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Abstract 

In this paper we consider the modelling and optimal control of queues of aircraft waiting to use 

the runway(s) at airports, and present a review of the related literature.  We discuss the 

formulation of aircraft queues as nonstationary queueing systems and examine the common 

assumptions made in the literature regarding the random distributions for inter-arrival and 

service times.  These depend on various operational factors, including the expected level of 

precision in meeting pre-scheduled operation times and the inherent uncertainty in airport 

capacity due to weather and wind variations.  We also discuss strategic and tactical methods for 

managing congestion at airports, including the use of slot controls, ground holding programs, 

runway configuration changes and aircraft sequencing policies. 

Keywords: Aviation; Queueing systems; Stochastic modelling 

1. Introduction  

Many of the busiest airports around the world experience very high levels of traffic congestion 

for lengthy periods of time during their daily operations.  This is due to a rapid growth in 

demand for air transport services, combined with physical and political constraints which 

usually prevent the expansion of airport infrastructure in the short-term.  Congestion increases 

the likelihood of flights being delayed, and these delays may propagate throughout an airport 

network, with serious financial consequences for airlines, passengers and other stakeholders 

(Pyrgiotis et al, 2013).  As airport slot coordinators and traffic controllers strive to improve the 

efficiency of their operations, there is considerable scope for new and innovative mathematical 

modelling techniques to offer valuable insight. 

The capacity of the runway system represents the main bottleneck of operations at a busy airport 

(de Neufville and Odoni, 2013).  When demand exceeds capacity, queues of aircraft form either 

in the sky (in the case of arriving aircraft) or on the ground (in the case of departures).  The 

purpose of this paper is to present a concise review of the methods used by researchers to model 

aircraft queues since research in this area began in earnest about 60 years ago.  Aviation in 

general is currently a very active research area, and our review will touch upon some of the 

wider topics that are closely related to aircraft queue modelling, including demand management 

strategies and the potential of strategic and tactical interventions to improve the utilisation of 

scarce resources at airports.  Thus, we intend to discuss aircraft queues not only from a 

mathematical modelling perspective, but also in the context of the optimisation problems 

frequently posed in the literature. 
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Of course, queueing theory itself is also a vast topic and there is no common agreement on 

which of the classical models (if any) are most appropriate in the context of air traffic.  Classical 

queueing theory texts such as Kleinrock (1975) tend to focus on models which are 

mathematically tractable, such as those with Markovian distributions for customer inter-arrival 

times and/or service times.  Generally, closed-form “steady-state” expressions for expected 

queue lengths, waiting times and other performance measures are available only in cases where 

the parameters of these distributions are stationary and customer arrival rates do not exceed 

service rates.  However, demand for runway use at a typical airport varies considerably during 

the day according to the schedule of operations, and runway throughput rates may be affected 

by weather conditions, sequencing rules and other factors.  Moreover, demand rates may exceed 

capacity limits for extended periods of time at busy hub airports (Barnhart et al, 2003).  We 

therefore need to consider time-dependent queues, for which steady-state results are of limited 

practical use (Schwarz et al, 2016). 

In general, two of the most important characteristics of a queueing system are the customer 

arrival and customer service processes.  We therefore organise this paper in such a way that 

these processes are discussed in Sections 2 and 3 respectively.  Other, more application-specific 

aspects of modelling air traffic queues, including the effects of weather conditions and 

approaches for modelling airport networks, are discussed in Section 4.  In Section 5 we provide 

a summary and discuss possible directions for future research. 

2. Modelling demand for runway usage at airports 

This section is divided into two parts.  The first part focuses on the modelling assumptions often 

made regarding demand processes at airports, and the second part discusses related optimisation 

problems which frequently attract attention in the literature. 

2.1.  Modelling assumptions 

Throughout this section we are concerned with the processes by which aircraft join queues 

waiting to use the runway(s) at airports.  In the case of departing aircraft, these queues are 

located on the ground, usually at the threshold of the departure runway(s).  Arriving aircraft, on 

the other hand, must wait in airborne “holding stacks” which are usually located near the 

terminal airspace, although in some cases they may also be “held” at other stages of their 

journeys by air traffic controllers (to control the flow of traffic into a congested air sector, for 

example).  In many cases, a plane which lands at an airport will take off again (not necessarily 

from the same runway) within a couple of hours.  This implies that the demand processes for 

arrivals and departures are not independent of each other, but in fact it is quite common in 

existing mathematical models for arrivals and departures to be treated as independent queues 

with time-varying demand rates which are configured according to the schedule of operations.  

The assumption of independence is undoubtedly an oversimplification, but it may not be 

particularly harmful if one considers a large airport with separate runways being used for 

arrivals and departures (this system is referred to as “segregated operations” and is used at 

London Heathrow, for example). 
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Nonhomogenous Poisson processes (i.e. those with time-varying demand rates) were first used 

by Galliher and Wheeler (1958) to model the arrivals of landing aircraft at an airport.  They 

used a discrete-time approach to compute probability distributions for queue lengths and 

waiting times.  Subsequently, the Poisson assumption became very popular.  Koopman (1972) 

considered the case of arrivals and departures sharing a single runway and modelled the Poisson 

arrival rates for both operation types as not only time-dependent but also state-dependent, with 

the two-dimensional state consisting of the queue lengths for arrivals and departures.  This 

model allows for the possibility of “controlled” demand rates, whereby the demand placed on 

the system is reduced during peak congestion hours. 

Hengsbach and Odoni (1975) extended Koopman’s approach to the case of multiple-runway 

airports, and claimed that the nonhomogeneous Poisson model was consistent with observed 

data from several major airports.  Subsequently, Dunlay and Horonjeff (1976) and Willemain 

et al (2004) used case studies to provide further evidence in support of the Poisson assumption.  

In the last few decades, nonhomogeneous Poisson processes have been widely adopted for 

queues of arrivals and departures at single airports (Kivestu, 1976; Bookbinder, 1986; Jung and 

Lee, 1989; Daniel, 1995; Hebert and Dietz, 1997; Fan, 2003; Mukherjee et al, 2005; Lovell et 

al, 2007; Stolletz, 2008; Jacquillat and Odoni, 2015a; Jacquillat et al, 2017) and also at 

networks of airports (Malone, 1995; Long et al, 1999; Long and Hasan, 2009; Pyrgiotis et al, 

2013; Pyrgiotis and Odoni, 2016). 

In case studies which rely on the nonhomogeneous Poisson model, the question arises as to how 

the demand rate functions for arrivals and departures – which we will denote here by 𝜆𝑎(𝑡) and 

𝜆𝑑(𝑡) respectively – should be estimated.  The schedule of operations for a single day at an 

airport can be used to aggregate the numbers of arrivals and departures expected to take place 

in contiguous time intervals of fixed length – for example, 15 minutes or one hour.  The 

approach of Hengsbach and Odoni (1976) was to model 𝜆𝑎(𝑡) and 𝜆𝑑(𝑡) as piecewise linear 

functions, obtained by aggregating scheduled operations over each hour and then connecting 

the half-hour points using line segments, as shown in Figure 1.  Various alternative data-driven 

methods can be devised.  Jacquillat et al (2017) modelled 𝜆𝑎(𝑡) and 𝜆𝑑(𝑡) as piecewise constant 

over 15-minute intervals, while Bookbinder (1986) used hourly data but relied on a three-point 

moving average method to remove “jump discontinuities” in the demand rates which would 

otherwise occur at the end of each hour. 

Of course, airlines operate flights according to pre-defined schedules, so it is reasonable to 

question whether the Poisson assumption (which implies memoryless inter-arrival times) 

actually makes sense in this context.  Various arguments can be put forward to make the case 

that, in practice, inter-arrival (and inter-departure) times are ‘sufficiently random’ for the 

Poisson model to be valid.  For example, Pyrgiotis (2011) argues that large deviations from 

scheduled operations can occur as a result of flight cancellations, delays at “upstream” airports, 

gate delays for departures, variability of flight times due to weather and winds, etc.   These 

deviations have the effect of “randomising” actual queue entry times.  

 

Stochastic Processes and their Application

63



Shone, Glazebrook and Zografos 

 

 

 

 

 

 

 

 

 

 

Figure 1:  A piecewise linear, continuous function 𝜆(𝑡), obtained by interpolating between half-hour    

points on a bar chart showing hourly demand.  The function 𝜆(𝑡) can be used as the demand 

function for a nonhomogeneous Poisson process. 

Nevertheless, it is no surprise that various authors have challenged the Poisson assumption.  In 

recent years, several authors have cited the development of the Next Generation Air 

Transportation System (NextGen) in the US as a possible reason for abandoning the Poisson 

model in the future.  The NextGen system, which is expected to be fully in place by 2025,  will 

allow four-dimensional trajectory-based operations (TBO).  This should allow arrivals and 

departures to meet their scheduled operating times with greater precision (Joint Planning and 

Development Office, 2010).  There is a similar ongoing project in Europe, known as Single 

European Sky ATM Research or SESAR (European Commission, 2014).  In the light of these 

developments, there is considerable interest in modelling demand processes which have less 

variability than Poisson processes.  Nikoleris and Hansen (2012) argued that the Poisson model 

cannot capture the effects of different levels of trajectory-based precision, because the variance 

in inter-arrival times is simply determined by the rate parameter.  In a related piece of work, 

Hansen et al (2009) considered deterministic and exponentially-distributed inter-arrival times 

(both with time-varying rates) as two opposite extremes for the level of precision in meeting 

pre-scheduled operation times, and used case studies to show that the deterministic case could 

yield delay savings of up to 35%. 

One type of demand process which has gained significant attention in recent years is the “pre-

scheduled random arrivals” (PSRA) process.  In PSRA queueing systems, customers have pre-

scheduled arrival times but their actual arrival times vary according to random 

earliness/lateness distributions; for example, deviations from scheduled times may be normally 

or exponentially distributed.  PSRA queues have been studied since the late 1950s (Winsten, 

1959; Mercer, 1960), but their application to aircraft queues is a relatively recent development.  

An advantage of using the PSRA model is that variances of arrival and departure times can be 

controlled by choosing appropriate parameters for the earliness/lateness distributions, and this 

may be useful for modelling the more precise operation times expected under the NextGen and 
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SESAR systems.  One disadvantage, however, is that PSRA queues are more difficult to study 

analytically, and indeed they are quite different from many of the classical models usually 

studied in queueing theory since inter-arrival times are neither independent nor identically 

distributed.  

Guadagni et al (2011) made explicit comparisons between Poisson and PSRA demand 

processes and pointed out that PSRA queues exhibit negative autocorrelation, in the sense that 

time intervals which experience fewer arrivals than expected are likely to be followed by time 

periods with more arrivals than expected.  Jouini and Benjaafar (2011) also made some progress 

in proving analytical properties of PSRA systems with heterogeneous customers and possible 

cancellations, although their model assumes that earliness/lateness distributions are bounded in 

such a way that customers are guaranteed to arrive in order of their scheduled times, which may 

not be suitable in an airport context.  Caccavale et al (2014) used a PSRA model to study 

inbound traffic at Heathrow Airport, and argued that Poisson processes are a poor model for 

arrivals at a busy airport since, in practice, the arrivals stream is successively rearranged 

according to air traffic control (ATC) rules.  Gwiggner and Nagaoka (2014) compared a PSRA 

model with a Poisson model using a case study based on Japanese air traffic, and found that the 

two models exhibited similar behaviour in systems with moderate congestion, but deviated from 

each other during high congestion.  Lancia and Lulli (2017) studied the arrivals process at eight 

major European airports and found that a PSRA model with nonparametric, data-driven delay 

distributions provided a better fit for the observed data than a Poisson model. 

Although time-dependent Poisson, deterministic and PSRA processes are by far the most 

popular choices for modelling aircraft queues found in the literature, a handful of other 

approaches have also been proposed.  Krishnamoorthy et al (2009) considered “Markovian 

arrival processes” (MAPs), which generalise Poisson processes and can be studied using matrix 

analytic methods.  Some authors have used observed data to fit nonparametric distributions for 

arrival and/or departure delays (Tu et al, 2008; Kim and Hansen, 2013).  Finally, although our 

discussion throughout this section has focused on the use of time-dependent distributions, a 

number of authors have considered stationary demand processes (e.g. homogeneous Poisson 

processes) and attempted to gain insight by modelling aircraft as customers of different job 

classes (Rue and Rosenshine, 1985; Horonjeff and McKelvey, 1994; Bolender and Slater, 2000; 

Bauerle et al, 2007; Grunewald, 2016). 

2.2.  Optimisation Problems 

Demand-related optimisation problems at airports are based on managing patterns of demand 

in such a way that the worst effects of congestion are mitigated, while at the same time the level 

of service provided (in terms of flight availability, punctuality, etc.) remains acceptable to 

passengers and other airspace users.  Demand management strategies can be implemented at 

the strategic level, as part of an airport’s schedule design (which usually takes place several 

months in advance of operations) or at the tactical level, by making adjustments to aircraft flight 

plans in real time in order to prevent particular airports or airspace sectors from becoming 

heavily congested at certain times of day. 
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The busiest airports outside the US fall into the category of slot-controlled (level 3) airports, 

which means that airlines intending to use these airports for take-offs or landings must submit 

requests for time slots (typically 15 minutes long) during which they have permission to use 

the runways and other airport infrastructure.  Although the US does not implement slot controls 

in the same manner, a small number of its airports are subject to the ‘high density rule’, which 

imposes hourly capacity limits (Madas and Zografos, 2006).  Since slot allocation is usually 

carried out with a broad set of objectives in mind (including the need to design schedules which 

satisfy airlines’ requirements as equitably as possible), the resulting schedules do not always 

insure effectively against the danger of severe operational (queueing) delays occurring in 

practice.  For example, if too many flights are allocated to a small set of consecutive time slots, 

the consequences for airport congestion levels may be catastrophic.  Thus, there is a need for 

demand management strategies to ensure that congestion mitigation is included as part of the 

slot allocation procedure. 

Various authors (Barnhart et al, 2012; Swaroop et al, 2012; Zografos et al, 2012) have 

commented on the inherent trade-off that exists between schedule displacement and operational 

delays, as illustrated by Figure 2.  At slot-controlled airports, certain time slots tend to be more 

sought-after by airlines than others.  As a result, flight schedules which conform closely to 

airline requests are likely to result in large ‘peaks’ in demand at certain times of day.  These 

schedules incur only a small amount of schedule displacement, since the requests from airlines 

are largely satisfied; however, severe operational delays are likely to be caused by the peaks in 

demand.  Conversely, operational delays can be reduced by smoothing (or ‘flattening out’) the 

schedule to avoid such peaks, but this generally involves displacing flights to a greater extent 

from the times requested by airlines. 

A useful survey of demand management strategies that have been implemented around the 

world is provided by Fan and Odoni (2002).  These strategies can generally be divided into two 

categories: administrative and market-based.  Administrative strategies involve setting ‘caps’ 

on the numbers of runway operations that can take place at an airport in a single time period, 

or a number of consecutive time periods.  These ‘caps’ may apply to arrivals, departures or 

both, and are usually referred to in the aviation community as declared capacities (Zografos et 

al, 2017).  The relevant optimisation problems involve deciding how these caps should be set 

optimally in order to ensure a satisfactory trade-off is achieved between congestion levels 

(which are usually modelled stochastically) and airlines’ operational needs (Swaroop et al, 

2012; Churchill et al, 2012; Corolli, 2013).  On the other hand, market-based strategies are 

based on using economic measures such as congestion pricing and slot auctions to relieve 

congestion during peak periods (Andreatta and Odoni, 2003; Fan, 2003; Pels and Verhoef, 

2004; Mukherjee et al, 2005; Ball et al, 2006; Andreatta and Lulli, 2009; Pellegrini et al, 2012).  

A number of authors have directly compared administrative and market-based strategies using 

analyses and/or case studies (Brueckner, 2009; Basso and Zhang, 2010; Czerny, 2010; Gillen 

et al, 2016). 
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Figure 2:  The trade-off between schedule displacement and operational delays. 

As mentioned earlier, demand management can also be done at a tactical level.  Ground-holding 

programs can be used to delay departing aircraft in order to ensure that they do not arrive at 

their destination airports during periods of high congestion.  This not only relieves congestion 

at busy airports, but also has the benefit of preventing aircraft from wasting too much fuel by 

being forced to wait in airborne holding stacks.  In the broader realm of air traffic flow 

management (ATFM), aircraft can be directed by air traffic controllers to delay their arrivals at 

congested airports or air sectors by adjusting their speeds or routes.  Optimisation problems 

related to ground-holding programs and ATFM operations have been well-studied in the 

literature.  These problems usually do not involve stochastic queue modelling, but they do 

commonly take account of the uncertainty caused by weather conditions, enroute congestion 

etc. by incorporating probabilistic “capacity profiles” for destination airports and incorporating 

the probabilities for different capacity scenarios within optimisation models such as integer 

linear programs (ILPs).  Some notable references include Terrab and Odoni (1992), Richetta 

and Odoni (1993), Vranas et al (1994), Richetta (1995), Bertsimas and Stock (1998), Hall 

(1999), Ball et al (2003), Inniss and Ball (2004), Kotnyek and Richetta (2006), Lulli and Odoni 

(2007), Mukherjee and Hansen (2007), Liu et al (2008), Balakrishnan and Chandran (2014). 

Stochastic Processes and their Application

67



Shone, Glazebrook and Zografos 

 

3. Modelling capacity and runway throughput at airports 

This section is organised in a similar way to Section 2.  The first part focuses on modelling 

assumptions related to capacity and runway throughput rates at airports, and the second part 

discusses some relevant optimisation problems. 

3.1.  Modelling assumptions 

An airport’s capacity can be defined as the expected number of runway movements (either 

arrivals or departures) that can be operated per unit time under conditions of continuous demand 

(de Neufville and Odoni, 2013).  It is very important to estimate an airport’s capacity accurately, 

since long queues of aircraft waiting to use the runway(s) may form as a result of imbalances 

between demand and capacity, and therefore capacity modelling must be used to inform the 

demand management strategies discussed in Section 2.2.  However, an airport’s capacity is not 

simply a fixed quantity, but instead is time-varying and depends on a number of factors.   

Adverse weather conditions might increase the separation requirements between consecutive 

arriving aircraft, while strong winds may prevent certain runways from being used.  

Additionally, runway movements might be restricted at certain times of day due to noise 

considerations.  For example, at Heathrow Airport, the period between 11:30pm and 6:00am is 

known as the “Night Quota Period”, with traffic restrictions imposed by the Department for 

Transport (Heathrow Airport, 2018). 

Blumstein (1959) produced a seminal paper in which he explained how to calculate the landing 

capacity of a single runway (i.e. when it is used for arrivals only) based on aircraft speeds and 

separation requirements.  Hockaday and Kanafani (1974) generalised Blumstein’s work by 

deriving expressions for the capacity of a single runway under three different modes of 

operation: arrivals only, departures only and mixed operations.  Newell (1979) showed how to 

extend these analyses to airports with multiple runways under various different configurations.  

A key principle which emerged from these early contributions was the importance of taking 

into account different possible fleet mixes and sequencing strategies.  When one runway 

movement is followed by another, the movements in question are subject to a minimum time 

separation which depends not only on the types of movements involved (arrivals or departures), 

but also on the types of aircraft.  To be more specific, aircraft can be categorised into different 

‘weight classes’.  Heavy aircraft generate a lot of wake turbulence, which can be dangerous to 

lighter aircraft following too closely behind (Newell, 1979).  Therefore, in airport capacity 

calculations, one must take into account the relative expected frequencies of different ‘weight 

pairs’ (e.g. heavy-light, heavy-heavy, etc.) and use these to calculate average time separations 

between movements. 

Gilbo (1993) developed the idea of the runway capacity curve (referred to by subsequent 

authors as a “capacity envelope”), as shown in Figure 3.  This curve represents the departure 

capacity of an airport as a convex, nonincreasing function of the arrival capacity.  The shape of 

the curve depends on various time-varying factors, including weather conditions, the runway 

configuration in use and the aircraft fleet mix.  However, the essential principle is that each 

point on the capacity envelope represents a feasible pair of capacity values for arrivals and 
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departures during the time period for which the envelope applies.  Various authors have 

provided detailed descriptions of how airport capacity envelopes can be constructed using both 

empirical and analytical methods (Lee et al, 1997; Stamatopoulos et al, 2004; Simaiakis, 2013) 

and these capacity envelopes have been incorporated into various types of optimisation 

problems, which we discuss further in Section 3.2. 

The capacity of an airport is naturally related to the concept of a service rate in queueing theory, 

since it specifies how many runway movements (which we can think of as ‘services’ of aircraft) 

can be achieved in a given time interval.  Several early studies modelled the queueing dynamics 

at airports using nonstationary deterministic models, with the arrival and service rates defined 

according to flight schedules and capacity estimates respectively (Kivestu, 1976; Hubbard, 

1978; Newell, 1979).  However, at the same time, interest was developing in modelling aircraft 

service times stochastically.  Koopman (1972) proposed that the queueing dynamics of an 

airport with a nonhomogeneous Poisson process for arrivals and k runways (modelled as 

independent servers) could be bounded by the characteristics of the 𝑀(𝑡)/𝐷(𝑡)/𝑘 and 

𝑀(𝑡)/𝑀(𝑡)/𝑘 queueing systems.  The former system – in which the service process is 

nonstationary and deterministic – can be regarded as a “best-case” scenario, since queueing 

delays are shorter in the case of predictable service times.  The latter system – with 

exponentially-distributed service times – is a “worst-case” scenario, in which highly variable 

service times cause average queueing delays to increase.  Koopman used numerical solution of 

the Chapman-Kolmogorov equations (assuming a finite queue capacity) to estimate queue 

length probability distributions.  

 

 

 

 

 

 

 

 

 

Figure 3: A piecewise linear capacity envelope for a particular time interval, adapted from Stamatopoulos 

et al (2004).  Each point on the envelope represents a feasible pair of capacity values.  Points 1 

and 4 represent “all arrivals” and “all departures” policies respectively.  Point 2 represents a 

sequencing strategy where departures are freely inserted during large inter-arrival gaps, and 

Point 3 is a “mixed operations” point. 
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Kivestu (1976) proposed an 𝑀(𝑡)/𝐸𝑘(𝑡)/𝑠 queueing model for aircraft queues, in which the 

service time distribution is Erlang with k exponentially-distributed service phases.  This 

approach is closely related to that of Koopman (1972), since the cases 𝑘 = 1 and 𝑘 = ∞ 

represent exponential and deterministic service times respectively.  However, Kivestu also 

introduced a fast, practical numerical approximation method for the time-dependent queue 

length probabilities in an 𝑀(𝑡)/𝐸𝑘(𝑡)/1 queue, which became known as the DELAYS 

algorithm.  Subsequently, DELAYS – as well as the 𝑀(𝑡)/𝐸𝑘(𝑡)/1 model for aircraft queues 

itself – has become very popular, and has been used for estimating queueing delays in a variety 

of settings (Abundo, 1990; Malone, 1995; Fan and Odoni, 2002; Stamatopoulos et al, 2004; 

Mukherjee et al, 2005; Lovell et al, 2007; Churchill et al, 2008; Hansen et al, 2009; Pyrgiotis 

and Odoni, 2016).  An advantage of using DELAYS is that it estimates the full probability 

distribution for the queue length at any given time.  This is useful because, in practice, airports 

are often interested in tail-based performance measures such as the expected number of 

queueing delays that will exceed a given threshold. 

The 𝑀(𝑡)/𝐸𝑘(𝑡)/1  model for aircraft queues can be regarded as somewhat macroscopic, since 

it does not explicitly take into account fleet mixes and separation requirements between 

different aircraft types.  Instead, it assumes that such considerations are implicitly accounted 

for via the use of an Erlang distribution for service times, whose variance can be controlled by 

adjusting the parameter k (with larger values implying less variance).  Models which explicitly 

consider runway occupancy times for different classes of aircraft have been proposed by a 

number of authors.  Hockaday and Kanafani (1974) and Stamatopoulos et al (2004) modelled 

these using normal distributions, while Jeddi et al (2006) suggested beta distributions and 

Nikoleris and Hansen (2015) used Gumbel random variables.  In models where different aircraft 

types are considered explicitly, there is certainly some justification for using service time 

distributions with very small variances – or even deterministic service times – since the time 

lapse between two consecutive aircraft entering the runway depends on separation guidelines 

which are enforced by air traffic controllers according to the aircraft weight classes.  Indeed, a 

number of authors have used stochastic queueing formulations in which service times are 

deterministic, such as 𝑀(𝑡)/𝐷(𝑡)/1 (Galliher and Wheeler, 1958; Daniel, 1995; Daniel and 

Pahwa, 2000) or 𝑃𝑆𝑅𝐴/𝐷/1 (Caccavale et al, 2014; Gwiggner and Nagaoka, 2014).  The use 

of trajectory-based operations in the future (as discussed in Section 2.1) may provide further 

justification for considering deterministic service times. 

In traditional queueing system formulations, the description of the service process includes not 

only the service time distribution but also the number of servers, finite queue capacity (if 

applicable) and the queue discipline.  We therefore address the relevant modelling assumptions 

here in an aviation context.  The assumption of a single server (as in the 𝑀(𝑡)/𝐸𝑘(𝑡)/1 model, 

for example) is surprisingly common in the literature, even when the airport being modelled 

has more than one runway.  One possible explanation for this is that even when an airport has 

multiple runways, there is usually some inter-dependence between them, which implies that it 

is inappropriate to model them as independent servers (Jacquillat, 2012).  For example, runways 

may intersect each other – or even if they do not, they may be too closely-spaced to allow 

independent operations, since the effects of wake turbulence may create “diagonal separation 
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requirements” between aircraft on different runways (Stamatopoulos et al, 2004).  

Nevertheless, the single-server assumption – which effectively models the runway system as a 

‘black box’ processing arrivals and departures – is undoubtedly a simplification which, 

arguably, has been over-used in the literature. 

A finite queue capacity is usually not considered an essential component of an airport queueing 

model, since in practice it is rare for aircraft to be denied access to an airport due to over-

congestion (this would be referred to as ‘balking’ in queueing theory).  Nevertheless, it should 

be noted that certain numerical methods for estimating queue length probability distributions, 

including the DELAYS algorithm and numerical solution of the Chapman-Kolmogorov 

equations, must assume a finite queue capacity for computational purposes.  In practice, the 

queue capacity used in these methods is chosen to be large enough to ensure that it has very 

little impact on estimates of performance measures.   

Finally, models which assume independent queues for arrivals and departures use the first-

come-first-served queue discipline (FCFS) almost universally, unless they are intended to 

examine the effects of different sequencing policies.  The FCFS assumption is largely consistent 

with ATC procedures in practice (Pyrgiotis, 2011).  Some authors, however, have considered 

priority queues in which arrivals are given priority for service over departures (Roth, 1979; 

Horonjeff and McKelvey, 1994; Grunewald, 2016). 

3.2  Optimisation problems 

Optimisation problems related to service rates in aircraft queues may involve the strategic or 

tactical control of runway configurations, the dynamic balancing of service rates between 

arrivals and departures, the sequencing of aircraft using the runway(s) or some combination of 

these.  In this subsection we provide examples from the literature. 

As mentioned in Section 3.1, the shape of the airport capacity envelope (see Figure 3) depends 

on a number of operational factors which may vary during a day of operations.  One such factor 

is the runway configuration.  Airports with multiple runways may control which ones are active 

at any given time, although sometimes this choice is constrained by wind conditions which 

make it unsafe for aircraft to take off or land in a particular direction (Jacquillat and Odoni, 

2015a).  Ramanujam and Balakrishnan (2015) used empirical data to analyse the runway 

configuration selection process at US airports and aimed to predict the configurations chosen 

under different wind, weather and demand conditions.  As discussed earlier, any point on the 

capacity envelope associated with a particular runway configuration represents a pair of 

attainable capacity values for arrivals and departures.  It is natural to interpret capacity values 

as service rates which can be incorporated within queueing models.  Various authors have 

considered optimisation problems in which an airport capacity envelope (or sequence of 

envelopes) is given, and the objective is to choose a sequence of points (i.e. service rate pairs) 

on these envelopes which will optimise a performance measure related to queue lengths or flight 

operation times (Gilbo, 1993; Gilbo, 1997; Hall, 1999; Dell’Olmo and Lulli, 2003).  Other 

authors have extended this approach by modelling the runway configuration as a decision 

variable, so that the decision-maker must jointly optimise runway configurations and 
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arrival/departure service rates (Li and Clarke, 2010; Weld et al, 2010; Bertsimas et al, 2011).  

Jacquillat et al (2017) (see also Jacquillat and Odoni, 2015b) also considered a similar problem, 

but made an important contribution by including stochastic queueing dynamics (based on an  

𝑀(𝑡)/𝐸𝑘(𝑡)/1 formulation) in their model.  Prior to this, deterministic queueing dynamics had 

generally been assumed for such problems, with solutions found using ILPs. 

Aircraft sequencing (also known as runway scheduling) problems involve planning the order 

that arriving and/or departing aircraft will use the runway(s) in such a way that a certain 

performance measure is optimised.  As discussed earlier, the time separations between 

consecutive runway movements depend on the types of aircraft involved, and significant 

amounts of time can be lost if smaller aircraft often have to follow heavier ones.  Throughput 

rates will generally be maximised if groups of similar aircraft are allowed to take off or land 

consecutively, but other constraints and objectives must also be taken into account.  For 

example, individual aircraft might have to take off or land within fixed time windows, and the 

objective(s) might include allowing aircraft to take off (land) as close as possible to pre-

specified ‘preferred’ take-off (landing) times.  “Constrained position shifting” (CPS), whereby 

an aircraft’s position in the sequence is allowed to deviate by only a certain maximum number 

of places from its position in a “first-come-first-served” sequence, is another common way of 

enforcing constraints (Dear, 1976).  “Static” aircraft sequencing problems are those in which 

the sequence of runway movements is optimised only once, and does not change in response to 

any subsequent events (Psaraftis, 1978; Beasley et al, 2000; Artiouchine et al, 2008; 

Balakrishnan and Chandran, 2010).  On the other hand, in the dynamic version of the problem, 

the sequence is re-optimised every time new aircraft enter the terminal control area and become 

available for sequencing (Dear, 1976; Beasley et al, 2004; Murca and Muller, 2015; Bennell et 

al, 2017).  Both versions of the problem are usually formulated as deterministic optimisation 

problems and solution approaches may include dynamic programming, branch-and-bound 

methods and metaheuristics (Potts et al, 2009).  There has also been some interest in 

formulating stochastic runway scheduling problems.  In these problems, the random variables 

may include the arrival times of aircraft in terminal areas, pushback delays for departures and 

taxiway times.  Two-stage stochastic optimisation has been employed as a solution method 

(Anagnostakis and Clarke, 2003; Solveling et al, 2011; Solak et al, 2018). 

4. Other modelling considerations at airports 

In this section we discuss certain other aspects of modelling airport operations which have been 

touched upon only briefly in the previous sections. 

Firstly, we address the subject of weather.  One of the most obvious reasons for using stochastic 

(as opposed to deterministic) models for airport operations is the fact that weather and wind 

conditions can never be anticipated with complete confidence.  Poor weather conditions cause 

visibility problems which can increase the separation requirements between consecutive 

runway operations and runway occupancy times, thereby effectively reducing airport 

capacities.  Gilbo (1993) described how empirical data could be used to construct separate 

capacity envelopes for different weather categories.  Other authors (Simaiakis, 2013; Jacquillat 

and Odoni, 2015a) have noted that, in practice, a distinction exists between “Visual 

Stochastic Processes and their Application

72



Shone, Glazebrook and Zografos 

 

Meteorological Conditions” (VMC) and “Instrumental Meteorological Conditions” (IMC), 

which indicate “good” and “poor” weather respectively.  Based on this distinction, VMC and 

IMC envelopes can be constructed for each possible runway configuration, with the IMC 

envelopes being smaller than the VMC ones but similar in shape.   

Of course, knowing how to estimate airport capacity envelopes under different weather 

conditions is one thing, but simulating random weather changes within decision problems is 

quite another.  When designing stochastic models for weather evolution, it makes sense to 

consult historical data in order to estimate the relative frequencies for different weather states.  

Modelling the random transitions between weather states can be done in different ways.  

Jacquillat and Odoni (2015a) used a nonstationary two-state Markov chain, with the transition 

probabilities from state “VMC” to “IMC” and vice versa estimated using historical data (see 

Figure 4).  Other authors have opted for a semi-Markov model, in which the time spent in a 

particular weather state has a non-exponential distribution (Abundo, 1990; Peterson et al, 

1995).  In the literature on ground-holding problems discussed in Section 2.2, it is common 

practice to represent an airport’s capacity profile probabilistically by specifying probabilities 

for different weather scenarios (see, for example, Richetta and Odoni, 1993).  Liu et al (2008) 

and Buxi and Hansen (2011) have discussed the use of clustering techniques for generating 

probabilistic capacity profiles.  In problems where the decision-maker has the ability to switch 

between different runway configurations, it is also important to note that wind conditions may 

prevent certain configurations from being used.  Jacquillat et al (2017) described the use of a 

Markov chain model for transitions between 13 different wind states in a case study based on 

JFK Airport in New York. 

 

 

 

 
 
 
 
Figure 4: A nonstationary two-state Markov chain model for weather evolution.  The 

parameters 𝑝𝑡 , 𝑞𝑡 ∈ [0,1] depend on the discrete time interval t. 

 

The previous sections of this paper have focused mainly on the modelling of aircraft queues at 

single airports.  However, research has also been done into modelling airport networks.  The 

relevant papers tend to focus on the propagation of delays around a network, referred to as the 

“ripple effect”.  Long et al (1999) (see also Long and Hasan, 2009) developed the “LMINET 

model”, in which airports are modelled as a network of 𝑀(𝑡)/𝐸𝑘(𝑡)/1 queues.  Pyrgiotis et al 

(2013) developed the “Approximate Network Delays” (AND) model (first conceptualised in 

Malone (1995)), which iterates between a network queueing engine and a delay propagation 

algorithm for modelling network delays.  The queueing engine is based on a network of 

Stochastic Processes and their Application

73



Shone, Glazebrook and Zografos 

 

𝑀(𝑡)/𝐸𝑘(𝑡)/1  queues and relies upon the DELAYS algorithm discussed in Section 3.1, while 

the delay propagation algorithm explicitly considers individual aircraft itineraries.  Baspinar et 

al (2016) used a similar model to investigate the effects of local disturbances (e.g. strike action 

or severe weather) at European airports.  Czerny (2010) compared slot constraints with 

congestion pricing as alternative methods for managing demand in a network of airports, while 

Vaze and Barnhart (2012) used the AND model to test the effects of demand management 

strategies under different capacity scenarios.  Campanelli et al (2016) discussed the use of 

agent-based simulations for modelling network delays.  It should also be mentioned that all of 

the literature on ground holding problems (see Section 2.2) is network-related, since the 

decision to delay an aircraft’s departure from one airport is made with the intention of 

improving congestion at another.  However, several of these papers consider simplified “star-

shaped” networks in which a single “hub” airport is assumed to be the only one prone to 

congestion, and ground holding decisions made at other airports are based entirely on managing 

congestion at the hub airport. 

Finally, some interesting papers have arisen from considering the differences in demand 

management and ATFM strategies at US and European airports.  Odoni et al (2011) compared 

the demand-to-capacity relationships at Frankfurt International Airport (which is a slot-

coordinated airport) and Newark Liberty Airport in New York.  Frankfurt is subject to much 

stricter demand regulation than Newark, and consequently it performs better with respect to 

average flight delays, but the paper suggests that the economic benefits of increasing slot limits 

may outweigh the costs of increased delays.  Swaroop et al (2012) investigated the slot controls 

in use at the four slot-controlled airports in the US and found that the costs of airport congestion 

were too high to justify the relatively relaxed slot constraints.  Both of the aforementioned 

papers support the general view that slot controls in Europe are too strict, whilst in the US they 

tend to be too liberal.  Campanelli et al (2016) investigated the differences in network delays 

between the US and European air traffic systems which are caused by different aircraft 

sequencing strategies. 

5. Summary 

Methods for modelling aircraft queues are continuously evolving.  Nonstationary models based 

on classical queueing theory are still employed frequently.  For example, the 𝑀(𝑡)/𝐸𝑘(𝑡)/1   

model continues to attract a lot of attention.  With the ongoing development of systems based 

on trajectory-based operations (in particular, the NextGen system in the US and SESAR in 

Europe), we anticipate that models which allow the variances of inter-arrival times and/or 

service times to be controlled at a finer level – through the use of queue entry times based on 

pre-scheduled random arrivals (PSRA), for example – are likely to become more popular.  In 

addition, we suggest that some of the simplifying assumptions that have been adopted almost 

universally over the last few decades – such as the single-server assumption for multiple-

runway airports and the independence of queues for arrivals and departures – are likely to be 

relaxed as researchers increasingly aim to incorporate high-fidelity models of airport operations 

into their optimisation procedures. 
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This paper has touched upon some of the broader issues related to the stochastic modelling of 

aircraft queues, including demand management strategies and the tactical control of aircraft 

take-off and landing sequences.  It is clear from our discussion that, in reality, the queueing 

dynamics at airports are influenced by a diverse range of factors, including the decisions made 

at different points in time by multiple stakeholders.  From a strategic point of view, the decisions 

made regarding slot controls (or congestion pricing) at airports and the slot requests submitted 

by airlines are important for determining, several months in advance, the daily demand profiles 

at airports.  However, the tactical decisions made by airports and air traffic controllers in ‘real 

time’ – which may be related to sequencing patterns, ground holding delays and runway 

configuration changes – are also critical for managing congestion.  We conclude that the 

modelling and optimisation of queues and congestion levels at airports is a complex task which 

should be informed by field analyses and engagement with industry practitioners in order to 

maximise research impact. 
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