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Abstract—This paper presents an autonomous Robust Evolving
Cloud-based Controller (RECCo). The control algorithm is a
fuzzy type with non-parametric (cloud-based) antecedent part
and adaptive PID-R consequent part. The procedure starts
with zero clouds (fuzzy rules) and the structure evolves during
performing the process control. The PID-R parameters of the
first cloud are initialized with zeros and furthermore, they are
adapted on-line with a stable adaptation mechanism based on
Lyapunov approach. The RECCo controller does not require
any mathematical model of the controlled process but just basic
information such as input and output range and the estimated
value of the dominant time constant. Due to the problem space
normalization the design parameters are fixed. The proposed
controller with the same initial design parameters was tested on
two different simulation examples. The experimental results show
the convergence of the adaptive parameters and the effectiveness
of the proposed algorithm.

I. INTRODUCTION

The robust evolving cloud-based controller (RECCo) is a
type of ANYA fuzzy rule-based (FRB) system [1] with non-
parametric antecedents (IF part). This method applies the
concept of data clouds and normalized relative data density
to define the membership of the current data1 to the existing
clouds. The clouds represent sets of previous data samples
which are close to each other. Incoming data samples are
analyzed in an online manner and each sample is associated
with one of the clouds and only the parameters of that cloud
are updated.

Originally, the evolving part of the method relied on local
and global data densities [2], [3]. In [4] authors presented
an evolving mechanism based just on local density but they
introduced an additional parameter. This parameter was fixed
in [5] due to the normalization of the problem space.

Since now, there were presented control experiments using
RECCo on simulated and real processes to show the effec-
tiveness of the proposed method [5]–[8]. Beside this, one
more paper is already accepted for publishing this year where
a practical implementation on a real two-tank pilot plant is
presented. We need to note that for all this experiments the
same design parameters were used.

In this paper we present two simulated non-linear processes
with different dynamics. In both examples the same parameters
were used.

The following of the paper is organized as follows. In Sec-
tion II the RECCo control algorithm is described. In Section

1Data will be used to express singular and plural form in this paper

III the experimental results for both systems are presented. At
the end, in Section IV the conclusions are given.

II. ROBUST EVOLVING CLOUD-BASED CONTROLLER
(RECCO)

In this section the RECCo controller will be described.
The control algorithm consists of three parts: reference model,
evolving law, and adaptation law. The whole control structure
is schematically presented in Fig. 1. Theoretically, the con-
troller could be initialized from the first data sample received.
But of course, any existing information about the controlled
process can be used to suitably initialize the design parameters
(e.g. input range [umin, umax], output range [ymin, ymax],
time constant τ and sampling time Ts). After the initialization,
for every incoming sample, if the certain conditions are
satisfied, a new data cloud (fuzzy rule) is added and the
controller gains are adapted.
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Fig. 1. Control scheme of the RECCo algorithm.

In the following all three parts of the controller will be
explained.

A. Reference model

The reference model part of the RECCo controller defines
the desired trajectory yrk and the dynamics that the plant output
yk should follow. In this case we define simple first order linear
reference-model as:

yrk+1 = ary
r
k + (1− ar)rk 0 < ar < 1 (1)

where the parameter ar is the pole of that model. It can
be approximated by (1 − Ts

τ ), where Ts is the sampling
period of the process and τ is the time constant; rk is the
reference signal. The goal of the controller, is to provide
efficient performance and to ensure that the tracking error is:

εk = yrk − yk (2)



as small as possible.
We have to note here that the RECCo controller is not

limited only to this type of reference model (first order linear
model), but also other types could be used according to the
dynamics of the controlled process.

B. Evolving law

The evolving law tackles the fuzzy structure of the con-
troller. The RECCo algorithm is based on the ANYA FRB
system proposed in [1] and has the following form:

Ri : IF (x ∼ Xi) THEN (ui) (3)

where the number of rules Ri is equal to the number of
clouds in the data space i = 1, . . . , c. The antecedent part,
where the evolving low has the main role, is defined with
the operator ∼ which could be linguistically expressed as
’is associated with’. That means that the current data x =
[x1, x2, . . . , xn]

T is related to the i-th cloud Xi ∈ Rn. The
consequent part is defined by c local control actions ui.

The data vector is defined in a 2-dimensional space as
follows:

xk =
[

εk
∆ε ,

yrk−ymin

∆y

]T
(4)

where ∆y = ymax−ymin and ∆ε = ∆y
2 . In this case the data

point is normalized and due to this the evolving parameter
can be fixed. Please refer to [5], [6] for more details about the
problem space normalization.

The data clouds Xi have 4 properties: mean value µi, mean-
square length σi, number of data points M i and time stamp
when it is added kiadd. The degree of association between the
data sample x and corresponding cloud Xi is measured by
the normalized relative density as follows:

λik =
γik
c∑
j=1

γjk

i = 1, . . . , c (5)

where γik is the local density of the i-th cloud for the current
data xk and is defined in a recursive form as follows:

γik =
1

1 + ‖xk − µik‖2 + σik − ‖µik‖2
(6)

where µik is the mean value of the cloud’s data points and σik
is the mean-square length of the data in the i-th cloud. Both of
them can be recursively calculated using following equations
for mean value and mean-square length, respectively:

µik =
M i − 1

M i
µik−1 +

1

M i
xk (7)

σik =
M i − 1

M i
σik−1 +

1

M i
‖xk‖2 (8)

Initial condition (M i = 1) for the mean value is µi1 = x1 and
for the mean-square length is σi1 = ‖x1‖2.

The evolving law in this paper consists only a mechanism
for adding new clouds (rules). Beside this, another evolving
mechanisms such as merging, splitting and removing clouds

can be also implemented [9]. We decide to use just adding
mechanism due to simplicity of the implementation and be-
cause it is sufficient for control the plant presented in next
section.

The adding mechanism relies on the local density γik of
the current data sample with the existing clouds. According
to the maximal local density (maxi γ

i
k) the data sample is

associated with that cloud and furthermore, the parameters
of that cloud are updated using equations (7) and (8). But,
if the maximal local density (maxi γ

i
k) is lower than the

threshold value γmax (the current data sample is far away
from all existing clouds), a new cloud is added. Due to the
normalization of the problem space the default value of the
threshold can be fixed γmax = 0.93. Some conservatism is
always welcome when changing the structure of the evolving
system. This is why some other criteria need to be fulfilled
before adding a new cloud (such as certain time nadd has
passed from the last change). We have to note here that in
our previous and current experiments we always use default
value of this parameter nadd = 20. Moreover, because of the
normalized data space and fixed value of the parameter γmax
the adding of new clouds is more stable and the parameter
nadd can be even neglected.

C. Adaptation law

For the consequent part of the RECCo controller the PID-R
type control is used [4] and to each cloud (fuzzy rule) a local
PID-R controller is assigned with the following form:

uik = P ikεk + IikΣ
ε
k +Di

k∆ε
k +Rik, i = 1, . . . , c (9)

where P ik, I
i
k, D

i
k are controller gains while Rik is compensa-

tion of the operating point. Σε
k and ∆ε

k in (9) are discrete-time
integral and derivative of the tracking error, respectively, and
can be calculated as follows:

Σε
k =

{
Σε
k−1 + εk, umin < u(k) < umax

Σε
k−1, u(k) = umin or u(k) = umax

(10)

∆ε
k = εk − εk−1 (11)

The discrete-time integral is additionally protected with anti-
windup mechanism for protecting the integral explosion.

The vector of the PID-R parameters is denoted as θik =[
P ik, I

i
k, D

i
k, R

i
k

]T
. The vector of the first cloud is initialized

with zeros θ1
0 = [0, 0, 0, 0]

T , while newly added clouds is
initialized with weighted mean value of the parameters of all
previous clouds as follows:

θckcadd
=

c−1∑
j=1

λjkθ
j
k (12)

where c is the index of the newly added cloud and kcadd is
equal to current time stamp k.

The adaptation of the PID-R parameters is made in an online
manner and only the parameters of the active cloud are updated
while others are kept constant:

θik = θik−1 + ∆θik (13)



The adaptation law for each parameter is defined as follows:

∆P ik = αP Gsignλ
i
k

|ekεk|
1 + r2

k

∆Iik = αI Gsignλ
i
k

|ek∆ε
k|

1 + r2
k

∆Di
k = αD Gsignλ

i
k

|ek∆ε
k|

1 + r2
k

∆Rik = αRGsignλ
i
k

εk
1 + r2

k

(14)

where αP , αI , αD, αR are the adaptation gains of the con-
troller parameters, Gsign = ±1 is the known sign of the
process gain, ek = rk − yk is the control error. The default
value of the adaptation gains is 0.1 and is used when the range
of the control variable is (umin = 0/4, umax = 20). When
the range is different, the value of the parameters is rescaled
as follows:

αnew =
umax − umin

20
· 0.1 (15)

For example, if the range is from umin = 0 to umax = 100
the new value of the adaptive gains will be αnew = 0.5.

The absolute values in (14) are used only in the starting
phase of the control performance (five time constants is
enough) and after that they are omitted from the adaptation
law. Please refer to [10] for more details about the absolute
values in (14).

The adaptive law in (14) uses the product of the tracking and
the process error as a cost function with normalization (part
1 + r2

k in (14)). Please refer to Chapter 4.3 in [11] for more
details about adaptive laws with normalization and how the
stability (Lyapunov approach) of such adaptation is explained.

Finally, after the adaptation of the parameters is performed,
for the defuzzification the weighted average is used (but
not limited to this form) and therefore, the control variable
becomes:

uk =

c∑
i=1

λiku
i =

c∑
i=1

γiku
i

c∑
i=1

γik

(16)

where ui denotes the contribution of the i-th local controller.

D. The instability protection mechanism

This subsection is devoted to the modifications of the
adaptation law (13)–(14) that improve the robustness of the
closed-loop system. Supervised adaptation of any controller
can improve, theoretically and practically, the performance
and robustness of the controller. In order to minimize the
negative influence of parasitics, disturbances in the system and
to eliminate the pure integral action of the adaptive law, we
introduce several mechanisms to improve the RECCo control
algorithm. In this paper we will use the following techniques:

1) Dead zone in the adaptation law: To improve the robust-
ness under the unknown bounded disturbances and modeling
errors, the RECCo controller includes a dead-zone in adapta-
tion law. The general idea behind the dead-zone mechanism,

in case of bounded disturbances, is to turn off the adaptation
algorithm when the absolute value of the tracking error is
smaller than a certain threshold [12]:

∆θ̄ik =

{
∆θik |εk| ≥ ddead
0 |εk| < ddead

i = 1, . . . , c (17)

The parameter ddead should be chosen slightly larger than
the process noise to improve the effectiveness of the adaptive
law. A larger threshold implies a shorter adaptation period and
larger tracking error, while smaller value can lead to parameter
drift.

2) Parameter projection: Parameter projection mechanism
is used to guarantee that the estimation of the parameters will
stay within finite known region [13]. In the case of the positive
plant gain all the parameters should be bounded by 0 from
bellow while upper bound may or may not be provided. The
adaptive law in (13) is generalized as follows:

θik =


θik−1 + ∆θik θ ≤ θik−1 + ∆θik ≤ θ
θ θik−1 + ∆θik < θ

θ θik−1 + ∆θik > θ

i = 1, . . . , c

(18)

In our case we chose θ = 0 and θ =∞ for the controller gains
Pk, Ik, and Dk, while for the compensation of the operating
point Rk the lower bound was θ = −∞.

3) Leakage in the adaptation law: The use of leakage in
the adaptation law is a very known approach for improvement
of robustness of adaptive control [14].

Including the leakage in the adaptation law results in:

θik = (1− σL)θik−1 + ∆θik i = 1, . . . , c (19)

where σL defines the extent of the leakage. The value of
leakage used in this paper is σL = 10−6.

4) Interruption of adaptation: In the RECCo algorithm we
first calculate the adaptation of the PID parameters (∆θik) and
then the control variable uk. In some cases this two steps
can be in conflict, which means that the adaptation causes
control signal which is outside the limits [umin, umax]. In such
case the adaptive law should be interrupted in the following
manner:

∆θ̄ik =

{
∆θik umin ≤ uk ≤ umax
0 otherwise

i = 1, . . . , c (20)

Finally, we can summarize the whole procedure of RECCO
controller presented above in the pseudo Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section we present the effectiveness of the RECCo
controller through two examples. The first example is an
artificial first order process with quadratic static nonlinearity.
The second example is a hydraulic pilot plant of two tanks
linked by a valve. Please fine more details in [4] about the
both processes.



Algorithm 1 Pseudo code of the RECCo PID control algo-
rithm

1: Initialize (Process parameters): τ , Ts, umin, umax, ymin,
ymax.

2: Initialize (Evolving parameters): γmax = 0.93, c = 0,
cmax = 20, nadd = 20.

3: Initialize (Adaptation parameters): αR, αP , αI , αD, ddead,
θ, θ, σL.

4: repeat
5: Measurement: yk.
6: Define and compute: yrk using (1) . Reference model
7: Compute: ek, εk, Σεk, ∆ε

k.
8: Compute: xk using (4).
9: if c = 0 then . Start of the evolving law

10: Increment: c,
11: Store: kcadd,
12: Initialize: µ1

0, σ1
0 , θ1

0 .
13: else
14: Calculate: γik, λik, for i = 1, . . . , c
15: if (maxiγik < γmax and k > (kadd + nadd)) then
16: Increment: c,
17: Store: kadd,
18: Initialize: µc0, σc0, θc0.
19: else
20: Associate sample xk with cloud (maxiγik)
21: Update µik, σik for the cloud (maxiγik)
22: end if
23: end if . End of the evolving law
24: Adaptation of the PID controller gains using (14).
25: Computation of the control law using (16).
26: Check the protection mechanisms (17), (18), (19),

(20).
27: until End of data stream.

A. First example

ypk = apy
p
k−1 + bpuk

yk = (ypk)2 + nk
(21)

where ypk stands for intermediate variable, ap = 0.98,
bp = 0.01 are the process parameters and nk stands for
output noise with characteristics N (0, 0.005). The input and
output range of the process are [umin, umax] = [0, 10] and
[ymin, ymax] = [0, 10], respectively. The sampling time is
Ts = 1 s and the desired time constant is τ = 40 s. The results
of the first experiment are presented in Fig. 2. The reference,
model reference, controlled and control signals are shown (for
the starting and the finishing phase of the experiment). The
tracking error is shown for the whole experiment. On the right
in Fig. 2 the created clouds are shown. In this experiment
only tree clouds were created. The four plots on the bottom
in Fig. 2 show the adaptation of the controller parameters
P ik, I

i
k, D

i
k and Rik. It could be considered that the adaptation

law converge through time.

B. Second example

ξk−1 = ypk−1 − yk−1

ypk = ypk−1 + Tsap

(
uk − kv1 ∗

√
|ξk−1|sign(ξk−1)

)
ξk = ypk − yk−1

yk = yk−1 + Tsbp

(
kv1

√
|ξk|sign(ξk)− kv2

√
yk−1

)
(22)

where ypk stands for intermediate variable, ap = 0.02, bp =
0.02, kv1 = 3, kv2 = 1 are the process parameters and nk
stands for output noise with characteristics N (0, 0.005). The
input and output range of the process are [umin, umax] = [0, 5]
and [ymin, ymax] = [0, 5], respectively. The sampling time is
Ts = 1 s and the desired time constant is τ = 40 s. The results
of the first experiment are presented in Fig. 3. The reference,
model reference, controlled and control signals are shown (for
the starting and the finishing phase of the experiment). The
tracking error is shown for the whole experiment. On the right
in Fig. 3 the created clouds are shown. In this experiment
only four clouds were created. The four plots on the bottom
in Fig. 3 show the adaptation of the controller parameters
P ik, I

i
k, D

i
k and Rik. It could be considered that the adaptation

law converge through time.

IV. CONCLUSION

In this paper we present the Robust Evolving Cloud-based
Controller (RECCo) for two different simulation processes.
Despite the deviation between them the RECCo algorithm
efficiently controlled both of them using the same design
parameters. Only the basic information of the controlled
process are required, such as input and output range and
time constant. The controller starts with empty structure and
is initialized with the first data point received. After the
initialization phase the structure evolves when certain criteria
are fulfilled. The controller’s parameters are adapted in online
manner using stable steepest decent mechanism based on
Lyapunov approach.
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tation Law of the Robust Evolving Cloud-based Controller,” in 2015
IEEE International Conference on Evolving and Adaptive Intelligent
Systems (EAIS), 2015, pp. 1–7.

[11] P. Ioannou and J. Sun, Robust Adaptive Control. PTR Prentice-Hall,
1996.

[12] B. B. Peterson and K. S. Narendra, “Bounded Error Adaptive Control,”
IEEE Transactions on Automatic Control, vol. 27, no. 6, pp. 1161–1168,
1982.

[13] G. Kreisselmeier and K. Narendra, “Stable model reference adaptive
control in the presence of bounded disturbances,” IEEE Transactions on
Automatic Control, vol. 27, no. 6, pp. 1169–1175, 1982.

[14] P. Ioannou and P. Kokotovic, “Instability analysis and improvement of
robustness of adaptive control,” Automatica, vol. 20, no. 5, pp. 583–594,
1984.


