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Towards Distributed Battery Switch Based
Electro-Mobility Using Publish/Subscribe System

Yue Cao, Member, IEEE, Omprakash Kaiwartya, Member, IEEE, Chong Han, Kezhi Wang, Member, IEEE,
Houbing Song, Senior Member, IEEE and Nauman Aslam, Member, IEEE

Abstract—With the growing popularization of Electric Vehicle
(EVs), Electro-mobility (in terms of where to charge EV) has
become an increasingly important research problem in smart
cities. One of the major concerns is the anxiety of EVs, as drivers
may suffer from discomfort due to long charging time. In this
article, we leverage the battery switch technology to provide an
even faster charging than plug-in charging service, by cycling
switchable (fully-recharged) batteries at Charging Stations (CSs).
Upon that, a cost-efficient Publish/Subscribe (P/S) system is pro-
visioned, to facilitate the design of distributed charging manner
for privacy guarantee. The proposed communication framework
utilizes Mobile Edge Computing (MEC)-functioned Road Side
Units (RSUs) to bridge, process and aggregate the information
flow between CSs and EVs. We further design an advanced
reservation based charging system, in which the knowledge of
EVs’ reservations is utilized to predict how likely a CS will be
congested. This benefits to a smart transportation planning on
where to charge, in order to improve charging comfort. Results
show the advantage of our enabling technology comparing to
other benchmark solutions, in terms of minimized waiting time
for the battery switch (as the benefit for EV drivers), and a
higher number of batteries switched (as the benefit for CSs).

Index Terms—Electric Vehicle, Battery Switch, E-Mobility,
Delay Tolerant Networks.

I. INTRODUCTION

HE popularity of Electric Vehicles (EVs) [1] has

been playing an increasingly important role in Electro-
Mobility (E-Mobility). Due to short anxiety of EVs, how
to explore the E-mobility to improve drivers’ comfort, is a
vital research issue for the success and long-term viability
of the EV industry. Majority of previous works investigate
“charging scheduling” [2] (concerning when/whether to charge
EVs), while EVs have already been parked at homes/Charging
Stations (CSs). In contrary, we focus on “CS-selection” (con-
cerning where/which CS to charge) [3] when EVs are on-
the-move, that has recently attracted attention thanks to the
popularity of EVs. In order to improve the charging experience
of EV drivers, one solution is to optimally deploy CSs at
the places where there is high high EVs concentration, such
as shopping mall parking places. Another complementary
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solution is to optimally manage where to charge, when EVs
are with low energy status and need to seek CSs for charging.

Literature works [4]-[6] have addressed charging recom-
mendation to improve the charging Quality of Experience
(QoE), e.g., to reduce the service waiting time for charging.
Usually, the local condition of CSs (e.g., number of EVs being
parked and their remaining charging time) [6] is considered
to make charging recommendation decision. Inevitably, only
using the CS’s local condition for CS-selection would bring
potential charging hotspot, this mainly happens if many EVs
head to the same CS for charging. In this context, the EV
reservation [1], [7]-[9] initiated from EV, has been considered
as an additional signalling delivered to the selected CS. Here,
at what time and which CS will be heavily congested can be
predicted, to avoid selecting that CS as the best charging plan.

From transport and energy aspect, even if EV drivers can
benefit from the smart CS-selection to potentially experience
a shorter charging service waiting time, the widely applied
plug-in charging technology still requires a relatively longer
duration to complete battery charging (typically, half to several
hours [10]). In contrary, as a promising alternative approach,
the battery switch service, has the potential to replace a fully
charged battery for an EV just within several minutes (running
with a lower charging power for green battery cycling), thanks
to involved elaborate industrial automation robots to execute
fast battery switch. There have been a few works [11]-[15]
on either the energy scheduling, or deployment at the battery
switch based CS, whereas [16] firstly integrates ICT with the
system focusing on transportation aspect.

From Information Communication Technology (ICT) aspec-
t, the CS-selection decision is generally made by Global Con-
troller (GC) in a centralized manner. Here, the GC monitors
CSs’ condition seamlessly through cellular communications'.
In comparison, the distributed system alleviates privacy con-
cern, as the CS-selection is made by EV individually (based
on their accessed condition information from CSs). In most of
previous works [6], [9], [18], the cellular infrastructures are
typically applied in the centralized manner, for the benefit of
real-time optimization thanks to the good network coverage.
Alternatively, a cost efficient solution is by the deployment
of fixed Road Side Units (RSUs) [19], supported by licence-
free WiFi but with limited network coverage. This supports
the distributed charging manner, where RSUs (with functioned

!Concerning privacy issue [17] of hiding sensitive information of EV, e.g.,
ID, State of Charge (SOC) or location, the attacker may manipulate such
information and degrade driver’s charging experience. Concerning reliability,
the entire charging system may be affected by the failure at the GC side.
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light-weight edge computing, and authorized network entities)
bridge information from power grid to EVs. In [1], we have
proposed a distributed plug-in charging based CS-selection
scheme, via Publish/Subscribe (P/S) [20] system. Therein,
EVs subscribe to the CSs’ condition information from RSUs,
through Vehicle-to-Infrastructure (V2I) communication [21],
[22].

The rapid growth of mobile applications have placed severe
demands on cloud infrastructure, which has led to moving
computing and data services towards the edge of the cloud,
resulting in a novel Mobile Edge Computing (MEC) [23] (also
known as fog computing) architecture. MEC could reduce data
transfer times, remove potential performance bottlenecks, and
increase data security and enhance privacy while enabling ad-
vanced applications. In spite that the battery switch technology
has been investigated in the “charging scheduling” [24] from
energy scheduling aspect, efforts towards distributed “CS-
selection” from transportation planning aspect (with advanced
reservation service and provisioning of cost-efficient ICT
framework) have not been addressed in literature. Motivated
by above, our two contributions are as follows:

Provisioning of Basic P/S Mode With Enhanced CS-
selection: Our preliminary work [16] has brought the P/S
system with RSU for battery switch service, study shows the
advantage of that over traditional plug-in charging system for
CS-selection. Here, we extensively present the detail design
and analysis of battery switch based P/S system, with a
fundamental study on how to achieve the best driving comfort,
e.g., the minimum Expected Waiting Time to Switch (EWTS),
through an enhanced CS-selection scheme over that in [16].
The CS with the minimum EWTS is selected by the EV which
needs battery switch service.

Study of Advanced P/S Mode Enabling Reservation:
Upon above, we further study the benefit to bring reservation
service for CS-selection. This concerns that congestion may
occur at CS side, if many EVs travel towards the same CS for
charging in a near future. Here, those EVs which are travelling
towards their selected CSs for charging, additionally send their
reservations?. Such knowledge will be utilized to estimate
whether a CS will be congested in a near future, in order to
make optimal CS-selection to experience the minimum waiting
time for battery switch service.

The EV reservation is aggregated by MEC functioned
RSUs, in order to reduce communication signalling cost in
the system (due to implementing necessary data transmission
over more expensive wireless links, e.g., cellular network
communication), that is bounded by the delay constraint of
actual CSs publication. The EV mobility prediction is also
taken into account for smart reservation uploading, through
the cellular network as the back-up solution if no RSU is
accessible along the route an EV traverses.

2The reservation includes when an EV is expected to arrive and how long
its battery needs to get fully charged, is harvested by CSs for processing and
future publication.

II. RELATED WORK
A. Battery Switch Service

To promote the popularization of EVs, it is necessary to
build the infrastructure for charging batteries. Traditional plug-
in recharging is accomplished by plugging EVs into charging
slots (set by CSs placed at different city locations). In contrast,
at the CS providing the battery switch service [16], the
automated switch platform switches the depleted battery from
an EV, with a fully charged battery it maintains. The depleted
battery is placed and recharged so that it can be used by other
EV drivers. The battery switch service could be described as a
mixture of a drive-through car wash, which normally switches
an EV’s battery in several minutes but without requiring the
driver to get out of the EV. Note that, as the cost to the battery’s
lifespan may be taken into account, the fast charging still takes
a toll that should be avoided when possible. The nature that
depleted batteries are charged by CSs (normally via a lower
power than plug-in charger), certainly removes that burden
from EV drivers to maintain batteries.

B. CS-selection

In recent few years, the “charging recommendation” prob-
lem has started to gain interest from industrial thanks to
the popularity of EVs. The generic solutions [6], [18] make
decision based on the queueing information at CSs, and the
one with the minimum queueing time is recommended. This
feature has been evaluated in [4] against with the charging
recommendation just taking the closest distance to CS, the
former is deemed as an effective guidance in urban city with
limited charging infrastructures.

Beyond that, the integration of ICT and energy network is of
importance for the sustainability of EV charging, where a set
of works have addressed the constraint of energy network and
study its impact. From ICT aspect, additional communication
signalling is built to support the advanced charging recommen-
dation, to bring anticipated EVs mobility information (charing
reservations). The work in [7] concerns a highway scenario
where the EV will pass through all CSs. Other works [1], [8],
[9] focus on urban city scenario, where the EV travels towards
a single CS (which is geographically distributed in city) for
charging. Inherently, the expected waiting time for charging
is associated to that CS, rather than a subsequent charging in
highway case.

C. Our Motivation

Further to our previous works [1], [8], [9] based on the plug-
in charging system, we herein bring the battery switch service
upon which the reservation service is designed to improve
driving comfort. The proposed smart CS-selection would of
course benefit from the distributed charging manner for privacy
guarantee. Also, a cost-efficient P/S system with delay-tolerant
(bounded by the time slot of subsequent CS publication) and
opportunistic (due to the encounter between EV and RSU, via
wireless communication) reservation uploading is proposed for
performance optimization.
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TABLE I
ToPICS DEFINED IN BASIC P/S MODE
Topic Dissemination Publisher(s) Subscriber(s) | Payload
Nature
CS_Condition_Update One-to-Many CS RSUs <CS ID & CS’s ATS, Np, Publication Time Slot>
Cached_CSs’_Condition_Access Many-to-Many RSUs EVs < All Cached CS IDs & CSs’ ATS, N g, Publication Time Slot>
L Battery Switch The communication in Intelligent Transportation Systems
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Fig. 1. Big Picture of Network Entities And Scenario

III. SYSTEM MODEL
A. Basic P/S Mode

In our proposed system, the locations of CSs are known
by all EVs in advance, this is achievable through vehicle On-
Board Unit (OBU) system. Each CS is connected to all RSUs
using authorized cellular network communication (3G/LTE),
publishes its Available Time for Switch® (ATS) and number
of switchable batteries Np (how many fully charged batteries
are ready for switch) periodically. How frequent these are
published, depends on a system-level control strategy. Here a
tight interval implies the requirement for peak hour charging
demand, and vice versa.

Concerning the practical infrastructure deployment strategy,
there will not be an overlap between the radio coverage
of adjacent RSUs. This inevitably results in an obsolete*
information accessed by EVs, due to the missed encounter
with RSUs.

cs RSU EV

Ubiquitous Cellular
Network

Opportunistic WiFi
Network

. {

|
S Information Publication | :
|

I

k

|

| Information Cached at RSU

: Basic P/S Modé) Service Discovery
|

|

|

|

9.

EV Sends Subscription Query

3

RSU Replies
Cached Information

Fig. 2. Time Sequences of Basic P/S Mode

3This information reflects the status of those batteries being charged. For
example, given that a CS initially maintains 10 batteries, as time passes the
status that 7 batteries are switchable while 3 batteries are being charged, is
published regarding the charging finish time (availabilities) of these 3 batteries
being charged.

4This happens when RSU has cached the information published at 12:00
AM and accessed by EV, but later an EV has never traversed RSU before
12:30 AM. Therefore, that EV (to make CS-selection decision at 12:30) will
use the knowledge it accessed at 12:00 AM.

(ITS) enables the information broadcasting to involved entities.
Here, the basic application of “ETSI TS 101 556-17 [25]
standard is to notify EV drivers about the CSs condition
information, which is to be used for selecting a CS for battery
switch. Further to [1] which focuses on the plug-in charging
technology, we herein enhance this communication framework
with additional effort to reduce communication cost and bring
it to the battery switch service. The time sequences are
illustrated in Fig. 2:

o Step 1: All CSs’ condition publications are synchro-
nized. Each CS periodically (with interval T") publishes
its condition information (including ATS and Np) to
RSUs, using the topic “CS_Condition_Update” defined in
TABLE 1. This refers to a “One-to-Many” nature, as each
CS’s publication is cached at all RSUs. In the meanwhile,
RSUs will merge information from multiple CSs and
cache it. RSUs will also replace the obsolete one cached
in the past, when they have received the publications from
CSs released in a new interval.

e Steps 2-3: When encountering with RSU, the EV
being aware of updated service from that RSU,
will send a subscription query’ using the topic
“Cached_CS_Condition_Access”. This is generally based
on V2I communication initiated from the EV to RSU,
via a short range WiFi technology. This refers to a
“Many-to-Many” nature as EVs opportunistically access
information from RSUs, and there is no need for EV to
perform a periodical subscription particularly when there
is no RSU in proximity.

Note that the communication between EVs and RSUs is event
driven, that is triggered by EV’s subscription. All related infor-
mation will be included using a specific topic, unambiguous
information, e.g., not used in EV battery switch application
will not be accessed using topics defined in TABLE 1.
Compared to [1] via single topic for accessing CSs’ queue-
ing time, two desiderated topics illustrated in TABLE 1 are
used in Basic P/S Mode to enable computation at RSUs
side. This is motivated by shifting the data services towards
the network edges which are closer to EV drivers, known
as MEC [23] which is deemed for increasing data security
while reducing information access times. If using single topic
for publication, there is no information merged at RSUs. In
that case, an EV needs to use different subscription topic
(associated to a CS) to access all CSs information from

SUpon receiving the subscription queries from EVs, RSUs only reply the
aggregated CSs’ ATS associated to the updated time slot. If both pairwise
EV and RSU currently maintain the aggregated CSs’ ATS associated to the
same publication time slot, the RSU will deny the EV’s subscription request.
This network intelligence benefits to an efficient radio resource utilization and
alleviates communication interference with multiple EVs.
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RSU, particularly when CS is owned by different stakeholders.
In comparison, in the MEC based system, all merged CSs
information at RSUs can be subscribed by an EV using a
unique topic. Each RSU can further verify the information of
CSs and selected authorized one for caching, meanwhile check
the time slot involved in the EV subscription.

1) Other Alternative Modes: We also present two alterna-
tive modes that can support information dissemination, name-
ly, Centralized Mode and Periodical Broadcasting (PB)
Mode.
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Fig. 3. Time Sequences of Centralized Mode

Centralized Mode is widely adopted by majority of pre-
vious works. As shown in Fig. 3, the GC monitors CSs’
condition through cellular network, and processes charging
requests from on-the-move EVs. The CS-selection decision
is solely implemented by the GC in a centralized manner.

cs EV
Ubiquitous Cellular LB
Network ==

1

CS Information Broadcasting

I
|
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|
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|
|
|
I

Fig. 4. Time Sequences of PB Mode

PB Mode is the case where each CS periodically (with
interval T') broadcasts its condition information to all EVs.
Particularly, this mode is also similar to a cloud system where
CSs publish information to a cloud connecting all RSUs, from
which users would access through cellular network link. As
shown in Fig. 4, since there is no RSU involved, the communi-
cation between CSs and EVs is based on the cellular network
communication. In this context, each EV can definitely access
CSs’ condition information within 7', different from Basic P/S
Mode affected by opportunistic encounters.

2) Possibility to Access Information in Basic P/S Mode:
The P/S system has been proposed in [1] for the plug-
in charging service (with CS queuing time published). The
possibility that an EV can access CSs’ condition information
from RSUs depends on:

« If an encounter between EV and RSU happens.
o If the RSU (encountered by EV) has cached the informa-
tion published from CSs.

The possibility P,/ for an EV to access information from at
the least one (or more than one) of N,,, RSUs along road,
has been given by:

Nrsu

pos T[S o

=1

Here, V is the distance between adjacent RSUs along the
road, T is the CS’s publication interval, and R stands for
a valid communication range between EV and RSU. Note
that, R depends on the transmission power and other practical
configurations at EV side, as it is the initiator to establish com-
munication with RSU for information subscription. Besides, S
is the EV moving speed (we assume as a constant speed, where
the influence of dynamic traffic on moving speed will be of
interest for further study), while F' > R is the distance from
the starting point to the center of first RSU.

In spite that the above analysis is modeled on a straight
road where an EV will pass through a number of deployed
RSUs with equal distance, the features of the proposed ICT
system are certainly also applicable under a complex/realistic
city scenario. Under city scenario, the distance between any
adjacent RSUs is not straight road based and not equal, while
EV moving speed is not constant. Just take a simple example,
even if there is the path with a number of RSUs deployed
for EV to pass, the actual distance the EV from one RSU to
another RSU, can be mapped from nonlinear path to a straight
road. That is to say, the model represents a wide application.

In order to increase P, /s> WE obtain:

o To enlarge radio coverage R.

e To extend the number of RSUs N,,,.

e To reduce CS publication interval T' (or increase CS

publication frequency).

3) Communication Cost: Concerning the scalability of
communication system, we denote V., as number of EVs in

the network, and discuss the communication costs of Basic
P/S Mode, Centralized Mode, and PB Mode as follows:

o In Basic P/S Mode, the cost for N, EVs to access CS’
condition is given by O M . This is because

there are (P,/s X Ney) subscriptions sent from EVs
within each T interval.

o In Centralized Mode, the cost at GC side for handling
EVs’ charging requests is O(N,,), and is linearly in-
creased by EVs density.

o In PB Mode, each CS broadcasts its condition informa-
tion to all N., EVs, within in interval T'. Therefore, the
communication cost is bounded by O (%e:).

Due to decoupling between CSs (publishers) and EVs (sub-
scribers), the end-to-end connections between CSs and EVs in
the Basic P/S Mode and PB Mode are avoided. Different from
the Centralized Mode, the system can benefit from scalability
(i.e., the number of connections at CS side is not linked to the
number of EVs, as referred to Basic P/S Mode).

4) Privacy and Security Concern: The distributed manner
(Basic P/S Mode and PB Mode) does not need to release
any information from EV side, due to the local computation
on CS-selection. However, the Centralized Mode is privacy
sensitive, where EV’s ID, location will be required by the GC.
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The solutions to achieve trusted message exchange for EV
charging use case is to encrypt the sensitive information and
hide the real identity. One development aspect of the encryp-
tion involves the light-weight and highly secured encryption
algorithm, while another one is to design an efficient and
scalable key management scheme. As for the privacy side,
pseudonym is proposed to hide the identities. This including
the pseudonym changing algorithms and pseudonym reuse
schemes, both are required to be implemented in efficient and
scalable manners.

B. Battery Switch Based Charging Management Cycle

Battery
Switch

Battery
Charging

Fig. 5. System Cycle of EV Battery Switch

Fig. 5 presents four phases of the battery switch system:

o Driving Phase: The EV is moving on the road during
driving phase.

o CS-selection Phase: The EV with its battery volume be-
low the SOC threshold, starts to find a CS for the battery
switch. Here, based on the CSs’ condition information
accessed through the P/S system, the EV implements CS-
selection decision.

« Battery Cycling Phase:

— Battery Switch Phase: When reaching the selected
CS, the EV’s own battery (electricity consumed)
is depleted, while EV is switched with a battery
(which has been fully charged) by CS. Initially, the
CS would have sufficient (fully charged) batteries to
switch for incoming EVs, whereas the service wait-
ing time is only due to the actual battery switch time
(several minutes). However, with the fully charged
batteries been switched from CS and consumed bat-
teries from EVs been depleted, if the number of fully
charged batteries at CSs is less than the number of
EVs currently been parked, the charging scheduling
(concerning when/whether to charge those depleted
batteries) is based on the First Come First Serve
(FCES) order. This regulates that the EV with an
earlier arrival time will be scheduled with a higher
charging priority.

— Battery Charging Phase: Those batteries depleted
from EVs will be charged by CSs in parallel (de-
pending on the number of charging slots), and they
become switchable once been fully recharged. Note
that the transition between Battery Switch Phase
and Battery Charging Phase is bidirectional.

TABLE II
L1ST OF NOMENCLATURES
¥ System resolution
Np Number of switchable batteries at CS
Np Number of batteries depleted from incoming EVs
3" Time to switch a battery
N¢ Number of batteries being charged
Nw Number of EVs waiting for battery switch
4 Number of charging slots at CS
B Charging power at CS
Ege® Full volume of EV battery
Eg'" Current volume of EV battery
ATSLIST Output list about ATS
Té in Charging finish time of EV battery
NE Expected number of switchable batteries at CS
e EV’s arrival time at CS
Tire Time for EV to travel towards a CS
Teur Current time in network
Ngr Number of EVs made reservations

C. Battery Cycling

Algorithm 1 Battery Cycling at CS
1: for each EV parked at CS do

2:  if (Ng > 0) then

3: start to switch a battery for EV

4: else

S: wait until a battery becomes switchable

6: end if

7. if a fully recharged battery is switched, with duration T)z* then
8: N, B = N, B — 1

9: include depleted battery from EV into the queue of Np

10: end if

11: end for

12: for each interval v do
13:  while (N¢ < ) do
14: sort the queue of Ny according to STCF

15: schedule a depleted battery from the queue of Np
16: end while

17:  for (i:l;iSNc;iJrJrsdo

18: while (EguT' < EZer) do
19 E‘CU.T‘ _l cur (%
' B) ™ 7B T
20: end while
21: remove this battery from the queue of Np
22: Np=Np+1
23: end for

24: end for

Throughout the battery switch system, we denote as Np
the number of batteries depleted from EVs, and as N¢ the
number of batteries being charged by the CS. Upon arrival at
a CS, the incoming EVs that need battery switch services are
managed as follows:

« If there are switchable batteries at the CS, given by the
condition (Np > 0) at line 2 in Algorithm 1, the EV will
be directly switched with a fully charged battery.

o Alternatively, presented between lines 4 and 5, the EV
has to wait until the recharging of a battery is finished.
This is because there has not been any switchable (fully
charged) battery available at the CS.

We herein denote as 73" the time to switch a battery (nor-
mally takes several minutes). Here, the number of switchable
batteries Np decreases by 1, after the period of T3V for
switch operation. Meanwhile, the depleted battery from EV



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

will be included into the queue of Np (the queue of number
of batteries waiting to be charged). This refers to the operations
between lines 8 and 9.

Note that each CS is with § charging slots, meaning that
at most § depleted batteries can be charged in parallel. Here,
depleted batteries are sorted following the Shortest Charging
Time First (SCTF) order, meaning the depleted battery with the
earliest time to be fully charged, is with the highest priority for
charging. Note that the way to cycle batteries has been studied
n [16], therein the SCTF provides the best performance. A
depleted battery will be scheduled from the queue of Np into
the queue of N¢, only if (N¢ < ) as presented at line 15.
This happens when there is still at least one available charging
slot could be utilized for battery charging.

From line 18, for each battery in the queue of N, it
will be charged with (5 x ) electricity per time interval
~. If a battery is fully recharged given by the condition
(Eg(“) Ema)“") Np increases by 1 since a fully charged
battery is switchable. Then, the information regarding this
given battery is removed from the queue of Np, at line 21.

V. CS-SELECTION IN BAsic P/S MODE

Here, the CS-selection is based on local condition informa-
tion of CSs (as published to RSUs and further accessed by
opportunistically encountered EVs). Algorithm 2 details the
logic to generate the ATS, upon which Algorithm 3 gives the
CS-selection based on the EWTS.

A. Generation of Available Time for Switch

Algorithm 2 Generation of ATS
1: for (i =1;i < Ng;i+ +) do

max _ peur

56 P8 :
2: add — 5 + Tewr ) into ATSLIST

maT _ Ecur

By B :
add 7 + Tewr ) into TLIST

3

4: end for

5: sort ATSLIST with ascending order

6: if no battery is waiting for charging then

7: return ATSLIST

8: else

9 sort the queue of Ny according to STCF
0 for (j =1;5 < Np;j++) do

1 sort TLIST with ascendlr%g order

axT E("ll"‘

12: Tfm = (TLIST1 L T/t 5 m)
13: replace TLIST; with Tg(’")

. J
14: add ng’_; into ATSLIST
15: end for !
16: return ATSLIST
17: end if

Algorithm 2  starts
(in the queue of N¢),

g -ri,
B

from processing each battery
where the time duration

to fully recharge a battery, will be summated

with T,,.. This calculates the charging finish time of battery,
and it is included into ATSLIST and TLIST (for temporary
computation purpose).

By checking the status of above batteries being charging,
Algorithm 2 will return the ATSLIST, if there is no additional

batteries waiting to be charged (the condition at line 6), or
upon checking those batteries to be scheduled for charging
thorough a loop operation (between lines 10 and 16).

In the latter case, the loop operation firstly sorts the queue
of Np, following the SCTF charging scheduling order. Mean-
while, the TLIST containing elements about the charging finish
time of those batteries (in the queue of N¢), is initialized
with an ascending order. This means the earliest time to finish
charging a battery is placed as the first element in TLIST,
denoted by TLIST;.

Within each loop, the time Tf(”; to finish charging of
a battery (in the queue of Np) will replace with TLIST;.
At line 12, TL' Zfl is given by the summation of time to
start charging (tile TLIST;), and battery charging time giv-

max cur

“BG) ”TBu)
B

en by . Furthermore, TBfZ; will be included

into ATSLIST. The loop operation will process all batteries
(in the queue of Np), then the ATSLIST is returned.

B. CS-Selection Based on EWTS

We introduce the following notations to facilitate problem
formulation for fundamental CS-selection:

¢ ... Number of EVs currently being parked at a CS, with
location [.s.
e wj .. Average time for each EV to wait for the battery
switch (not included the time to switch battery T5").
e W: Total battery switch waiting time for all EVs in
network.
Here, note that +;,, is a function of N4, as the number of
CSs in network. This is because that a larger number of N
drives a small ;. EVs distributed at each CS. Furthermore,
wy,, is related to ~;,,,d and 5. Given a number of switchable
batteries Np, we aim to minimize VV:

w o [ iene, (nes x (Wi, +T5%)) it (Np <)
leseNes Moo X (0+T5Y))

cs?)

otherwise @

o The first sub-condition implies that a potential charging
congestion would happen if larger number of ~; , EVs
intend to charge at a CS, this inevitably increases their
average battery switch waiting time at CS. Of course,
applying fast charging power S and deploying more
charging slots ¢ benefit to reduced waiting time.

e The second sub-condition implies that w;,, tends to O,
when each CS maintains sufficient number of switchable
batteries, given by (N > .. ).

In order to achieve the minimum EVs’ battery switch waiting
time among N.s CSs, (y1,, X (wi., +T5")) should be equal
among all CSs, as ideal situation given in [7], [9]. Since all
CSs are assumed to share the same 3 and & for simplicity®,
we obtain v, = F(5—), and w;,, = F( g’;;) to achieve the
minimum W. Also, enabhng a large Np is an alternative to
minimize W.

SPractically thinking, there have been many EV manufacturers in market
and each type of EV may not be compatible with batteries used by other types
of EVs. This realistic concern requires further efforts on cycling batteries, such
that different type of EVs can experience a fast battery switch without waiting
for their compatible batteries. Meanwhile, the way to estimate the availability
compatible batteries should also be taken into account.
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In this context, the CS with the highest number of available
batteries for switch, is selected with the highest priority, in
order to hold the second sub-condition. In case that all CSs
have run out of batteries for switch, the CS through which
an EV experiences the minimum time to wait for the battery
switch is selected.

Algorithm 3 Estimation of EWTS in Basic P/S Mode
1: for (j = 1;5j < |ATSLIST|;j + +) do
. wm
if (Tg(_j) <TET )) then
Np =Np +
end if
end for
if (Np > 0) then
return EWTS = T3"/Np
else
return EWTS = ATSLIST; — 7"

S’U(T)
: end if

»

SN AR

+ T

—_

Our proposed CS-selection scheme is detailed as follows.
In Algorithm 3, the arrival time of EV, as T¢g7" , will be
compared with the charging finish time Tg:) in ATSLIST. If
Tg:; is earlier than T¢"  happens at line 2, one more battery
will be switchable upon the arrival of EV,., with Ny increases
by 1.

o If (Ng > 0) happens at line 6, T3 /Np is returned at

line 7. This is because a battery will be available upon
the arrival of EV,..

o Otherwise, the EWTS is given by
ATSLIST, - T&7 +Tg") at line 9, where

ATSLIST; — T;f(:) is the time to wait until a fully
recharged battery is switchable. Note that ATSLIST;
is the value with the earliest switchable time in the

ATSLIST.

C. Performance Evaluation

1) Simulation Configurations: We have built up an EV
charging system in Opportunistic Network Environmen-
t (ONE) [26]. In Fig. 8, the scenario with 4500x 3400 m? area
is shown as the down town area of Helsinki city in Finland.

There are 300 EVs with [30 ~ 50] km/h variable moving
speed placed in the simulation. The setting of EVs associates
to the charging specification (Maximum Electricity Capacity,
Max Travelling Distance: 16.4 kWh, 140 km) of Hyundai
BlueOn EV’. We configure a distribution of State Of Charge
(SOC), ranging from 15% to 45% for all EVs. The actual route
of EV is formed based on the shortest path feature, considering
a practical mobility pattern. Here, the shortest path towards a
CS is formed considering the Helsinki road topology.

There are totally 5 CSs deployed with sufficient electric en-
ergy for battery charging, where the suggested battery switch
time is given as 5 minutes. Each CS maintains N = 30
batteries (which are fully recharged) from beginning, and is
able to charge § = 30 batteries (which are depleted from
EVs) in parallel, based on § = 10 kW low charging power.
Referring to [16], EVs would need to wait for additional

7en.wikipedia.org/wiki/Hyundai BlueOn.

time for battery switch, and thus the impact of Pp/s can
be examined. There are 7 RSUs and 300 EVs in network,
based on 300m radio coverage for communication pattern. The
default information dissemination interval (CSs publication
frequency) of CS is T' = 120s, and the simulation time is
43200s = 12 hours.
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Fig. 8. Simulation Scenario of Helsinki City

The following metrics are evaluated:

o Average Waiting Time for Switch (AWTS): The average
period between the time an EV arrives at the selected CS
and the time it finishes battery switch. This is the charging
performance metric at EV side.

o Total Switched Batteries (TSB): The total number of
EVs have been switched with batteries at CSs. This is
the charging performance metric at CS side.

o Total Information Accesses (TIA): The total number of
accesses at EV side, in terms of communication cost.

It is worthy noting that key advantage of battery switch
system over plug-in charging system has been presented in
[16]. We herein focus on the advantage of the proposed
CS-selection scheme, with those based on the centralized
Minimum Queueing Time (MQT) under plug-in charging
technology [6], and the centralized scheme based on battery
switch [16] namely Centralized (O) which does not consider
the switchable batteries. Upon that, the influence of Basic
P/S Mode, Centralized Mode and PB Mode based on the
proposed scheme in Section III are evaluated.

2) Influence of CS Publication Interval: Firstly, we com-
pare the fundamental performance of all CS-selection schemes
implemented in centralized manner. In Fig. 6(a), we observe
the MQT (with 40 kW charging power in plug-in charging
system) just achieves a close performance of that under the
battery switch service (with 10 kW charging power). This
implies the advantage of cycling switchable batteries for fast
charging service, over that plug-in charging system. From
realistic concern, the battery switch system can alleviate the
peak load in power grid, by running a lower charging power.
Of course, a decrease from 30 to 10 batteries initialized at
each CS, inevitably degrades AWTS and TSB. This is because
EVs will need to wait for much longer time to get batteries
switched. By comparing with the Centralized (O) [16], the
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proposed CS-selection scheme (Centralized Mode) achieves
noticeable improvement, by considering average service in-
tensity.

Secondly, we observe the influence of CS publication in-
terval 7. Both Basic P/S Mode and PB Mode benefit from
frequent CS publication interval (120s). This follows the
discussion on access possibility, where a higher P,/ implies
CSs’ condition information can be accessed timely. As such,
the minimized AWTS can be achieved by distributed manner
(Basic P/S Mode and PB Mode), compared to the Centralized
Mode. Due to the same reason, the TSB is increased in Fig.
6(b) because more EVs can experience fast battery switch
services. In Fig. 6(c), we observe the PB Mode involves much
communication costs (with frequent CS publication), which is
inefficient compared to the Basic P/S Mode (concerning their
close AWTS and TSB). Besides, the P/S system without MEC-
functioned RSU is evaluated as P/S (O), which suffers from
much higher communication cost. This is mainly due to the
lack of mechanism to deny redundant subscription.
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Fig. 9. Distribution of TSB at CSs

Fig. 9 further shows the distribution of TSB (charged EVs
in case of MQT) among CSs, in case of centralized manner

to examine the feature of compared CS-selection schemes.
Noticeably, the proposed scheme achieves the best balance,
by jointly considering the AWTS and TSB.

3) Influence of RSUs Deployment and Transmission Range:
Results in Fig. 7(a), Fig. 7(b), Fig. 7(c) show that, either
decreased RSUs density (by excluding RSU;, RSU; and
RSUs;) or shorter transmission range also degrades perfor-
mance because of decreased P, /. This is mainly because that
EVs will have less chance to communicate with encountered
RSUs and thus fail to subscribe to the most latest CSs status
information for making CS-selection.

V. ADVANCED P/S MODE ENABLING RESERVATION

In previous section, we have proposed a distributed CS-
selection under the Basic P/S Mode. Nevertheless, that de-
cision making only considers the local condition of CSs
(ATS and Np), not with the capability to predict congestion
level of CSs in a near future. Although sharing the gener-
al battery switch framework in Fig. 5, the Advanced P/S
Mode integrates EVs’ reservations (including at what time
EV would reach its selected CS, and how long it will take to
charge its depleted battery) into the CS-selection. Here, the
reservation from EVs (those have selected where to charge),
will be bridged by RSUs (with MEC functioned information
aggregation and mining) to their selected CSs. As summarized
in Algorithm 4, the EV needs battery switch service will keep
track of those switchable batteries, those being charged locally
at a CS (already considered in Basic P/S Mode), and other
EVs with an earlier arrival time to reserve charging at this CS.

In summary, the MEC functions positioned at RSUs, mainly
operate:

e Prevent redundant transmission from RSU to EV, at the

stage when EV subscribes to information, covered in
Basic P/S Mode.
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TABLE III
ToricS DEFINED FOR RESERVATION
Topic Dissemination Publisher(s) Subscriber(s) Payload
Nature
EV_Reservation_Upload One-to-Any EV which has | Any encountered RSU (select- <Reservation defined in TABLE V>
(One) selected CS ed CS)
Aggregated_EVs’_Reservations_Upload | Many-to-One RSUs CS selected by common EVs < Aggregated reservations defined in TABLE V>

« Analyse collected EVs’ reservation, and identify only the
valid information, covered in Advanced P/S Mode.

o Aggregate valid EVs’ reservations and report to CS once
(over the case the RSU relays per EV reservation to CS
upon an encounter with an EV), covered in Advanced
P/S Mode.

A. Signallings of Advanced P/S Mode

TABLE IV
FORMAT OF CS PUBLICATION IN ADVANCED P/S MODE

—CS ID—
CS,

—Number of Switchable Batteries—
Np =717
—Available Time For Switch—
ATS = [1000s, 1400s, 1900]

—Anonymous EVs’ Reservations—

Entry Arrival Time | Expected Charging Time of Depleted Battery
1 3500s 730s
2 4700s 700s

Regarding the practicality consideration, the “ETSI TS 101
556-1: Electric Vehicle Charging Spot Notification Specifi-
cation” [25] and the “ETSI TS 101 556-3: Communications
System for the Planning and Reservation of EV Energy Supply
Using Wireless Networks™ [27] can potentially support the
reservation based battery switch service. In Fig. 10, signallings
are listed:

e Steps 1-3: An EV accesses CSs’ publications (given
in TABLE IV) from encountered RSUs, following the
same procedure in Basic P/S Mode (Section III-A). The
EV selects where to charge if with low electricity status
threshold than SOC threshold.

o Steps 4: Two options are designed for reservation up-
loading, through the “EV_Reservation_Upload” topic in
TABLE III:

— The direct cellular link will be established to EV’s
selected CS, if there will not be any (accessible)
RSU along the trajectory towards that selected CS.
This refers to a “One-to-One” nature, as the EV’s
reservation is solely uploaded to its selected CS.

— Alternatively, the EV’s reservation will be uploaded
to an encountered RSU (with MEC intelligence
detailed in Section V-E). This refers to a “One-to-
Any” nature, as the uploading happens at any one of
RSUs.

o Step 5: At the time slot approaching the next C-
Ss’ publication, RSUs report their aggregated EVs’

reservations to associated CSs, through the “Aggregat-
ed_EVs’_Reservations_Upload” topic. This refers to a
“Many-to-One” nature, as RSUs will simultaneously send
aggregated EVs’ reservation to their associated CS.
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Fig. 10. Time Sequences for Advanced P/S Mode

B. Format of EV’s Reservation

Once a CS-selection decision is made from on-the-move EV
with pending battery switch request, the following information
in TABLE V will be included as the EV’s reservation:

TABLE V
FORMAT OF EV RESERVATION

Expected Charging Time of

EV ID ID of Selected CS Arrival Time
Depleted Battery

Arrival Time: We denote 7" as the EV’s arrival time at
its selected CS:

TE" = Teur + Téy® 3)
Here, T is as the travelling time to be taken from the current
location of EV to the selected CS, and T, is as the current
time in network. Note that, the actual travelling path is formed
based on the shortest road path topology, with an assumption
of constant moving speed.

Expected Charging Time: We denote as 75" the expected
charging time of EV’s depleted battery, upon its arrival at
selected CS:

Epar — BEur 4 Sey x THO X a

B

Here, (Sep x T!7% x «) is the energy consumed for the
movement to reach the selected CS, based on a constant «
specified as the energy consumption per meter. Therefore,
(Ege® — Eg'" + Se,, x T X ) is the expected electricity
of the battery (will be depleted from that EV upon arrival) to

T = )
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be recharged by a CS, depending on the charging power 8 of ~Algorithm 4 Estimation of EWTS in Advanced P/S Mode

that CS.

C. Privacy Concern

TABLE VI
STRUCTURE OF INFORMATION MAINTAINED AT RSU AND EV

Key Value
1D ATS [ Ng EVs’ Reservations
CSs [3060s, 3300s, 3520s] [ 20 [ [3500s, 730s], [4700s, 700s]

Upon the reservation uploading to CS (through opportunistic
communication with RSU, or direct cellular network), the CS
will process its captured reservations (formatted in TABLE V)
within current publication interval 7. Then the CS aggregates
them with the local condition (ATS and Np) for publication
at the next 7.

Both RSUs and EVs will maintain a “Map <Key, Value>"
data structure following TABLE VI. The “Key” is the entry
for each CS, while the “Value” is a tuple consisting of the CS
local condition (ATS and Np), and those EVs’ reservations.
Note that, the “Value” associated with previous CS publication
time slot, will be replaced with that currently published.

As formatted in TABLE IV and TABLE VI, the defined
information format well alleviates privacy concern. As such,
EV, will not obtain any knowledge about ID of those have
reserved for battery switch, this is because only the arrival time
and expected charging time of batteries (to be depleted from
those EVs) are included. Besides, the locations of those EVs
when made reservations are also hidden. This is because the
calculation of an EV’s arrival time is depending on its location
and speed, whereas these two factors are not released.

D. Estimation of EWTS in Advanced P/S Mode

Algorithm 4 requires the knowledge of from Algorithm 2,
as well as those EVs made reservations (detailed in TABLE
V). Throughout Algorithm 4, the EWTS at a given CS can be
estimated by EV,. locally. Here, T;"" and TCha are denoted as
the arrival time and expected Charglng time at the k' entry.

Algorithm 4 initially sorts the queue of Ny following the
FCFS order, as the charging scheduling priority been discussed
in Section III-C. Here, EV} stands for the k** EV in the
queue of Np. Besides, the expected number of switchable
batteries NZ, is initialized with the value of N at line 2. The
arrival time 77" of each EVj (in the queue of Ny) made
reservation at its selected CS, will be compared with Te“lj"(r)
(arrival time of EV,.). As highlighted at line 5, for each EVy,
with its 72" earlier than T, ;j"(rr), the former will involve the
dynamic update of the ATSLIST from line 6.

Note that the ATSLIST has been initially sorted according to
the ascending order (at line 1), such that the earliest available
time for switch is at the head of ATSLIST. From line 6,
T, is compared with the charging finish time of each
battery (being charged or waiting to be charged, as included
in ATSLIST) at this CS. If T}’ ("; is earlier than T¢)"  happens
at line 7, one more battery will be switchable upon the arrival
of EVy, with N increases by 1 at line 8.

1: sort ATSLIST returned by Algorithm 2, with ascending order
2: define TEMLIST, NE = Np

3: sort the queue of Ng according to FCFS

4: for (k=1;k < Ng;k++) do

50 (T <T7)) then

6: for (j = 1;j < |ATSLIST|; j + +) do

7: if (T} < TTT) then

8: NE=NE+1

9: delete Tf ‘™ from ATSLIST and TEMLIST
10: end if o

11: end for

12: if (JATSLIST| > §) then

13: if (|TEMLIST| = 0) then

14: include first & elements Té:?) into TEMLIST
15: end if

16: sort TEMLIST with ascending order

17: Tg(’“ = TEMLIST, + (BF” — Eg' )/B + T5"
18: replace the TEMLIST; with Tl Z:)

19: else
0Tl =T (B - g A T
21: include 74" " into TEMLIST
22: NE=NE-1
23: end if )
24: include T/ into ATSLIST
25: end if

26: end for
27: for (j = 1;j < |ATSLIST]; j + +) do

28 if (T < TEr) then
J

29: N{;’g =NE+1

30: end if

31: end for

32: if (NE > 0) then

33:  return EWTS = T5%/NE
34: else

35: return EWTS = ATSLIST; —
36: end if

Tarr

€v(y)

+ T

As such, the given T}’ (": will be removed from ATSLIST
(and also TEMLIST initialized from line 14), means the
number of batteries being charged or to be charged decreases.
This is because a fully charged battery will be switched to
EVy. Then:

o As given by the condition (JATSLIST| > ¢) at line 12,
the number of batteries being charged or to be charged,
is larger than § as the total number of charging slots a CS
is equipped. This reflects any incoming EV} still needs
to wait an additional time for a switchable battery. In
this case, the charging finish time Tf " of the battery
depleted from EVy, is given at line 17

TZZ;(ZZ) = TEMLIST; + (EZ*® —

Bor - BEL)BATE O

B(k)

where TEMLIST;® is the time slot when a charging slot
is available at the CS, (Em“"” C’“’)) /B is the time
duration to fully recharge the battery depleted from EVy,
while T3% is the time duration to deplete this battery
from EV}, and switch with a fully recharged battery.

8As we also define TEMLIST at line 2, the first § value in ATSLIST are
included into TEMLIST. This certainly reflects the charging finish time of
batteries being charged at CS. At line 18, replacing TIJ;Z: with TEMLIST;
thus updates the charging finish time of batteries in TEMLIST, for the
computation that EVy involves in next loop.
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o Otherwise, EVy will be directly switched with a fully
recharged battery (without waiting), then TZ;Z:) is given
at line 20:

fin _ pparr mazxr _ ppcur SwW
TB(k) =Teviy + (Es(k) EB(k))/ﬁ +T5 Q)

Note that the time to start battery switch is as Te“,f(z) (ar-
rival time of EVy). At line 22, the number of switchable
batteries decreases by 1, meaning EVj will be replaced

with a fully charged battery.

Furthermore, the charging finish time of each battery depleted
from incoming EVy, will be included into ATSLIST at line
24.

Above loop operation is repeated, until all EVy

(in the queue of Nr) have been processed. Then, TG%T(:)’

is compared with the charging finish time Té(m) included
in ATSLIST. If there is any 7T, ZJ;(”; (the

condition (7] l’;:" < T4 ) at line 28), this means one more
J 7'

battery will be available for switch when EV, arrives. As

such, the expected number of switchable batteries N

increases by 1. Finally:

e The EWTS is returned as 735" /N g at line 33, if there
will be a switchable battery given by (N5 > 0).

« Alternatively, the  EWTS is returned as

ATSLIST; — T+ Tgw2

1 arr
earlier than T o

every at line 35. This implies
that there will not be any battery available for switch,
when EV,. arrives at its selected CS. In other words, EV,.
will need to wait ( ATSLIST; — TE‘IUT(TT)), and experience
TZY for battery switch.

E. Reservation Uploading

The motivation for each RSU to aggregate EVs’ reservation-
s, is to reduce the communication cost (in terms of how many
times the connections are established to CSs). In detail, as CSs
publish their information at previous publication time stamp
P, it is compulsory that the aggregated EVs’ reservations
is required to be delivered at associated CSs, before given
(T 4+ P). This means the information collection is to be
operated within the interval 7.

Therefore, the EV’s reservation does not need to be sent
instantaneously, as it is with a delay tolerance of (T'+ P). By
means of optimally deployed RSUs, all EVs’ reservations can
be ideally collected by RSUs in a V2I manner. However, it
is by no means that all EV’s reservations will be successfully
delivered to their associated CSs. This is mainly due to the
opportunistic encounters between EVs and RSUs. In the worst
case, an EV’s reservation must be delivered to its associated
CS, before any RSU is encountered. This means the time to
encounter the first RSU along the trajectory towards an EV’s
selected CS, is later than (T + P).

In the light of this, the proposed reservation uploading
considers the trajectory towards the EV’s selected CS, and
those locations of RSUs along that trajectory, specifically:

« MEC-Functioned RSU Uploading: If any RSU is acces-
sible before (1'4P), the reservation uploading will be de-
layed until that encounter happens. The valid reservation
refers to that of which the EV’s arrival is reserved later

than (17" + P). This is because an EV’s reservation will
be deleted by its selected CS, when it is parked therein.
Then any arrival happens before the next CS’s publication
will be removed from RSUs, this potentially reduces the
size of data to be uploaded to CSs. The EV’s reservation
gathered by MEC-functioned RSU will be aggregated
with those select the common CS, and reported at (T+P).

o Direct Cellular Networking Uploading: Alternatively,
the cellular network is established, where the EV’s reser-
vation is directly uploaded to the selected CS.

F. Communication Efficiency

Firstly, if EVs’ reservations are delivered to their selected
CSs through the cellular network, ideally, there will not be
any delivery delay because we assume it is with ubiquitous
communication range. Here, the communication cost is scaled
by O(Ngy), as the number of reservations made is directly
related to that of EVs.

Secondly, we consider that EVs’ reservations are delivered
to their selected CSs through RSUs in proximity. Referring
to Fig. 10, the delay only depends on the time for the EV to
encounter an RSU, because the communication between RSUs
and CSs can be considered as delay free (thanks to the cellular
network communication). Therefore, the communication cost
is scaled by O(P,/s X Ney), recall that P,/ is the possibility
that an EV to encounter at least one of NV,.;,, RSUs. This refers
to the reservation uploading in an opportunistic manner, as
implemented in [1].

Thirdly, we consider the case with aggregated EVs’ reser-
vations uploading to CSs, before (7' + P). Here, the commu-
nication cost is scaled by O(%), as the communication is
established from N, , RSUs within interval T'. In order not
to miss-upload any EV’s reservation, the cellular network is
applied as the back-up solution®.

Based on above, the communication cost is scaled between
O((l —Pp/s) X Nev) and O(NTT) Note that P,/, also
benefits from a larger N,,, and shorter 7', that is consistent
to O (%) As such, excluding the deployment of RSUs,
in nature, a larger V., drives the sustainable communication
efficiency for the long term EVs popularity.

G. Discussion

1) Integration of Renewable Energy: The mismatch be-
tween EVs and infrastructures would potentially hinder the
deployment rate of EVs. With the ever increasing penetrations
in EVs, the resultant charging energy imposed on the electric-
ity network could lead to grid issues such as voltage limits
violation, transformer overloading, and feeder overloading at
various voltage levels. Coordination of the charging deplet-
ed batteries with renewable energy source provides a more
straightforward approach to cope with the potential network
issues as mentioned above. Future works would be on the inte-
gration of power network [28], to achieve an interdisciplinary
work on ICT, route planning and energy integration.

9For example, any EV,. will not encounter any RSU along the trajectory
towards its selected CS, with possibility (1 — P(,/s)) X New.
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2) Heterogeneity of Batteries: Of course, it is practical to
consider the compatibility of heterogeneous batteries switched
between different type of EVs. There have been many EV
manufacturers, and each type of EV may only be compatible
with one or a few types of batteries. As such the estimation
of batteries number and AWTS should differentiate each type
of battery and its support EVs’ reservations.

3) Combination of Battery Switch and Plug-in Charging:
Concerning the service provisioning, those EVs (private driver-
s) which are not with emerging demand could experience plug-
in charging service, whereas those (public taxis) are suggested
to experience battery switch service due to demand of being
actively hired. The deployment of these two types of stations
requires analysis on EVs traffic history, and could share the
same ICT framework that we propose in this article.

H. Performance Evaluation

The performance is also based on the configuration in
Section IV-C. We further bring two previous works on reser-
vation enabled CS-selection (under plug-in charging system)
for comparison, namely Reservation-1 [1] and Reservation-
2 [8] both are implemented in centralized manner. Besides,
we consider the Total Reservations Making (TRM) as the
additional communication cost brought in reservation service.

300
250
200
150
100
50
0

2
w

Reservation-1 Reservation-2

Centralized

Distribution of TSB/Charged

@CS1 OCS2 mCS3 mICS4 mCS5

Fig. 12. Distribution of TSB at CSs

1) Influence of CS Publication Interval: In Fig. 11(a) and
Fig. 11(b), we observe the Advanced P/S Mode outperforms
Basic P/S Mode, in terms of reduced AWTS and increased
TSB. This mainly thanks to bringing the knowledge of EVs’
reservations, which helps to avoid planning charging at likely
congested CSs. Thus EVs experience shorter time to wait for
service and more batteries can be switched. For fundamental
comparison, the centralized version of CS-selection in Section
IV (namely Centralized herein) still outperforms Reservation-
1 and Reservation-2, due to the advantage of battery switch
system. By prolonging the CS publication interval from 120s
to 1200s, the decentralized manners, e.g., Advanced P/S
Mode, Basic P/S Mode, and Reservation-1 (P/S) (the disturbed
manner of [1]) suffer from performance degradation. Such a
nature can be referred to the observation in Section III, where
the information (ATS, Np and associated EVs’ reservations
of CSs) accessed by EVs is obsolete due to infrequent publi-
cation.

In Fig. 11(c), all centralized manners (Reservation-1I,
Reservation-2 and Centralized) experience higher communi-
cation cost for reservations making, as solely the cellular

network is established. The decentralized manners are with
lower cost, where Reservation-1 (P/S) only relies on oppor-
tunistic encounters between RSUs for reservation uploading.
The Advanced P/S Mode runs the reservations aggregation
at MEC-functioned RSUs (upon collected EVs’ reservations),
and alternatively utilizes the cellular network as back-up solu-
tion. As CSs publication interval increases, the TRM becomes
decreased.

Fig. 12 further shows the distribution of TSB (charged
EVs) among CSs, in case of centralized manner with reserva-
tion function enabled. Regardless of charging system (battery
switch vs plug-in charging), our proposed scheme achieves the
best balance.

2) Influence of EVs Density: In Fig. 13(a), Fig. 13(b) and
Fig. 13(c), all schemes experience an increased AWTS and
TSB, following the increased EVs’ density. This is because of
congestion happened at CSs, as such most likely EVs have
to wait for longer time to get battery switched while the
less batteries can be switched during simulation time. Here,
Centralized also achieves the best performance, as an optimal
case of Advanced P/S Mode. With strategically deployed
RSUs applied in Section III, most of EVs’ reservations can
be captured and aggregated, thus alleviates the cost through
cellular network in Fig. 13(c). The performance of other
compared schemes also follows similar observation in case
of varied CSs publication interval.

3) Influence of RSUs Deployment and Transmission Range:
The decreased number of RSUs and reduced transmission
range also degrade performance in Fig. 14(a), Fig. 14(b) and
Fig. 14(c), similar to that discussed in Section IV-C. Particu-
larly, we observe the reservations making through the cellular
network dramatically increases due to missed opportunistic
encounter, compared to that through the RSUs. This implies
that the importance of infrastructures positioning and ICT
configuration to maintain a good coverage of information
dissemination.

VI. CONCLUSION

In this paper, we proposed a distributed charging sys-
tem supported battery switch service, in line with the P/S
communication framework (applying MEC-functioned RSUs
for intermediate information handling). The communication
efficiency of P/S system has been studied and compared with
that using the cellular network communication and broadcast-
ing. We further propose the Advanced P/S Mode which en-
ables EVs to publish their reservations (intelligently uploaded
through opportunistically encountered MEC-functioned RSUs,
or cellular network) for communication efficiency. Results
show the charging system benefits from this anticipated infor-
mation to make CS-selection decisions, which further reduces
the EVs’ waiting time for battery switch and increased CSs’
switched batteries. Further results also imply the strategies on
position of RSUs and ICT configurations, to support low cost
information exchange within E-Mobility system.
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