In Situ Mechanical Analysis of Sludge in Hazardous Environments

Tomas Frieda,b, David Chenelera, Stephen Monka, James Taylora, Jonathan Doddsb

a Lancaster University, Bailsgate, Lancaster, United Kingdom, LA1 4YF, b National Nuclear Laboratory, Warrington Laboratory, Hawkshead Road, Davenham House, Warrington, United Kingdom, WA4 4QH

1. T.Fried@lancaster.ac.uk, d.cheneler@lancaster.ac.uk, s.monk@lancaster.ac.uk, c.taylor@lancaster.ac.uk, j.dodds@lancaster.ac.uk

Abstract

In situ mechanical analysis of sludge in hazardous environments is critical for the management of nuclear decommissioning sites. This work presents a novel viscometer prototype capable of in situ measurement of sludge properties, enabling continuous monitoring and improved decision-making during decommissioning activities.

Introduction and Aims

- Self-sufficed site is a nuclear decommissioning and reprocessing facility in the United Kingdom (Figure 1).
- Challenges include legacy storage tanks and sites.
- Unknown mechanical properties of remnant materials, sludge is radioactive material, often in chemically aggressive solution.
- Limited entry points, large distances to cover for further complicates sampling.

In Situ Viscometer Prototype

- Commercial off the shelf components, 3D printed parts (Figure 2).
- Devoid 2 electronic components deployed in situ (Figure 3).
- Stepper motor, inside raw recovery process, for taking analysis geometry.
- Single sensor based measurement without sensitive electronics.
- Modular, easily serviceable design, scalable to application.

Control and Data Acquisition

- Mains or AA battery powered and portable (430 mAh current draw).
- Arduino based microcontroller, commercial components, Arduino IDE based control and data acquisition code, and USB connectivity.
- Sensor, components detached from hazardous environments, device physically tethered.
- Non-active side electronics re usable.

Deployment advantages

- Improved mechanism function, proportionally lower losses.
- Best comparison with scientific, conventional instruments.
- Single sensor based measurement without sensitive electronics.
- Great settling, shear thinning behaviour.

Fig. 1: Sellafield, nuclear decommissioning and reprocessing facility in Cumbria, United Kingdom (1).

ISO Std
ISO Vane
Vane 1
Vane 2
Vane 3

Fig. 2: Non-invasive geometries used with the prototype.

Calibration

- Prototype calibrated using silicone viscosity standard oil (Figure 6).
- Effect of possible secondary flows not observed with non-standard geometry, expected only with Vane 3.
- Calibration doesn't indicate differences in performance using non-standard against ISO standard geometries.
- ISO geometries best for higher shear stress consistency.
- Non-standard geometry suitable for low shear stress detection.

Fig. 3: Schematic of the electronic control system.

Viscosity measurement comparison between the prototype with Vane 3 and the Bohlin CVO200 rheometer with T05, suspensions

Fig. 4: Performance comparison between two different geometries using similar samples of T05, suspensions.

Conclusions and Future Work

- Prototype exhibits predictable, repeatable behaviour with Newtonian substances.
- Non-standard measurement geometry requires lower material height, improving the low shear-stress regimes.
- Risk of secondary flows at higher shear rates.
- Measurement appropriate for yield stress analysis.
- Deployment in situ decreases disturbing sample structure, offers more realistic view of material properties.
- Device eliminates need for sampling, reduces risk, low cost ($300), compact design maximises deployment potential.

Further development steps

- Irradiation testing.
- Validation with high viscosity test materials.
- Built-in density measurement and material level detection.
- Improved low shear stress performance.
- Bespoke mechanism drive design.
- User interface development with real-time data analysis.

Acknowledgements

This work has been supported by the Centre for Innovative Nuclear Decommissioning (CIND), which is led by the National Nuclear Laboratory, in partnership with Sellafield Ltd and a network of Universities that includes the University of Manchester, Lancaster University, the University of Liverpool and the University of Cumbria.

Fig. 5: Experimental setup with the prototype. Left to right: Data acquisition board, power supply, sensor control unit, sensor unit device.

References

- Limited entry points, large distances to cover further complicates sampling.
- Self-sufficed site is a nuclear decommissioning and reprocessing facility in the United Kingdom (Figure 1).
- Challenges include legacy storage tanks and sites.
- Unknown mechanical properties of remnant materials, sludge is radioactive material, often in chemically aggressive solution.
- Limited entry points, large distances to cover for further complicates sampling.

ISO Std
ISO Vane
Vane 1
Vane 2
Vane 3

Fig. 6: Calibration of the prototype with a 1 000 mPa•s oil and Vane 3.

Fig. 7: Shear stress output comparison between the prototypes with Vane 3 and the Bohlin CVO200 rheometer with T05, suspensions.

Fig. 8: Viscosity measurement comparison between the prototype with Vane 3 and the Bohlin CVO200 rheometer with T05, suspensions.

Fig. 9: Performance comparison between two different geometries using similar samples of T05, suspensions.