factors for the multi-jet fake estimation used throughout this thesis.

fake estimation reduces any effects from the modelling of other MC and any fakes originating

from MC background.

Equation 7.3 now becomes

N τ
OS Data−MC,i = Nanti−τ

OS Data−MC,i

N τ
SS Data−MC,i

Nanti−τ
SS Data−MC,i

, (7.5)

where Nτ
SS Data−MC,i

Nanti−τ
SS Data−MC,i

is the fake factor.

The fake factor is parametrised by the pT of the leading and sub-leading taus whilst also

being calculated separately for 1- and 3-prong taus. The mis-identification rate for jets

faking τhad is different for 1- and 3-prong taus because of the shape differences in the

reconstruction signature, 1-prong taus usually have a lower mis-identification rate.

The signal selection requires two b-tagged jets but in the SS region this selection does not

have enough events to give meaningful results when parameterised in both, pT and prong

of the tau or anti-tau. However, the 0-tag and 1-tag regions can be used to calculate fake

factors for the 2-tag region and a transfer factor is applied to extrapolate to the 2-tag signal

region. The 0-tag region is an effective test for the data-driven fake factor method but the

1-tag region is a more motivated choice to derive the fake factors with it being closer to

the signal region selection. The four 1-tag regions used in the fake factor calculations are

shown in Figure 7.3 before a fake estimation is included.



7.2. Implementation 92

 [GeV] 0τ
T

p
0 20 40 60 80 100 120 140 160 180 200(D

a
ta

­B
k
g
)/

B
k
g

0.4−
0.2−

0

0.2

0.4

E
v
e

n
ts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
OS taus

 = 13 TeVs   
­1

Ldt = 36.1 fb∫
, 1 tags, Presel.

h
τ

h
τbb→hh

 2χ KS

Stat 469 0

Syst 469 0

Shape 469 0

Data

fake

ttbar (FF)

ttbar (FT)

ttbar (TF)

ttbar (TT)

single top

Z

+bbττZ

+bcττZ

+blττZ

+ccττZ

+clττZ

+lττZ

W+jets

VH

diboson

(Data­Bkg)/Bkg

Stat

Stat+Shape

Stat+Sys

(a)

 [GeV] 0τ
T

p
0 20 40 60 80 100 120 140 160 180 200(D

a
ta

­B
k
g
)/

B
k
g

0.4−
0.2−

0

0.2

0.4

E
v
e

n
ts

0

200

400

600

800

1000

1200

1400 SS taus

 = 13 TeVs   
­1

Ldt = 36.1 fb∫
, 1 tags, Presel., SS

h
τ

h
τbb→hh

 2χ KS

Stat 852 2.93e­05

Syst 852 2.93e­05

Shape 852 2.93e­05

Data

fake

ttbar (FF)

ttbar (FT)

ttbar (TF)

ttbar (TT)

single top

Z

+bbττZ

+bcττZ

+blττZ

+ccττZ

+clττZ

+lττZ

W+jets

VH

diboson

(Data­Bkg)/Bkg

Stat

Stat+Shape

Stat+Sys

(b)

 [GeV] 0τ
T

p
0 20 40 60 80 100 120 140 160 180 200(D

a
ta

­B
k
g
)/

B
k
g

0.4−
0.2−

0

0.2

0.4

E
v
e

n
ts

0

2000

4000

6000

8000

10000

12000

14000

16000
OS anti−taus

 = 13 TeVs   
­1

Ldt = 36.1 fb∫
, 1 tags, Presel.

h
τ

h
τbb→hh

 2χ KS

Stat 7.99e+035.38e­40

Syst 7.99e+035.38e­40

Shape 7.99e+035.38e­40

Data

fake

ttbar (FF)

ttbar (FT)

ttbar (TF)

ttbar (TT)

single top

Z

+bbττZ

+bcττZ

+blττZ

+ccττZ

+clττZ

+lττZ

W+jets

VH

diboson

(Data­Bkg)/Bkg

Stat

Stat+Shape

Stat+Sys

(c)

 [GeV] 0τ
T

p
0 20 40 60 80 100 120 140 160 180 200(D

a
ta

­B
k
g
)/

B
k
g

0.4−
0.2−

0

0.2

0.4

E
v
e

n
ts

0

2000

4000

6000

8000

10000

12000

14000

SS anti−taus

 = 13 TeVs   
­1

Ldt = 36.1 fb∫
, 1 tags, Presel., SS

h
τ

h
τbb→hh

 2χ KS

Stat 7.75e+032.44e­13

Syst 7.75e+032.44e­13

Shape 7.75e+032.44e­13

Data

fake

ttbar (FF)

ttbar (FT)

ttbar (TF)

ttbar (TT)

single top

Z

+bbττZ

+bcττZ

+blττZ

+ccττZ

+clττZ

+lττZ

W+jets

VH

diboson

(Data­Bkg)/Bkg

Stat

Stat+Shape

Stat+Sys

(d)

Figure 7.3: Leading tau pT in all regions used for the fake factor method in the di-Higgs
analysis.
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7.2.1 Trigger Dependence

As previously stated, the multi-jet background is comprised of many different types of jet.

The pT thresholds on the di-tau trigger and single tau trigger, along with additional jet

requirements, can affect the fraction of quark-jets to gluon-jets in the sample. In general

for multi-jet events, gluon initiated jets dominate low-pT with the fraction of quark initiated

jets being much larger at higher pT. A separate treatment of fake factor derivations is needed

for each trigger separately to reduce quark- to gluon-jet fraction effects and biases.

Di-tau trigger events

The number of di-tau trigger events (DTT) exceeds that of the single tau trigger (STT)

and so there is enough statistics available to parametrise the FFs in tau pT and prongness.

The binning of the leading and sub-leading tau pτ parametrisation is optimised to ensure

enough events in the SS region after MC subtraction and to avoid meaningless negative

bins. The chosen binning is shown below, each value representing the lower bin edge up to

1000 GeV.

float bins01P[5] = {40., 50., 60., 80., 1000.};

float bins03P[5] = {40., 50., 60., 70, 1000.};

float bins11P[4] = {20., 30., 50., 1000.};

float bins13P[5] = {20., 40., 50., 60., 1000.};

The resulting fake factors are stored in two-dimensional histograms of leading tau pT vs.

sub-leading tau pT for each prong combination of the two taus: 1-prong 1-prong (1P1P),

1-prong 3-prong (1P3P), 3-prong 1-prong (3P1P) and 3-prong 3-prong (3P3P).

Figure 7.4 shows the nominal two-dimensional fake factors for the di-Higgs analysis. The

separate fake factors for the leptoquark analysis are shown in Appendix C.
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Single tau trigger events

Events that match the single tau trigger do not have sufficient statistics to allow for the

determination of pT dependent fake factors. Therefore, the STT fake factors are derived

using the total yield in the control regions for each prong combination and applied to the

total distribution of the template of STT events. Like DTT events, the fake factors are

calculated in the 1-tag region and then applied as an estimation for the 2-tag selection.

Single tau trigger FFs for each prong combination are shown in Figure 7.5.
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Figure 7.5: Fake factors for single tau trigger events in the di-Higgs analysis with each
prong combination.

7.2.2 Transfer Factor

Any fake factors calculated in the 1-tag region may differ from those in the region with two

b-tagged jets due to quark composition which affects the jet type fractions in the region as

explained previously. A transfer factor is used to extrapolate between these two regions.

The factor is defined as the ratio between fake-factors derived in the 1 b-tag and 2 b-tag

regions for both triggers inclusively. The transfer factors (TF) are calculated inclusive of

trigger used but are still parametrised by prong combination and applied to the separate

1-tag FFs for DTT and STT events. The transfer factors for the nominal fake factors are

shown in Figure 7.6.
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Figure 7.6: Transfer factors in the di-Higgs analysis for each prong combination.

7.3 Systematic Uncertainties

The data-driven multi-jet estimation needs a number of systematic uncertainties to cover

any variation in the method. The uncertainties are constructed by varying the actual fake

factors and propagating them through to a multi-jet fake background distribution in the

signal region.

• Statistical uncertainty variation

The nominal fake factors calculated by the method outlined previously are varied up

and down by their statistical uncertainty. The variation is performed for both STT and

DTT fake factors and within each parametrised bin. For example, the down variation

for this systematic reduces all FFs by the lower statistical uncertainty which are then

propagated through the analysis as normal, resulting in an alternative multi-jet fake

background estimation.

– SysFFStatQCD__1up

– SysFFStatQCD__1down



7.3. Systematic Uncertainties 97

• MC Subtraction variation

Each region used in the fake factor calculation and application has the MC subtracted

to remove effects from tau fakes coming from other Monte Carlo processes. The final

systematic of the fake distribution comes from varying the subtracted MC up and

down by 50%. The down variation subtracts 50% of the total MC in all regions and

the up variation subtracts 150% of the total MC.

– SysSubtraction_bkg__1up

– SysSubtraction_bkg__1down

• Transfer factor variation

To account for the fake factors being calculated in the 1 b-tag region, the transfer

factors are applied before the fake factors are used in the 2 b-tag region. A systematic

on the transfer factor accounts for this by varying the transfer factors up and down by

their statistical uncertainty for each prong combination prior to propagating through

to the final selection.

– Sys1tag2tagTF__1up

– Sys1tag2tagTF__1down

• OS-SS systematic

The fake factors are calculated in the SS region and then applied to the OS region.

To account for the difference in jet flavour composition between the two regions, fake

factors are calculated for both OS and SS events in a multi-jet rich region defined

as (∆φ(ττ) > 2.0). The ratio of OS FFs to SS FFs is computed for each prong

combination and then fitted with a zeroth-order polynomial to obtain a value by

which the nominal fake factors can be varied. Plots are shown in Figure 7.7 for the

di-Higgs analysis. This is done separately for the leptoquark analysis fake estimation.

– SysOSSS__1up

– SysOSSS__1down
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• Multi-jet composition systematic

An additional systematic accounts for jet-to-tau fake composition by scanning the

BDT input variables in the 1-tag OS region and uses data-MC vs. nominal multi-jet

fake distribution as a closure test. The greatest closure disagreement is seen in

sub-leading tau pT for the di-Higgs analysis and leptoquark analysis. The ratio

of data-MC to nominal fake background distribution is fitted with a first-order

polynominal and used to vary the fake-factors. The fit on the sub-leading tau pT

distribution is shown in Figure 7.8.

– SysCompFakes__1up

– SysCompFakes__1down

• Multi-jet composition systematic (Antitau BDT score variation)

Finally, a systematic was derived to account for the multi-jet fake composition

variation. The method varied the definition of the anti-tau by using 0.45 as the

minimum threshold for the tau-ID BDT score rather than 0.35. Figure 7.9 shows the

composition of jets faking taus in the 0-tag region for W+jet events. The increase

of the BDT score from 0.35 to 0.45 shows the composition to be flat within the ID

and anti-ID region. Although this systematic was not used in the final anaylses and

statistical fit, the performance was documented in this thesis.

The nominal fake factors for the DTT and the fake factors for each systematic uncertainties

are given in Figure 7.10 to Figure 7.13 for each prong combination. Figure 7.14 shows

the up and down variation in the data-driven fake distribution for each systematic. All

fake factors corresponding to systematics are presented in Figure 7.15 for single tau trigger

events and the transfer factors for each systematic are given in Figure 7.16. Finally, the

leading and subleading τ -lepton pT distributions are shown in Figures 7.17, 7.18 and 7.19

for OS and SS events in each b-tag region of the di-Higgs analysis. The data-driven multi-jet

fake distribution is shown in pink.
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Figure 7.7: The ratio of the number of ID to anti-ID events in OS events and in SS events
in the τhadτhad channel QCD CR as a function of tau pT . The fit to the double ratio in the
bottom panels is takes as the systematic on the fake factors in the τhadτhad channel.
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Figure 7.8: The data-MC comparison with the fake background for the sub-leading tau pT
in the 1-tag region. The mismodelling is fit with a first order polynomial to give a systematic
uncertainty.

Figure 7.9: Composition of jets faking taus as a function of tau ID BDT score for W+jet
events in the 0 b-tagged region for OS (left) and SS (right) events in the τhadτhad channel.
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Figure 7.14: The up and down variations for each data-driven multi-jet background
estimation systematic as a function of the leading-τ pT.
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Figure 7.15: Single tau trigger fake factors for each prong combination for nominal (a),
MC subtraction upwards variation (b), MC subtraction downwards variation (c) and the
anti-tau BDTScore variation systematic (d), used to determine the multi-jet background in
the τhadτhad channel.
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Figure 7.16: Transfer factors for each prong combination with nominal (a), MC subtraction
upwards variation (b), MC subtraction downwards variation (c) and the anti-tau BDTScore
variation systematic (d), used to extrapolate from 1-tag to 2-tag regions for the multi-jet
background in the τhadτhad channel.
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Chapter 8

Di-Higgs Production Search in the
bb̄ττ Channel

In this chapter, the result of the di-Higgs → bb̄ττ analysis is presented for the fully hadronic

final state. Both the resonant and non-resonant results are given and a combination with

the lephad channel is presented to give the latest results for comparison with other di-Higgs

channels and CMS results.

The analysis strategy outlined in Chapter 6 is followed throughout, the signal strengths

for Randall-Sundrum Kaluza-Klein bulk graviton, 2HDM, and non-resonant di-Higgs

production are extracted using a binned profile likelihood fit on the BDT score output. This

is performed in the signal region and the Z → µµ+ 2 b-jets control region simutaneously. All

sources of statistical and systematic uncertainties on the signal and background modelling

described in Section 6.8 are implemented as deviations from the nominal, scaled by

nuisance parameters that are profiled in the fit. The normalisations of the true tt̄ and

Z → ττ + heavy-flavour jets are allowed to float in the final fit.

The measured value of µ is used to compare the observed significance to an expected

significance obtained from a fit to the Asimov dataset. Limits are set at a 95% CL using

the CLs method and the results of the bbττ combination are compared to bbγγ, 4b and the

CMS experiment in Section 8.3.

8.1 Boosted Decision Tree Variables and Training

The BDT score is used in this analysis as the final discriminant to improve separation

between signal and background processes. The variables that give the highest discriminating

111
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power for the fully hadronic decay channel between signal and background are as follows,

• mhh: The invariant mass of the di-Higgs system is reconstructed from the di-tau and

di-b-jet masses. A “Higgs mass constraint” is applied, where the Higgs mass used in

simulation of 125 GeV is assumed for the di-tau and di-b-jet systems. Scale factors

of mh/mMMC and mh/mbb (where mh is the value of the Higgs boson mass used in

the simulation, 125 GeV) are applied to the four-momenta of the di-tau and di-b-jet

systems, respectively, in order to improve the mass resolution.

• mMMC: The invariant mass of the di-tau system, calculated using the MMC.

• mbb: The invariant mass of the di-b-jet system.

• ∆R(ττ): The ∆R between the visible tau decay products.

• ∆R(bb): The ∆R between the two b-jets.

• Emiss
T φ centrality: This variable quantifies the position in φ of the Emiss

T with respect

to the visible decay products of the two taus. It is defined as

Emiss
T φ centrality =

A+B√
A2 +B2

, (8.1)

where A and B are given by

A =
sin(φEmiss

T
− φτ2)

sin(φτ1 − φτ2)
, B =

sin(φτ1 − φEmiss
T

)

sin(φτ1 − φτ2)
. (8.2)

The Emiss
T φ centrality is equal to:

-
√
2 when the Emiss

T lies exactly between the two taus; or

- 1 if the Emiss
T is perfectly aligned with either of the taus; or

- < 1 if the Emiss
T lies outside of the φ angular region defined by the two taus.

Signal events tend to have larger values of the Emiss
T φ centrality as in these cases the

two taus are produced from the decay of a Higgs boson and the reconstructed Emiss
T

φ angle generally falls in between the two visible tau decay products.
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When training a boosted decision tree, the learner can become overtrained where the BDT

models the signal and background differences specific to the particular training sample.

Comparisons of the BDT score distributions for the training and test samples is often used

to look for signs of overtraining. Differences between the BDT score distributions of the

training and test samples is an indicator of overtraining. The Kolmogorov-Smirnov test

(KS-test) is often used in this case to quantify the statistical probability that two samples

are drawn from the same distribution, one way to quantify overtraining. Plots are shown

for different mass points and signals used in the training in Figure 8.1. The distributions

of the BDT input variables are presented in Figure 8.2.

It is also important to note that for the resonant BDT training, a separate boosted decision

tree is trained for each resonant mass point. However, this leads to the analysis being

sub-optimal for resonant masses between these discrete points. Neighbouring mass point

signals are included with each training to increase the sensitivity to resonances across the

whole mass range, for example a BDT would be trained for a 300 GeV graviton signal with

the 260 GeV and 400 GeV signals included.

8.2 Control Regions

To give confidence in the background modelling in the signal region, especially those used in

BDT training, control regions are defined to isolate backgrounds of interest. Control region

plots are shown in Appendix A.

• Top control region:

- mMMC < 85 GeV and mMMC > 140 GeV

- mbb < 80 GeV and mbb > 135 GeV

• Z → ττ+jets control region:

- 70 < mMMC < 100 GeV

• Same-sign 2-tag region
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Figure 8.1: Overtraining plots for 2HDM (left) and RSG (right) signals in the τhadτhad
channel, for 300 GeV (top), 500 GeV (centre) and 1000 GeV (bottom) mass points [173].
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Figure 8.2: Pre-fit distributions of input variables used in the τhadτhad channel BDT. The
signal for a 300 GeV graviton is overlaid after being normalised to the total data.
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8.3 Results

The BDT score output is used as the discriminating variable for all channels and places

constraints on signal models. Two benchmark models for resonant di-Higgs production are

considered: a spin-0 heavy Higgs boson as predicted by 2HDM models in the narrow width

approximation, a spin-2 RS KK graviton for both c=1 and c=2 and also non-resonant Higgs

pair-production assuming SM coupling. In all resonant cases, masses between 260 GeV and

1 TeV are considered, with the lower mass range being constrained as twice the mass of

the SM Higgs boson and the heavy resonance decaying into two SM-like Higgs bosons

(mh = 125 GeV).

In the case of the non-resonant SM signal the result is presented with the cross-section

reweighted (RW) by all finite top mass effects. The binning for the output BDT score

distributions is optimised to ensure that the background uncertainty is kept to below 50%

for all signals in the τhadτhad channel. If there is no signal in that bin the uncertainty is

required to be below 1%. In addition a minimum number of 5 events in each bin is required.

Pre-fit and post-fit distributions of the BDT score output for 2-tag OS control regions,

the Z → ττ+jets control region and the top control region are presented in Appendix A.

Good agreement between data and MC is observed in all cases but the agreement improves

post-fit as expected. This can be seen also in Figure 8.3 where the BDT input variables

are presented post-fit with excellent data agreement within one standard deviation of the

prediction.

The BDT responses for the 2HDM and graviton searches after performing the fit when

assuming a background-only hypothesis are shown in Figures 8.4 and 8.5 for the τhadτhad

channel. The post-fit output BDT score distributions for the non-resonant search are shown

in Figures 8.6 with and without finite top mass reweighting.

The observed number of events are found to be compatible with the fitted number of

background events. As no significant excess over the expected background from SM

processes is observed, the data is used to set upper limits on resonant and non-resonant

Higgs pair-production at 95% CL. As previously discussed, the results are obtained from a

profile likelihood ratio test following the CLs prescription. For the fully hadronic channel,
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the cross-section for non-resonant di-Higgs production is observed (expected) to be 16.4

(17.4) times the Standard Model prediction at 95% confidence level for the top mass RW

signal.

The results for resonance searches are presented as exclusion limits on the hh-production

cross-section, given as a function of the resonance mass. The expected limits for 2HDM

and graviton signal models are shown in Figure 8.7 for the τhadτhad channel.

The RSG c=1 has less mass points than the RSG c=2 and 2HDM. The intention was to

have fine mass splitting for all the mass points for RSG c=2 and then scale the same samples

down to RSG c=1. However the scaling did not close as expected and the effects were not

fully understood. In addition, an uncertainty would be needed to cover for this rescaling.

Therefore it was decided to abandon the scaling from RSG c=2 to RSG c=1 and use only

the mass points where Monte Carlo samples were available.

8.3.1 Combination

The di-Higgs → bb̄ττ analysis throughout this thesis focuses on the fully hadronic channel

where both taus decay hadronically, however this result has been combined with the τlepτhad

channel where one tau decays leptonically (lephad). The τlepτhad group performed their

analysis similarly to that of the fully hadronic channel but the analysis was split into two

parts by the trigger used, the single lepton trigger (SLT) and the lepton tau trigger (LTT)

analyses are included in the bbττ combination.

The results from the statistical analysis of the separate channels are presented in Table 8.1.

Expected limits at 95% CL on the cross-sections for resonant models are shown as a

function of mass for the τlepτhad and τhadτhad channels separately and then combined in

Figure 8.8. Upper limits on the cross-section for non-resonant di-Higgs production are set

and interpreted as multiples of the SM prediction for each channel separately and then

combined to determine a value for µ, defined in Equation 6.13. The expected and observed

results are presented in Table 8.1. The expected number of signal and background events

after applying the selection criteria with exactly 2 b-jets and performing the fit assuming a

background-only hypothesis are given in Table 8.2. The observed number of events in data

are also shown.
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The upper boundary on the cross-section for non-resonant hh production times the

hh → bbττ branching ratio at 95% confidence level gives an observed (expected) limit

of 30.9 fb (36.0 fb), corresponding to a value of

µ = 12.7(14.8)× σSM

The result, for all signal hypotheses, is dominated by statistical uncertainties. The

percentage uncertainties on the simulated non-resonant signal strength are shown in

Table 8.3 giving the effect of the various categories of uncertainty on the non-resonant

result. Statistical and systematic uncertainties included in the fit, as deviations from the

nominal, are not significantly contrained relative to their input value. The fractional impact

and pulls of the systematic uncertainties of the combined τlepτhad and τhadτhad non-resonant

result are shown in Figure 8.9.

The nuisance parameter rankings for the fully hadronic channel are presented in Figure 8.10

where the contributions of the data-driven multi-jet fake estimation systematic uncertainties

can be seen.

Observed -2σ -1σ Expected +1σ +2σ

τlepτhad (SLT) σ(hh→ bbττ) [fb] 52 38.2 52 72 100 134
σ/σSM 21.3 15.7 21.1 29.3 40.8 55

τlepτhad (LTT) σ(hh→ bbττ) [fb] 326 123 165 229 319 428
σ/σSM 134 50 68 94 131 175

τlepτhad Comb. σ(hh→ bbττ) [fb] 57 37.2 49.9 69 96 129
σ/σSM 23.5 15.2 20.5 28.4 39.5 53

τhadτhad RW σ(hh→ bbττ) [fb] 40.0 22.8 30.6 42.4 59 79
σ/σSM 16.4 9.33 12.5 17.4 24.2 32.4

Combination σ(hh→ bbττ) [fb] 30.9 19.4 26.0 36.1 50 67
σ/σSM 12.7 7.93 10.7 14.8 20.6 27.6

Table 8.1: Upper limits on the production cross-section for non-resonant di-Higgs
production at 95% CL. The limits including the finite top mass correction are presented.
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τlepτhad channel
τhadτhad channel(SLT) (LTT)

tt 17800 ± 1100 1475 ± 94 360± 100
Single top 1130 ± 110 72.9 ± 7.6 39.7 ± 5.9
QCD fakes - - 294 ± 57
tt fakes - - 160 ± 120
Fakes 9000 ± 1100 475 ± 76 -
Z → ττ + (cc, bc, bb) 416 ± 97 117 ± 28 291 ± 91
Other (W + Z + DY + VV) 197 ± 32 14.5 ± 2.3 22.9 ± 5.9
SM Higgs 37.6 ± 10 4.1 ± 1 8.2 ± 2.1
Total Background 28610 ± 180 2159 ± 46 1178 ± 40
Data 28612 2161 1180
G(300, c = 1) → bbττ 23.6 ± 3.7 7.5 ± 1.2 13.1 ± 2.6
G(500, c = 1) → bbττ 42.4 ± 6.4 9.9 ± 1.5 36.3 ± 7
G(1000/800(LTT ), c = 1) → bbττ 2.56 ± 0.4 1.06 ± 0.16 2.11 ± 0.43
G(300, c = 2) → bbττ 327 ± 50 82 ± 13 240 ± 46
G(500, c = 2) → bbττ 193 ± 29 39.7 ± 6.1 187 ± 36
G(1000/800(LTT ), c = 2) → bbττ 8.6 ± 1.3 3.63 ± 0.56 7.9 ± 1.6
H(300) → bbττ 39.1 ± 6.3 11.8 ± 1.9 17.9 ± 3.6
H(500) → bbττ 3.41 ± 0.52 0.88 ± 0.13 2.84 ± 0.54
H(1000/800(LTT )) → bbττ 0.0267 ± 0.0041 0.0228 ± 0.0035 0.0222 ± 0.0044
Non-res. hh 1.04 ± 0.14 0.290 ± 0.043 0.79 ± 0.15
Non-res.(top mass RW) hh 0.99 ± 0.13 0.225 ± 0.033 0.75 ± 0.14

Table 8.2: Post-fit expected number of signal and background events and observed number of
data events after applying the selection criteria and requiring exactly 2 b-jets and assuming
a background-only hypothesis. The category ‘Other’ includes contributions from W+jets,
Z/γ∗ → ``+jets, and di-boson processes

Source Uncertainty (%)
Total ±53.9
Data statistics ±44
Simulation statistics ±16

Experimental Uncertainties
Luminosity ±2.4
Pile-up reweighting ±1.7
Hadronic τ -lepton ±16
Fake-τ estimation ±8.4
b-tagging ±8.3
Jets and Emiss

T ±3.3
Electron and muon ±0.5

Table 8.3: The percentage uncertainties on the simulated non-resonant signal strength.
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Figure 8.3: Distributions of the BDT input variables post-fit in the 2 tag OS region for the
τhadτhad channel [173].
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Figure 8.4: Distribution of the BDT output for 2HDM signal in the τhadτhad channel for
resonance masses of 300 GeV, 500 GeV and 1000 GeV, using the optimised binning and
after performing the final fit. A background-only hypothesis is assumed [173].
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Figure 8.5: Distribution of the BDT output for RS graviton c=1 (left) and c=2 (right)
signals in the τhadτhad channel for resonance masses of 300 GeV (top), 500 GeV (centre)
and 1000 GeV (bottom), using the optimised binning and after performing the final fit. A
background-only hypothesis is assumed [173].
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Figure 8.6: Distribution of the BDT score for the non-resonant Higgs pair-production
assuming finite top mass (left) and without (right), using the optimised binning and after
performing the final fit with full systematics [173].
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(b) RSG c=2, τhadτhad channel
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Figure 8.7: Expected limits at 95% C.L. on the cross-sections of the RS G → hh c=1
(a), RS G → hh c=2 (b) and 2HDM H → hh (c) for the τhadτhad channel. The expected
cross-section for RS graviton production (assuming c = 1.0) is also shown in the relevant
plots [173].
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Figure 8.8: Expected limits at 95% C.L. on the cross-sections of RS G → hh for c=1 (a)
and c=2 (b) and the H → hh (c) processes when combining both the τlepτhad and τhadτhad
channels. The expected cross-section for RS graviton production is also shown in the top
two plots [173].
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Chapter 9

Search for Third Generation
Leptoquarks in the bτbτ Channel

This chapter describes the search for pair-produced scalar leptoquarks decaying to a bτbτ

final state. The analysis was performed using 36.1 fb−1 of data taken during 2015 and 2016.

The search utilises many of the same techniques used by the ATLAS di-Higgs → bb̄ττ search

described in Chapter 8 and in more detail in [174]. The di-Higgs analysis is reinterpreted

to select resonances decaying to bτ pairs rather than two Standard Model Higgs bosons

decaying to bb and ττ [175, 176].

The analysis revolves around a boosted decision tree (BDT) and utilises the BDT score as

the final discriminant outlined in Section 9.2. The statistical evaluation method performed

by the di-Higgs analysis is employed here with a binned profile likelihood fit on the BDT

score output to extract the signal strengths for scalar down-type and up-type leptoquark

pair-production. However, if there is no clear evidence for an excess of events the signal

strengths are used to produce an observed 95% CL upper limit on the cross-section for scalar

leptoquark pair-production as a function of the leptoquark mass. This can be compared to

the expected limit when evaluated against an Asimov dataset. The systematics enter the

fit as nuisance parameters analogous to the di-Higgs analysis.

Despite the many similarities, it is important to note the differences between the scalar

leptoquark search and the Higgs pair-production analysis and they are clearly stated

throughout this chapter. There is no cut on the invariant mass of the di-tau system, the

leading tau has a pT minimum threshold of 60 GeV in DTT events and the 1 b-tag region

is included in the fit along with the Z → µµ + jets control region and the 2 b-tag selection

as an additional signal region.

129
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With a final state of two b-jets and two hadronically decaying taus, it is important to

select the correct pairing of objects. This is studied in Section 9.1 and the final search for

pair-produced scalar third-generation leptoquarks results are presented in Section 9.3.

Signal predictions within this chapter for third generation leptoquarks were generated at

next-to-leading order (NLO) in QCD using the leptoquark model described in [175].

9.1 Pairing of b-jets and τ-leptons

It is necessary to correctly identify which b-jets and τ -leptons originate from the same

leptoquark. Several approaches were explored in order to correctly pair the final state

particles. The mass pairing strategies investigated were as follows:

• min|∆m| – choose the bτ pairs that minimize the mass difference between the

leptoquarks.

• max|∆φ| – choose the bτ pairs that maximize the sum of ∆φ(b, τ).

• min|π −∆R| – choose the bτ pairs that maximize the sum of ∆R(b, τ).

All methods give approximately the same cross-section upper limit for leptoquark masses

above 900 GeV. However, the min|∆m| pairing method gives significantly better limits at

low mass and was therefore selected. An example of upper limits for each bτ pairing can be

seen in Figure 9.1. The efficiencies for the different strategies are shown in Figure 9.2.

Figure 9.1: Expected limits for different pairings in the τhadτhad channel. Leptoquark theory
cross section taken from [175].
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Figure 9.2: Efficiency of pairing the final state b-quarks and τ -leptons for the hadhad
channel.

9.2 Boosted Decision Tree Variables and Training

As is done in the hh search, Boosted Decision Trees (BDTs) are trained to separate the

signal from the expected backgrounds and the BDT score distributions are used as the final

discriminant for limit-setting. Separate BDTs are trained for each signal mass point and

b-tag signal regions using Z → ττ + jets, fakes and tt̄ background processes. The signal

sample used in the training includes signals with neighbouring mass. The variables used

as inputs to the BDT that provide good discrimination between signal and background are

different to the di-Higgs analysis, as expected:

• ∆R(τ0, jet) – The ∆R between the leading tau and leading jet.

• sT – The scalar sum of missing tranverse energy in the event, the pT of τ -leptons and

the pT of the two highest-pT jets.

• Emiss
T φ centrality – Quantifies the position in φ of Emiss

T between τs. Full definition is

given in Chapter 6 and the hh paper [174].

• mτ,jet – The invariant mass between the leading τ and its matching jet based on a

pairing that minimizes ∆M .

• pτT – The pT of the leading τ -lepton.



9.2. Boosted Decision Tree Variables and Training 132

Figures 9.3 and 9.4 show the overtraining plots for the 1-tag and 2-tag regions against

several leptoquark masses.
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Figure 9.3: Overtraining plots for leptoquark signals in the bτhadbτhad channel, for 300 GeV
(top left), 500 GeV (top right), 1000 GeV (bottom left) and 1500 GeV mass points in the 1
b-tag region.
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Figure 9.4: Overtraining plots for leptoquark signals in the bτhadbτhad channel, for 300 GeV
(top left), 500 GeV (top right), 1000 GeV (bottom left) and 1500 GeV mass points in the 2
b-tag region.
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9.3 Results

The fit strategy used in this reinterpretation is identical to that of [174] and Chapter 8. The

BDT output score is used as the discriminating variable for all channels and signals. The

binning for the output BDT score distributions is optimised to ensure that the minimum

number of events in each bin is 5 and the background uncertainty is required to be below

50% for the signal fraction in the fully hadronic channel. A profile likelihood ratio test

is performed to assess the compatibility of the SM background-only hypothesis with the

observations in the signal regions. Both the 1 b-tag and 2 b-tag regions are characterised

as signal-like. All sources of systematic and statistical uncertainties on the signal and

background modeling are implemented as deviations from the nominal model scaled by

nuisance parameters that are profiled in the fit.

As in the di-Higgs analysis, a Z → µµ plus 2 b-jets control region is included as a single bin

in the fit in order to derive a normalisation factor for Z + bb, bc, cc background processes.

The post-fit plots of the BDT input variables are presented for 1-tag and 2-tag in Figure 9.5

and Figure 9.6, respectively. Good agreement is seen between data and prediction. The

BDT responses in the 1-tag and 2-tag fully hadronic signal regions are shown in Figure 9.7

and 9.8 for four representative leptoquark masses after performing the combined channel

fit. Observed and expected limits on the cross-section for scalar leptoquark pair-production

are shown as a function of mass in Figure 9.9 for the hadronic channel. Additionally, the

comparison on the limits with and without the inclusion of the 1 tag region is shown in

Figure 9.10

Yield tables in the 1-tag and 2-tag signal regions are shown for the fully hadronic channel

in Table 9.1 where the numbers quoted are after performing the τhadτhad fit.
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Figure 9.5: Post-fit distributions of the BDT input variables in the 1 tag OS region for the
τhadτhad channel [177].
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Figure 9.6: Post-fit distributions of the BDT input variables in the 2 tag OS region for the
τhadτhad channel [177].
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Figure 9.7: BDT score distributions for the τhadτhad channel in the 1-tag signal region. All
distributions are shown after performing the fit, 300 GeV (top left), 500 GeV (top right),
1000 GeV (bottom left) and 1500 GeV (bottom right) [177, 178].
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Figure 9.8: BDT score distributions for the τhadτhad channel in the 2-tag signal region. All
distributions are shown after performing the fit, 300 GeV (top left), 500 GeV (top right),
1000 GeV (bottom left) and 1500 GeV (bottom right) [177, 178].
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τhadτhad
1-tag 2-tag

Fakes from QCD 1760 ± 120 155 ± 35
Fakes from tt 180 ± 130 125 ± 88

Z → ττ + (cc, bc, bb) 239 ± 76 147 ± 45
Z → ττ + (ll, lc, lb) 810 ± 88 7.7 ± 2.5
Z → ``+ (cc, bc, bb) 0.055 ± 0.019 0.0108 ± 0.0037
Z → ``+ (ll, lc, lb) 0.71 ± 0.2 0.0051 ± 0.0025

tt̄ 350 ± 100 287 ± 83
Single top 61.6 ± 7.6 25.3 ± 2.9
W → τν 51 ± 26 4.2 ± 2.1
V V 22.7 ± 3.1 3.73 ± 0.67
V H 4.7 ± 1.4 2.17 ± 0.67
tt̄h 4.2 ± 1.3 3.5 ± 1.1

Total Background 3478 ± 61 761 ± 26
Data 3469 768

mLQ = 300 GeV 5600 ± 730 5810 ± 800
mLQ = 500 GeV 442 ± 59 397 ± 56
mLQ = 1000 GeV 5.19 ± 0.81 2.66 ± 0.45

Table 9.1: Yield table in the 1-tag and 2-tag signal regions of the τhadτhad channel after
performing a background-only fit. The MC background yields use the discriminant binning
of the mLQ = 1000 GeV hypothesis.
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9.3.1 Combination

The fully hadronic channel is combined with the τlepτhad channel the same as in the di-Higgs

analysis. The combined limit including systematic uncertainties is shown in Figure 9.11 for

both down-type and up-type leptoquarks, however, priority is given to the latter because

the di-Higgs analysis is more sensitive to a bτ final state.

The unblinded results reveal a deficit (excess) across a large range of leptoquark masses for

the separate τlepτhad and τhadτhad channel results. The discrepancies between observed and

predicted events is however correlated between the different mass hypotheses.



9.3. Results 141

 [GeV]
LQ3

m
400 500 600 700 800 900 1000 1100

 L
Q

3
L

Q
3

) 
[p

b
]

→
(p

p
 

σ 

3−10

2−10

1−10

1

­1
13 TeV, 36.1 fb

, B=1τbτ b→ 
d

3
LQ

d

3
LQ

Obs 95% CL limit

Exp 95% CL limit

σ 1±

σ 2±

LQ3LQ3 production

had
τ

had
τExp 95% CL limit 

had
τ

lep
τExp 95% CL limit 

 [GeV]
LQ3

m
200 400 600 800 1000 1200 1400

 L
Q

3
L

Q
3

) 
[p

b
]

→
(p

p
 

σ 

3−10

2−10

1−10

1

­1
13 TeV, 36.1 fb

, B=1τbτ b→ 
u

3
LQ

u

3
LQ

Obs 95% CL limit

Exp 95% CL limit

σ 1±

σ 2±

LQ3LQ3 production

had
τ

had
τExp 95% CL limit 

had
τ

lep
τExp 95% CL limit 

Figure 9.11: Expected and observed 95% CL upper limits on the cross-section for down-type
(up) and up-type (down) scalar leptoquark pair-production, with B = 1.0, as a function
of leptoquark mass for the semi-leptonic and fully hadronic channels, as well as combined,
with the inclusion of systematic uncertainties. The observed limit is shown in solid black
[177].





Chapter 10

Conclusion

This thesis presents searches for physics beyond the Standard Model with a final state of

two b-quarks and two τ -leptons. The analyses focused mainly on the fully hadronic channel

but also presented results combined with the semi-leptonic channel.

The main analysis described a search for resonant and non-resonant pair production of Higgs

bosons in the bb̄τ+τ− final state with the ATLAS detector. The search used 36.1 fb−1 of the

data collected at the LHC from pp collisions with
√
s = 13 TeV between 2015 and 2016. In

the Standard Model the cross-section for Higgs boson pair production is very small due to

the box top-loop and the Higgs boson self-interaction destructively interfering. Therefore,

the analysis improves sensitivity by using boosted decision tree multivariate techniques

to differentiate between signal and background. Statistical evaluations of the result were

performed on the final BDT score discriminant.

All signals and backgrounds after event selection are simulated using Monte Carlo methods

with the exception of the tt̄ jets → taus fake background and multi-jet tau fake estimations.

The latter has been presented in the thesis as an estimation coming from a data-driven fake

factor method which has been shown to perform well and is a viable alternative to poor

MC distributions.

The observed (expected) limit at 95% CL on the non-resonant cross-section was found to

be 30.9 fb (36.0 fb) which is 12.7 (14.8) times the Standard Model prediction. For the

comparison with other results, a separate analysis on the non-resonant signal without the

finite top mass reweighting was conducted and produced observed (expected) limits of 37.4

fb (33.5 fb) or 15.4 (13.8) times the Standard Model prediction.
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The resonant analysis has been presented in this thesis as exclusion limits on the

cross-section times branching ratios of hh → bb̄ττ as a function of the resonance mass.

The upper limits are set on resonant Higgs boson pair production for a spin-2 Kaluza-Klein

graviton GKK in the bulk Randall-Sundrum model and a narrow-width scalar from the

two-Higgs doublet model.

The non-resonant result is the most stringent limit on hh production to date. It not only

competes with other hh channels at ATLAS such as bb̄bb̄ and bb̄γγ [7] but also outperforms

all current results from CMS [179] which released a observed (expected) combination limit

at 95% CL on non-resonant production cross-section of 21.8 (12.4) times the standard model

value.

This thesis also presents a reinterpretation of the di-Higgs analysis to search for scalar

leptoquarks with the ATLAS detector. Both analyses are very similar and the selection

is altered slightly to reconstruct bτ pairs. Third generation scalar leptoquarks being pair

produced and decaying to bτbτ are excluded at 95% CL for mLQ < 1030 GeV.

Looking to the future, the di-Higgs analysis aims to use the full Run-2 120 fb−1 dataset

recorded by ATLAS and plans to release updates to the non-resonant limits in summer 2019.

Extrapolating the Run-2 results presented in this thesis to
√
s = 14 TeV and L = 3000 fb−1

shows a promising stat-only 95% CL limit of µ = 0.75 which corresponds to a significance

of 2.71σ. Finally, performing a di-Higgs combination and establishing the strength of the

Higgs boson trilinear self-coupling will be one of the primary physics goals for the high

luminosity LHC (HL-LHC) and beyond.
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in the 2 tag SS region for the τhadτhad channel.
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Figure A.2: Distributions of BDT scores for 2HDM (left) and RSG c=1 (right) signals at
pre-fit in the 2 tag SS region for resonance masses of 300 GeV (top), 500 GeV (centre) and
1000 GeV (bottom) in the τhadτhad channel.
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Figure A.3: Distributions of BDT score for the SM signal pre-fit with finite mass reweighting
(left) and without (right) in the Z+jets control region for the τhadτhad channel.



159

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Ev
en

ts
 / 

Bi
n

1−10

1

10

210

310

410

Data 
)t fakes (thadτ →jet 

Top-quark
 fakes (Multi-jets)hadτ →jet 

 +(bb,bc,cc)ττ →Z 
Other
SM Higgs
Uncertainty

ATLAS Internal
 -113 TeV, 36.1 fb

 2 b-tagshadτhadτ

Z+HF validation region

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

Pr
ed

.

0.5
1

1.5
BDT score

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Ev
en

ts
 / 

Bi
n

1−10

1

10

210

310

410

510

610
Data 

)t fakes (thadτ →jet 
Top-quark

 fakes (Multi-jets)hadτ →jet 
 +(bb,bc,cc)ττ →Z 

Other
SM Higgs
Uncertainty

ATLAS Internal
 -113 TeV, 36.1 fb

 2 b-tagshadτhadτ

Z+HF validation region

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

Pr
ed

.

0.5
1

1.5

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Ev
en

ts
 / 

Bi
n

1

10

210

310

410

510
Data 

)t fakes (thadτ →jet 
Top-quark

 fakes (Multi-jets)hadτ →jet 
 +(bb,bc,cc)ττ →Z 

Other
SM Higgs
Uncertainty

ATLAS Internal
 -113 TeV, 36.1 fb

 2 b-tagshadτhadτ

Z+HF VR
=1)PlM 500 GeV, k/

kk
(G

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

Pr
ed

.

0.5
1

1.5
BDT score

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Ev
en

ts
 / 

Bi
n

1−10

1

10

210

310

410

510 Data 
)t fakes (thadτ →jet 

Top-quark
 fakes (Multi-jets)hadτ →jet 

 +(bb,bc,cc)ττ →Z 
Other
SM Higgs
Uncertainty

ATLAS Internal
 -113 TeV, 36.1 fb

 2 b-tagshadτhadτ

Z+HF validation region

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

Pr
ed

.

0.5
1

1.5

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Ev
en

ts
 / 

Bi
n

1−10

1

10

210

310

410

510

610 Data 
)t fakes (thadτ →jet 

Top-quark
 fakes (Multi-jets)hadτ →jet 

 +(bb,bc,cc)ττ →Z 
Other
SM Higgs
Uncertainty

ATLAS Internal
 -113 TeV, 36.1 fb

 2 b-tagshadτhadτ

Z+HF validation region

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

Pr
ed

.

0.8

1

1.2
BDT score

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Ev
en

ts
 / 

Bi
n

1−10

1

10

210

310

410

510 Data 
)t fakes (thadτ →jet 

Top-quark
 fakes (Multi-jets)hadτ →jet 

 +(bb,bc,cc)ττ →Z 
Other
SM Higgs
Uncertainty

ATLAS Internal
 -113 TeV, 36.1 fb

 2 b-tagshadτhadτ

Z+HF validation region

BDT score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

Pr
ed

.

0.8
1

1.2

Figure A.4: Distributions of BDT scores for RSG c=1 (left) and 2HDM (right) signals at
pre-fit in the Z+jets control region for resonance masses of 300 GeV (top), 500 GeV (centre)
and 800 GeV (bottom) in the τhadτhad channel.
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Figure A.5: Distributions of BDT score for the SM signal pre-fit with finite mass reweighting
(left) and without (right) in the top control region for the τhadτhad channel.
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Figure A.6: Distributions of BDT scores for RSG c=1 (left) and 2HDM (right) signals at
pre-fit in the top control region for resonance masses of 300 GeV (top), 500 GeV (centre)
and 1000 GeV (bottom) in the τhadτhad channel.
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Figure A.7: Distributions of BDT score for the SM signal post-fit in the 1 tag OS region
for the τhadτhad channel.
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Figure A.8: Distributions of BDT scores post-fit in the 1 tag OS region for the τhadτhad
channel.
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Figure A.9: Distributions of BDT score for the SM signal post-fit in the Z validation region
for the τhadτhad channel.
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Figure A.10: Distributions of BDT scores post-fit in the Z validation region for the τhadτhad
channel.
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Figure A.11: Distributions of BDT score for the SM signal post-fit in the top validation
region for the τhadτhad channel.
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Additional Efficiency Plots for
8 TeV
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Figure B.1: Efficiency for correct production vertex assignment in 3-prong τ decays for the
TJVA algorithm and the default choice of the vertex with the highest

∑
p2T, as a

function of τhad-vis pT (a) and of the number of reconstructed vertices in the event (b).
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Figure B.2: Efficiency for correct production vertex assignment in τ decays for the TJVA
algorithm and the default choice of the vertex with the highest

∑
p2T, as a function

of τhad-vis η for 1-prong (a) and 3-prong taus (b).
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Figure B.3: Efficiency for correct production vertex assignment in τ decays for the TJVA
algorithm and the default choice of the vertex with the highest

∑
p2T, as a function

of the average number of interactions per bunch crossing for 1-prong (a) and 3-prong taus
(b).

B.1 Table for splitting

1-prong 3-prong

Total Taus 5281422 2028887

No. TJVA Wrong (ALL) 118898 9087

Total 0-0.5 mm 5149 1313

No. TJVA Wrong 0-0.5 mm 2272 546

No. TJVA chose SecondClosest 0-0.5 mm 2026 520

Total 0.5-3 mm 687351 274337

No. TJVA Wrong 0.5-3 mm 29077 4579

No. TJVA chose SecondClosest 0.5-3 mm 16526 3929

Total 3+ mm 4588922 1753237

No. TJVA Wrong 3+ mm 87549 3962

Table B.1: How often the TJVA algorithm identifies the wrong vertex for different distances
in z between the closest and second closest vertices.
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B.2 Additional Efficiency Plots for 13 TeV
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Figure B.4: Efficiency for production vertex assignment without proper tracks selection in
3-prong τ decays for the tau reconstruction algorithm and the default choice of the vertex
with the highest

∑
p2T, compared to the correct production vertex assignment. Efficiency

as a function of τhad-vis pT (a) and of the number of reconstructed vertices in the event (b).
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Figure B.5: Efficiency for production vertex assignment without proper tracks selection in
τ decays for the tau reconstruction algorithm and the default choice of the vertex with
the highest

∑
p2T, compared to the correct production vertex assignment. Efficiency as a

function of τhad-vis η of for 1-prong (a) and 3-prong taus (b).
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Figure B.6: Efficiency for production vertex assignment without proper tracks selection in
τ decays for the tau reconstruction algorithm and the default choice of the vertex with
the highest

∑
p2T, compared to the correct production vertex assignment. Efficiency as

a function of the average number of interactions per bunch crossing for 1-prong (a) and
3-prong taus (b).

B.3 Data samples

Optimization of reconstruction and identification was performed using DC14 samples.

Performance estimation are given applying the so established working points to a

pre-production of MC15 with 25 ns bunch spacing configuration. This sample was also

used to compute the energy calibration used in the release 20.1 official productions.

Systematics uncertainties have been computed using samples from both DC14 and MC15

productions, depending on the availability of the systematic variations. Most of the

variations have been early performed in DC14. The different material composition for

the ID was instead only available in MC15. The production with 50 ns bunch spacing in

DC14 contained many updates and used a different pile-up setting, with a constant value

of µ = 30. It was therefore preferred to use the official MC15 50 ns production. In all cases,

the systematics were evaluated comparing the differences between the varied sample and

the nominal sample for the corresponding production.
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DC14 samples, project mc14_13TeV
Description Dataset IDs AMI tags
Nominal 147408 s1982_s2008_r5787_r5853
Nominal Drell-Yan 187451–187464 s1982_s2008_r5787_r5853
Di-jet background 147910–147917 s1982_s2008_r5787_r5853
for e fakes 147406 s1982_s2008_r5787_r5853

MC15 samples, project mc15_13TeV
Description Dataset IDs AMI tags
Nominal pre-production 361108 s2576_s2132_r6613_r6264
Nominal pre-production Drell-Yan 301040–301054 s2576_s2132_r6613_r6264

5% additional inner detector material 361108
301040− 301054

s2606_s2183_r6785_r6282

50 ns configuration 361108
301040− 301054

s2576_s2132_r6630_r6264

Table B.2: Simulation samples used for tuning of algorithms and evaluation of systematics
uncertainties.
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Figure C.1: Fake factor projections onto the leading tau pT for 1 and 2 b-tag events for τ
for 1-prong,1-prong (top left), 1-prong,3-prong (top right), 3,prong,1-prong (bottom left)
and 3-prong,3-prong (bottom right) tau pairs in the DTT region, used to determine the
multi-jet background in the τhadτhad channel.
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Figure C.2: Monte Carlo subtraction upwards systematic fake factor projections onto the
leading tau pT for 1 and 2 b-tag events for τ for 1-prong,1-prong (top left), 1-prong,3-prong
(top right), 3,prong,1-prong (bottom left) and 3-prong,3-prong (bottom right) tau pairs in
the DTT region, used to determine the multi-jet background in the τhadτhad channel.
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Figure C.3: Monte Carlo subtraction downwards systematic fake factor projections onto the
leading tau pT for 1 and 2 b-tag events for τ for 1-prong,1-prong (top left), 1-prong,3-prong
(top right), 3,prong,1-prong (bottom left) and 3-prong,3-prong (bottom right) tau pairs in
the DTT region, used to determine the multi-jet background in the τhadτhad channel.
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Figure C.4: Single tau trigger fake factors for each prong combination for nominal (top left),
MC subtraction upwards variation (top right) and MC subtraction downwards variation
(bottom left) used to determine the multi-jet background in the τhadτhad channel.
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Figure C.5: Transfer factors for each prong combination with nominal (top left), MC
subtraction upwards variation (top right) and MC subtraction downwards variation (bottom
left) used to extrapolate from 1-tag to 2-tag regions for the multi-jet background in the
τhadτhad channel.
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