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Abstract 23 

Precipitation and air temperature are key drivers of watershed models. Currently there are many 24 

open-access gridded precipitation and air temperature datasets at different spatial and temporal 25 

resolutions over global or quasi-global scale. Motivated by the scarcity and substantial temporal 26 

and spatial gaps in ground measurements in Africa, this study evaluated the performance of three 27 

open-access precipitation datasets (i.e. CHIRPS (Climate Hazards Group InfraRed Precipitation 28 

with Station data), TRMM (Tropical Rainfall Measuring Mission) and CFSR (Climate Forecast 29 

System Reanalysis)) and one air temperature dataset (CFSR) in driving Soil and Water 30 

Assessment Tool (SWAT) model in simulation of daily and monthly streamflow in the upper 31 

Gilgel Abay Basin, Ethi32 

temperature from sparse gauge stations were also used to drive SWAT model and the results 33 

were compared with those using open-access datasets. After a comprehensive comparison of a 34 

total of eight model scenarios with different combinations of precipitation and air temperature 35 

inputs, we draw the following conclusions: (1) using measured precipitation from even sparse 36 

available stations consistently yielded better performance in streamflow simulation than using all 37 

three open-access precipitation datasets; (2) using CFSR air temperature yielded almost identical 38 

performance in streamflow simulation to using measured air temperature from gauge stations; (3) 39 

among the three open-access precipitation, overall CHIRPS yielded best performance. These 40 

results suggested that the CHIRPS precipitation available at high spatial resolution (0.05 ) 41 

together with CFSR air temperature can be a promising alternative open-access data source for 42 

streamflow simulation in this data-scarce area in the case of limited access to desirable gauge 43 

data.  44 

 45 
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1 Introduction 48 

Hydrological models or rainfall-runoff models are essential for understanding the hydrological 49 

processes of river basins and supporting operational management of water resources 50 

characterized with large spatial and temporal variability (Uhlenbrook et al., 2010; Tuo et al., 51 

2016). Precipitation and air temperature are two necessary weather variables required as inputs to 52 

hydrological models. An accurate representation of the temporal and spatial variability of 53 

precipitation and air temperature is essential for achieving good simulation and prediction of 54 

hydrological processes from models (Wagner et al., 2012; Tuo et al., 2016; Laiti et al., 2018). 55 

Ideally a reasonably dense network of gauge stations are needed to obtain the reliable measured 56 

precipitation and air temperature data that are adequate to effectively represent the weather at the 57 

basin scale. In reality, the network of gauge stations is often sparse and the point-based 58 

measurements with limited coverage are insufficient to capture the spatial and temporal 59 

variability of weather variables. Unfortunately, at global scale the number of gauge stations has 60 

been significantly declined. This data availability situation is even worse in developing countries 61 

and remote areas where measurements are not available or even not existent. Sometimes even 62 

data are available, strict data sharing policy could constraint the free access to the public, or the 63 

data quality is very poor. For example, despite the importance of Nile River as vital water 64 

resource for local population, the understanding of hydrology is still quite limited which is 65 

mainly due to the data scarcity and unfavorable data quality (Uhlenbrook et al., 2010; Dile & 66 

Srinivasan, 2014; Roth & Lemann, 2016). Very often we are facing limited availability of in-situ 67 

measurement, which hinders us to do hydrological Prediction in Ungauged Basins (PUB) 68 

(Hrachowitz et al., 2013). Therefore, there is a clear need for improving data collection (if 69 
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human and financial resources allow) and/or exploring alternative data sources which are more 70 

feasible.  71 

Many studies have been conducted to explore the accuracy of using open-access weather data 72 

(most focused on only precipitation data) in driving hydrological models in streamflow 73 

simulation by using available gauge precipitation data as reference. Our current study focuses on 74 

the widely-used Soil and Water Assessment Tool (SWAT) model (Arnold et al., 1998 Arnold & 75 

Fohrer, 2005; Gassman et al., 2007; Song et al., 2011, and more in the SWAT Literature 76 

Database at https://www.card.iastate.edu/swat_articles/). SWAT is also a popular model for 77 

many studies of Nile basin where is overall poorly gauged (see a review by Griensven et al., 78 

2012). For SWAT community, a common source of weather data (precipitation, air temperature 79 

and other variables) is the Climate Forecast System Reanalysis (CFSR) data. The CFSR data are 80 

promoted and popularized by the SWAT official website through providing ready-to-use weather 81 

data in desired format with the data portal at http://globalweather.tamu.edu/. The CFSR is an 82 

interpolated dataset on a 38-km grid using climate forecast system with most available in-situ 83 

data and satellite data (Radcliffe Z & Mukundan, 2017). The readily availability of weather data 84 

in the required format attracted many studies to use CFSR data to drive hydrological models.  85 

Several studies evaluated the performance of using CFSR precipitation to drive SWAT in 86 

streamflow simulation. However, contrasting findings were reported from different studies. For 87 

example, using CFSR precipitation was found to yield satisfactory streamflow simulation in 88 

Lake Tana Basin, Ethiopia (Dile & Srinivasan, 2014), in four small watersheds in USA and the 89 

Gumera watershed in Ethiopia (Fuka et al., 2014). But CFSR was found to generate 90 

unsatisfactory streamflow simulation in two upstream watersheds of the Three Gorges Reservoir 91 
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in China (Yang et al., 2014) and in two watersheds in USA (Radcliffe & Mukundan, 2017). The 92 

latter found that using the PRISM (Parameter-elevation Relationships on Independent Slopes 93 

Model) precipitation data as input yielded satisfactory to even very good streamflow simulation 94 

in the same watersheds. All aforementioned studies only explicitly evaluated the performance of 95 

CFSR precipitation data but did not comprehensively evaluate the other weather variables (e.g. 96 

air temperature) from CFSR. It should be noted that the minimum requirements in weather data 97 

input for SWAT model include daily precipitation and daily air temperature (maximum and 98 

minimum temperature). Then one research question arises: what is the performance of using 99 

CFSR air temperature data together with other better precipitation data to drive SWAT in 100 

streamflow simulation? This is particularly relevant for data-scarce or ungauged basins where 101 

reliable air temperature data from gauge stations are not available or even nonexistent, thereby 102 

hindering the application of SWAT model and other models in such regions. Therefore, this 103 

study aims to answer this research question. 104 

Besides the CFSR precipitation data, currently there are many open-access gridded precipitation 105 

datasets at different spatial and temporal resolutions over the global or quasi-global scale (Duan 106 

et al., 2016). A detailed summary of available precipitation datasets can be found in Tapiador et 107 

al., (2012). Overall, the accuracy of different open-access gridded precipitation datasets vary 108 

from region to region and thus evaluation of certain precipitation products in a range of regions 109 

with different characteristics is important for both product developers and users. Such 110 

importance attracted a vast amount of studies that have been carried out to evaluate a single or 111 

multiple precipitation products at scales varying from the quasi-global to basin scales (Awange 112 

et al., 2016; Bitew & Gebremichael, 2011; Duan & Bastiaanssen, 2013a; Duan et al., 2012; Jiang 113 

et al., 2017; Liu et al., 2015; Tan & Duan, 2017; Tang et al., 2016; Yong et al., 2010).  114 
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Most gridded precipitat115 

representing mean precipitation over an area of about 625 km2, thus such datasets cannot 116 

sufficiently reflect the spatial variability of precipitation for relatively small areas. Among them, 117 

the TRMM (Tropical Rainfall Measuring Mission) multi-satellite precipitation analysis (TMPA) 118 

product (Huffman et al., 2007) 119 

used in many applications. It is worth noting that the recently (in 2015) released CHIRPS 120 

(Climate Hazards Group InfraRed Precipitation with Station data) precipitation dataset (Funk et 121 

al., 2015) 122 

grid representing around 25 km2) from 1981 to present. This high spatial resolution enables it to 123 

better describe the spatial variability of precipitation and favors its application in hydrological 124 

studies at wider scales including the small basins. In addition, CHIRPS was found to be as 125 

accurate as or even better than other seven commonly used precipitation products in Adige Basin 126 

in Italy after comprehensive evaluation at multiple temporal (daily to annual) and spatial scales 127 

(Duan et al., 2016). The follow-up study further demonstrated that using the CHIRPS product as 128 

input to the SWAT model resulted in satisfactory performance in simulating monthly streamflow 129 

in the same basin (Tuo et al., 2016). A recent evaluation showed that the CHIRPS precipitation 130 

data have higher accuracy than other four gridded precipitation datasets in the Upper Blue Nile 131 

Basin (Bayissa et al., 2017). The evaluation was carried out by comparing gridded dataset with 132 

gauge-based measurements at daily, monthly, and seasonal time scales. Given its aforementioned 133 

special feature and good performance, CHIRPS can be a good alternative open-access data 134 

source in various applications. To our best knowledge, no study has been conducted to evaluate 135 

the performance of using CHIRPS precipitation in driving SWAT to simulate streamflow at the 136 

daily scale.   137 
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In this study, we focused on a basin upper Gilgel Abay within Lake Tana Basin in Ethiopia 138 

where the data scarcity has been mentioned in many previous studies. The data scarcity motives 139 

us to explore the alternative data source particularly the relatively new CHIRPS precipitation 140 

data. The main objective of this study is to determine the suitable weather data inputs for SWAT 141 

in this data-scarce basin. We evaluated the performance of using different combinations of four 142 

precipitation datasets (gauge and three open-access datasets, CHIRPS, TRMM, CFSR) and two 143 

air temperature datasets (gauge and CFSR) in driving SWAT for daily and monthly streamflow 144 

simulation.  145 

The remainder of this paper is organized as follows: Section 2 introduces the study area. Section 146 

3 provides a brief description of data and methods. Section 4 presents the detailed results and 147 

discussion. Finally, Section 5 summarizes main findings and additional suggestion for future 148 

studies. 149 

2 Study area 150 

The upper Gilgel Abay Basin is located in northwestern highlands of Ethiopia (Fig. 1) It belongs 151 

to the Lake Tana Basin. Lake Tana is the largest lake in Ethiopia and the third largest in the Nile 152 

River Basin (Setegn et al., 2010). Lake Tana is a vast circular-shaped and shallow lake with 153 

water level fluctuations of approximately 1.6 m among seasons. The surface water area of Lake 154 

Tana ranges from 2966 to around 3100 km2 depending on the seasonal fluctuation of lake level 155 

(Duan & Bastiaanssen, 2013b). Lake Tana is the source of the Blue Nile River and the Blue Nile 156 

River contributes more than 60% of total flow into the Nile River at Aswan in Egypt 157 

(Uhlenbrook et al., 2010). Therefore, water resources of Lake Tana are of great importance for 158 

Ethiopia and other Nile Basin riparian countries. Despite of such importance, Lake Tana Basin is 159 
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a poorly gauged basin with ungauged areas accounting for more than 50% of the total area (Wale 160 

et al., 2009). Previous studies showed that more than 93% of lake inflow is from four main 161 

tributary rivers and the Gilgel Abay is the main tributary by contributing about 60% of the inflow 162 

to the lake (Uhlenbrook et al., 2010).  163 

 164 

Fig. 1. Locations of the upper Gilgel Abay Basin, one streamflow gauging station and four 165 

weather stations, and CFSR stations. 166 

The upper Gilgel Abay Basin has a total area of 1656 km2. The elevation ranges from 1886 to 167 

3538 m above the mean sea level. The high elevation is located in the southern, west and 168 

southeast part. The geology is composed of quaternary basalts and alluviums and the dominant 169 

land use types are agricultural and agro-pastoral land with rainfed agriculture accounting for 74% 170 

(Uhlenbrook et al., 2010). The dominant soil type is clay. The mean annual precipitation is 1811 171 
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mm/year based on the analysis of available rain gauge data between 2000 and 2007. The climate 172 

of this region is tropical highland monsoon with a rainy season (June September) and a dry 173 

season (October March). The seasonal distribution of rainfall is mainly controlled by the north174 

south movement of the Inter Tropical Convergence Zone (ITCZ) (Taye & Willems, 2012). The 175 

air temperature shows a large diurnal but small seasonal variability. Based on measured air 176 

temperature from gauge stations for the period 2000-2007, the annual mean daily maximum air 177 

and the daily average air 178 

 179 

3 Datasets and methods 180 

3.1 In-situ measurements from gauge stations 181 

In-situ measurements of weather data from four gauge stations were obtained from Ethiopian 182 

National Meteorological Agency. Measured daily streamflow from a single station at the outlet 183 

of upper Gilgel Abay Basin were obtained from the Hydrology Department of the Ministry of 184 

Water Resources of Ethiopia. The locations of these stations are shown in Fig. 1. For weather 185 

data, two stations (Wetet Abay and Sekela) are within the basin and the other two (Dangila and 186 

Gundil) are around with Dangila station being much closer to the basin. After intensive and 187 

rigorous analyses of measured data, finally the available data constrained us to focus on the 188 

period 1998-2007 for which data are relatively more complete. For this period, all four stations 189 

had daily precipitation data, while three stations excluding Sekela had daily maximum and 190 

minimum air temperature, but there were still temporal gaps with more substantial for air 191 

temperature data than precipitation. The data gaps and scarcity in this region have been 192 

commonly mentioned in many previous studies (Dile & Srinivasan, 2014; Roth & Lemann, 193 
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2016), which is indeed the motivation of this study for exploring the performance of alternative 194 

open-access weather data. Fig. 2 shows the summary of data gaps for precipitation and air 195 

temperature. It is worth noting that in some period, data were available in only one station. For 196 

example, from October to December in 2002, daily maximum temperature was only available in 197 

the Wetet Abay station. Considerable uncertainty existed in such situations. The SWAT model 198 

can automatically fill missing weather data by using weather generator which needs more efforts 199 

and more historical data to prepare. In this study, we filled the data gaps before using them as 200 

inputs to SWAT. The data gaps were filled as follows: for the dates of data gaps, the data from 201 

the closest station were used if possible. In the case of all stations have data gaps for certain 202 

dates, then the data gaps were filled by taking available data from the same dates in the closest 203 

years for the same station. In this study, we did not interpolate weather stations data as there 204 

were only four stations that are insufficient for a reasonable interpolation based on geostatistical 205 

methods. We used the weather stations in the normal/standard way to SWAT. The SWAT model 206 

(ArcSWAT interface) will automatically distribute the weather data to the subbasins by using 207 

data from only one gauge station that is nearest to the centroid of each subbasin (Tuo et al., 208 

2016).  209 
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 210 

Fig. 2. Data gaps for air temperature and precipitation gauge data. The number in each grid 211 

means the number of days with missing data in each year. TMX, TMN, P means daily maximum 212 

temperature, minimum temperature and precipitation, respectively. 213 

For streamflow data, the station had more complete data with only 19 values missing (October 8-214 

26, 2006) during the entire period. Streamflow data were used for calibration and validation of 215 

the SWAT model in streamflow simulation. The 19 missing data were within the validation 216 

period, in this study they were not filled and instead these dates with missing data (October 2006) 217 

were simply discarded for validation to avoid additional uncertainty caused by gap-filling.  218 
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3.2 CHIRPS precipitation data 219 

CHIRPS stands for the Climate Hazards Group InfraRed Precipitation with Station data. The 220 

-221 

- uct is the Version 2.0 222 

product that was released in February 2015. The CHIRPS product and its supporting data are 223 

available at: http://chg.geog.ucsb.edu/data/chirps/. The main used datasets for the construction of 224 

CHIRPS product include the monthly precipitation climatology (CHPclim) that is created using 225 

rain gauge stations collected from FAO and GHCN, the Cold Cloud Duration (CCD) information 226 

based on thermal infrared data archived from CPC and NOAA National Climate Data Center 227 

(NCDC), the Version 7 TRMM 3B42 data, the Version 2 atmospheric model rainfall field from 228 

the NOAA Climate Forecast System (CFS), and the rain gauge stations data from multiple 229 

sources. First, the CCD data are calibrated with TRMM 3B42 to generate the 5-daily CCD-based 230 

precipitation estimates which are further converted to the fractions of the long-term mean 231 

precipitation estimates. The fractions are then multiplied with CHPclim data to remove the 232 

systematic bias and the derived product is called CHIRP product. Finally, the CHIRP product is 233 

blended with rain gauge stations data using a modified inverse distance weighting algorithm to 234 

produce the CHIRPS. All the processing mentioned above are performed at the 5-daily 235 

timescales. The daily CCD data and daily CFS data are finally used to disaggregate the 5-daily 236 

products to daily precipitation estimates using a simple redistribution method. More detailed 237 

information on CHIRPS can be found in Funk et al. (2015). Daily CHIRPS products at the 238 

-2007 were used and evaluated in this study. SWAT 239 

does not allow to directly use gridded precipitation as input as it is not a fully distributed model. 240 

Thus we computed the area-weighted average daily CHIRPS data from all grids within the 241 
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subbasin to represent the effective daily precipitation for each subbasin and then further using 242 

them as input to the SWAT model following Tuo et al. (2016). To avoid the edge effect during 243 

averaging, the CHIRPS grid cells were 244 

maintaining original grid locations and values before performing area-weighted averaging.  245 

3.3 TRMM 3B42 precipitation data  246 

The TRMM 3B42 product is one type of the TMPA (TRMM Multi-satellite Precipitation 247 

Analysis) products (Huffman et al., 2007). TRMM 3B42 product provides 3-hourly and daily 248 

-249 

1998 to present. The applied algorithm is the TMPA algorithm that combines precipitation 250 

estimates from microwave and infrared satellites, as well as the gauge-interpolated monthly 251 

gridded product from GPCC (Global Precipitation Climatology Centre). More details about 252 

TMPA algorithms can be found in (Huffman et al., 2007) and Huffman and Bolvin (2015). All 253 

TRMM products including 3B42 can be freely downloaded from Goddard Earth Sciences Data 254 

and Information Services Center at http://mirador.gsfc.nasa.gov and other sources. The latest 255 

version (Version 7) daily accumulated TRMM 3B42 product for the common period 1998-2007 256 

were used in this study, and the data are simply referred to TRMM for conciseness hereafter. 257 

) to reduce the edge 258 

effect during averaging. Then area-weighted average daily TRMM data from all grids within the 259 

subbasin were computed to represent the effective daily precipitation for each subbasin, which 260 

were then used as inputs of the SWAT model. 261 
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3.4 CFSR precipitation and air temperature data 262 

The CFSR, as the product of the National Centers for Environmental Prediction (NCEP), was 263 

designed and executed as a global coupled atmosphere ocean land surface sea ice system to 264 

provide the best estimate of the state of these coupled domains (Saha et al., 2010). This system 265 

uses most available in situ and satellite observations and provides a range of atmospheric, 266 

oceanic, and land surface output products at an hourly time resolution for any geographic 267 

location around the globe. The CFSR global atmosphere products are at the spatial resolution of 268 

~38 km with 64 levels extending from the surface to 0.26 hPa. More details about CFSR can be 269 

found in Saha et al. (2010). The available CFSR data spans from 1979 to 2014 with planed 270 

update to present. The online Global Weather Data for SWAT data portal 271 

https://globalweather.tamu.edu/ popularizes the application of CFSR in SWAT modelling 272 

community because it provides readily weather data (precipitation, air temperature, relative 273 

humidity, wind speed and solar radiation) required by SWAT in the ready-to-use format. 274 

Specially, this data portal provides CFSR data like a normal weather station using the centroid of 275 

the CFSR grid as the coordinate of each CFSR weather point/station (Dile and Srinivasan, 2014).  276 

Users just need to enter the coordinates of the bounding box covering the area of interest and 277 

then the data portal would generate the required weather data from the CFSR weather stations 278 

within the box. We followed the norm to request the precipitation and air temperature data 279 

covering the upper Gilgel Abay Basin for the period 1998-2007 and they were directly used as 280 

inputs to the SWAT model. The locations of CFSR weather stations are shown in Fig. 1. Finally 281 

only three CFSR weather stations (P114369, P111369 and P111372) located in or closer to the 282 

Gilgel Abay Basin were actually used in the SWAT model as the SWAT model automatically 283 

selects only one gauge station that is nearest to the centroid of each subbasin (Tuo et al., 2016).  284 
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3.5 SWAT model and model setup 285 

SWAT stands for Soil and Water Assessment Tool. It is a semi-distributed, process-based and 286 

time-continuous river basin model, which was developed by the Agricultural Research Service of 287 

the United States Department of Agriculture-Agricultural Research Service (Arnold et al., 1998). 288 

SWAT can be used to model hydrological processes, soil erosion, and water quality in river 289 

basins and evaluate the impact of land use change/land management practices on water, sediment 290 

and nutrients yields (Neitsch et al., 2011; Song et al., 2011; Tuo et al., 2016). In SWAT, the river 291 

basin is first divided to subbasins and further to the Hydrologic Response Units (HRUs) which is 292 

the smallest spatial unit. The HRU is generated by a unique combination of land use, soil type 293 

and slope. Simulation of hydrology consists of two major phases: the land phase and routing 294 

phase. For the land phase, the hydrological cycle simulated by SWAT is based on the soil water 295 

balance, and this phase calculates the quantity of water, sediment and nutrients loads from land 296 

to the main channel. SWAT offers two methods for estimating surface runoff: the SCS curve 297 

number method (USDA-SCS, 1972) that requires daily precipitation as input and the Green and 298 

Green & Ampt, 1911) that requires sub-daily precipitation. The 299 

routing phase controls the movement of these loads through the channel network to the outlet of 300 

301 

flow/water is routed through channels using either variable storage routing or Muskingum 302 

routing. More details about the SWAT model can be found in the official theoretical 303 

documentation (Neitsch et al., 2011) and review paper (Gassman et al., 2007) as well as SWAT 304 

literature database available at https://www.card.iastate.edu/swat_articles/. The SWAT model 305 

has been embedded as easy-to-use toolbar as ArcSWAT in ArcGIS interface. The ArcSWAT 306 

(Version 2012.10_3.18) was used for setting up SWAT model in this study. 307 
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Besides the weather data, which the detailed procedures are mentioned above, the SWAT model 308 

requires elevation data, land use map and soil map with information on soil properties. Below 309 

describes the data source and processing for setting up the SWAT model in our study. The 310 

Digital Elevation Model (DEM) data at the spatial resolution of about 30 m from the Shuttle 311 

Radar Topographic Mission 1 arc-second global product were downloaded from USGS 312 

EarthExplorer at https://earthexplorer.usgs.gov/. The DEM was used to perform the automatic 313 

watershed delineation and used to compute topographic parameters for the SWAT model. The 314 

land use map representing the year of 2004 was obtained from the International Livestock 315 

Research Institute (ILRI) at http://data.ilri.org/geoportal/catalog/main/home.page. The world soil 316 

map developed by the Food and Agriculture Organization (FAO) at 1:5000000 scale was 317 

obtained at http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-318 

map-of-the-world/en/. Similar to Mekonnen et al. (2018), the Harmonized World Soil Database 319 

v1.2 together with this FAO soil map and associated information was used to prepare the 320 

required soil properties in SWAT.  321 

SWAT also provides several options for calculating certain hydrological components such as 322 

potential evapotranspiration. The default setting for potential evapotranspiration is the Penman323 

Monteith method which requires more weather data (i.e., wind speed and solar radiation and 324 

relative humidity) than the simple Hargreaves method (Hargreaves & Samani, 1982) which 325 

requires only air temperature data. Given the common data scarcity, like most previous studies in 326 

this study area or nearby regions (Dile & Srinivasan, 2014; Setegn et al., 2010; Tekleab et al., 327 

2011), we used the Hargreaves method for calculating potential evapotranspiration in this study, 328 

and all other default settings (e.g. the SCS curve number method for surface runoff and the 329 

variable storage routing method for water routing) in SWAT were used.   330 
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By only changing different weather data (precipitation and air temperature) as inputs, we were 331 

able to set up a number of eight model scenarios, a combination of two air temperature data 332 

(guage and CFSR) and four precipitation data (guage, CHIRPS, TRMM, and CFSR), to 333 

investigate the effects of different weather data on streamflow simulation.  334 

3.6 Model calibration using SWAT-CUP and model evaluation 335 

In this study, for all eight model scenarios, the SWAT model was run at daily timescale, and the 336 

first two years (1998-1999) were considered as warm-up period to mitigate the effect of initial 337 

conditions of hydrological modelling. The period 2000-2003 was considered as calibration 338 

period, in which sensitivity parameters were calibrated to fit the observed daily streamflow. The 339 

remaining period 2004-2007 was used for validation.   340 

The automatic calibration was performed for daily streamflow simulation by using the Sequential 341 

Uncertainty Fitting algorithm version 2 (SUFI-2) (Abbaspour et al., 2004; Abbaspour et al., 2007) 342 

in the SWAT-CUP tool (Abbaspour, 2015). The sensitivity analysis was firstly performed with 343 

SWAT-CUP using one-at-a-time procedure (Abbaspour, 2015) and a number of eight parameters 344 

were finally identified as highly sensitive parameters (Table 1). The selection of sensitive 345 

parameters is consistent with previous studies (Mekonnen et al., 2018; Setegn et al., 2010). In 346 

this study, the same eight parameters were considered for calibration for each SWAT model. The 347 

same initial range (Table 1) was used for the eight parameters among all SWAT models to 348 

enable a fair starting point and comparison. Following Abbaspour (2015), the calibration 349 

procedures were performed with three iterations with 1000 simulations (so a total 3000 350 

simulations during the calibration) being run for each iteration using the Nash-Sutcliffe 351 

Efficiency (NSE, Nash & Sutcliffe, 1970) as the objective function. After each iteration, the 352 
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range of each parameter was updated (normally narrowed down) based on both the new 353 

parameters suggested by the SWAT-CUP tool (Abbaspour et al., 2004; Abbaspour et al., 2007) 354 

and their reasonable physical boundaries. More details about the calibration procedures can be 355 

found in Abbaspour (2015) and Abbaspour et al. (2015). For evaluating model performance in 356 

streamflow simulation using different precipitation and air temperature as inputs, the best one 357 

among the 3000 simulations from each SWAT model was compared.   358 

For model evaluation and comparison purpose, we used three indicators, i.e. NSE and the 359 

coefficient of determination (R2) and the percent bias (PBIAS, %). Calculations of these 360 

indicators were performed using R package hydroGOF (Zambrano-Bigiarini, M., 2014). The 361 

NSE measures the quantity difference between the simulated streamflow and the measured 362 

streamflow, a value of 1 is the optimal value for NSE, a negative value of NSE means that the 363 

model has no skill in the simulation compared to simply using the mean as a predictor (Bitew & 364 

Gebremichael, 2011). The R2 ranges from 0 to 1 and represents the trend similarity between the 365 

simulated streamflow and measured. The closer the R2 value to the optimal value of 1, the better 366 

model performance is. The PBIAS measures the average tendency of the simulated values to be 367 

larger or smaller than the corresponding observed values. The optimal PBIAS value is 0, and 368 

positive (negative) values indicate overestimation (underestimation) bias in the simulation. We 369 

followed the criteria proposed by Moriasi et al. (2007) to classify the performance of model to 370 

the respective categories: unsatisfactory (NSE , 25%), satisfactory 371 

(0.50<NSE , 15% PBIAS< 25%), good (0.65<NSE ; 10% PBIAS< 15%) and 372 

very good (NSE>0.75, PBIAS< 10%).  373 

 374 
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Table 1 375 

List of eight parameters considered for calibration and their default values, calibrated ranges and 376 

physical ranges. In the SWAT-CUP to modify the default 377 

value by adding a specified value, to replace the default value by the specified value, and to 378 

make a relative change to the initial parameter values, respectively (Abbaspour, 2015). More 379 

details on parameter calibration with SWAT-CUP can be found in Yang et al. (2008) and Tuo et 380 

al., (2016). 381 

Parameters Description Default Calibrated 
range 

Physical 
range 

r_CN2.mgt SCS runoff curve number HRU specific -0.3/0.1 35/98 

r_SOL_AWC.sol Available water capacity of the soil 
layer[mm H

2
O/mm soil] 

Soil layer specific -0.5/0.5 0/1 

v_ESCO.hru Soil evaporation compensation factor 0.95 0/1 0/1 

v_GW_DELAY.gw Groundwater delay [days] 31 0/500 0/500 

     

v_GW_REVAP.gw Groundwater "revap" coefficient 0.02 0.02/0.2 0.02/1 

v_GWQMN.gw Threshold depth of water in the shallow 
aquifer required for return flow to occur 
[mm] 

1000 0/5000 0/5000 

a_REVAPMN.gw Threshold depth of water in the shallow 
aquifer for "revap" to occur [mm] 

750 -500/250 0/1000 

v_CH_K2.rte Effective hydraulic conductivity [mm/hr] 0 0/150 -0.01/500 
 382 

4 Results and discussion 383 

4.1 Comparison of precipitation and temperature inputs  384 

Fig. 3 shows the cumulative fraction of the daily precipitation averaged over the studied basin 385 

from four sources during the calibration and validation period (2000-2007). Four products 386 

display different probability of occurrence of dry day (rain=0 mm/day), which are 44%, 47%, 30% 387 
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and 38% for gauge, CHIRPS, TRMM and CFSR, respectively. Overall all, CHIRPS and TRMM 388 

had very similar distribution for all precipitation intensity expect for the dry days. The difference 389 

in dry days between CHIRPS and TRMM could be partly due to the spatial resolution issue; 390 

TRMM spreads the rain out over the pixels that may contain pixels with no rain as 391 

indicated by CHIRPS. For precipitation intensity with 0-10 mm/day, the distribution of CFSR is 392 

very close to that of the gauge measurements. Four products showed larger difference for 393 

precipitation within 10-50 mm /day within largest being at the threshold of 20 mm/day. The 394 

CFSR data set had the highest frequency (10%) of precipitation beyond 20 mm/day, while the 395 

other three data sets had less than 5%. The average annual precipitation from 2000 to 2007 were 396 

1811 mm, 1491 mm, 1471 mm and 2173 mm for gauge, CHIRPS, TRMM and CFSR, 397 

respectively. 398 

 399 
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Fig. 3.The cumulative fraction of daily precipitation from four data sets (Gauge, CHIRPS, 400 

TRMM and CFSR) at the basin scale during 2000-2007. 401 

Fig. 4 shows the comparison of monthly precipitation over the basin from four datasets. All four 402 

datasets showed the same seasonal pattern with rainy months centered in June-September. 403 

However, clearly CFSR consistently had more precipitation than the other three data sets for the 404 

rainy months through the entire period, especially during the validation period (2004-2007). The 405 

pattern and magnitude of monthly precipitation from CHIRPS and TRMM data set were much 406 

similar. Both data sets were in much better agreement with gauged precipitation through the 407 

entire period, but their peaks were usually lower than gauge data.  408 

 409 

Fig. 4. Comparison of monthly precipitation totals from four data sets (gauge, CHIRPS, TRMM 410 

and CFSR) at the basin scale during 2000-2007. 411 

Fig. 5 displays the cumulative fraction of daily maximum and minimum air temperature at the 412 

basin scale from the two data sets (gauge and CFSR) during 2000-2007. Fig. 6 presents the 413 

monthly mean of daily maximum and minimum air temperature. Overall, CFSR data set agreed 414 

better with gauge measurements for the daily maximum air temperature than for the daily 415 
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minimum air temperature. Similar finding was reported in two basins in Malaysia (Tan et al., 416 

2017).  For the daily maximum air temperature, two data sets showed good similarity in the 417 

seasonal pattern and magnitude during the entire period except for four months in 2002 when 418 

daily maximum temperature was only available in the Wetet Abay station. Analysis of historical 419 

air temperature data showed that Wetet Abay station had higher daily maximum air temperature 420 

than other stations. Therefore, using gauge data from only Wetet Abay station biased toward 421 

higher average daily maximum air temperature at the basin scale in 2002 (Figure 6). 422 

There is no snowfall in this study area and thus the air temperature input would be mainly used 423 

to compute the potential evapotranspiration (PET) in SWAT. The resulting PET would further 424 

affect the computation of water balance in SWAT. To explore the impact of using air 425 

temperature input from the two data sets on SWAT modelling, we further compared the PET 426 

estimates. The time-series of monthly PET totals from the two data sets are shown in Fig. 6. The 427 

seasonal pattern of PET is very similar to that of daily maximum air temperature. Similarly, the 428 

PET estimates from two data sets were in good agreement except for the same periods when 429 

larger discrepancy occurred in daily maximum air temperature. Therefore, given such good 430 

agreement in PET estimates, we expected the impacts of using air temperature input from the 431 

two data sets would have very limited influence on the SWAT modelling results, which was 432 

ascertained in our following analysis. 433 
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 434 

Fig. 5. The cumulative fraction of daily maximum (TMX) and minimum (TMN) air temperature 435 

from gauge and CFSR data set at the basin scale during 2000-2007. 436 

 437 

Fig. 6. Comparison of monthly mean daily maximum (TMX) and minimum (TMN) air 438 

temperature from gauge and CFSR data set, and their resulting potential evapotranspiration (PET) 439 

estimates at the basin scale during 2000-2007. 440 
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4.2 Results of streamflow simulation using different precipitation and temperature inputs 441 

4.2.1 Simulation results without calibration 442 

We first evaluated the performance of all eight models without calibration. For conciseness, 443 

hydrographs of results without calibration are not shown here, but the model evaluation statistics 444 

at the daily and monthly timescales are presented in Table 2 and 3, respectively. According to the 445 

guidelines by Moriasi et al. (2007), all eight model scenarios yielded unsatisfactory daily 446 

streamflow simulation with NSE values of less than 0.5 for both two periods 2000-2003 and 447 

2004-2007. Only the two models with gauge precipitation input had PBIAS less than 10%, 448 

indicating the very good performance on average. The models using the same precipitation but 449 

different air temperature inputs had almost the same performance. Using CFSR precipitation as 450 

input resulted in the worst performance with lowest NSE values of 0.05 and -1.1 and high 451 

positive PBAIS values of around 19% and over 46%for the two considered periods, respectively. 452 

This is mainly due to the high overestimation in precipitation by CFSR (Fig. 3).  As far as the 453 

performance at the monthly scale is concerned, almost all eight models yielded quite good 454 

monthly streamflow simulation with NSE > 0.64 and R2 > 0.82 (except for the period 2004-2007 455 

using CFSR precipitation data). All models except ones with gauge precipitation input had high 456 

PBIAS values showing the average tendency of considerable underestimation in simulations by 457 

using CHIRPS and TRMM as inputs or overestimation in simulations by using CFSR as input. 458 

Using gauge precipitation as input performed best with both NSE and R2 values larger than 0.90 459 

and small PBIAS. Models using precipitation from CHIRPS and TRMM performed comparably 460 

with TRMM slightly better for 2000-2003 while CHIRPS better for 2004-2007. During 2000-461 

2003, using CFSR precipitation as input even outperformed CHIRPS and TRMM, but it yield 462 



26 

 

unsatisfactory simulation (significant overestimation in streamflow) for 2004-2007 with NSE of 463 

0.07.  464 

4.2.2 Simulation results after calibration 465 

Fig. 7 shows comparison of daily measured and simulated streamflow from the four models 466 

using gauge air temperature and four different precipitation data sets for the calibration (2000-467 

2003) and validation (2004-2007) periods after calibration. Fig. 8 shows the same as Fig. 7 468 

except using CFSF air temperature as input instead of gauge data. Fig. 9 and 10 shows 469 

simulation results at the monthly scale for all eight models. Table 2 and 3 summarizes model 470 

evaluation statistics for all eight models at the daily and monthly timescales, respectively. It can 471 

be found that if the same precipitation dataset was used, using gauge and CFSR air temperature 472 

datasets had almost identical performance.  473 

Overall most models can well captured seasonal patterns. Hydrograph at the daily timescale (Fig. 474 

7 and Fig. 475 

using gauge and CHIRPS precipitation as inputs except overestimation and underestimation in a 476 

very few events. Using gauge precipitation performed best in daily streamflow simulation with 477 

NSE of 0.69 to 0.78. This translates into very good and good performance according to the 478 

guideline by Moriasi et al. (2007). The noticeable overestimation in 25 July 2005 during the 479 

validation period was caused by the recorded extremely high precipitation from Sekela station 480 

(103.5 mm/day). Using CHIRPS precipitation yielded satisfactory performance with NSE of 0.52 481 

to 0.57 and very good performance in terms of PBIAS within 10%. Using TRMM precipitation 482 

yielded unsatisfactory performance in terms of NSE, but the NSE were very close to the 483 

threshold 0.50 of being satisfactory, and PBIAS within 25% shows satisfactory performance on 484 
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average simulations. Using CFSR precipitation resulted in satisfactory performance which was 485 

even slightly better than that using gauge precipitation for the calibration period, but the 486 

performance was very poor for the independent validation period with NSE of 0.01/0.04. This 487 

suggests that the calibrated parameters cannot be used for prediction, which is mainly due to the 488 

inconsistent behavior of CFSR precipitation in the two periods. As shown in Fig. 7 and Fig. 8, 489 

the overestimation of precipitation by CFSR appears to be more severe during the validation 490 

period than during the calibration period, and thus the calibrated parameters cannot compensate 491 

for such overestimation.  492 
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 493 

Fig. 7. Comparison of daily measured and simulated streamflow from models using gauge air 494 

temperature and four different precipitation datasets (a: Gauge, b: CHIRPS, c: TRMM, d: CFSR) 495 

for the calibration period 2000-2003 and validation period 2004-2007. 496 
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 497 

Fig. 8. Comparison of daily measured and simulated streamflow from models using CFSR air 498 

temperature and four different precipitation datasets (a: Gauge, b: CHIRPS, c: TRMM, d: CFSR) 499 

for the calibration period 2000-2003 and validation period 2004-2007.  500 
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When daily results were aggregated to monthly timescale, all models showed better performance 501 

with good agreement with measured streamflow in hydrography (Fig. 9 and Fig. 10) and better 502 

evaluation statistics (Table 3). Using gauge precipitation still yielded better performance than the 503 

other three precipitation datasets with NSE of 0.92 for both calibration and validation period. 504 

CHIRPS and TRMM performed comparably well with each being better for a certain period, but 505 

hydrography showed both overestimated low flow and underestimate high flow through the 506 

entire period 2000-2007. Using CFSR precipitation still cannot satisfactorily simulate monthly 507 

streamflow during the validation period with NSE of 0.26 and substantial overestimation as 508 

shown in hydrograph.  509 

Table 2 510 

Evaluation statistics for the performance of eight models in daily streamflow simulation   511 

Precipitation 
data 

Temperature 
data 

Without calibration After calibration 

2000-2003 2004-2007 2000-2003 
(calibration) 

2004-2007 
(Validation) 

NSE R2 PBIA
S NSE R2 PBIAS NSE R2 PBIA

S NSE R2 PBIAS 

Gauge 
Gauge 0.49 0.54 -9.80 0.14 0.46 4.40 0.76 0.77 -10.50 0.69 0.75 4.00 

CSFR 0.50 0.54 -9.30 0.16 0.47 2.30 0.78 0.79 -8.00 0.70 0.75 3.60 

CHIRPS 
Gauge 0.44 0.50 -34.30 0.31 0.44 -26.70 0.56 0.61 -10.50 0.52 0.53 -7.40 
CSFR 0.44 0.49 -33.80 0.31 0.45 -28.70 0.57 0.61 -9.80 0.52 0.54 -8.60 

TRMM 
Gauge 0.33 0.42 -29.70 0.23 0.38 -38.80 0.49 0.49 -7.40 0.41 0.44 -19.00 
CSFR 0.34 0.42 -29.20 0.24 0.39 -40.40 0.49 0.50 -6.20 0.41 0.44 -20.00 

CFSR 
Gauge 0.05 0.48 18.90 -1.16 0.51 47.30 0.64 0.67 -18.8 0.01 0.67 20.60 
CSFR 0.05 0.48 19.50 -1.15 0.51 46.20 0.64 0.67 -18.00 0.04 0.67 17.70 

 512 

 513 

Table 3 514 

 Evaluation statistics for the performance of eight models in monthly streamflow simulation 515 
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Precipitation 
data 

Temperature 
data 

Without calibration After calibration 

2000-2003 2004-2007 2000-2003 
(calibration) 2004-2007 (Validation) 

NSE R2 PBIA
S NSE R2 PBIA

S NSE R2 PBIA
S NSE R2 PBIAS 

Gauge 
Gauge 0.90 0.93 -9.80 0.93 0.94 4.40 0.92 0.94 -10.50 0.92 0.94 4.10 
CSFR 0.90 0.93 -9.30 0.94 0.94 2.20 0.94 0.95 -8.00 0.92 0.95 3.70 

CHIRPS 
Gauge 0.68 0.89 -34.30 0.82 0.91 -26.50 0.71 0.88 -10.20 0.85 0.91 -6.60 
CSFR 0.69 0.89 -33.80 0.82 0.92 -28.50 0.72 0.88 -9.50 0.85 0.91 -7.80 

TRMM 
Gauge 0.77 0.93 -29.70 0.64 0.83 -38.70 0.80 0.92 -7.10 0.72 0.85 -18.30 
CSFR 0.77 0.93 -29.10 0.64 0.85 -40.40 0.80 0.92 -6.00 0.72 0.86 -19.30 

CFSR 
Gauge 0.81 0.88 18.70 0.07 0.87 46.30 0.86 0.88 -18.80 0.26 0.85 20.60 
CSFR 0.81 0.89 19.40 0.07 0.87 45.10 0.87 0.89 -18.00 0.29 0.85 17.80 

 516 
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Fig. 9. Comparison of monthly measured and simulated streamflow from models using gauge air 517 

temperature and four different precipitation datasets (a: Gauge, b: CHIRPS, c: TRMM, d: CFSR) 518 

for the calibration period 2000-2003 and validation period 2004-2007. 519 

 520 
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Fig. 10.Comparison of monthly measured and simulated streamflow from models using CFSR 521 

air temperature and four different precipitation datasets (a: Gauge, b: CHIRPS, c: TRMM, d: 522 

CFSR) for the calibration period 2000-2003 and validation period 2004-2007. 523 

In summary, we can conclude that using different precipitation datasets as inputs to SWAT had 524 

much larger influence on streamflow simulation than using different air temperature datasets in 525 

this area. Using CFSR air temperature can yield equal performance to using gauge air 526 

temperature in driving SWAT model in this study area. This is a good news for researches who 527 

are interested in this study area given the limited availability and large amount of gaps in the 528 

gauge air temperature data as mentioned in Section 3.1. About the selection of precipitation 529 

dataset, this study showed that overall measured precipitation from gauge stations (even though 530 

with limited availability and sparse coverage) are still the one that yielded the best simulation 531 

result in this study area. This finding is consistent with other studies (Dile & Srinivasan, 2014; 532 

Tuo et al., 2016; Worqlul et al., 2015; Yang et al., 2014) which reported better performance 533 

using gauge precipitation or interpolation of gauge data than other gridded products. However, 534 

the open-access high resolution gridded products CHIRPS was found to yield satisfactory 535 

performance in daily and monthly streamflow simulation, and thus it can be a good choice in this 536 

study area. In addition, in the case of no access to gauge data at all, the combination of CHIRPS 537 

precipitation and CFSR air temperature can be used as an alternative data source to drive 538 

hydrological model in streamflow simulation in this data-scarce area.  539 

4.2.3 Comparison of calibrated parameters  540 

Table 4 presents the optimal values of the calibration parameters for all eight models after 541 

calibration using SWAT-CUP. Models using air temperature from gauge and CFSR had exactly 542 
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the same values if they used the same precipitation data except for using the gauge precipitation. 543 

The models using gauge precipitation but different air temperature data had different optimal 544 

parameter sets, but after careful examination, we found that both parameter sets were ranked as 545 

top two parameters sets with very slight difference in the NSE value. In other words, in the case 546 

of using gauge precipitation as input, when the best parameter set from model using CFSR 547 

temperature was used, the model with gauge temperature could still yield similarly good 548 

performance to that using its own best parameter. This reflects the effect of parameter 549 

equifinality (Beven & Binley, 1992). Interestingly, models with CHIRPS and TRMM 550 

precipitation as input had the same best parameter sets, but using CHIRPS yielded better 551 

performance in daily streamflow simulation (NSE=0.56 and NSE=0.52) than using TRMM 552 

(NSE=0.49 and NSE=0.41) for both calibration and validation periods.  553 

Table 4 554 

Optimal parameters calibrated for all eight models  555 

Parameter
s 

r__CN
2.mgt 

r__SOL_
AWC.sol 

v__ES
CO.hru 

v__GW_D
ELAY.gw 

v__GW_R
EVAP.gw 

a__GW
QMN.g
w 

a__REVA
PMN.gw 

v__CH
_K2.rte 

GaugeP_
GaugeT -0.27 0.27 0.95 1.85 0.07 622.43 223.34 7.39 

CHIRPSP
_GaugeT 0.09 -0.5 0.98 327.18 0.04 285.43 168.56 145.33 

TRMMP_
GaugeT 0.09 -0.5 0.98 327.18 0.04 285.43 168.56 145.33 

CFSRP_G
augeT -0.28 0.12 0.67 1.88 0.13 3581.52 -280.59 4.72 

GaugeP_
CFSRT -0.27 0.09 0.95 1.87 0.03 607.84 154.37 4.35 
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CHIRPSP
_CFSRT 0.09 -0.5 0.98 327.18 0.04 285.43 168.56 145.33 

TRMMP_
CFSRT 0.09 -0.5 0.98 327.18 0.04 285.43 168.56 145.33 

CFSRP_C
FSRT -0.28 0.12 0.67 1.88 0.13 3581.52 -280.59 4.72 

Note. GaugeP_GaugeT means the model using gauge precipitation and gauge air temperature as 556 

inputs. CHIRPSP_CFSRT means the model using CHIRPS precipitation dataset and CFSR air 557 

temperature data as inputs, and so forth. 558 

Overall, the calibrated parameters using gauge and CFSR precipitation data were similar, and 559 

those using TRMM and CHIRPS precipitation data were similar. For example, both gauge and 560 

CFSR precipitation leaded to reductions in the parameter CN2 by 27% and 28%, respectively, 561 

while both TRMM and CHIRPS leaded to slight increase in CN2 by 9%. Increase in CN2 would 562 

result in more runoff by SWAT. For the parameter SOL_AWC that is responsible for available 563 

water capacity of the soil layer, both gauge and CFSR precipitation leaded to increase but the 564 

increase was less for CFSR. CHIRPS and TRMM precipitation datasets resulted in decrease in 565 

SOL_AWC. The decrease in SOL_AWC would generally result in less runoff (Neitsch et al., 566 

2011). For the groundwater delay time (GW_DELAY), gauge and CFSR precipitation had 567 

similarly small values, which will resulted in more rapid recharge of the shallow aquifer and 568 

discharge to the stream (Radcliffe & Mukundan, 2017). However, CHIRPS and TRMM had very 569 

large value for GW_DELAY which translates into slow recharge of the shallow aquifer and 570 

discharge to the stream. 571 

In summary, during calibration different parameter values were compensating the difference in 572 

precipitation inputs to increase the agreement with measured streamflow at the basin outlet. This 573 
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might lead to different hydrological components (e.g. surface runoff and groundwater 574 

contribution). Therefore, even though all models can fit well the measured streamflow, the 575 

partition of water balance components can be different among models (Tuo et al., 2016). This is 576 

the inherent limitation of calibrating and validating a model based on only the streamflow at the 577 

basin outlet. Unfortunately, this is a common practice in hydrological modelling because 578 

measurements for other components are often not available. Many studies have already stressed 579 

that simulation of other water balance components from the model that is calibrated with only 580 

outlet streamflow should be used with great caution (Bitew & Gebremichael, 2011). Once data 581 

allows, the multi-variable and multi-site calibration should be performed to overcome this 582 

uncertainty (Tuo et al., 2018). For example, the satellite-based evapotranspiration or soil 583 

moisture data could be considered to constrain calibration together with outlet streamflow. In this 584 

regard, several studies have been carried out to explore the added values of multi-variable in 585 

improving hydrological modelling in other regions (e.g. (Herman et al., 2018)). The same topic 586 

(multi-variable and multi-site calibration) is interesting and within our plan for further study in 587 

this data-scarce basin in Africa.      588 

4.3 Discussion with existing studies in the same study area  589 

Several studies have been carried out to evaluate the performance of different precipitation 590 

datasets in driving hydrological model (particularly SWAT) in streamflow simulation in the 591 

same basin or region, e.g. Lake Tana Basin and Blue Nile Basin. We discussed our results with 592 

two most relevant previous studies which considered the same precipitation datasets (CFSR and 593 

TRMM) with our study.  594 
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Bitew and Gebremichael (2011) 595 

resolution including TRMM3B42 in driving SWAT for daily streamflow simulation in the same 596 

upper Gilgel Abay Basin. The model was calibrated for the period 2003-2004 and validated for 597 

2006-2007. The authors reported only analysis of validation period at daily timescale. They 598 

found that using TRMM3B42 resulted in unsatisfactory daily streamflow simulation with 599 

substantial underestimation. The evaluation statistics showed that R2 values were 0.50 and less 600 

than 0.2 for 2006 and 2007, respectively, while NSE were 0.16 and negative. Our study found 601 

the same unsatisfactory performance of TRMM in driving SWAT for daily streamflow, which is 602 

in good agreement with Bitew and Gebremichael (2011). However, our evaluation statistics for 603 

using TRMM3B42 were much better. This could be mainly due to two reasons: (1) mostly 604 

importantly Bitew and Gebremichael (2011) used old version of TRMM product, while our study 605 

used the latest product. Previous study already showed that latest version performed much better 606 

than previous version and had reasonably good agreement with gauge-based measurements in the 607 

same region (Duan & Bastiaanssen, 2013a). (2) Besides the difference in precipitation data and 608 

other data used for setting up SWAT model, the calibration strategy used by Bitew and 609 

Gebremichael (2011) might not be able to find the optimal values for TRMM3B42, although 610 

they did not explicitly detailed the calibration procedures rather just simply mentioned the 611 

application of automatic and manual calibration. Our study used a more objective calibration 612 

with the same starting parameter ranges in a sufficient number of iterations, which increases the 613 

possibility of finding optimal parameter values for each precipitation product and allow for a 614 

more fair inter-comparison among different precipitation products.    615 

Dile and Srinivasan (2014) was perhaps the first study that evaluated the performance of using 616 

CFSR in driving SWAT for streamflow simulation in Lake Tana Basin with the upper Gilgel 617 
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Abay Basin included. They evaluated the performance of CFSR precipitation and air temperature 618 

in monthly streamflow simulation using SWAT without calibration for the period 1993-2007. 619 

They concluded that using CFSR data yielded satisfactory performance (NSE=0.79) in 620 

simulating monthly streamflow. Our study found that without calibration using CSFR 621 

precipitation and air temperature yielded very good performance (NSE=0.81) in monthly 622 

streamflow simulation for the period 2000-2003, but very poor performance (NSE=0.07) for the 623 

2004-2007. Thus, our finding partially contradicts with their findings. After careful comparison, 624 

we found that as shown in Fig. 1 of Dile and Srinivasan (2014), they somehow consistently 625 

discarded all CFSR data in the western part of the study area, even there are CFSR stations 626 

located within the study area. This is because they used a smaller bounding box (particularly a 627 

628 

629 

the CFSR data portal at https://globalweather.tamu.edu/. As a result, their study used only two 630 

CFSR stations (P111372 and P114372) but missed inclusion of another two CFSR stations 631 

(P114369 and P111369) that actually should be considered for the upper Gilgel Abay Basin. We 632 

analyzed the precipitation data from all the four CFSR stations and found that the other two 633 

stations have substantially higher amount of precipitation. To be specific, the average daily 634 

precipitation during the period 2000-2007 is 4.8 mm/day for P111372, 2.2 mm/day for P114372, 635 

8.4 mm/day for P111369 and 6.5 mm/day for P114369. Our study used more CFSR stations that 636 

should normally be used, and thus CFSR precipitation resulted in severe overestimation 637 

particularly in the validation period 2004-2007. While Dile and Srinivasan (2014) used two 638 

CFSR stations with lower amount precipitation, and thus better simulation result can be obtained.  639 
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To further test our speculation and make a proper comparison, we did further analysis: we did 640 

intentionally used the same two CFSR stations as Dile and Srinivasan (2014) did to run SWAT 641 

model, and we further considered results without calibration as well as after calibration. Table 5 642 

shows the evaluation statistics for performance of streamflow simulation using precipitation and 643 

air temperature from only two CFSR stations. Without calibration, the monthly streamflow 644 

simulation showed very good performance with NS of 0.76 for both calibration and validation 645 

period, which is now in agreement with conclusion by Dile and Srinivasan (2014). This confirms 646 

our speculation. However, strictly speaking, the evaluation by Dile and Srinivasan (2014) did not 647 

reflect the complete accuracy of CFSR because of the unintentionally exclusion of two stations. 648 

It should be noted that normally users of CFSR will use a larger box covering entirely the study 649 

area to select data like what we did in this study, then the good results reported by Dile and 650 

Srinivasan (2014) cannot be reproduced. In addition, without ground measurements as reference, 651 

pre-selection of CFSR stations cannot be performed in a favorable manner.  652 

Table 5 653 

Evaluation statistics for the performance of model using air temperature and precipitation from 654 

only two CFSR stations as Dile and Srinivasan (2014) did in daily and monthly streamflow 655 

simulation   656 

Timescale 

Without calibration After calibration 

2000-2003 2004-2007 
2000-2003 

(calibration) 
2004-2007 

(Validation) 
NSE R2 PBIAS NSE R2 PBIAS NSE R2 PBIAS NSE R2 PBIAS 

Daily 0.13 0.34 -27.30 -0.35 0.41 0.10 0.56 0.60 -25.80 0.36 0.66 2.30 

Monthly 0.76 0.82 -27.40 0.76 0.86 -1.50 0.77 0.81 -25.80 0.63 0.85 2.00 

 657 

Furthermore, our analysis showed that without calibration using the only two stations from 658 

CFSR still performed unsatisfactorily for daily streamflow with NSE of 0.13 and -0.35 in the 659 
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calibration and validation periods, respectively. This suggests that the reported good 660 

performance of a certain precipitation at monthly timescale does not necessarily guarantee the 661 

equally good performance at finer timescale (e.g. daily). Local community should pay due 662 

attention to this issue when selecting precipitation products. Even after performing the same 663 

calibration strategy, the data from only two CFSR stations can yield satisfactory performance 664 

(NSE=0.56) in daily streamflow simulation for the calibration period but fail to generate 665 

satisfactory for the validation period (NSE=0.36). Fig. 11 shows the comparison of simulated 666 

and measured streamflow at daily and monthly timescale. Therefore, taken together, considering 667 

both calibration and validation periods, CFSR precipitation data is not a good alterative data 668 

source in this study area. By contrast, CHIRPS precipitation data yielded more consistent 669 

performance and the performance was as good as (if not better than) CFSR in daily and monthly 670 

streamflow simulation.      671 

 672 
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Fig. 11. Comparison of daily (the top panel a) and monthly (the bottom panel b) measured and 673 

simulated streamflow from model using air temperature and temperature data from only two 674 

CFSR stations as (Dile and Srinivasan, 2014) did for the calibration period 2000-2003 and 675 

validation period 2004-2007. 676 

 677 

4.4 General discussion and recommendations for future study 678 

Overall the CHIRPS precipitation outperformed TRMM and CFSR precipitation products in 679 

driving SWAT model for streamflow simulation in this study. The CFSR product tended to 680 

overestimate precipitation and yielded unsatisfactory streamflow simulation using SWAT. 681 

Similar significant overestimation of CFSR precipitation data have also been reported in many 682 

other regions with different sizes and environmental conditions, e.g.  Singapore (Tan et al., 2018), 683 

two basins in Malaysia (Tan et al., 2017), several basins in China (Zhu et al., 2016; Gao et al., 684 

2018a), the Mekong River Basin (Chen et al., 2018), and six basins in West Africa 685 

al., 2017). It seems that only a limited number of studies reported the reasonable performance of 686 

CFSR precipitation, e.g. in four small basins in USA and the Gumera basin in Ethiopia (Fuka et 687 

al., 2014). This suggests that the large uncertainty of CFSR precipitation product and it should be 688 

used with great cautions. In contrast, literature search showed a very limited number of studies 689 

that evaluated the performance of CFSR air temperature. One existing study by Tan et al. (2017) 690 

found good correlation of CFSR air temperature product with in-situ measurements in two basins 691 

in Malaysia and further using CFSR air temperature can yield good streamflow simulation using 692 

SWAT. Their findings are consistent with ours in the current study.  693 

 694 
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Since the CHIRPS precipitation product (released in 2015) is a relatively new product, thus there 695 

are a relatively small number (around 30 journal publications) of studies on the assessment of 696 

CHIRPS product and comparison with other widely used products such as TRMM. It is 697 

interesting to mention that similar to our study many studies have reported that CHIRPS product 698 

has good performance being comparably good or even better than TRMM product, for example, 699 

in Mozambique (  et al., 2015), Adige basin in Italy (Duan et al., 2016), Upper Blue Nile 700 

(Bayissa et al., 2017), East Africa (Kimani et al., 2017, Gebrechorkos et al., 2018), West Africa 701 

(  et al., 2017) and Haihe River Basin, China (Gao et al., 2018). After a comprehensive 702 

global evaluation of 22 precipitation products, Beck et al. (2017) also concluded that CHIRPS is 703 

a viable choice for tropical regions.  704 

 705 

It should be noted that this study only evaluated the performance of the CHIRPS, TRMM and 706 

CFSR precipitation products and CFSR air temperature at the daily and monthly scales. The 707 

CHIRPS stands out in terms of finer spatial resolution (0.05 ), but it only provides daily 708 

precipitation product. The TRMM and CFSR products with sub-daily temporal resolutions are 709 

expected to have beneficial potentials for applications that require precipitation and streamflow 710 

simulation at sub-daily scales, e.g. flood simulation. We recommend to evaluate performances of 711 

multiple gridded precipitation products at sub-daily scales in future studies. One particular 712 

product to evaluate is the Global Precipitation Measurement (GPM) product, the Integrated 713 

Multi-satellite Retrievals for GPM (IMERG) became available from March 2014, due to its high 714 

temporal (30-minute) and spatial resolution (0.1 )  (Yuan et al. 2018). 715 
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5 Conclusions 716 

Motivated by the scarcity and substantial temporal and spatial gaps in ground measurements in 717 

many basins in Africa, this study evaluated the performance of using three open-access 718 

precipitation datasets (CHIRPS, TRMM and CFSR) and one air temperature dataset (CFSR) in 719 

driving SWAT model in simulation of daily and monthly streamflow in the upper Gilgel Abay 720 

Ba721 

sparse gauge stations were also used to drive SWAT model and the results were compared with 722 

those using open-access datasets. After a comprehensive comparison of a total of eight model 723 

scenarios, we can draw the following conclusions.  724 

(1) Using measured precipitation from even sparse available stations consistently yielded 725 

better performance in streamflow simulation than using all three open-access 726 

precipitation datasets, and thus all three open-access precipitation datasets cannot be 727 

substitute for ground measurements.  728 

(2) Using CFSR air temperature yielded almost identical performance in streamflow 729 

simulation to using measured air temperature from gauge stations. This suggests the 730 

favorable accuracy of CFSR air temperature to use for hydrological modelling in this 731 

region. This is a good news for the local community as the availability and quality of 732 

measured air temperature is often worse than that of precipitation.  733 

(3) Among the three precipitation datasets, overall CHIRPS yielded the best performance and 734 

it was the only one that can achieve satisfactory simulation of daily streamflow. The 735 

recommended CFSR precipitation by previous study consistently overestimated 736 
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precipitation and using CFSR precipitation resulted in inconsistent and overall 737 

unsatisfactory performance in daily and monthly streamflow simulation.  738 

(4) Even without calibration, using CHIRPS and TRMM precipitation datasets comparably 739 

resulted in satisfactory and up to very good performance in monthly streamflow 740 

simulation. This further demonstrates the applicability of SWAT model in this study area 741 

and the reasonable accuracy of the two datasets at the monthly timescale.  742 

(5) Using different precipitation datasets resulted in different best parameters during 743 

calibration. Therefore, simulation of other water balance components from the model that 744 

is calibrated with only outlet streamflow should be used with great caution, as also 745 

stressed by Bitew and Gebremichael (2011). Multi-variable and multi-site calibration is a 746 

promising way to overcome this limitation to a certain degree.  747 

(6) Taken together, the CHIRPS precipitation available at high spatial resolution (0.05 ) 748 

together with CFSR air temperature can be a promising alternative open-access data 749 

source for streamflow simulation with SWAT in this data-scarce area in the case of 750 

limited access to desirable gauge data.  751 

Due to non-availability of gauged wind speed, solar radiation and relative humidity, this study 752 

did not explore the performance of using complete CFSR weather data in driving SWAT. The 753 

complete CFSR weather data enable users to use the other two more data-demanding methods 754 

for calculating potential evapotranspiration. Previous studies showed that different methods 755 

resulted in large different potential evapotranspiration estimates and further had certain effects 756 

on streamflow simulation by SWAT (Samadi, 2017). This is an interesting topic for future study. 757 

In addition, future studies can also include further testing of CHIRPS data in more different 758 
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regions, and the added values of currently available satellite products in constraining calibration 759 

and spatially evaluation of hydrological models particularly in poorly and even ungauged basins. 760 
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