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Introduction and Aims 
• Sellafield site is a nuclear decommissioning and reprocessing 

facility in the United Kingdom (Figure 1) 

• Challenges include legacy storage tanks and silos 

• Uncertain mechanical properties of remnant materials, sludge is 
radioactive material, often in chemically aggressive solution 

• Limited entry points, large distances to cover further complicate 
sampling 

Control and Data Acquisition In Situ Viscometer Prototype Laboratory Tests Conclusions and Future Work 

• Aim is to design and develop a robust device capable of in situ 
analysis of shear behaviour, with following characteristics: 

• Compact design, must fit through 50 mm opening 

• Non-sampling measurement capability 

• Gamma radiation and chemically resistant design 

• Low cost with consideration for disposal 

• Aims support current industry challenges and needs 

• Robust, versatile design intended for use in wide variety of sites 

• Eliminating need for sampling reduces risk, costs 

• Data will support ascertaining appropriate procedures for clean-
up and decommissioning, can be used for optimising 
downstream solutions as well 

• Possible cross-industry applications for research output 

• Commercial off the shelf components, 3D printed parts (fused 
deposition modelling—Figure 2) 

• Only 2 electronic components deployed in situ (Figure 3) 

• Stepper motor, inside protective case, driving analysis geometry 

• Single sensor based measurement without sensitive electronics  

• Modular, easily serviceable design, scalable to application 

• Mains or AA battery powered and portable (<300 mA current draw) 

• Arduino based micro-controller, commercial components, Arduino 
IDE based control and data acquisition code, and USB connectivity 

• Sensitive components detached from hazardous environments, 
device physically tethered 

• Non-active side electronics reusable  

• Vane type shear viscometry with easily changeable measurement 
geometries (4 blade vanes and cylinders—Figure 4) 

• Validated with ISO/DIN standard geometry 

• Non-standard geometries (L/r > 3) tested as well 

• State of the art, chemically resistant 3D printed polymers (glass 
fibre reinforced polypropylene) 

• Final prototype may be made from 3D printed metal 

• Titanium dioxide powder (anatase) suspended in de-ionised water 
has been used as initial test material 

• Average particle size roughly 350 μm, volume fraction of 
suspension ϕ=0.40—0.45 

• Quick settling, shear thinning behaviour 
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Fig. 2: Laboratory scale prototype for in situ shear behaviour analysis 

Fig. 4: Bob and vane geometries used with the prototype 

Fig. 5: Schematic of the electronic control system 

Fig. 8: Shear stress output comparison between the prototype with Vane 

3 and the Bohlin CVO100 rheometer with TiO2 suspension 

Calibration 
• Prototype calibrated using silicone viscosity standard oil (Figure 6) 

• Effect of possible secondary flows not observed with non-standard 
geometry, expected only with Vane 3 

• Calibration doesn’t indicate differences in performance using non-
standard against ISO standard geometries 

• ISO geometries best for higher shear stress consistency 

• Non-standard geometry suitable for low shear stress detection 

Fig. 6: Calibration of the prototype with a 1 000 mPa·s oil and Vane 3 

Fig. 7: Performance comparison between two different geometries using 

similar samples of TiO2 suspensions  

• Performance of prototype compared with conventional, benchtop 
rheometer (Bohlin CVO100) 

• Highest precision, lowest deviation between measurements with 
the largest geometry—Vane 3 

• Smaller geometries not suitable for low viscosity samples 

• Possibility of Taylor vortices effects at higher shear rates (>50 s-1), 
prototype reports increase in viscosity 

• Prototype consistently reports shear thinning behaviour 

• ISO standard geometry 

• Best comparison with scientific, conventional instruments 

• Non-standard geometry 

• Improved mechanism function, proportionally lower losses 

• Deployment advantages—less material required for analysis 

• Less sensitive to manufacturing and assembly imperfections 

Fig. 1: Sellafield, nuclear decommissioning and reprocessing facility in 

Cumbria, United Kingdom [1] 

• Prototype exhibits predictable, repeatable behaviour with 
Newtonian substances 

• Non-standard measurement geometry requires lower material 
height, improving the low shear-stress response  

• Risk of secondary flows at higher shear rates 

• Measurement appropriate for yield stress analysis 

• Deployment in situ decreases disturbing sample structure, offers 
more realistic view of material properties 

• Device eliminates need for sampling, reduces risk, low cost ($300), 
compact design maximises deployment potential 

Fig. 3: Experimental setup with the prototype. Left to right: Data acquisi-

tion laptop, power supply, external control unit, viscometer device 

Fig. 9: Viscosity measurement comparison between the prototype with 

Vane 3 and the Bohlin CVO100 rheometer with TiO2 suspension 

• Further development steps 

• Irradiation testing 

• Validation with high viscosity test materials 

• Built-in density measurement and material level detection 

• Improved low shear stress performance 

• Bespoke mechanism drive design 

• User interface development with real time data analysis 


