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Excitonic complexes in type-II quantum-ring heterostructures may be considered as artificial
atoms due to the confinement of only one charge-carrier type in an artificial nucleus. Binding energies
of excitons, trions, and biexcitons in these nanostructures are then effectively ionization energies of
these artificial atoms. The binding energies reported here are calculated within the effective-mass
approximation using the diffusion quantum Monte Carlo method and realistic geometries for gallium
antimonide rings in gallium arsenide. The electrons form a halo outside the ring, with very little
charge density inside the central cavity of the ring. The de-excitonization and binding energies of
the complexes are relatively independent of the precise shape of the ring.

PACS numbers: 71.35.-y, 71.35.Pq, 81.07.Ta, 81.05.Ea, 02.70.Ss

I. INTRODUCTION

Quantum-dot and quantum-ring heterostructures have
long been hailed as “artificial atoms” [1–4] due to their
ability to confine charge carriers in all three spatial di-
mensions. Material combinations exhibiting type-I band
alignment produce nanostructures in which both elec-
trons and holes are confined to the same spatial region,
and such nanostructures have been studied extensively
over the last two decades [5–7]. In type-II nanostruc-
tures, on the other hand, only holes but not electrons
(or vice versa) are confined, presenting a rich variety of
new physics [8–10]. For example, GaSb quantum dots
or quantum rings in GaAs provide very deep confining
potentials for holes [11], while strain in the GaSb raises
the conduction-band minimum, expelling the electrons
[12]. Excitonic complexes in type-II nanostructures are
in fact very much more like artificial atoms than is the
case for type-I nanostructures, because the electrons are
bound to the holes in the “artificial nuclei” purely by the
Coulomb interaction, rather than being confined them-
selves. Type-II quantum rings are an intriguingly distinct
type of artificial atom with no natural analog due to the
radical difference between the ring-shaped “artificial nu-
cleus” and the pointlike nucleus of a real atom.

Excitons in type-II quantum dots have been exten-
sively studied both experimentally [13–16] and theo-
retically [11, 17, 18]; however, while there has been
some experimental work on carrier complexes in type-
II quantum-ring nanostructures [19–22], there has been
little theoretical work to date. The spatial separation
of charge carriers allows for a variety of interesting op-
toelectronic properties [19, 23], including extended re-
combination times, making type-II quantum rings ideal
candidates for applications such as memory devices [24]
and solar cells [16]. Binding energies of excitonic com-
plexes reported here are effectively ionization energies of
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these artificial atoms. GaSb quantum rings in GaAs may
be produced by molecular beam epitaxy [20, 22, 23, 25]
and can form with a variety of different cross-sections
ranging from triangular, to semicircular [20], and even
trapezoidal [23]. These quantum rings exhibit type-II
behavior, with the holes strongly confined to the rings.
Scanning tunneling microscopy (STM) has been used to
investigate the shape and size of the GaSb rings, and
their optical properties have been studied in photolumi-
nescence experiments [19–22].

In this work we solve an effective-mass model of exci-
tons (X), positive and negative trions (X+ and X−), and
biexcitons (XX) in type-II quantum-ring heterostruc-
tures, focusing on GaSb rings in GaAs. The holes are
confined to the ring, which is modeled as an infinite po-
tential well, while the electrons are excluded from the
ring but bound to the holes by an isotropically screened
Coulomb interaction. The kinetic energy of the tightly
confined holes is the dominant contribution to the total
energy of each complex; however, the electron-hole at-
traction is non-negligible, as is the hole-hole repulsion.
The ring was chosen to have a rectangular cross-section
for computational convenience. The ring is centered on
the origin, orientated so that the axis of rotation is the z-
axis and the midpoint in the z direction is the x-y plane.
The three parameters defining the ring geometry are the
half height of the ring Rz, the inner radius of the ring
ri, and the outer radius ro. In our model the electron
and hole densities do not overlap, so we cannot estimate
recombination rates; however our model is reasonable for
calculating binding energies.

Energies are given in units of the exciton Rydberg
R∗

y = µe4/[2(4πε)2~2] and lengths in units of the exciton

Bohr radius a∗0 = 4πε~2/(µe2), where ε is the permit-
tivity of the medium, ~ is the Dirac constant, and e is
the magnitude of the electron charge. The electron-hole
reduced mass is µ = m∗

em
∗
h/(m

∗
e + m∗

h), where m∗
e and

m∗
h are the effective masses of an electron and a hole, re-

spectively. Within the effective-mass approximation the
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Hamiltonian for a biexciton is

Ĥ

2R∗
y

= − (a∗0)2µ

2m∗
e

(
∇2

e1 +∇2
e2

)
− (a∗0)2µ

2m∗
h

(
∇2

h1
+∇2

h2

)
+

a∗0
re1e2

+
a∗0
rh1h2

− a∗0
re1h1

− a∗0
re1h2

− a∗0
re2h1

− a∗0
re2h2

+
∑
i

Vi

(
ri
a∗0

)
(1)

in excitonic units, where rij = |ri − rj | and Vi is the
confining potential, which is infinite inside the ring and
zero outside for electrons, and vice versa for holes. This
is an inhomogeneous four-body problem, but the diffu-
sion quantum Monte Carlo (DMC) method [26, 27] can
be used to calculate the exact ground-state energy for
each complex, and hence the de-excitonization and bind-
ing energies. The trion and biexciton de-excitonization

energies EX±

D and EXX
D are EX−

D = EX − EX−
, EX+

D =

EX + Eh+ − EX+

, and EXX
D = 2EX − EXX, where Ei is

the ground-state total energy for complex i. These are
the energies at which trion and biexciton peaks are ex-
pected to appear relative to the exciton peak in the pho-
toluminescence spectrum of a quantum ring [21]. The
sign is such that for a free trion or biexciton ED > 0.
The binding energies—the energy difference between a
complex and its most energetically favorable daughter
products, bearing in mind that the holes are confined

to the ring—are EX
b = EX − Eh+

, EX−

b = EX− − EX,

EX+

b = EX+ − E2h+

, and EXX
b = EXX − EX+

, where

E2h+

is the energy of two holes confined to the same
ring. The binding energy determines the temperature at
which a complex becomes unstable against dissociation
into smaller complexes.

II. COMPUTATIONAL METHODOLOGY

The casino code [28] was used to perform DMC cal-
culations of the ground-state energies of excitons, trions,
and biexcitons in quantum-ring heterostructures. DMC
is a stochastic projection method that finds the ground-
state component of a trial wave function. In this work the
trial wave function was optimized using the variational
Monte Carlo (VMC) method, in which many-body expec-
tation values are evaluated using Monte Carlo integra-
tion. The trial wave function ΨT was of Slater-Jastrow
form; e.g., for the biexciton:

ΨT(R) = exp[J(R)]φe(re1)φe(re2)φh(rh1
)φh(rh2

), (2)

where R = (re1 , re2 , rh1
, rh2

). The hole orbital φh
was taken to be the exact ground-state solution to the
Schrödinger equation for a single hole confined to the
ring:

φh(r) =

[
−J0(βr)Y0(βri)

J0(βri)
+ Y0(βr)

]
cos

(
πz

2Rz

)
, (3)

where J0 and Y0 are Bessel functions of the first and sec-
ond kind, respectively. The constant β is determined by
imposing the boundary condition φh(ro) = 0 numerically
for each ring size using the Newton-Raphson method; the
other boundary conditions are already satisfied by Eq.
(3). The electronic behavior is dominated by Coulomb
attraction to the positively charged ring together with
hard-wall repulsion from the boundary of the ring. At
short range the electron orbital φe linearly decreases to
zero on the ring boundary, while at long range the elec-
tron orbital decays exponentially to keep the electrons
localized to the ring; i.e., the behavior is hydrogenic at
long range. The electron orbital φe enforces the correct
long- and short-range behavior, with the mid-range be-
havior determined by the Jastrow factor and variational
freedom in the electron orbital. The electron orbital was
formed piecewise in eight regions about the ring, with
the functions in each region being matched at the bound-
aries to ensure the value and gradient were smooth ev-
erywhere and the orbital was zero inside the ring. See
the Supplemental Material for the full form of the or-
bital. The Jastrow exponent J(R) included a pairwise
sum of terms of the form uij(r) = ±µijr/(1 + cijr) for
each pair of particles i and j separated by distance r
with reduced mass µij . The + sign was used for par-
ticles with the same charge and − for particles with
opposite charge. cij is a variational parameter, which
was different for each particle-pair type. This form en-
sured the Kato cusp conditions were satisfied [29]. Other
one-, two-, and three-body polynomial terms were also
included in the Jastrow exponent; these were smoothly
truncated at finite range [30, 31]. VMC energy minimiza-
tion was used to optimize the trial wave functions [32].
The fixed-node DMC algorithm is exact for the ground-
state energy of an exciton, trion, or biexciton, because
of the distinguishability of the particles, which leads to a
nodeless wave function. Pairs of DMC calculations were
performed with time steps in a 1 : 4 ratio and target
configuration populations in a 4 : 1 ratio and the results
were extrapolated linearly to zero time step and infinite
population. Charge densities were obtained by binning
the radial and axial coordinates of each of the particles
sampled during VMC and DMC calculations, cylindri-
cally averaging, and then calculating the extrapolated
estimate. The errors in the VMC and DMC estimates
of the charge density (ρVMC and ρDMC) are linear in the
error in the trial wave function; however, the error in the
extrapolated estimate 2ρDMC− ρVMC is quadratic in the
error in the trial wave function [27].

III. RESULTS AND DISCUSSION

All energies and charge densities are reported for a ring
composed of GaSb surrounded by GaAs. The electron
and hole masses are taken to be m∗

e = 0.063 me and m∗
h =

0.4 me, respectively, where me is the bare electron mass.
The former is the effective mass of an electron in bulk
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GaAs and the latter is the mass of a heavy hole in bulk
GaSb [33]. The permittivity is taken to be ε = 12.9 ε0,
where ε0 is the permittivity of free space. This is the
permittivity of bulk GaAs [33]. Data from Ref. 20 were
used to obtain experimentally relevant values for the ring
size; these values were Rz = 2.5 nm = 0.199 a∗0, ri = 6 nm
= 0.479 a∗0, and ro = 10 nm = 0.799 a∗0. This geometry
was used as the starting point for our calculations; the
aspect ratio 2Rz/(ro − ri) of the ring was then varied
subject to the constraints that the volume of the ring
2πRz(r2o − r2i ) was constant and the center of the ring
in the radial direction (ri + ro)/2 was fixed. A ring with
aspect ratio much less than 1 is akin to a thin disc with
a hole in the center, while a ring with aspect ratio much
greater than 1 resembles a pipe.

The analytically evaluated variation in the hole energy
against aspect ratio is shown in Fig. 1. The minimum
energy occurs when the cross-section is square; away
from the minimum, the energy goes roughly as 1/L2,
where L = min{2Rz, ro − ri}. Also shown in Fig. 1
are DMC ground-state total energies per hole for 2h+,
X, X−, X+, and XX, all of which are bound. These
confirm that the ground-state energies of the single-hole
complexes (X and X−) are very close to the energy of a
single hole, while the ground-state energies of the two-
hole complexes (X+ and XX) are comparable with the
energy of two confined holes. The ground-state energies
for single- and two-hole complexes vary slightly differ-
ently as a function of aspect ratio due to the interac-
tion between the holes. The capacitive charging energy

ECC = E2h+ −2Eh+

for the experimentally relevant ring
geometry [20] is ECC = 8.8546(8) meV; this compares to
an experimentally measured value [34] of ECC = 24(2)
meV. STM images of quantum rings [20, 21] suggest that
the GaSb/GaAs interface is not clean in practice. This
disorder could lead to trapping of holes, strongly affect-
ing capacitive charging energies while having relatively
little effect on binding energies.

The de-excitonization energies for the trions and biex-
citon in the geometry modeling the quantum rings de-
scribed in Ref. [20] can be found in Table I. The de-
excitonization energy is positive for X−, but negative for
X+ and XX. The negative de-excitonization energy is a
result of the large energy penalty when two holes are con-
fined to the same ring; e.g., two excitons on two separate
quantum rings would be the energetically preferred four-
particle state rather than a biexciton on a single ring.
The expected positions of these peaks in a photolumines-
cence spectrum are shown in Fig. 2. The X− peak is very
close to the X peak, while the peaks for X+ and XX are
separated from the X peak by a few meV. The heights of
the peaks indicate the relative stability of the complexes,
using binding energy data from Table I. Experimental
work has not yet progressed to the point where excitonic
complex peak positions have been identified. The only
published work showing sharp lines in the photolumines-
cence spectra of GaSb/GaAs quantum rings is Ref. [21];
however the spectra in this work would likely contain
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FIG. 1. Ground-state total energies per hole of a single hole
(h+), two holes (2h+), an exciton (X), a negative trion (X−),
a positive trion (X+), and a biexciton (XX) in a quantum
ring plotted against the aspect ratio 2Rz/(ro−ri) of the ring’s
cross section. The mean radius and ring volume are appropri-
ate for the GaSb/GaAs quantum rings reported in Ref. [20].
Error bars are smaller than the size of the symbols. The exci-
ton Rydberg R∗

y is 4.45 meV for the experimentally relevant
geometry.

TABLE I. De-excitonization ED and binding Eb energies for
excitonic complexes in the quantum-ring geometry modeling
the samples described in Ref. [20].

Complex ED/R
∗
y Eb/R

∗
y ED (meV) Eb (meV)

X 0 −0.5004(6) 0 −2.226(3)
X− +0.0446(4) −0.0446(4) +0.199(2) −0.199(2)
X+ −1.111(2) −1.379(2) −4.944(7) −6.137(7)
XX −0.911(2) −0.701(2) −4.052(8) −3.11(1)

peaks from many, highly positively charged rings, making
a direct comparison with theoretical values difficult. The
de-excitonization energy is plotted against the aspect ra-
tio of the cross-section of the ring for X−, X+, and XX
in Fig. 3(a). For each complex it can be seen that there
is some slight change in the de-excitonization energy as a
function of aspect ratio. The de-excitonization energies
are largely independent of the aspect ratio, and hence
exact shape of the ring, somewhat justifying the use of a
ring with a rectangular cross-section in our model. Fur-
thermore, the energetic effects of the slight interpenetra-
tion of the electron and hole orbitals are likely to be well
described by a slight renormalization of the cross-section
of the ring; however the effects of such small changes in
the cross-section appear to be small.

The binding energies for each complex are shown in
Table I for the experimentally relevant geometry [20].
The X binding energy is about half the value for a free
X due to the exclusion of the electron from the ring. As
expected, X− is the most weakly bound (against disso-
ciation into a free electron and a neutral exciton), while
X+ is the most stable (against removal of an electron
from a ring of charge of +2e). From these binding en-
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FIG. 2. Expected peak positions for the excitonic complexes
in a photoluminescence spectrum relative to the exciton peak,
for a model of the quantum rings reported in Ref. [20]. The
peak heights represent the relative stability of the complexes.
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FIG. 3. (a) De-excitonization energies and (b) binding ener-
gies against the aspect ratio 2Rz/(ro−ri) of a quantum ring’s
cross-section for different charge-carrier complexes. The mean
radius and ring volume are appropriate for the GaSb/GaAs
quantum rings reported in Ref. [20]. Error bars are smaller
than the size of the symbols. The dashed lines shows the
experimentally relevant aspect ratio [20].

ergies the temperatures up to which the complexes are
stable are 26, 2.3, 71, and 36 K for X, X−, X+, and XX,
respectively. As with the de-excitonization energies, the
binding energy depends weakly on the aspect ratio of the
ring’s cross-section, but again these differences are much
smaller than the differences in binding energy between
complexes: see Fig. 3(b). Therefore, the binding energy
appears to be largely independent of the exact shape of
the cross-section of the ring for a given ring volume and
mean radius.

Plots of the electronic charge density for each complex
in the experimentally relevant geometry are shown in Fig.
4. The electrons form a diffuse halo around the ring, with
negligible charge density in the ring’s central cavity. The
kinetic-energy cost of localizing in the ring’s cavity signif-
icantly exceeds the gain in electrostatic potential energy.
Correlation effects further reduce the probability of find-
ing multiple electrons inside the ring’s cavity. XX and
X+ are the most localized complexes, as reflected in their
relatively large binding energies shown in Table I. These
two-hole complexes have slightly higher electronic charge

TABLE II. Sensitivity of the biexciton binding energy to the
electron and hole effective masses me and mh, the relative
permittivity ε, the ring volume V , and the mean radius of the
ring rm.

.
∂EXX

b /∂me ∂E
XX
b /∂mh ∂EXX

b /∂ε ∂EXX
b /∂V ∂EXX

b /∂rm
(meV/me) (meV/me) (meV) (meV/nm3) (meV/nm)
−7.4(3) −0.20(4) 0.39(1) 0.0004(2) 0.07(2)

densities in the regions directly above and below the cen-
ter of the ring compared to the regions to the left and
right of the ring. STM images of the electronic density
of states in Ref. [20] suggest the electrons are localized
to the ring’s cavity, which does not agree with the re-
sults presented here. However, in the STM experiments
the sample is cleaved in the x-z plane. This is a dras-
tic modification to the system, which is not described by
our model. It is plausible that the reduced screening and
hence smaller free exciton Bohr radius in the cleaved sys-
tem allows electrons to localize within, rather than above
or below, the quantum ring.

The sensitivity of the XX binding energy to various pa-
rameters is presented in Table II. The XX binding energy
depends most strongly on the electron effective mass, and
is relatively insensitive to the hole effective mass, relative
permittivity, ring volume, and mean ring radius. Our
conclusions are robust against reasonable uncertainties
in model parameters.

Kehili et al. [35] have recently investigated excitons in
GaSb rings in GaAs quantum wells using the effective-
mass approximation, modeling the ring with a finite
potential, and including strain effects due to lattice-
constant mismatch. In their work the interaction be-
tween charge carriers is described by a Hartree mean-field
approximation, in contrast to the complete treatment of

FIG. 4. Electronic charge density ρ for (a) an exciton, (b)
a negative trion, (c) a positive trion, and (d) a biexciton in
the experimentally relevant quantum-ring geometry [20]. The
shaded regions represent the ring and ρm is the maximum
density across all four plots. The free exciton Bohr radius is
a∗0 = 12.5 nm.
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correlation effects used here. Nevertheless, their elec-
tronic charge density is qualitatively consistent with our
results. Their X binding is slightly larger than our value
reported in Table II, however, partly due to their use
of slightly different effective masses and mean ring radii.
A DMC calculation of the X binding energy using the
same ring geometry and effective masses as Kehili et al.
gives EX

b = 2.695(2) meV, which is comparable with the
binding energy of about 2.6 meV that they report for a
GaAs well of width of 40 nm (the largest well width they
consider). The X binding energies reported by Kehili et
al. do not appear to have converged with respect to well
width at this point, however, and it looks as if they will
be significantly smaller than the DMC exciton binding
energy in the limit of large well width. This is consistent
with the fact that, by the variational principle, Hartree
theory underestimates the magnitude of the X binding
energy.

IV. CONCLUSION

In conclusion, total energies of excitonic complexes in
type-II quantum-ring heterostructures are dominated by
the confinement energy of the holes in each complex. The
de-excitonization energy is positive for X− as would be
the case for a free trion; however, for X+ and XX this en-

ergy is negative due to the energy penalty associated with
confining two holes in the same ring. X− is the least sta-
ble of the complexes studied; it is predicted to be stable
only at temperatures below 2.3 K, while the most sta-
ble complex, X+, endures up to 71 K. De-excitonization
and binding energies were shown to be largely indepen-
dent of the aspect ratio at fixed ring volume and mean
radius, suggesting these energies may also be fairly inde-
pendent of the precise shape of the cross-section of the
ring. The electrons form a halo around the outside of
the ring, with a low density in the central cavity. This
reflects the fact that the ring size is comparable with the
free exciton Bohr radius. Furthermore, X+ and XX are
the most tightly bound complexes, with a preference for
the electrons to position themselves above and below the
ring. For X−, the electronic charge density is much more
diffuse, consistent with its very small binding energy.
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