

Introduction and Aims

- Sellafield site is a nuclear decommissioning and reprocessing facility in the United Kingdom (Figure 1)
- Challenges include legacy storage tanks and silos
- Uncertain mechanical properties of remnant materials, sludge is radioactive material, often in chemically aggressive solution
- Limited entry points, large distances to cover further complicate sampling

Fig. 1: Sellafield, nuclear decommissioning and reprocessing facility in Cumbria, United Kingdom [1]

- Aim is to design and develop a robust device capable of *in situ* analysis of shear behaviour, with following characteristics:
- Compact design, must fit through 50 mm opening
- Non-sampling measurement capability
- Gamma radiation and chemically resistant design
- Low cost with consideration for disposal
- Aims support current industry challenges and needs
- Robust, versatile design intended for use in wide variety of sites
- Eliminating need for sampling reduces risk, costs
- Data will support ascertaining appropriate procedures for cleanup and decommissioning, can be used for optimising downstream solutions as well
- Possible cross-industry applications for research output

Fig. 2: Laboratory scale prototype for *in situ* shear behaviour analysis

- Commercial off the shelf components, 3D printed parts (fused deposition modelling—Figure 2)
- Only 2 electronic components deployed *in situ* (Figure 3)
- Single sensor based measurement without sensitive electronics
- Stepper motor, inside protective case, driving analysis geometry • Modular, easily serviceable design, scalable to application

- Vane type shear viscometry with easily changeable measurement geometries (4 blade vanes and cylinders—Figure 4)
- Validated with ISO/DIN standard geometry
- Non-standard geometries (L/r > 3) tested as well
- State of the art, chemically resistant 3D printed polymers (glass fibre reinforced polypropylene)
- Final prototype may be made from 3D printed metal

- ISO standard geometry
- Best comparison with scientific, conventional instruments
- Non-standard geometry
- Improved mechanism function, proportionally lower losses Deployment advantages—less material required for analysis Less sensitive to manufacturing and assembly imperfections

References

In Situ Mechanical Analysis of Sludge in Hazardous Environments

Tomas Fried^{a,b}, David Cheneler^a, Stephen Monk^a, James Taylor^a, Jonathan Dodds^b

^aLancaster University, Bailrigg, Lancaster, United Kingdom, LA1 4YW, ^bNational Nuclear Laboratory, Havelock Road, Derwent Howe, Workington, United Kingdom, CA14 3YQ t.fried@lancaster.ac.uk, d.cheneler@lancaster.ac.uk, s.monk@lancaster.ac.uk, c.taylor@lancaster.ac.uk, jonathan.m.dodds@nnl.co.uk

In Situ Viscometer Prototype

Fig. 3: Experimental setup with the prototype. Left to right: Data acquisition laptop, power supply, external control unit, viscometer device

Fig. 4: Bob and vane geometries used with the prototype

Control and Data Acquisition

- Mains or AA battery powered and portable (<300 mA current draw)
- device physically tethered
- Non-active side electronics reusable

- Prototype calibrated using silicone viscosity standard oil (Figure 6) • Effect of possible secondary flows not observed with non-standard geometry, expected only with Vane 3
- Calibration doesn't indicate differences in performance using nonstandard against ISO standard geometries
- ISO geometries best for higher shear stress consistency
- Non-standard geometry suitable for low shear stress detection

 Arduino based micro-controller, commercial components, Arduino IDE based control and data acquisition code, and USB connectivity Sensitive components detached from hazardous environments,

Calibration

- has been used as initial test material
- suspension $\phi = 0.40 0.45$
- Quick settling, shear thinning behaviour

- rheometer (Bohlin CVO100)
- the largest geometry—Vane 3
- prototype reports increase in viscosity

NATIONAL NUCLEAR LABORATORY