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Abstract

The transmission or reception of packets passing between computers
can be represented in terms of time-stamped events and the resulting
activity understood in terms of point-processes. Interestingly, in the dis-
parate domain of neuroscience, models for describing dependent point-
processes are well developed. In particular, spectral methods which de-
compose second-order dependency across different frequencies allow for
a rich characterisation of point-processes. In this paper, we investigate
using the spectral coherence statistic to characterise computer network
activity, and determine if, and how, device messaging may be dependent.
We demonstrate on real data, that for many devices there appears to
be very little dependency between device messaging channels. However,
when significant coherence is detected it appears highly structured, a re-
sult which suggests coherence may prove useful for discriminating between
types of activity at the network level.

1 Introduction
Understanding how devices on computer networks communicate is a challenging
task. While it is possible to gather vast quantities of data from such networks,
for instance via packet monitoring, it is difficult to store, let alone process. As a
result, protocols such as NetFlow which sample and summarise packet level data
are now very popular [1]. Even still, regular monitoring protocols can produce
hundreds of gigabytes of summary statistics on a network per day which need
to be converted into actionable insights for network administrators.

Network defenders should be at a theoretical advantage over attackers, in
that they can attempt to model and understand the day-to-day activity of their
network. From such models they can then define what anomalous, and/or ma-
licious events may look like. Additionally, in order to enhance detection perfor-
mance, one may desire to use prior knowledge of what benign network activity
should look like in order to define anomalies. For example, and relevant to the
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approach developed here, one may expect that communication between pairs of
devices are not correlated such that their activity should be broadly independent
when monitored at a network level. However, if traffic is dependent across pairs
then this may indicate potentially malicious behaviour such as lateral movement
or tunnelling [2].

There are a great variety of measures and methods that can be used to
analyse dependency between streams, for instance through measures such as
covariance [3], correlation [2], partial correlation [4], or higher-order measures
such as cross-cumulants [5]. A traditional approach to network traffic modelling
is to assume it is generated according to a Poisson point process [1, 6]. While
such models may be generalised to a multivariate setting [7], they do not allow
for us to encode auto-correlation structure within a point-process. As a result,
we may be able to describe processes which are dependent on each other across
data-streams, but they do not allow for dependency within a data-stream itself.
When considering computer network traffic, it is not hard to imagine that events
from a device will be somehow dependent on previous events from that same
device. Spectral approaches, based on either Fourier [8] or time-scale wavelet
analysis [9, 10] of processes provide a valuable tool in this situation as they allow
for both a rich description of auto-correlation and cross-channel dependency [11].

In this paper, we propose to utilise a measure known as spectral coherence
[12] to characterise dependency between network communication channels. We
are not aware of any previous application of such a measure to network traffic
analysis, although the method has received great attention in neuroscience for
modelling neuron dependency [13].

2 Dataset and Preprocessing
Consider network connected devices A,B,C and their associated users, for ex-
ample, these may be personal computers, DNS servers, authentication servers,
or even printers. Typically, we would expect these devices to go about their work
as fairly independent actors, i.e. they may browse websites, download material
etc., but not in any particularly coordinated manner. Device communication is
typically performed through packet transmission. However, given network mon-
itoring limitations, the events that we analyse need not necessarily be packets
themselves. More likely, they are aggregates or summaries of communication,
for example NetFlow sessions.

In our case, we analyse a subset of NetFlow session data from the Los Alamos
National Laboratory (LANL) multi-source cyber-security events data [14, 15].
More specifically, we create a subset of events (NetFlow session start times)
relating to the top Ntriple = 500 busiest edge-pairs in the network over a single
day’s (Thursday) worth of data. We assess dependency in a pair-wise manner
such that data-streams correspond to directed edge-communication between de-
vices A → B and B → C for i = 1, . . . , Ntriple device triples (A,B,C)i. For
each triple, the activity for each edge corresponds to the same time frame. The
protocol monitored is the same for all edge pairs. To avoid confusion, we ex-
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clude all flows from the triple (C,B,A) when the triple (A,B,C) is included.
One should note that our selection criteria for data-set construction does not
explicitly specify devices which have a particular function on the network. How-
ever, if we look at the graph of communication edges in Figure 1 it appears that
many of our triples have repetitive edges, there are only 95 unique devices in
our data-set and 96 unique edges. Looking at the topology of the network it
appears that most of the devices are communicating through the device C5721,
while we do not have labelled data relating to the function of devices, it would
appear that this node acts as some form of server.

We note that in our recordings it is possible to observe two events which have
the same start time. This means that the events cannot reasonably be treated
as being observed in continuous time, and indeed the timestamps provided with
our data are only accurate to the second. As such, the raw events are aggregated
into bins of width ∆ = 1s. The binned bivariate process will be denoted {X[k] =
[XAB [k], XBC [k]]T ; k ∈ Z}, for which we observe a portionX[1],X[2], ...,X[K].
As a pre-processing step, we subtract the empirical mean of the data-streams,
relabelingX[k] := X[k]−X̄ so that they can be well approximated as zero-mean
processes.

3 Spectral Coherence as a Measure of Associa-
tion

In this section, we will define the spectral coherence as a property relating to
the cross-spectrum of a bivariate process. The discussion here will be devel-
oped based on the understanding that we are with observations relating to a
discrete-time process. However, it is also possible to perform such analysis at
the individual event level, for examples, see the work of [11, 13, 16].

To simplify the notation, let us use X1[k] ≡ XAB [k] and X2[k] ≡ XBC [k].
Furthermore, we will assume that {X1[k], X2[k]} represent a jointly second-
order stationary process, i.e. the covariance Σij [τ ] ≡ Cov(Xi[k+ τ ], Xj [k]) only
depends on τ for i, j = 1, 2. Provided

∑
τ |Σij [τ ]| <∞, then for all frequencies

|ω| ≤ π/∆, the function Sij(ω) = ∆
∑∞
τ=−∞ Σij [τ ]e−iωτ∆, i, j = 1, 2, is termed

the spectum of {Xi[k]} when i = j, and the cross-spectrum between {X1[k]} and
{X2[k]} when i 6= j. These spectra can be conveniently represented with the
spectral matrix S(ω) = (Sij(ω)). The argument we present in this paper, is that
the cross-spectrum provides a rich framework within which we may characterise
computer network messaging processes. In particular, since we are interested in
dependency between data-streams, we will concern ourselves with the squared
coherencey, or ordinary coherence, defined as the real-valued quantity

R(ω) =
|S12(ω)|2

S11(ω)S12(ω)
. (1)

The coherence provides a useful statistic for assessing dependency between
point-processes; not only does it permit a decomposition over frequencies al-
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Figure 1: Graph of messaging channels under analysis. Size of text and node
are respectively proportional to the out-going and in-going degree. The weight
of the edges (and colour) is proportional to the rate measured on that edge.

lowing one to highlight periodicities associated with dependence, but is also in-
variant to scaling of the marginal auto-covariance as the measure is normalised
by the on-diagonal spectra.

3.1 Estimating the Spectra of Point-Processes
Since the true values of the spectra, cross-spectra and coherence are unknown
to us, we are required to estimate them from data. The approach that we utilise
here is based on the work of Thomson [17]. Specifically, we will construct our
estimators from the tapered discrete-time Fourier transform (tDFT) defined as

F̂j;l(ω) ≡ ∆1/2
K∑
k=1

hl[k]Xj [k]e−iωk∆ j = 1, 2, (2)
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for frequencies −π/∆ < ω < π/∆ where {hl[k]; k = 1, ..., N} for l = 1, . . . , L are
a set of taper sequences. The tapers in the above construction are important,
in that they enable us to selectively transform data-points prior to taking the
Fourier transform.

If we temporarily assume that hl[k] = 1 for all l, k, then taking the conjugate
outer-product leads to the periodogram Îij;l(ω) ≡ F̂i;l(ω)F̂ ∗j;l(ω). Unfortunately,
while the periodogram is an asymptotically unbiased estimator of the spectrum
E[Îij;l(ω)] → Sij(ω) as T → ∞, it is not consistent, in that Var[Îij;l(ω)] 6→ 0.
Principally, this is due to us attempting to estimate the spectra at an infinite
number of frequencies ω ∈ R with only a finite portion of data [16, 13].

There are several approaches which can be used to sculpt asymptotically
consistent estimators of the spectra [18, 17, 19]. A general strategy [19], is to
adapt the direct spectral estimate (where hl[k] = 1) such that the tapers take
different shapes, for example they may be supported in disjoint regions [8], or
constitute a set of overlapping windows [18]. From the Fourier transform of the
tapered data, we may then construct vectors F̂ l(ω) = [F̂1;l, F̂2;l]

T and compute
what is known as a multi-taper spectral estimator by averaging:

Ŝ(ω) =
1

L

L∑
l=1

F̂ l(ω)F̂
H

l (ω) i, j = 1, 2,

where H denotes the complex conjugate transpose. From the multi-taper spec-
tral estimate we may then obtain an estimate for the coherence R̂12(ω) via (1)
replacing the true spectra S11(ω), S22(ω) and S12(ω) with the estimates Ŝ11(ω),
Ŝ22(ω) and Ŝ12(ω), respectively.

3.2 Taper Specification
If we consider choosing orthogonal taper sequences whereby

∑
k hl[k]hl′ [k] = 0

for l 6= l′ then the resultant Fourier transforms will be asymptotically inde-
pendent [8]. Averaging over these independent sequences can then reduce the
variation in the estimate, the reduction will be related to the number of ta-
pers we average over. It has been demonstrated, c.f. [8], that in the case
of asymptotically orthogonal tapers, the sampling distribution of the spec-
tral matrix Ŝ(ω) = (Ŝij(ω)) is given by a 2D complex Wishart distribution
Ŝ(ω) ∼WC

2 (L,S(ω)) with L degrees of freedom and scale matrix S(ω).
In our application, we utilise a form of taper first demonstrated for spectral

estimation by Thomson [17]. Often referred to as the Slepian tapers, these
sequences have the beneficial properties that they are mutually orthogonal while
maximising energy concentration in a small frequency interval [−ωW , ωW ]. If
two frequencies are separated by more than this bandwidth, then the bias due
to tapering is in some sense minimised. However, as the number of tapers L
increases, the width of the side-lobe associated with the Fourier transform of
hL[k] necessarily increases. As such, there is a classic bias-variance trade-off,
increasing L reduces the variance, but increases bias. The appropriate number
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Figure 2: Example of estimates for the spectral density. Top: estimation with
L = 5 tapers. Bottom: estimation with L = 40 tapers. The red and blue lines re-
spectively illustrate the on-diagonal spectral density ŜAB,AB(ω) and ŜBC,BC(ω).
The grey line indicates the resultant coherence R̂(ω).

of tapers to use is highly dependent on application and something we will shortly
revisit in the context of the network traffic dataset.

4 Dependency in Network Traffic

Applying coherence estimation to edge pairs results in a set of estimates {R̂(n)(ω1, . . . , ωNf
)}

for n = 1, . . . , Ntriple. As may be expected there is significant variation of the
spectra across the set of edge-pairs. In this analysis, we consider fixing the
window of frequencies such that ωq = 2πfmax(q/Nf ) for q = 1, . . . , Nf = 500
and fmax = 0.05Hz. As the length of the edge-pair recordings differ, one may
desire to increase L as a function of length T . Potentially, this would lead to
increased confidence in our spectral estimate as the Wishart degrees of freedom
are increased. However, such an adaptive tapering scheme where L depends on
T creates challenges when comparing across coherence estimates as it may be
hard to disentangle differences due to the tapering treatment from underlying
differences in the process spectra. As such, in these experiments we decide to
fix the number of tapers at a moderate level L = 40 for all edge-pairs. The
difference between tapering with L = 5 and L = 40 is demonstrated in Fig-
ure 2. Note, that while the cross-spectra for different edge-pairs may be of a
different scale, the coherence (plotted in grey) provides an intuitive measure
on [0, 1] allowing comparison across many data-stream pairs. As an aside, the
individual spectra appear non-Poisson, exhibiting shapes that are characteristic
of self-exciting behaviour [20].
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Figure 3: The coherence as plotted in the bottom of Fig. 2 with two-sided 95%
confidence intervals. Frequencies where the confidence interval excludes zero are
highlighted in red.

Acknowledging that there will be some error in our spectral estimates, it is
desirable to assign some measure of confidence to estimates. A useful corollary
of the Wishart asymptotic result for multi-taper estimates is that the coherence
is distributed (asymptotically) according to the Goodman distribution [12, 21].
Based on this distribution, there are a variety of tests that one may perform
to assess the significance of a coherence estimate. For example, one may test
the null hypothesis that states R(ωq) = 0 for each frequency ωq, q = 1, . . . , Nf .
Rather than test explicitly against a null of zero coherence, in this work we
construct two sided confidence intervals in a similar manner to Wang et al. [22].
Examples of such intervals for α = 0.05 are reported in Fig. 3. Alongside these
intervals denoted [âα/2, â1−α/2], we declare that the coherence at a frequency is
significant if the interval excludes zero. For this particular triple, we note what
appears to be significant coherent beaconing across the devices at multiples of
approx. 0.0017Hz (a periodicity of 10 minutes).

To assess variation in coherence estimates across the Ntriple = 500 edge-pairs
under study we attempt to cluster the resultant coherence estimates. Prior to
performing clustering, we threshold coherence estimates according to the confi-
dence intervals such that R̂∗(ωq) = 0 if 0 ∈ [âα/2, â1−α/2] and R̂∗(ωq) = R̂(ωq)
otherwise. The resultant coherence estimates are then modelled as a Gaussian
mixture model (GMM), such that [R̂∗(ω1), . . . , R̂∗(ωNf

)] ∼ GMM({µc,Σc}Cc=1)
where µc ∈ RNf represent cluster means and Σc the cluster covariances.

While the Gaussian assumption of the above model contrasts with the Good-
man asymptotic distribution for the coherence, the approximation may still
hold relevance. For instance, Enochson and Goodman [23] demonstrated that
a Gaussian approximation may be effective when calculating confidence inter-
vals. In this example we use the MATLAB implementation of the expectation-
maximisation with covariance regularisation set at λ = 0.001. Due to the many
local-minima that may be obtained when fitting a GMM, we perform one thou-
sand replications with random initialisation and report the clustering with the
largest likelihood. Figure 4 presents the resulting mean profiles of C = 4 clus-
ters alongside the standard-deviation obtained from the estimated covariance
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Figure 4: GMM clustering of the significance thresholded coherence estimates
with C = 4. Shaded regions indicate points within one standard-deviation from
the cluster mean. Bottom: graph of edges relating to each cluster c = 1, 2, 3, 4
from left to right.

matrices.

5 Discussion
The clustering results are insightful in that the emergence of clusters c = 3, 4
partially confirm our initial hypothesis that many device pairs exhibit little de-
pendency. Out of the initial 500 edge-pairs 90 are placed into clusters with
non-negliable coherence, for reference, the example demonstrated in Fig. 2 is
placed into cluster c = 1. These active coherent clusters exhibit pronounced
structure across multiple frequencies, once again providing evidence that mod-
elling auto-covariance within network traffic is important. Of some note, is the
clear peak at f = 0.018Hz corresponding to periodicity of around 57s . Without
a more intimate knowledge of device functionality on the network we can only
hypothesise the cause of such a feature, but it is possible this is due to beaconing
activities. Interestingly, Heard et al. [24] demonstrate strong periodicity at this
same frequency for devices connecting with dropbox.com. While most beacon-
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ing activities are benign, scanning techniques used by intruders may also create
similar strongly periodic activity and it is thus of interest to administrators to
detect such patterns.

As a direction for future work, it is possible the methods developed here to
detect association between event driven data-streams in a defensive context, may
also be used as a form of correlation attack, for example to break anonymisation
protocols when traffic is transmitted via mixing devices [6]. It may also be of
interest to relax the stationarity assumptions of this work, for instance within
a wavelet framework. Indeed an algorithm that could derive the coherence in
a streaming manner would be an important step towards building a practical
anomaly detector.

9



References
[1] N. Duffield, “Sampling for Passive Internet Measurement: A Review,” Sta-

tistical Science, vol. 19, no. 3, pp. 472–498, 2004.

[2] J. Neil, C. Hash, A. Brugh, M. Fisk, and C. C. B. Storlie, “Scan Statistics
for the Online Detection of Locally Anomalous Subgraphs,” Technometrics,
vol. 55, no. 4, pp. 403–414, 2013.

[3] S. Jin, D. S. Yeung, and X. Wang, “Network intrusion detection in covari-
ance feature space,” Pattern Recognition, vol. 40, no. 8, pp. 2185–2197,
2007.

[4] A. Gibberd, M. Evangelou, and J. D. Nelson, “The Time-Varying Depen-
dency Patterns of NetFlow Statistics,” in IEEE International Conference
on Data Mining Workshops, ICDMW, pp. 288–294, 2017.

[5] D. Brillinger, “Moments, Cumulants, and Some Applications to Stationary
Random Processes,” tech. rep., University College Berkley, 1993.

[6] S. J. Murdoch and P. Zieliński, “Sampled Traffic Analysis by Internet-
Exchange-Level Adversaries,” Privacy Enhancing Technologies, pp. 167 –
183, 2007.

[7] N. Baurele and R. Grubel, “Multivariate Counting Processes: Copulas and
Beyond,” Astin Bulletin, vol. 35, no. 2, pp. 379–408, 2005.

[8] D. R. Brillinger, Time Series: Data Analysis and Theory. Philadelphia:
SIAM, 1981.

[9] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk, “A multifrac-
tal wavelet model with application to network traffic,” IEEE Transactions
on Information Theory, vol. 45, no. 3, pp. 992–1018, 1999.

[10] A. Scherrer and N. Larrieu, “Non-gaussian and long memory statistical
characterizations for internet traffic with anomalies,” Dependable and . . . ,
vol. 4, no. 1, pp. 56–70, 2007.

[11] E. A. K. Cohen, “Multi-wavelet coherence for point processes on the real
line,” ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings, no. 2, pp. 2649–2653, 2014.

[12] G. Carter, “Coherence and time delay estimation,” Proceedings of the IEEE,
vol. 75, no. 2, pp. 236–255, 1987.

[13] M. R. Jarvis and P. Mitra, “Sampling Properties of the Spectrum and Co-
herency of Sequences of Action Potentials,” Neural Computation, vol. 749,
pp. 717–749, 2001.

[14] A. D. Kent, “Comprehensive, Multi-Source Cyber-Security Events.” Los
Alamos National Laboratory, 2015.

10



[15] A. D. Kent, “Cybersecurity Data Sources for Dynamic Network Research,”
in Dynamic Networks in Cybersecurity, Imperial College Press, June 2015.

[16] D. R. Brillinger, “The spectral analysis of stationary interval functions,”
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Theory of Statistics, pp. 483–513, 1972.

[17] D. J. Thomson, “Spectrum Estimation and Harmonic Analysis,” Proceed-
ings of the IEEE, vol. 70, no. 9, 1982.

[18] A. Nuttall and G. Carter, “Spectral estimation using combined time and
lag weighting,” Proceedings of the IEEE, vol. 70, no. 9, pp. 1115–1125, 1982.

[19] A. T. Walden, “A unified view of multitaper multivariate spectral estima-
tion,” Biometrika, vol. 87, no. 4, pp. 767–788, 2000.

[20] A. G. Hawkes, “Spectra of Some Self-Exciting and Mutually Exciting Point
Processes,” Biometrika, vol. 58, no. 1, pp. 83–90, 1971.

[21] N. R. Goodman, “Statistical Analysis Based on a Certain Multivariate
Complex Gaussian Distribution (An Introduction),” The Annals of Math-
ematical Statistics, vol. 34, no. 1, pp. 152–177, 1963.

[22] S. Wang and M. Tang, “Exact confidence interval for magnitude-squared
coherence estimates,” Signal Processing Letters, IEEE, vol. 11, no. 3, p. 326,
2004.

[23] L. Enochson and N. Goodman, “Gaussian approximations to the distribu-
tion of sample coherence,” Technical Report, no. June, 1965.

[24] N. Heard, P. Rubin-Delanchy, and D. J. Lawson, “Filtering automated
polling traffic in computer network flow data,” Proceedings - 2014 IEEE
Joint Intelligence and Security Informatics Conference, JISIC 2014,
pp. 268–271, 2014.

11


	1 Introduction
	2 Dataset and Preprocessing
	3 Spectral Coherence as a Measure of Association
	3.1 Estimating the Spectra of Point-Processes
	3.2 Taper Specification

	4 Dependency in Network Traffic
	5 Discussion

