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Abstract

The global validation of remotely sensed and/or modeled geophysical products is often com-
plicated by a lack of suitable ground observations for comparison. By cross-comparing three
independent collocated observations, triple collocation (T'C) can solve for geophysical prod-
uct errors in error-prone systems. However, acquiring three independent products for a
geophysical variable of interest can be challenging. Here, a double instrumental variable
based algorithm (IVd) is proposed as an extension of the existing single instrumental vari-
able (IVs) approach to estimate product error standard deviation (o) and product-truth
correlation (R) using only two independent products - an easier requirement to meet in
practice. An analytical examination of the IVd method suggests that it is less prone to bias
and has reduced sampling errors relative to IVs. Results from an example application of
the IVd method to precipitation product error estimation show that IVd-based ¢ and R are
good approximations of reference values obtained from TC at the global extent. In addition
to their spatial consistency, IVd estimated error metrics also have only marginal (less than
5%) relative biases versus a TC baseline. Consistent with our earlier analytical analysis,
these empirical results are shown to be superior to those obtained by IVs. However, several
caveats for the IVd approach should be acknowledged. As with TC and IVs, IVd estimates
are less robust when the signal-to-noise ratio of geophysical products is very low. Addition-
ally, IVd may be significantly biased when geophysical products have strongly contrasting

error auto-correlations.
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1. Introduction

Remote-sensing retrieved and reanalyzed geophysical variables are increasingly available
at the global scale (e.g. Huffman et al., 2007; Mu et al., 2007; Entekhabi et al., 2010; Kerr
et al., 2010). However, these products are not completely consistent, as shown in comparison
studies of global soil moisture (e.g. Chen et al., 2017; Burgin et al., 2017), evapotranspiration
(ET) (e.g. Sorensson and Ruscica, 2018) and precipitation products (e.g. Dee et al., 2011;
Gelaro et al., 2017). Validating these products, and interpreting inter-product differences, is
often challenging due to the lack of intensive ground-based observations at the global scale
(Chen et al., 2017). For example, a large fraction of the Western United States averages
less than 0.5 rain gauges per 0.25-degree spatial grid (Massari et al., 2017). Spatial rain
gauge density is further reduced for areas of Africa and South America (Koster et al., 2016;
Dezfuli et al., 2017). Compared with these global rain gauge densities, ground-based soil
moisture and ET observations are even more sparsely distributed (Crow et al., 2012; Lu
et al., 2016). Consequently, neglecting ground observation errors leads to a high-bias in
error estimates acquired for these products via comparisons against sparse ground-based
observation networks (Massari et al., 2017; Chen et al., 2017).

Triple collocation (TC) analysis (Stoffelen, 1998) has proven to be a valuable tool for
evaluating errors in uncertain measurement systems (McColl et al., 2014; Gruber et al.,
2016a). TC essentially estimates the product error variances using a set of linear equa-
tions. To solve all the unknowns in the linecar equation system, at least three independent
products are required. While TC analysis is useful for the analysis of multiple land sur-
face and atmospheric properties (Dong and Crow, 2017; McColl et al., 2014; Alemohammad
et al., 2015; Chen et al., 2017), obtaining three independent estimates of a single variable
can be challenging. For instance, due to the general similarity of land surface model struc-
tures, TC cannot use multiple model-based or reanalyzed products in a single triplet (Crow
et al., 2015b). Likewise, remote-sensing products often share similar retrieval algorithms and
therefore likely contain cross-correlated errors (Massari et al., 2017; Gruber et al., 2016Db).

To address this issue, Su et al. (2014) proposed a single-instrumental variable (IVs)
technique that enables a TC-type analysis using only two independent data products. In
IVs, the lag-1 time-series of one product is used in lieu of a third independent product. If

estimation errors are serially white, IVs is theoretically equivalent to TC. This is notable,
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since obtaining two independent products for a geophysical variable is generally straight-
forward. However, as discussed below, IVs is relatively sensitive to random sampling errors
and biased in the presence of auto-correlated errors. Therefore, improving the tolerance of
IVs to sampling errors and error auto-correlation would significantly benefit our ability to
globally characterize geophysical data product errors.

Following Su et al. (2014), this study aims to provide a more robust global geophysical
data error estimator requiring only two independent products. Specifically, by modifying
the IVs formulation to include a second instrumental variable, we propose a new “double in-
strumental variable” algorithm (IVd) that significantly reduces sampling uncertainties and
biases (associated with auto-correlated product errors) impacting IVs error estimates. We
begin by analytically demonstrating the advantages of our new IVd approach and then com-
paring numerical TC, IVs and IVd results obtained via an example application to estimate

the global error characteristics of reanalyzed and remotely sensed precipitation products.

2. Materials and Methods

2.1. Geophysical product error estimation algorithms

2.1.1. Triple collocation analysis (TC)
In TC analysis (Stoffelen, 1998), three independent products (z, y and z) are required.
These products are typically assumed to be linearly related to the true signal (P). Taking

z for illustration, this linear model can be expressed as:

z=0yP+ By + ¢, (1)

where a, is a scaling factor; B, is a temporal constant bias and €, is zero-mean random
error. In addition to linear error model shown in equation (1), a multiplicative error model
can also be used in conjunction with a log transformation (Alemohammad et al., 2015).

In TC and instrumental variable based (see below) error analyses, the biases (B in
equation (1)) cannot be estimated, unless an unbiased reference is known. Instead, the goal
of TC is to estimate the error variance of z (noted as 02), and/or the correlation between x
and P (product-truth correlation, denoted as R) - both of which are unaffected by the bias

term. Assuming all product errors are mutually independent and orthogonal to the truth,



&7 the covariances between the products are expressed as:

Cpy = ayayCpp (2)

88
Czz = 0;0,Cpp (3)

89
Cyz = ayaszp (4)

%
Cox :OéiCpp-f—O'g (5)

o1
Cyy ZOéiCpp—FUi (6)

2
C,. =a§Cpp+O‘§ (7)

ss where C represents the covariance of the subscript products. For instance, C,, represents
o the covariance of x and y, and C'pp is the variance of the true geophysical signal. Combining

s equations (2 - 7), the variances of the observation errors can be solved for as:

C.’I: CZZ

‘732: Cra Cy, (8)

yz

96 C C’
gy = Cyy — xc_yx = 9)

97 C C
0_2 —C,, — zzyz 10
p ., (10)

% Likewise, the truth-product correlations (R) can be solved for as (McColl et al., 2014):

CyyC,
Rp, = = 11
99 C’ C
R}, = 12
Py szcyy ( )
100 C C
R2 — Zx2Tyz 13
Pz vy sz ( )
o 2.1.2. Single instrumental variable based algorithm (IVs)
102 As noted above, the goal of our study is to evaluate geophysical product errors using only

03 two independent products. This can be achieved by introducing an instrumental variable (T)

e (Suet al., 2014). Provided that the product errors are serially white, I can be directly taken
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from the lag-1 time series of one product. Here, for illustration, we take I as lag-1 [day]
time series of z, i.e., Iy = a;P;—1 + By + €,,_,. Following Su et al. (2014), the covariance

between the original products and this instrumental variable can be expressed as:
Crzs = ainp (14)

C’Iy = axayLPP (15)

where Lpp is the lag-1 auto-covariance of the true signal. Taking the ratio of equations (14)

and (15) yields:

Cra /2
Sivs = ! = CV_ (16)
Cry ay

where s;,5 is the IVs-estimated scaling ratio of the two products. Combining equations (2),

(5), (6) and (16), the error variances of x and y can be solved for as:

= C:m: - Czysivs (17)

Og

and their correlation with truth can be estimated as:

CT Sivs
Rp, = St (19)
C
2, = 2
pr CoruSivs ( 0)

2.1.53. Double instrumental variable based algorithm (IVd)

Here we modify the estimates of s;,s by including one additional instrumental variable,
so that the method is now referred to as the double instrumental variable algorithm or
IVd. As demonstrated below, this modification enhances the robustness and the accuracy
of scaling ratio estimates made in equation (16) and, by extension, subsequent estimates of
o and R.

In IVd, serially lag-1 geophysical observations from both products are used as instru-

mental variables, i.c., one additional instrumental variable (J; = oy P—1 + By + €y, , ) is
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used relative to IVs. Consequently, the covariance of y and J (i.e., C'y,) is expressed as:
CJy — (132/LPP- (21)

Combining equations (14) and (21), the ratio of o, and o, can be solved for as:

s o CIac
vd —
Cy
Yy

(22)

where s;,4 is the scaling ratio estimated by IVd. Based on equation (22), the standard
deviation of the product errors (i.e., oy and oy) and their correlation with truth (ie., Rpy
and Rpy) can be estimated using equations (17 - 20).

As demonstrated below, this modification reduces the impact of random sampling er-
rors on scaling ratio estimates, which leads to reduced uncertainty in ¢ and R estimates.

Additionally, this modification is more tolerant of auto-correlated errors (see below).

2.2. Analytical comparisons of IVs and IVd scaling ratios

Here, we use analytical solutions to provide insight into IVs and IVd comparisons. As
shown in equations (17 - 20), in both IV algorithms, error and/or bias in scaling ratio (i.e.,
Sivs and s;,q) estimates is linearly propagated into o2 and R? estimates. Additionally, since
IVd and IVs differ only in their scaling ratio calculation - compare equations (16) and (22) -
sampling errors in other components (e.g., Cyy and Cy;) will have the same impact on both
IVs and IVd estimates. Therefore, the relative performance of IVs and IVd is determined by
the relative accuracy of their scaling ratio estimates. This assumption is further confirmed
by numerical synthetic experiments shown in Appendix A. Hence, this section focuses on

an analytical description for the robustness of IVd- and I'Vs-estimated scaling ratios.

2.2.1. Random sampling error impacts

Since all the covariance terms are sampled with finite sample sizes, they are expected
to be affected by random sampling errors. As shown above, Cy,, Cr, and C, are linearly
proportional to the same quantity, i.e., Lpp. Hence, we can assume for simplicity that
sampling error has same impacts on the signal-to-noise ratios (SNR) for all covariance terms.
Under such an assumption, the expression for covariance estimation given the presence of

random sampling errors can be expressed as:
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Cro = a2Lpp(1 4 vry) (23)
é]y = amaprp(l + ’U]y) (24)
CN'Jy = (MZLpp(l—i-’l)Jy) (25)

where vy, vry and vy, are sampling errors with variance V. Clearly, extremely large
sampling errors (i.e., V) can lead to unstable (or even negative) covariance estimates. These
cases are filtered out by bootstrap sampling (see Section 2.4 to follow). Hence, we effectively
assume that V is relatively small, and (1 + vy,), (1 + vgy) and (1 4 vyy) are all positive.
According to equations (23 - 24), the scaling ratio estimated by the IVs method, in the

presence of sampling errors, should be modified as:

:%1—1-’0” (26)
ay 14+vg,

Sivs

Based on the first-order term of Taylor’s series expansion, equation (26) can be approximated
as:
Ay

Sivs & _(1 + v — va)' (27)
Ay

Hence, the mean-squared error of IVs estimated scaling ratio can be approximated as:

2

G — 2 ~2%y (1 — ). 28

(Sivs — 8)* = D) ( pii) (28)
Oy

where s is the true scaling ratio (i.e., az/ay), and p;; is the correlation coefficient of vr, and
vry. Likewise, approximating the ratio of equations (23) and (25) using a Taylor’s expansion

yields the following IVd-estimated scaling ratio (in the presence of sampling errors):

My

Sivd = _(1 + 0.5vr, — 0-5'UJy)~ (29)
Qy
Hence, the uncertainty of s;,4 is:
(Si0q — 8)* =~ 0.5@—;1/(1 — pij) (30)
y

where p;; is the correlation coefficient of vz, and vy,. If the sampling error cross-correlation
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(i.e., p values) are negligible or similar in size, equations (28) and (30) reveal that the
variance of s estimation error for IVd is (approximately) 1/4 of the comparable IVs case.
As shown in equations (17 - 20), error in s is linearly propagated into o> and R?. Hence,
relative to a IVs baseline, the application of IVd reduces ¢? and R? sampling uncertainties
by this same fraction.

As discussed above, this analysis assumes that sampling errors have the same impact
on the SNR of all sampled covariance terms. While this assumption does not strictly hold
in all cases, numerical results in Appendix A demonstrate that, for a wide variety of cases,
the violation of this assumption does not alter our underlining conclusion regarding the

sampling superiority of IVd versus IVs.

2.2.2. Impacts of auto-correlated errors

To match unbiased TC algorithm estimates, both IVs and IVd require temporally white
errors in all products. This section demonstrates the impact of temporally auto-correlated
errors on both IVs and IVd. For the purpose of illustration, we take a lag-1 [day] time series
of x as the instrumental variable in IVs, which is assumed to have auto-correlated errors

(i.e. €, €z, 5 # 0). Given the presence of such errors, equation (16) has to be modified as:

o L
Sivs = — + — = (31)
Qy Qg Oy

where L., = €;,€,, ,/Lpp. Clearly, equation (31) shows that auto-correlated errors lead to
biased IVs scaling ratio estimates. Combining equations (17 - 20) reveals that subsequent
IVs 0% and R? estimates are also biased by the same additive term of L, /o a,.

Likewise, in the case of auto-correlated error, the IVd-estimated scaling ratio (i.c., equa-

[a2 + L.
ivd = (| ——— 32
Sivd 043 n Ley ( )

where Le, = €,€,_,/Lpp. Note that L., (or L, ) is zero if errors in 2 (or y) are temporally

tion (22)) can be expressed as:

white. Based on the first-order term of its Taylor’s series expansion, equation (32) can be

approximated as:

2
« 1 1 «
Sivd ~° — . — 2L . (33)
T 2 Yy
oy 2004 2000y a;



189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

As demonstrated in both precipitation (see Section 3) and soil moisture (Dong and
Crow, 2017) error analyses, error auto-correlation (i.e., the sign of L., and L.,) tends to
be positive for most geophysical data products. Under such an assumption, equation (33)

suggests that, in an IVd analysis, biases introduced by L., and L., will partly offset one

€y
another. Notably, the IVd net bias will be zero if the two products have the same error
auto-correlation characteristics (i.e., agLe, = a2 Le,).

It should be noted that IVs uses only one single instrumental variable and hence requires
only one product to contain temporally uncorrelated errors. On the contrary, IVd requires
both products to contain serially white errors, or, as discussed above, that their error auto-
correlation impacts are approximately equal and thus offset each other (see equation (33)).
Hence, IVs is theoretically preferable when one of the geophysical product is known to have
temporally white errors, or when the two products are known to have strongly contrasting
error auto-correlations. However, this does not generally represent a practical advantage
for an IVs analysis. When examining two sets of independent observations, it is generally
impossible to determine which (if any) product has serially white errors. Furthermore, even
small error auto-correlation will lead to large biases in IVs when the SNR of geophysical
products is low (see Appendix A). Therefore, IVd results in a more conservative and robust
strategy in response to the potential presence of auto-correlated errors in either input prod-
uct. Although only the first-order term of the Taylor’s series expansion are considered in the
analytical discussion above, numerical results in Appendix A verify that the consideration
of higher-order terms does not qualitatively change the conclusion that IVd is more robust

to auto-correlated errors.

2.3. Precipitation data

As discussed above, precipitation error analyses will be used as a case study for eval-
uating the relative performances of IVs and IVd. TC-based precipitation error analyses
have previously been verified using intensive ground-based precipitation networks over the
Eastern US and Southeastern China (Massari et al., 2017; Li et al., 2018). Hence, TC error
analysis of daily precipitation products is arguably better validated than any other land
surface variable.

For TC analysis, a variety of precipitation products were acquired. The SM2Rain precipi-

tation product (Brocca et al., 2015) is based on Advanced Scatterometer (ASCAT) soil mois-
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ture retrievals (Wagner et al., 1999) and estimates precipitation by inverting the land surface
water balance using ASCAT soil moisture time series. This 0.25-degree daily precipitation
product is available from January 2007 to June 2015 (http://hydrology.irpi.cur.it/download-
area/sm2rain-data-sets/) and based on the approach described in Brocca et al. (2017).

The reanalyzed, daily, 0.5-degree ERA-Interim precipitation product (Dee et al., 2011)
was collected from European Centre for Medium-Range Weather Forecasts (ECMWF, https:
//www.ecmwf.int/). The ERA-Interim is a data assimilation system based on ECMWF
forecast model (Dee et al., 2011).

The L3 daily 0.25-degree precipitation product (TRMM_3B42_Daily) was provided by
the Tropical Rainfall Measuring Mission (Huffman et al., 1997). Tt is generated by taking the
daily average of the near real-time, 3-hourly TRMM Multi-Satellite Precipitation Analysis
(TMPA) 3B42RT product. These estimates are retrieved from a variety of low-earth orbit
passive microwave observations (e.g., Microwave Imager, Special Sensor Microwave Imager
(SSM/I), Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E),
and the Advanced Microwave Sounding Unit-B (AMSU-B)) using the Goddard Profiling
Algorithm (Huffman et al., 2007).

Global, daily, ground-based observations from the 0.5-degree CPC precipitation product
(Xie et al., 2007) were also collected from the NOAA Earth System Research Laboratory. To
enable the comparison of precipitation products, both SM2Rain and TRMM precipitation
estimates were linearly averaged onto a 0.5-degree global land grid (the native resolution of
the ERA-Interim and CPC precipitation data). All TC, IVs and IVd results were based on
a daily analysis conducted between January 2007 and June 2015 - a period in which all four

products are available.

2.4. Implementation of precipitation error analysis

As mentioned above, TC, IVd and IVs can be applied to a multiplicative error case
via application of a log transform (Alemohammad et al., 2015), which may better capture
the multiplicative nature of errors in short-term precipitation accumulation estimates (Tian
et al., 2013). However, implementing the multiplicative error model in TC requires removing
zero-precipitation days (Alemohammad et al., 2015), which is inappropriate for many climate
regions (Massari et al., 2017). In addition, empirical TC results for precipitation errors

(verified via comparisons against error estimates obtained from dense rain gauge networks)

10
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suggest, that biases associated with the use of an additive error model are minimal (Li et al.,
2018; Massari et al., 2017).

Since TC, IVs and IVd estimates can contain substantial uncertainties when applied
to low-quality geophysical data products (Dong et al., 2018), a 1000-member bootstrap
sampling was used to evaluate the uncertainty of TC-, IVs- and IVd-estimated o and R
for each grid cell over the globe. Unreliable estimates were then masked out according to
the bootstrapped uncertainties (see below). Since the sampling length of the precipitation
data sets was relatively long (approximately 8 years), the stability of error analyses is
primarily determined by the geophysical product quality (Dong et al., 2018). Hence, this
bootstrapping method was assumed to be sufficient for filtering out the unreliable estimates,
and more sophisticated sampling techniques were not considered.

Each bootstrap sampling member was constructed by re-sampling the original observa-
tion time series with replacement to preserve the original sample size. For each randomly
sampled time step, all products were paired to preserve their original correlation and/or
auto-correlation strength. For example, at random time step ¢, x;, y; and z; were simulta-

neously drawn for TC analysis, and z¢, y;, x+—1 and y;—1 for IVd.

3. Results

3.1. Comparison of TC and IVs estimates

Global TC and IVs estimates for the standard deviation of precipitation error (o) in
daily ERA-Interim and TRMM rainfall products are shown in Figure 1. A more detailed
statistical comparison of the two methods is given in Figure 2. Due to the presumed error
independence between the CPC, SM2Rain and ERA-Interim products (Massari et al., 2017),
ERA-Interim errors were estimated by applying TC to this triplet (Figure 1a). Likewise,
a CPC-SM2Rain-TRMM constructed triplet was used for the TRMM TC error analysis
(Figure 1b). The lag-1 [day] time series of CPC-based precipitation was used as the single
instrumental variable for both the CPC-ERA-Interim and the CPC-TRMM IVs analyses
(Figures 1c and d).

Based on the TC results in Figure la and b, ERA-Interim generally demonstrates lower
o than comparable TRMM estimates (particularly over North America, Europe, Australia

and Central Asia). Both ERA-Interim and TRMM tend to present larger o over relatively

11
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wet, regions, e.g., the Eastern United States, Amazon basin, Southeastern China. This
tendency is consistent with earlier ground-based validation results presented in Chen et al.
(2013) and previous findings that precipitation observation errors generally increase with
areal mean precipitation (Huff, 1970).

The spatial distribution of IVs-based ERA-Interim and TRMM o (Figure lc and d) is
highly analogous to that obtained via TC. For example, the spatial correlation between
TC and IVs o results is above 0.9 [-] for both ERA-Interim and TRMM (Figure 2). As
shown above, the precipitation error primarily reflects patterns in mean annual precipitation.
Therefore, the general consistency of TC- and IVs-based ¢ values is not wholly unexpected.
However, a subtle (but spatially persistent) bias is seen in IVs estimates of ERA-Interim
and TRMM o relative to benchmark TC results (Figure 2). Larger differences are found
for R results. In particular, global R patterns estimated by IVs are poorly correlated with
TC results (Figure 3¢ and d), and a clear low bias in IVs estimates is evident relative to
comparable TC results (Figure 4).

<Figure 1 here please >

12



o [mm/day]

Figure 1: The standard deviation of daily precipitation error (o, mm/day) for ERA-Interim (left column)
and TRMM (right column) estimated using TC, IVs and IVd. The lag-1 [day] CPC precipitation time series
was used as the instrumental variable for both IVs estimates. Grey shading indicates land areas where the

bootstrapped uncertainty of o estimates is larger than 3 mm/day.
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Figure 2: Density plot of TC- and IVs-estimated global daily ERA-interim (a) and TRMM (b) o as pre-

sented in Figure 1. Text provides the mean difference (mean(IVs - TC)) and consistency (spatial correlation,
denoted as corr) between T'C and IVs error estimates. Color shading captures the density of points within

a 0.1 mm/day X 0.1 mm/day grid.

<Figure 3 here please >

14



(c) IVs-E

RA

00 01 02 03 04 05 06 07 08 09 10
REI

Figure 3: The product-truth correlation (R) for ERA-Interim (left column) and TRMM (right column)
estimated using TC, IVs and IVd. The lag-1 [day] CPC precipitation time series was used as the instrumental
variable for both IVs estimates. Grey shading indicates land areas where the bootstrapped uncertainty of

the correlation estimate is larger than 0.3 [-].
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Figure 4: Density plot of T'C- and IVs-based daily ERA-Interim (a) and TRMM (b) R (i.e., correlation
with truth) as presented in Figure 3. Text provides the mean difference (mean(IVs - TC)) and consistency
(spatial correlation, denoted as corr) between T'C and IVs error estimates. Color shading captures the

density of points within a 0.1 [-] x 0.1 [-] grid.

The biases in Figures 2 and 4 suggest that the product selected as the instrumental
variable (i.e., the CPC precipitation product) in the IVs analysis contains auto-correlated
error (see Section 2.2.2). This bias cannot be detected if reference TC estimates are not
available. Nonetheless, here we implement the alternative instrumental variable in the IVs
analysis to investigate whether the biases shown above can be reduced. In this alternative
case, lag-1 [day] ERA-Interim and TRMM data are used as instrumental variables for the
CPC-ERA-Interim and CPC-TRMM IVs analyses, respectively.

By switching the instrumental variable (from CPC to ERA-Interim), biases in ERA-
Interim estimates are slightly increased (Figure 5 a and c) relative to the previous IVs
estimates (where CPC was used as instrumental variable - see Figures 2 and 4). Some
bias reduction is observed in TRMM estimates when changing the instrumental variable
from CPC to TRMM (Figure 5 b and d). However, residual R and o biases are still
evident in both cases, and the signs of the bias are opposite to the cases utilizing CPC
as instrumental variable (comparing Figures 2, 4 and 5). This suggests that both ERA-
Interim and TRMM precipitation errors are temporally auto-correlated and the sign of this
error auto-correlation is the same as that for CPC errors (see Section 2.2.2). Additionally,

utilizing non-CPC datasets as the instrumental variable leads to decreased correlation with
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TC estimates (compare Figures 2 and 4, 5). Note that, the relative bias of IVs estimates
derived from different instrumental variables depends on the strength and the sign of product
error auto-correlation, which cannot be readily evaluated without a reliable reference.
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Figure 5: Same as Figures 2 and 4, but lag-1 [day] ERA-Interim and TRMM precipitation are used as

instrumental variables for the CPC-ERA (a and c¢) and CPC-TRMM (b and d) IVs analyses, respectively.
Text provides the mean difference (mean(IVs - TC)) and consistency (spatial correlation, denoted as corr)
between TC and IVs error estimates. Color shading captures the density of points within a 0.1 [mm/day]

x 0.1 [mm/day] (a and b) and 0.1 [-] x 0.1 [-] (¢ and d) grid.

3.2. Evaluation of the IVd algorithm

The global pattern of ERA-Interim and TRMM errors estimated by IVd is presented
in Figures 1 and 3. To be consistent with IVs results discussed above, CPC and ERA-
Interim were used for the ERA-Interim IVd analysis (i.e., both lag-1 [day] CPC and ERA-
Interim precipitation products are applied as instrumental variables (see Section 2.1.3)).
Likewise, both CPC and TRMM were used as instrumental variables for IVd-based TRMM
error estimation. Despite its use of only two products, IVd-based o and R global patterns
correspond closely to benchmark TC results (Figure 1 and 3). Improved consistency with

the TC benchmark is reflected in the increased correlation between IVd and TC estimates
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in Figure 6 (relative to IVs and TC results shown earlier in Figures 2, 4 and 5). In addition,
IVd demonstrates less global bias than IVs in ¢ and R estimates for both the ERA-Interim
and TRMM cases. This is consistent with our analytical interpretation that temporal auto-
correlated error impacts from different products tend to offset each other in IVd - see
equation (33). Overall, the bias of IVd o and R estimates is less than 5% of the nominal
global mean for all cases considered.
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Figure 6: Density plot of global IVd and TC estimated o (top row) and R (bottom row). Text provides the
mean difference (mean(IVd - TC)) and consistency (spatial correlation, denoted as corr) between TC and
IVd error estimates. Color shading captures the density of points within a 0.1 [mm/day] x 0.1 [mm/day]

(a and b) and 0.1 [-] x 0.1 [-] (c and d) grid.

4. Discussion

Relative to IVs results based on the original formation of Su et al. (2014), IVd numerical
results demonstrate increased robustness and reduced bias (Figure 6). These advantages
can be explained via a straight-forward analytical comparison of error propagation within
the IVd and IVs algorithms (see Section 2.2). In particular, including a second instrumental

variable leads to the calculation of scaling ratio in a square root form which substantially
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reduces sampling error impacts on the scaling ratio estimation and, hence, increases the ro-
bustness of the precipitation error estimates (see Section 3.2 and Appendix A). Furthermore,
given that geophysical data products generally contain positive error auto-correlation, error
auto-correlation impacts in IVd tend to be reduced - see equation (33). This effectively re-
duces the net bias in IVd-based error estimates in the presence of temporally auto-correlated
errors.

However, several caveats must be noted. As shown in Section 2.1, both IV approaches cal-
culate the scaling ratios using the auto-covariance of the true geophysical signal (i.e., Lpp).
Clearly, both IVs and IVd are less robust when the true signals have limited memories (auto-
correlations), e.g., Lpp ~ 0. Likewise, if the geophysical products are overwhelmed by ran-
dom errors, the sampled Lpp will be extremely unstable and affect the subsequent accuracy
of both IVs and IVd. Additionally, as shown in Section 2.2.2, IVd is most accurate when
the geophysical product errors are temporally white or have comparable auto-correlation
strengths. However, modeled state variables (e.g., soil moisture obtained from prognostic
water balance calculations) are likely to have stronger temporal error auto-correlation than
remote-sensing products (Dong and Crow, 2017). This contrast in auto-correlation strength
between modeled and observed geophysical products could conceivably affect ITVd estimates
(see Appendix A).

It should also be acknowledged that precipitation accumulation error can be both multi-
plicative and non-orthogonal in form (Tian et al., 2013). Both of these characteristics would
obviously violate the underlying orthogonal/additive form of equation (1). As a result, care
should always be taken when applying either TC or IV to precipitation data sets (or any
other geophysical variable). It is currently unclear how large a problem this poses for rain-
fall data sets in particular. For example, both Massari et al. (2017) and Li et al. (2018)
found only minor biases, relative to a baseline of error quantification against high-quality
rain gauges, when applying equation (1) for TC daily rainfall error estimation. Additionally,
TC, IVd and IVs are all based on the same assumptions (except for the additional zero-error
auto-correlation assumption required for IVd and IVs). Therefore, any factor that affects
TC will also impact both IVd and IVs. Given this, there is no reason to suspect that errors
in TC-based benchmark results will spuriously favor either IV technique over the other in
our evaluation. While TC is certainly not error-free, it nevertheless provides an unbiased

reference for a relative evaluation of IVs versus IVd.
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su 5. Conclusion

575 Based on the single instrumental variable algorithm (IVs) introduced by Su et al. (2014),
ws  this study describes a “double instrumental variable” algorithm (IVd) which provides im-
s proved geophysical product error estimates using only two independent observations of a
ss  given geophysical variable. Furthermore, as demonstrated in the empirical precipitation
a9 case study, IVd shows strong consistency with TC. This suggests that IVd can significantly
;0 benefit general geophysical product error estimation for cases where only two independent
s products (of a single variable) are available.

38 Given the promising results shown in the precipitation error estimation case, a logical
s next step is testing and applying IVd to other geophysical products. IVd is likely to be
s particularly valuable for global evapotranspiration (ET) error estimation. In ET products,
5 the line between modeled and remotely sensed retrievals is considerably blurred. As a result,
s available ET estimates are commonly derived from an over-lapping set of forcing datasets
w7 (e.g., solar radiation, land surface temperature, and/or air temperature). Hence, obtaining
s three independent products, and performing TC analysis, is particularly challenging for ET.
0 As a result, IVd may prove to be especially useful for techniques utilizing TC to quantify
s (and compensate for) random errors in remotely sensed ET products (see e.g., Crow et al.

s (2015a) and Lei et al. (2018)).
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w Appendix A. Synthetic experiment for IVs and IVd comparison

401 Analytical comparisons of random sampling error and auto-correlated error impacts on

w02 IVs and IVd are shown in Section 2.2. Here, we describe a set of synthetic experiments to
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further demonstrate the superiority of IVd versus IVs.

To start, a true random precipitation time series is generated by adding random numbers
(drawn from U(0,1000)) to a zero time series on randomly sampled time steps (denoted as
P). Synthetic products (z and y) are then generated by adding random zero-mean additive

Gaussian errors to the truth according to equation (1):

z=P+e, (A1)

y=P+e,. (A.2)

For simplicity, both «, and «, are assumed to be one. This assumption has no impact on
results shown below.

In the first experiment, both ¢, and ¢, are assumed to be temporally white. Five
experiment lengths were used (varying from 50 to 5000 daily time steps) to capture sample
size impacts on the relative performance of IVd and IVs. For each sample size, the ratio
of IVd and IVs mean-squared error was sampled from 1000 tests (Figure A.1). This set
of experiment was repeated 3000 times to capture the uncertainty of the sampled IVd and
IVs mean-squared error ratios (MSER) for each given sample size. Since only serially white
errors are considered, both IVd and IVs have relatively small biases (typically less than 5%).
Hence, comparisons of IVd and IVs biases are not presented.

As shown Section 2.2.1, provided the sampling error variances of the auto-covariances
are proportional to the true signal atuo-covariance, the mean-squared error of IVd scaling
factor should be 75% lower than that of IVs. However, Figure A.1 shows that this ratio
varies with both the sample size and the assumed SNR of the synthetic products. Typically,
the benefit of IVd is smaller than the analytical predictions for cases with relatively large
sample sizes and high SNR (approximately 40% error reduction). On the contrary, under
the scenario that the SNR of the synthetic products is low, the error reduction by IVd
can be substantially higher than the analytically prediction of 75% (see cases with SNR, =
0.1 [-] in Figure A.1 a). The difference between the analytical solution (see Section 2.2.1)
and the numerical results are mainly due to the assumption that auto-covariance sampling
errors are equal in magnitude (i.e., the variance of vy, vy, and vy, are all equal to V).

Nonetheless, none of the cases qualitatively change our central conclusion that IVd is more
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tolerant of sampling errors than the original IVs method. Since IVs and IVd estimate R?
and o2 using the same procedure, their relative errors are simply proportional to the scaling
factor estimation errors plotted in Figure A.1.
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Figure A.1: The ratio of IVd and IVs mean-squared error as a function of sample size (experiment length)

and product SNR. Error bar captures the standard deviation of the MSER values.

A second set of synthetic test repeats the previous experiment, but with temporally
auto-correlated errors. We first examine the cases that both products (i.e., x and y) have
the same error auto-correlation coefficients (EAC). For simplicity, a fixed sample size of
1000 is used. As shown in Figure A.2; the bias of IVs increases with increased error auto-
correlation strength. In contrast, IVd shows (approximately) zero-biases for most cases.
This is consistent with the analytical solution shown in Section 2.2.2, which demonstrates
that IVd is unbiased if the two products have the same EACs.

Next, the EAC of x is taken as constant value of 0.1, but the EAC of y is varied within
the range of 0.1 to 0.9. Here, we assume that z is known to have smaller EAC and therefore
is selected as the instrumental variable in IVs. The biases presented in Figure A.3 are
averaged across estimation errors of both z and y. For relative high-SNR cases (Figure
A.3 a to ), IVd outperforms IVs even when the EAC of y is slightly higher than that of x
(e.g., when EAC of y is below 0.3). As the difference between = and y EAC increases, IVd
demonstrates larger biases than the IVs estimates, which is expected and wholly consistent
with our analytical results shown in Section 2.2.2.

Interestingly, when the assumed SNR of x and y is low, IVd constantly outperforms I'Vs,
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regardless of the ECA differences between z and y (Figure A.3 g to i). Reduced SNR tend
to increase L., (i.e., €, €z, ,/Lpp). For such cases, higher-order terms should be considered
in the Taylor expansion analyses. Nonetheless, these synthetic experiment results confirm
that IVd is more robust to auto-correlated errors than I'Vs.
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Figure A.2: The relative absolute bias of IVd and IVs estimates as a function of error auto-correlation
coefficient (EAC). Both products (i.e.,  and y) are assumed to have same error auto-correlation coefficients.
First row: SNR = 10; second row: SNR = 1; third row: SNR = 0.1. A sample size of 1000 is used in this

experiment. Product z is used as the instrumental variable for IVs estimates.

23



456

<Figure A.3 here please >

: ; 2
100 (a) Scaling ratio 100 (b) R
e —Z—1vd
o 75 —&—1Vs 75
g
2 50 50
©
<]
=
g 25 25
[6} A
0 == — - 0 ;
0 025 05 0.75 1 0 0.25 0.5 0.75 1
EAC [-] EAC [-]
400 (d) Scaling ratio 400 (e) R?
S
& 300 300
el
2 200 200
©
3]
=
F 100
[5}
4

1

. . 2
ling r: h) R
2000 (@) Scaling ratio 2000 (h)
£
E 1500 1500
0o _
2 1000 n R 1000 T
©
(&)
=
% 50| | 500
m C
* 0 e 0 ar s
0 025 05 075 1 0 025 05 075 1
EAC [] EAC []

2

400 ol o
300
200
100
0

0 025 05 075 1

EAC [

2

400 (f o
300
200
100
0

0 025 05 075 1

EAC []

- 2

500 UK
400
300

200

100

0=
0 025 05 075 1
EAC []

Figure A.3: Same as Figure A.2, but = and y are assumed to have different error auto-correlation strengths.
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from 0.1 to 0.9 [-]. Product z is used as the instrumental variable in IVs.
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