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Abstract—In neuroscience, it is of key importance to assess
how neurons interact with each other as evidenced via their
firing patterns and rates. We here introduce a method of
smoothing the wavelet periodogram (scalogram) in order to
reduce variance in spectral estimates and allow analysis of
time-varying dependency between neurons at different scale
levels. Previously such smoothing methods have only received
analysis in the setting of regular real-valued (Gaussian) time-
series. However, in the context of neuron-firing, observations
may be modelled as a point-process which when binned, or
aggregated, gives rise to an integer-valued time-series. In this
paper we propose an analytical asymptotic distribution for
the smoothed wavelet spectra, and then contrast this, via
synthetic experiments, with the finite sample behaviour of the
spectral estimator. We generally find good alignment with the
asymptotic distribution, however, this may break down if the
level of smoothing, or the scale under analysis is very small. To
conclude, we demonstrate how the spectral estimator can be
used to characterize real neuron-firing dependency, and how
such relationships vary over time and scale.

I. INTRODUCTION

It is often considered to treat neuronal firing patterns as a
multivariate point process {N(t) ≡ (N1(t), ..., Np(t))

′ |t ∈
(0, T ]}, where Ni(t) counts the number of events of class
i for i = 1, . . . , p data-streams up until a point t [Brillinger
et al., 1976, Halliday and Rosenberg, 1999, Jarvis and
Mitra, 2001]. A topic of prevailing interest over the years
[Brillinger, 1992, Ventura et al., 2005, Tang et al., 2015]
has been to investigate how neurons, or groups thereof,
interact under different environmental situations or subject
to stimulation. One very popular measure of association for
neurological time-series is given by the Fourier coherence
[Jarvis and Mitra, 2001, Bartlett, 1963], and traditionally
defined by the correlation of Fourier coefficients, or in
relation to the cross-spectra Sij(f) according to

γ2ij(f) = |Sij(f)|2/Sii(f)Sjj(f) , (1)

for the i and jth stream at frequency ω. However, in many, if
not most settings, one expects that the dependency properties
of firing patterns may change over time, and hence the data
must be assumed to be generated from a non-stationary
process. Unfortunately, since the support of the Fourier series
is not temporally localised, traditional Fourier based methods
fail to characterise these important time-evolving properties.

Wavelet Coherence

To tackle this lack of temporal sensitivity, there has been
an interest in using localised short-time Fourier transform
(STFT) and continuous wavelet transform (CWT) methods
[c.f. Halliday and Rosenberg, 1999, Hramov et al., 2015]
to assess the temporally-localised spectral properties of
neuronal activity. Such methods are well developed in the
traditional time-series setting [c.f. Zhan et al., 2006, Cohen
and Walden, 2010, Bigot et al., 2011], however, are still
relatively unexplored in the point-process setting. To our
knowledge, the preliminary work of Cohen [2014] represents
the first study of the CWT being applied directly to point-
process event data. In this work, by considering a binned
point-process, we take an approach in-between the two
extremes of regular (continuous) time-series analysis, and
that of studying the event data itself.

Specifically, let Xi[k] ≡ Ni(k∆) − Ni((k − 1)∆) be
the count of events in an interval Sk := [(k − 1)∆, k∆),
k ∈ Z, for stream i ∈ {1, ..., p} with binning width
∆. Further, we may define the multivariate count process
X[k] ≡ (X1[k], ..., Xp[k])′ = N(k∆)−N((k−1)∆). Now,
consider the CWT of a continuous time function g(t), where
the wavelet coefficient at shift b′ ∈ R and scale a′ ∈ R is
given as

W (a′, b′; g, ψ) :=
1√
|a′|

∫ ∞
−∞

g(t)ψ∗
(
t− b′

a′

)
dt . (2)

A key quantity of interest in this paper is the set of empirical
wavelet coefficients of the process X̄[k] := X[k]−E{X[k]},
an approximation of the stochastic process {Z(t)} defined
as Z(t) := dN(t)/dt− λ, where λ ≡ E{dN(t)}/dt.

The CWT of {Z(t)} on the finite length time interval
t ∈ (0, T ] can be approximated as a discrete convolution in
the Fourier domain

W (a′, b′;Z,ψ) ' |a
′|1/2

T∆

N/2−1∑
q=−N/2

Z̃T (fq)ψ̃
∗(a′fq)e

i2πb′fq ,

where Z̃T indicates the Fourier transforms of {Z(t)} on
(0, T ], ψ̃ is the Fourier transform of ψ, and fq = q/N for
q = 1, . . . , N with T = N∆. The approximation becomes
accurate as T → ∞ as long as |Z̃T (f)| = 0 for |f | >



fNyq = 1/2∆. Through the further approximation {X̄[k]}
of {Z(t)}, we can consider the discrete Fourier transform
of the binned sequence ˜̄X[q] = ∆

∑N−1
k=0 X̄[k]e−i2πkq/N in

the place of Z̃T (fq) to obtain

V (a∆, b∆;X,ψ) :=
|a|1/2

∆1/2N

N−1∑
q=0

˜̄X[q]ψ̃a[q]ei2πbq/N ,

where a, b ∈ Z are now integer valued, and

ψ̃∗a[q] =

{
ψ̃∗(aq/N) q = 0, . . . , (N/2)− 1

ψ̃∗(a(q −N)/N) q = (N/2), . . . , N − 1
.

We note, as the number of bins in the support of the wavelet
transform goes to infinity, then V (a∆, b∆;X,ψ) becomes
an increasingly accurate approximation W (a∆, b∆;Z,ψ).

To estimate quantities such as the wavelet spectra, or
the wavelet coherence (analogous to Eq. 1), we consider
estimates based on the wavelet periodogram (or scalogram),
this is defined as the outer-product of the empirical (approx-
imate) wavelet coefficients

I(X)[a, b] := V (a∆, b∆;X,ψ)V H(a∆, b∆;X,ψ) .

Furthermore, in order to reduce variance in the estimator, we
will smooth this quantity by averaging over M time-points
in the region of b, i.e.

Ŝ(X)[a, b] := M−1
b+M/2∑

k=b−M/2

I(X)[a, k] . (3)

Contribution

In the previous work of Cohen and Walden [2010] it
was demonstrated that when using the Morlet wavelet,
asymptotically, as a→∞ and T →∞ we have Ŝ(Y )[a, b] '
WC(0, S(Y )(1/a∆)) where one discretely samples a real-
valued second-order stationary Gaussian process {Y (t)}
with Fourier spectra S(Y )(f). In the case of a point-process,
the binned counting process {X[k]} is integer valued, and
necessarily does not provide full coverage of the real line.
In this paper we propose that the asymptotic distribution for
Ŝ(X)[a, b] is similar to that given in Theorem 1, Cohen and
Walden [2010], and that this also holds in the binned point-
process setting, we summarise this proposition below. Note:
all the analysis from here will be formed on the basis that
ψ is given by the Morlet wavelet, this is simply a Gaussian
tapered exponential basis.

Proposition 1 (Asymptotic Distribution of Smoothed Pe-
riodogram). Let {X[k]} be a multivariate second-order-
stationary count process derived from a binned (∆) de-
trended point-process {Z(t)} with true second order Fourier
spectra S(Z)(f) ∈ Cp×p. Under suitable mixing condi-
tions (limited range dependency, as in Assumption 2.1, 2.2
Brillinger, 1972) then the smoothed periodogram for the
Morlet wavelet is complex Wishart distributed

Ŝ(X)[a, b] ,WC{K−1S(Z)(1/a∆),K} ,

0

0.2

0.4

0.6

0.8

1

Figure 1. An example of the processing pipeline, from continuous time
point-process, to wavelet coherence is demonstrated in Figure 1. The shaded
area in the coherence plot represents values in the supported set (a, b) ∈ CT
for κ = 12, ∆=1 and T = 256.

where K is the degrees of freedom and can be calculated
according to the method of Walden 2000, Cohen and Walden
2010.

For the purposes of this paper, we do not consider the
proof of the above, rather, we consider what the sampling
distribution looks like in practice, i.e. in more realistic finite
data settings, and particularly for fine scale levels, or small
binning intervals. We contrast these results with Proposition
1 to assess how reasonable it is to use the asymptotically
derived distribution for inference purposes. We assess the
practicality of this distribution through synthetic experiments
with independent Poisson processes where we know the
true spectral structure. Additionally, we apply the smoothed
discrete time wavelet estimator (3) to real binned neuron-
firing data to examine the ability of the method to detect
and characterise coherent signalling between neurons.

II. THE EMPIRICAL DISTRIBUTION OF THE SMOOTHED
WAVELET SPECTRA

In this section, we assess the distributional properties of
the wavelet spectra under a range of binning, smoothing,
and firing rate parameters. For simplicity, we here utilise in-
dependent Poisson point-processes as the generative model,
thus the true spectra for the process is flat, i.e. S(Z)(f) = λ
for all f . Rather than consider directly the distribution, for
the sake of interpretation we assess the wavelet coherence,
analogously to 1, we define

R̂
(X)
ij [a, b] = |Ŝ(X)

ij [a, b]|2/Ŝ(X)
ii [a, b]Ŝ

(X)
jj [a, b] ,

and let R(X)
ij [a, b] denote the true coherence.

Corollary 2. It follows from Prop. 1 that the estima-
tor is asymptotically (under the same conditions) Good-
man [Goodman, 1963] distributed, i.e. R̂

(X)
ij [a, b] ,

Goodman(R
(X)
ij [a, b],K).

Of course, the suitability of Cor. 2 depends on the
suitability of Prop. 1. In the experiments below we assess the
coverage properties of the proposed asymptotic distribution
(Cor. 2) in the setting where the true coherence is zero,
i.e. R(X)

ij [a, b] = 0 for all [a, b] ∈ CT and CT ⊂ Z2
+ is a



Figure 2. Empirical proportion of coherence estimates that are smaller
than the 95th percentile of the asymptotic distribution for: Top) different
scales a with fixed smoothing parameter κ = 12, K ≈ 10; Bottom)
different smoothing levels κ at the maximum relative scale a/amax = 1.
All experiments performed with fixed bin size ∆ = 1 and Nexp = 10, 000
repetitions.

set of allowable sampling points in the discrete scale-time
plane. Note: the boundary of the set is derived by the level
of smoothing required M , and the approximate support of
the wavelet ψMorlet(t), see the example coherence estimate
in Figure 1, and Cohen and Walden [2010] Section 3 for
details.

Experimental setup

For simplicity, we consider the bivariate p = 2 case with
two independent Poisson point-processes, furthermore, we
assume that λ1 = λ2 . From this, we construct a bivariate
discrete time process {(X1[k], X2[k])′} for k = 1, . . . , N
via binning over intervals of size ∆. In all experiments
we keep T := N∆ = 256 , however, we vary λ and
M = κa the smoothing width to assess how coverage varies
under different levels of smoothing. To calculate the degrees
of freedom K we use the method suggested in Walden
[2000], Cohen and Walden [2010] based on a multi-taper
reformulation of Eq. 3.

The results of this experiment are presented in Figs. 2,
3, which respectively present the empirical proportion of
coherence estimates falling below the 95th percentile of
the asymptotic distribution, and the overall distributional
alignment as assessed via QQ-plot. One immediate thing to
notice is that the coverage of the Goodman derived interval
(nominally set at α = 0.05) appears to be conservative in that
the number of estimates below this level exceeds the nominal
rate. The Goodman derived bounds appear conservative for
a range of both scale levels and smoothing levels. However,
as seen in Fig. 2, it appears that the nominal coverage is
approached as κ and/or a increase. Interestingly, these results
seem robust to the process rate parameter, in fact, as far as
these experiments are concerned the asymptotic distribution
appears to be more appropriate when using a smaller λ
(compare the bottom figures in Fig. 3). The QQ-plot analysis
augments that of the coverage (which may be sensitive to

Figure 3. QQ-plots comparing the theoretical and empirical distribution
for the temporally smoothed wavelet coherence. Top: We compare different
levels of smoothing κ, however, keep the scales similar a ≈ 8 giving rise
to different degrees of freedom. Bottom: A comparison of the distributions
under different firing rates λ, but the same smoothing parameter. In this
case, the degrees of freedom are simillar for both plotted values.

tail values) and provides a broader picture of alignment
between the theoretical and empirical distributions. For large
smoothing values κ = 12 and greater, the alignment seems
very good between theoretical and observed quantiles, this is
not always the case when using smaller smoothing windows
(i.e. smaller values of κ). For instance, the top plots in
Fig. 3 indicate that the observed values systematically lie
below those expected. Not only does this explain some of the
behaviour in the coverage analysis, it also suggests that we
should be careful to use the theoretical Goodman distribution
in low κ settings.

III. WAVELET COHERENCE OF NEURONAL FIRING

In this section we apply the smoothed wavelet coherence
estimator (3) to real neuron-firing data. In this case, we
study a subset of firing data relating to the lateral geniculate
nucleus (LGN) as presented in the study of Tang et al.
[2015]. In that paper, the authors are primarily interested
in characterising the marginal firing properties of neurons in
order to understand how neurons encode and transfer visual
signals. In our case, we will consider second-order neuron-
neuron dependency properties, and how these vary across
scale via the smoothed wavelet spectra. We here consider
again the simple case of p = 2 neurons to illustrate the
method. A full neuroscientific analysis of firing patterns is
beyond the scope of this paper, and as such we defer this to
future work.

Based on the results of Section 2, we here decide to
analyse only a subset of firing recordings which have a
relatively large number of events in each stream. A set of
event traces for the pair of cells presented here is given
in Figure 4. The recordings used start at the time of a
visual intervention, and end approximately T = 2ms later.



Figure 4. Raw event traces from neuron firing flicker experiment as
described in Tang et al. [2015].
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Figure 5. Top: Mean coherence, averaged across Ntrial = 200 recordings
displayed in Fig. 4. Bottom: Proportion of estimates that are larger than the
upper 90th percentile when κ = 12.

Furthermore, each experiment is repeated a number of times,
if we allow ourselves to generalise across experimental trials
then we can compare the estimated coherence with what we
would expect under a null hypothesis of zero dependence.
Our findings are summarised in Fig. 5, where we plot the
average coherence across all trials, and additionally, the
number of estimates which exceed the α = 0.1 point-
wise critical value derived from the Goodman distribution.
Although, we only report the results here from the de-
trended series X̄[k] derived at binning level ∆ = 0.00782ms
(which gives N = 256), we also assessed the coherence at
a larger binning level, and using the raw (non-zero mean)
process X[k], the overall patterns observed in coherence
were broadly consistent across these various settings.

Although we have only considered a single pair of neurons
in this example, the results are still potentially quite inter-
esting, and illustrate the utility of the wavelet methodology,
i.e. to characterise how dependency may vary across time.

Clearly, we see some examples of this in the given example,
where a coherent region is detected around 1.4ms (at scale
a ≈ 0.04) into the recording. Given the relatively low
number of events in a single trial, in this example we
report the number of coherence estimates R̂12(a, b) which
violate the 90th percentile of the null (R = 0) Goodman
distribution, i.e. significance level α = 0.1. If there was
zero coherence, we may expect this proportion to be around
0.1, which appears consistent with the start of the recording
period (0.4-1ms). However, as we move to the latter stages
of the recording, we see evidence for coherent signalling
indicated by the fact that around 30-40% of the estimates in
this region violate the 90th percentile of the null (R = 0)
Goodman distribution.

IV. CONCLUSION

In this paper, we have presented what we believe to
be the first systematic study of the temporally smoothed
wavelet coherence estimator applied to a discretised point-
process. The aim of the work was to assess how appro-
priate the asymptotic distribution derived in the Gaussian,
regular, time-series setting were to this kind of multivariate
count time-series data. Our synthetic results verify that
the temporally smoothed wavelet coherence can often be
treated as being Goodman distributed under sampling. We
verified, in the context of a Poisson process, that the rate
parameter had little impact on the match of the empirical
and asymptotic distributions. Further work is needed here
to assess the behaviour of the estimator when correlation
structure is present. For instance under self-exciting Hawkes,
or Cox processes [Hawkes, 1971, Cox, 1955], or even locally
stationary processes [Park et al., 2014, Gibberd and Nelson,
2016, Roueff et al., 2016].

In practice, we applied the estimator to a set of neuron
firing data. An example of a complex, possibly dependent,
non-stationary process. In this setting, we compared the
estimated (temporally smoothed) coherence against the dis-
tribution expected under the null hypothesis of a stationary,
independent process with zero true coherence. Even in the
case where we have very few points, we demonstrated a
method to assess evidence against the null by plotting the
ratio of significant coherence estimates at the α level. This
method indicates that while the neuron firing, in this case
started off appearing incoherent, after some short time period
(≈1.4ms) coherent signalling may develop. Future work
should look at a more systematic study of these developing
correlation structures from a neuroscience perspective. We
may also consider applying the temporally smoothed wavelet
estimator directly to the event data itself, i.e. with no binning
and comparing to alternative methods such as the recent
smoothing proposal by Halliday et al. [2018].
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