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Abstract

This study conducted the global sensitivity analysis of the APSIM-Oryza rice growth
model under eight climate conditions and two CO2 levels using the extended Fourier
Amplitude Sensitivity Test method. Two output variables (i.e. total aboveground dry
matter WAGT and dry weight of storage organs WSO) and twenty parameters were
analyzed. The £30% and £50% perturbations of base values were used as the ranges
of parameter variation, and local fertilization and irrigation managements were
considered. Results showed that the influential parameters were the same under
different environmental conditions, but their orders were often different. Climate
conditions had obvious influence on the sensitivity index of several parameters (e.g.
RGRLMX, WGRMX and SPGF). In particular, the sensitivity index of RGRLMX
was larger under cold climate than under warm climate. Differences also exist for
parameter sensitivity of early and late rice in the same site. The CO2 concentration
did not have much influence on the results of sensitivity analysis. The range of
parameter variation affected the stability of sensitivity analysis results, but the main
conclusions were consistent between the results obtained from the +30% perturbation
and those obtained the +50% perturbation in this study. Compared with existing
studies, our study performed the sensitivity analysis of APSIM-Oryza under more
environmental conditions, thereby providing more comprehensive insights into the

model and its parameters.

Keywords: Parameter sensitivity; Extended FAST; Range of parameter variation;
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1. Introduction

Crop growth models have been widely used in many applications such as crop
management, climate change assessment, and yield gap analysis (Holzworth et al.,
2015; Lobell et al., 2015; Miiller et al., 2017; Tao et al., 2018). Prior to the application
of crop growth models, their parameters must be determined properly. As some
parameters are hard to measure directly, parameter calibration using optimization

algorithms is usually needed (Archontoulis et al., 2014; Kamali et al., 2018).

Parameter calibration needs to run a crop model many times in order to evaluate the
simulation performance under different parameter combinations. The number of
model runs is in proportion to the complexity of the model and the number of
parameters (Zhao et al., 2014). If many parameters are involved in the calibration, a
large number of model runs is needed. In this case, parameter calibration will take a
long computation time. In order to reduce the number of parameters used in
calibration, sensitivity analysis was introduced to determine those most influential
parameters (Lamboni et al., 2009; Zadeh et al., 2017). The results of parameter
sensitivity analysis can also be used to dissect the robustness of simulation methods
and the balance of different components in the model, which can provide valuable
information on the application and improvement of models (Cariboni et al., 2007;

Confalonieri et al., 2010b; Wang et al., 2013).

The methods for parameter sensitivity analysis can be broadly divided into two
classes: local methods and global methods (Saltelli et al., 2000). The local methods
(e.g. simple derivative-based method) explore the responses of output variables to
parameter changes by varying one parameter at each time while holding the other
parameters fixed (Cariboni et al., 2007). They are easy to implement and have low
computational cost, but their results heavily depend on parameter’s base value and
cannot capture the interactions among parameters. In contrast, the global sensitivity
analysis methods overcome the shortcomings of the local methods by simultaneously

exploring the whole multi-dimensional parameter space, and therefore can the give a
3
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more comprehensive view of the sensitivity of model output to parameters
(Confalonieri et al., 2010a; Yang, 2011). The widely used global sensitivity analysis
methods include screening-based methods such as Morris (Morris, 1991),
regression-based methods such as Latin hypercube sampling (Helton et al., 2005), and
variance-based methods such as Sobol’ (Sobol, 1993) and extended Fourier

Amplitude Sensitivity Test (extended FAST) (Saltelli et al., 1999).

Numerous global sensitivity analysis methods have been applied to different crop
models (DeJonge et al., 2012; Kamali et al., 2018; Lamboni et al., 2009; Saltelli et al.,
1999; Sexton et al., 2017; Zadeh et al., 2017). For example, DeJonge et al. (2012)
conducted parameter sensitivity analysis for the CERES-Maize model using Morris
and Sobol’ global sensitivity analysis methods. Wang et al. (2013) applied the
extended FAST method to the WOrld FOod STudies (WOFOST) crop growth model.
These studies provided valuable information for the calibration and application of

crop models.

APSIM-Oryza is a model for rice growth simulation, and it has been increasingly used
in related studies because of the widely-accepted APSIM (Agricultural Production
Systems sIMulator) platform (Amarasingha et al., 2015; Gaydon et al., 2012; Gaydon
et al., 2017; Holzworth et al., 2014; Radanielson et al., 2018; Zhang et al., 2007). The
crop growth process of APSIM-Oryza was borrowed from the Oryza2000 model

(https://sites.google.com/a/irri.org/oryza2000/, Bouman et al., 2001; Bouman and Van

Laar, 2006; Li et al., 2017). Although there existed some studies on the parameter
sensitivity analysis of Oryza2000 and ORYZA V3 (Soundharajan and Sudheer, 2013;
Tan et al., 2016; Tan et al., 2017), these studies were all conducted at a single point.
Because the sensitivity of model outputs to parameters can be influenced by
environment conditions (Confalonieri et al., 2010b; DeJonge et al., 2012; Zhao et al.,
2014), it is necessary to conduct sensitivity analysis of the APSIM-Oryza model under
different environment conditions in order to obtain a comprehensive view of the

sensitivity of model outputs to parameters, which is the objective of this study. In
4
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addition, because of the interaction between the APSIM platform and its Oryza
module, the sensitivity analysis results of APSIM-Oryza may not be exactly the same

as the original ORYZA model (Bouman et al., 2001; Li et al., 2017).

In this study, six sites in different regions over China and two levels of CO2
concentrations were used for the sensitivity analysis. This study aims to explore
whether and to what extent the sensitivity of model outputs to parameters varies under

different environmental conditions.

2. Methods

2.1 APSIM-Oryza

APSIM is a flexible modeling framework for agricultural system, which has many
modules for different crops (Brown et al., 2014; Holzworth et al., 2014). The key
concept in the design of APSIM is a focus on cropping systems rather than individual
crops. The dynamics of soil plays an important role in APSIM as McCown et al.
(1995 stated that “Crops come and go, each finding the soil in a particular state and
leaving it in an altered state.” A specific crop module can be incorporated to the

framework via a plug-in mechanism.

The ‘Rice’ module in APSIM (APSIM-Oryza) simulates the rice growth under
potential production, water-limited and N-limited simulations at a daily time-step
(Gaydon et al., 2012; Gaydon et al., 2017; Zhang et al., 2007). APSIM-Oryza interacts
with other components of APSIM such as soil water, irrigation, and fertilization. The
main crop-growth processes include phenology, leaf area development, biomass
production and allocation. Development in APSIM-Oryza is represented by DVS
(development stage), which represents the plant’s physiological age (Bouman and Van
Laar, 2006). The key development stages of rice are emergence (DVS=0), the end of
juvenile stage (DVS=0.4), panicle initiation (DVS=0.65), flowering (DVS=1), and
physiological maturity (DVS=2) (Bouman et al., 2001). The parameters related to the

development of rice are mainly the changes in DVS per degree day (i.e. DVRJ, DVRI,
5
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DVRP, and DVRR as shown in Table 1).

The daily CO, assimilation rate is calculated by integrating instantaneous assimilation
rates over time and depth within the canopy. The integration assumes sinusoidal time
course of radiation in the day and exponential light profile in the canopy. The net
daily growth rate in kg dry matter per ha per day can be obtained by subtracting
respiration requirements from the total assimilation rate. The produced dry matter is
partitioned among various organs (i.e. leaves, stems, panicles and roots). The
partitioning coefficients are determined experimentally according to the development
stage (Bouman et al., 2001; Li et al., 2017). The related parameters mainly include
FLVO0.5, FLV0.75, FST1.0, DRLV1.0, DRLV2.1 and FSTR. The parameter names
such as FLV0.5 were the annexation of the parameter name (e.g. FLV) and the
development stage (e.g. 0.5). The parameter FLV0.5 means the fraction of shoot dry
matter partitioned to the leaves at DVS=0.5. The meanings of other parameters can be

found in Table 1.

The number of spikelets at flowering is proportional to the total biomass accumulated
from panicle initiation to flowering. The parameter SPGF (no./kg) is used to describe
the number of spikelets per unit mass of biomass. Some spikelets turn into grains with
crop growth, while some others become sterile because of too high or too low
temperature. The parameter WGRMX (kg/grain) is used to control the maximum
individual grain weight. For leaf area growth, when LAI (leaf area index) is less than
1, LAl increases exponentially as a function of temperature sum (°Cd). The parameter
RGRLMX and RGRLMN are used to calculate the relative leaf area growth rate (R;
in Eq. 1 and Eq. 2, (°C d)) in this exponential growth phase. R; is then used to
calculate the growth in LAI (gL Al in Eq. 2, ha leaf/ha soil/d). The related formulas are

described as follows:
R = RGRLMX —(1- f,,\(RGRLMX — RGRLMN)) (1)
gLAl = LAl xR, x HULV ()

where, fy is the reduction factor for the relative leaf area growth rate caused by

6
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nitrogen (N) limitation, HULV is the daily increase in temperature sum (°Cd/d). When
LAI exceeds 1, LAI increases linearly with the amount of carbohydrates available for
leaf growth according to specific leaf area (SLA, m?/kg). The parameters involved in
the calculation of SLA include ASLA, BSLA, CSLA, DSLA and SLAMAX. The
main outputs involved in the analysis include total aboveground dry matter (WAGT in
the model) and dry weight of storage organs or total panicle biomass (WSO in the
model). For cereals like rice, WSO is an indicator of grain yield and it is useful in

crop performance evaluation




170

171 Table 1. Description of selected parameters and output variables in the APSIM-Oryza model

b

Name Description Unit Lower bound Upper bound Lower bound Upper bound Base value
(30%)" (30%) (50%) (50%)

Parameters

DVRJ Development rate in juvenile phase (‘Cday)! 0.0007 0.0013 0.0005 0.0015 0.001

DVRI Development rate in photoperiod-sensitive phase (‘Cday)! 0.000525 0.000975 0.000375 0.001125 0.00075

DVRP Development rate in panicle development (‘Cday)! 0.000595 0.001105 0.000425 0.001275 0.00085

DVRR Development rate in reproductive phase (‘Cday)! 0.0014 0.0026 0.001 0.003 0.002

RGRLMX  Maximum relative growth rate of leaf area (‘Cday)! 0.00595 0.01105 0.00425 0.01275 0.0085

RGRLMN  Minimum relative growth rate of leaf area (‘Cday)™ 0.0028 0.0052 0.002 0.006 0.004

ASLA Parameter A of the function to calculate specific leaf area - 0.00168 0.00312 0.0012 0.0036 0.0024
(SLA, ha/kg)

BSLA Parameter B of SLA - 0.00175 0.00325 0.00125 0.00375 0.0025

CSLA Parameter C of SLA - -3.15 -5.85 -2.25 -6.75 -4.5

DSLA Parameter D of SLA - 0.098 0.182 0.07 0.21 0.14

SLAMAX  Maximum value of SLA ha/kg 0.00315 0.00585 0.00225 0.00675 0.0045

FLVO0.5 Fraction of shoot dry matter partitioned to the leaves at - 0.42 0.78 0.3 0.9 0.6
DVS=0.5

FLVO0.75 Fraction of shoot dry matter partitioned to the leaves at - 0.21 0.39 0.15 0.45 0.3
DVS =0.75

FST1.0 Fraction shoot dry matter partitioned to the stems at DVS - 0.28 0.52 0.2 0.6 0.4
=1.0

DRLV1.0  Leaf death coefficient as a function of development stage at - 0.014 0.026 0.01 0.03 0.02

DVS=1.0




DRLV1.6  Leaf death coefficient as a function of development stage at - 0.021 0.039 0.015 0.045 0.03

DVS=1.6
DRLV2.1  Leaf death coefficient as a function of development stage at - 0.035 0.065 0.025 0.075 0.05
DVS=2.1
FSTR Fraction of carbohydrates allocated to stems stored as - 0.175 0.325 0.125 0.375 0.25
reserve
SPGF Spikelet growth factor no.’kg 45430 84370 32450 97350 64900
WGRMX  Maximum individual grain weight kg/grain 1.75E-05 0.0000325 0.0000125 0.0000375 0.000025
Outputs
WAGT Total aboveground dry matter kg/ha
WSO Dry weight of storage organs kg/ha
172 *Lower bound means the base value minus 30% or 50%, upper bound means the base value plus %30 or 50%.° Base values are obtained from Tan et al.
173 (2016).
174
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2.2 Global sensitivity analysis method
The extended FAST method, a variance-based global sensitivity analysis algorithm
(Saltelli et al., 1999), was used in this study. The core concept of variance-based
sensitivity analysis method is that the variance of a model output (Y) can be
decomposed as Eq. (3).
V) =D Vi+ D V+t+Vy, 3)

i=1 1<i<j<n
where, V(Y) denotes the total variance of model output Y, V; denotes the variance
allocated to the i-th parameter P, and Vj; denotes the variance allocated to the
interaction between P; and P;. The sensitivity of output Y to P; , called the main or
first-order index (S;), is measured by the ratio of P;-caused variance to total variance
V(Y) (as shown in Eq. (4)).

S, = L 4)

V()
The total sensitivity index (S7;) measures all the effects associated with parameter
P;, including the main effect and the interactions with other parameters. It is
defined by Eq. (5):
_vV) -V,
=S 09

S denotes the second-order sensitivity index for the couple of parameter P;and P;,

ST, =S, + D> .S, + DS+t Sy (5)

Siym denotes the third-order sensitivity index for the combination of Parameter P;
and any other two parameters, and so on. V_; denotes the sum of the contributions to
the variance of output that do not include parameter P;.

The ranges of both S; and S7;are [0, 1]. The larger the index value is, the more
influence the parameter has. S7; = S; means that Pi does not interact with other
parameters. If ST; = S, for all parameters, the model is additive (linear). Besides the
normal parameters, a “dummy parameter” also appears in the results of sensitivity
analysis, which can be used to judge whether the sensitivity index of a parameter is

significantly different from zero. When sampling, the dummy parameter is treated
10
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as normal parameters; when running the simulations, the dummy parameter is
ignored because it neither appears in the model nor affects the model in any other
way; when calculating the sensitivity index, dummy parameter is considered again.
Thus the dummy parameter should ideally have a sensitivity index of zero (Marino
et al., 2008). However, because of the aliasing and interference effects, the obtained
index of dummy parameter would be a small but non-zero value. If the sensitivity
index of a parameter is less than or equal to that of the dummy parameter, the
sensitivity index of this parameter can be considered to be not significantly

different from zero (Zadeh et al., 2017).

2.3 Study sites and parameter settings

There are six main cultivation regions of rice across mainland China; they include
single rice in Northeast China, single rice in mid-lower Yangtze River Valley, single
rice in Sichuan Basin, single rice in Yunnan-Guizhou Plateau, double rice in
mid-lower Yangtze River Valley, and double rice in South China (Sun and Huang,
2011). Six sites (Fig.1) were selected accordingly to study the effects of climate and
soil condition on the results of sensitivity analysis. Among these sites,
double-cropping rice is planted in Yingtan and Nanhai. The climate data, including
daily minimum and maximum air temperature, rainfall, and solar radiation from 1980
to 2010 were collected from CMA (China Meteorological Administration,
http://data.cma.cn/). For Shenyang, Changshu, Yanting, and Yingtan, the soil data and
management information (i.e. sowing date, transplanting date, fertilization and
irrigation operations) were obtained from CNERN (National Ecosystem Research
Network of China). For Yiliang and Nanhai, the soil data were obtained from China
Soil Database (http://vdb3.soil.csdb.cn/), and the management information was
obtained from the nearby agricultural meteorological stations of CMA

(http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_ CHN_TEN.html).

The fertilization rules for these six sites are described as follows: all sites were

fertilized one day after transplanting, and the other fertilization and corresponding
11
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amounts depended on the management information. Taking the early rice in Yingtan
site as an example, 86.5 kg/ha urea N was applied after transplanting (30 days after
sowing). Besides, there were another time of fertilization (75.9 kg/ha urea N) after 40
days of sowing. In Shenyang, because rice may reach maturity before the predefined
fertilization date, the fertilization dates were first converted to DVS according to
observed phenological phases and then DVS was used to control the fertilization dates
in the simulation of this site. The maximum ponded water depth of the field was 60
mm and irrigation was applied up to 30 mm of ponded water depth once the water
depth dropped to zero. If the DVS was between 0.6 and 0.65 (the late tillering stage),

there would be no irrigation in order to control inefficient tillers.
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Fig.1. The spatial distribution of six rice cultivation regions across mainland China
and selected sites. The six rice cultivation regions are as following: I, single rice in
Northeast China, II, single rice in mid-lower Yangtze River Valley, III, single rice in
Sichuan Basin, IV, single rice in Yunnan-Guizhou Plateau, V, double rice in mid-lower

Yangtze River Valley and VI, double rice in South China.

Table 2 presents the information of location, growing-season climate and topsoil
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250 texture in the six selected sites. The growing-season climate values were calculated by
251  averaging daily values between observed mean sowing dates to harvest dates. The
252 climate data was from CMA and phenology data was from CNERN and agricultural
253  meteorological stations. For Shenyang, Changshu, Yanting, and Yingtan, soil particle
254  size in the top layer were obtained from CNERN. For Yiliang and Nanhai, soil
255  particle size in the top layer were obtained from China Soil Database
256  (http://vdb3.soil.csdb.cn/). During the growing season, the temperature in Shenyang
257  and Yiliang were lower than other sites. The temperature in the growing season of late
258  rice was higher than that of early rice and single rice. Shenyang had the highest daily
259  solar radiation, and the early rice of Nanhai had the lowest one. Shenyang, Changshu
260 and Yanting had less rainfall than other sites. The soil is mainly silt in Shenyang,
261  Changshu and Nanhai, sand in Yanting, and clay in Yiliang.
262
263  Table 2. Location, growing-season climate and topsoil texture in the six selected sites.
Shenyang  Changshu  Yanting Yiliang Yingtan Nanhai
Rice type Single rice  Single rice  Single rice Single rice Double rice Double rice
Latitude 41.52 31.55 31.27 24.53 28.25 23.13
Longitude 123.36 120.63 105.46 103.73 116.93 113.03
Elevation(m) 38 5 489 1699 41 1
Mean daily temperature 20.30 25.95 25.04 20.09 Early: 24.81 Early: 25.45
(-C)° Late: 28.12° Late: 28.24
Mean daily solar 18.18 17.74 16.73 15.50 Early: 16.74 Early: 11.68
radiation(MJ/m?) Late: 17.17 Late: 13.29
Mean rainfall (mm) 580.72 544.34 643.6 716.68 Early: 1068.55 Early: 855.73
Late: 372.75 Late: 452.53
Sand (0.05-2.0mm) (%)° 18.42 3.77 30.70 15.20 51.25 31.05
Silt (0.002-0.05mm) (%)  66.70 62.23 39.72 32.00 37.62 54.95
Clay (<0.002mm) (%) 14.88 34.00 20.14 52.80 11.13 14.00
264
265  ““Early” represents early rice, “Late” represents late rice. For example, “Late: 28.96” stands for
266  the mean temperature of late rice in Yingtan is 28.12°C, etc.
267  "Mean daily temperature, mean daily solar radiation and mean rainfall are the mean value in rice
268  growth period (from observed mean sowing date to harvesting date).
269  °Soil particle size in the top layer.
270
271 The sensitivity analysis in this study involved eight climate conditions, two CO;
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levels and twenty parameters. For single rice, each site corresponds to one type of
climate condition, and for double rice, each site corresponds to two types of climate
conditions (i.e. early rice and late rice). The double rice was simulated as two seasons
of single rice, and each season was configured with its own sowing and transplanting
dates. The number of search curves for extended FAST was set to five and the number
of samples per search curve was set to 97 according to existing researches (Marino et
al., 2008; Saltelli et al., 2000). So for a certain climate condition, CO, level, and
simulation period, the number of simulations was 5*(20+1)*97=10185. The number
20 in the equation means 20 parameters and the number one means the one dummy
parameter. The parameter sampling strategy is the same as Saltelli et al. (1999).
Simulations were conducted for 31 years from 1980 to 2010. One result of parameter
sensitivity was calculated for each year, and the overall parameter sensitivity was

obtained by averaging each year’s result.

The base values of parameters followed Tan et al. (2016), and the parameter values
for each simulation were generated randomly between the #30% and = 50%
perturbation of the base values. It should be noted that some parameter combinations
may lead to simulation failure for some site-years due to cold damage caused by low
temperature in late growth stage. Simulation failure here means that the simulated
value of WAGT or WSO is negative. Since negative WAGT or WSO values do not
make sense, thus we set negative WAGT or WSO to zero before the calculation of
sensitivity indices. In this study, when the £30% perturbation was used, there was no
simulation failure. When the £50% perturbation was used, there were a small number
of simulation failures mainly for the late rice in Yingtan and Naihai (Table A.1 in the
Appendix). The default CO2 concentration used in simulation is 350 ppm. Because it
is widely acknowledged that the CO2 concentration in atmosphere is increasing over
the past half century, two levels of CO2 concentration (i.e. 350 ppm and 429 ppm)
were used to explore whether CO2 concentration has effects on the sensitivity index

of parameters (Nakicenovic et al., 2000).
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When the ranking of parameters is needed, S7; was used as the criterion. For each
parameter, the ST7; values of multiple years in each climate condition were first
averaged, and then the S7; values of different climate conditions were averaged to get
an overall S7; for each parameter. A threshold of 0.05 for S7; was used to select
influential parameters. In order to get the distribution of the simulation results, the
Kernel Density Estimate (KDE) method (Parzen, 1962) was adopted. KDE is a
nonparametric density estimator, which can learn the shape of the density from the
data automatically. In this study, we used the sns Python package to plot the KDE

curve, and the default settings of sns were used.

3. Results

3.1 Overall parameter sensitivity under different environmental conditions

3.1.1 The sensitivity of total aboveground dry matter to parameters

Fig. 2 shows the sensitivity indices under eight climate conditions for the output
variable WAGT at maturity for the 50% perturbation of parameter’s base value,
and the corresponding figure for the +30% perturbation is shown in Fig. A.1 in the
Appendix. For both perturbations, the influential parameters (with overall ST7; larger
than 0.05) for all the sites were the same; they are the four development rate
parameters (DVRJ, DVRI, DVRP, DVRR) and three of the leaf relevant parameters:
parameter A of the function to calculate specific leaf area (ASLA), maximum relative
growth rate of leaf area (RGRLMX), and the fraction of shoot dry matter partitioned
to the leaves at DVS=0.5 (FLVO0.5). The sensitivity indices of these parameters were
much larger than those of dummy parameter, indicating that they were significantly
different from zero. Other parameters showed little impacts on WAGT. The
interaction indices (the blue bar in Fig.2) were low for all climate conditions except
for Shenyang, suggesting that the interaction among parameters was weak. This
means that the parameters affect WAGT independently, only with slight interaction

with each other.

15




Shenyang Changshu Yanting Yiliang Yingtan Early Yingtan Late Nanhai Early Nanhai Late
DVRJ E 1 1
DVRI
DVRP
DVRR
RGRLMX
RGRLMN
ASLA
BSLA
CSLA
DSLA -
SLAMAX
FLVO. 5
FLVO. 75
FST1.0
DRLV1. 0
DRLV1. 6
DRLVZ. 1
FSTR
SPGF
WGRMX E 1 ] 5
Dumny ] ] ] STi

330 0.0 02 0.0 0.2 00 0.2 0.0 a2 0o 0.2 0.0 0.2 0.0 0.2 0.0 0.2

331 Fig.2. The main (Si) and total (STi) sensitivity indices under eight climate conditions
332 for the output variable WAGT (total aboveground dry matter) at maturity for the =50%
333  perturbation of parameter’s base value. The title of each subfigure in the top of the
334  figure means different environmental conditions. For example, “Shenyang” means
335  single rice in the Shenyang site, “Yingtan Early” means early rice in the Yingtan site,
336  etc.

337

338  The sensitivity index of RGRLMX had obvious variation among different
339  environmental conditions. For the +50% perturbation, the STi value of RGRLMX
340 for Yiliang was 0.38, while those for Yingtan Late and Nanhai Late were less than
341  0.1. For double-rice sites, the overall sensitivity index of parameters was similar for
342  early and late rices. However, there were also observable differences for the parameter
343 DVRIJ and RGRLMX. The sensitivity index of DVRJ for early rice was consistently
344  smaller than that for late rice, while the sensitivity index of RGRLMX for early rice
345  was larger than that of late rice.

346

347  3.1.2 The sensitivity of dry weight of storage organs to parameters

348 Dry weight of storage organs (WSO) is an indicator of grain yield in the
349  APSIM-Oryza model (Bouman et al., 2001; Gaydon et al., 2012). Fig.3 shows the
350  sensitivity indices under eight climate conditions for the output variable WSO for the

351  £50% perturbation of base values, and the corresponding figure for the =30%
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perturbation was shown in Fig. A.2. For both perturbations, WSO were mainly
sensitive to eight parameters (with overall S7;larger than 0.05): the four development
rates (DVRJ, DVRI, DVRP and DVRR), two leaf relevant parameters RGRLMX and
ASLA, two grain relevant SPFG and WRGMX. The sensitivity indices of these
parameters were much larger than those of dummy parameter, indicating they were
significantly different from zero. The first six were also sensitive parameters for
WAGT. Four development rates (DVRJ, DVRI, DVRP and DVRR) still dominated,
although their relative importance was often different. The sensitivity of WSO to
RGRLMX was weaker than that of WAGT in all sites except the Yiliang site.
Compared with WAGT, WSO showed greater parameter interaction. The interaction
part even accounted for over half of the total sensitivity indices for some parameters
(e.g. development rates of the single rice in Shenyang, Yiliang and the early rice in
Yingtan). This is because that the accumulation of storage organs was the last growth
stage of rice and thus determined by the combined influence of many parameters. The
sensitivity index of RGRLMX, WGRMX, and SPGF showed obvious variation
among different environmental conditions. In particular, the sensitivity index of

RGRLMX was much larger in Yiliang than in other sites.

Shenyang Changshu Yanting Yiliang Yingtan_Early Yingtan Late Nanhai Early Nanhai Late

DVRJ
DVRI 4
DVRP
DVRR
RGRLMX
RGRLMN
ASLA 4
BSLA
CSLA
DSLA
SLAMAX
FLVO. 5
FLV0. 75
FST1.0
DRLV1. 0 4
DRLV1. 6
DRLV2.1
FSTR
SPGF
WGRMX
Dummy

0.0 0.2 00 0.2 00 0.2 00 02 0.0 Q.2 0.0 0.2 00 0.2 0.0 0.2

Fig.3. The main (Si) and total (STi) sensitivity indices under eight climate conditions
for the output variable WSO (dry weight of storage organs) at maturity for the +50%

perturbation of parameter’s base value. The title of each subfigure in the top of the
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374  figure means different environmental conditions. For example, “Shenyang” means
375  single rice in the Shenyang site, “Yingtan Early” means early rice in the Yingtan site,
376  etc.

377

378 3.2 Impacts of CO2 concentration on parameter sensitivity

379  Two levels of CO2 concentrations (350ppm and 429ppm) were used to drive the
380  simulations under eight climate conditions, and the order of parameters was ranked by
381 the total sensitivity index (STi) for each level. The changes of orders in absolute value
382  under the two levels were then calculated to indicate the impact of CO2 concentration
383  on the parameter sensitivity. Fig.4 and Fig.5 show the results for WAGT and WSO for
384 the =+ 50% perturbation of parameter’s base value, respectively, and the
385  corresponding figures for the £30% perturbation were shown in Fig. A.3 and Fig.
386 A.4 in the Appendix. For the influential parameters for the output variable WAGT
387 identified in Section 3.1 (i.e. DVRJ, DVRI, DVRP, DVRR, RGRLMX, ASLA, and
388  FLVO0.5), the changes under two CO2 concentration levels were slight. For the +50%
389  perturbation, only 2 out of the 56 changes were two, and the others (96%) were less
390 than or equal to one. For the influential parameters for the output variable WSO (i.e.
391  DVRIJ, DVRI, DVRP, DVRR, RGRLMX, ASLA, WGRMX and SPGF), the changes
392  of orders were larger than those of WAGT. But there were still 75% of the changes
393  that were less than or equal to one. For the relatively insensitive parameters, the
394  changes of orders were sometimes large, but these parameters would not be used in
395 the model calibration, so these changes were not important. Overall, the CO2
396  concentration did not have much influence on the results of sensitivity analysis for the

397  two output variables WAGT and WSO.
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sensitivity for WAGT (total

aboveground dry matter) at maturity for the +50% perturbation of parameter’s base

value. The numbers in Fig. (a) and (b) represent the order of parameters ranked by the

total sensitivity index (STi) under two CO2 concentrations levels (i.e. 350ppm and

429ppm), and the numbers in Fig. (c) represent the changes of orders in absolute

value under these two levels.
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Fig.5. Impact of CO2 concentration on the parameter sensitivity for WSO (dry weight
of storage organs) at maturity for the 2=50% perturbation of parameter’s base value.
The numbers in Fig. (a) and (b) represent the order of parameters ranked by the total
sensitivity index (STi) under two CO; concentrations levels (350ppm and 429ppm),
and the numbers in Fig. (c) represent the changes of orders in absolute value under

these two levels.

3.3 Impacts of inter-annual climate variation on parameter sensitivity

To explore whether inter-annual climate variation affects the sensitivity orders of
parameters, each year’s sensitivity order of parameters from 1980 to 2010 was
obtained, and the standard deviations (SD) of orders in these years for influential

parameters for WAGT and WSO are shown in Fig. 6. A large SD indicates that
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inter-annual climate variation had large impacts on the sensitivity orders of
parameters. The average SDs of parameter sensitivity orders across all the climate
conditions and parameters were larger for WSO (1.15 for the 330% perturbation and
0.97 for =50% perturbation) than for WAGT (0.63 for the *30% perturbation and
0.53 for +50% perturbation). For each parameter, the SD in each climate condition
was calculated first, and then SDs in eight climate conditions were averaged. For
WAGT, the average SD of orders for RGRLMX was the largest, while those for
DVRIJ and FLVO0.5 were relatively small. For WSO, there does not exist large
differences among parameters. For both WAGT and WSO, the SDs for the £50%
perturbation were generally smaller than those for the +30% perturbation, which
indicates the sensitivity analysis results using the +50% perturbation were more

stable.
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Fig.6. Average standard deviations (SD) of parameter sensitivity orders from 1980 to
2010 for influential parameters (with overall S7; larger than 0.05) for WAGT (total
aboveground dry matter, a) and WSO (dry weight of storage organs, b). For each
parameter, the SD in each climate condition was calculated first, and then SDs in

eight climate conditions were averaged.

Fig. 7 shows the average SDs of parameter sensitivity orders for each climate
condition. For each climate condition, the SD of each parameter was calculated first,

and then average SDs were calculated using the influential parameters (with overall
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ST; larger than 0.05). It can be seen the SDs for the #50% perturbation were also
smaller than those for the #30% perturbation in most climate conditions, especially

in Yiliang and Shenyang which have low growing-season temperature (Table 2).
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Fig. 7 Average standard deviations (SD) of parameter sensitivity orders from 1980 to
2010 for different climate conditions for WAGT (total aboveground dry matter, a) and
WSO (dry weight of storage organs, b). For each climate condition, the SD of each
parameter was calculated first, and then average SDs were calculated using the

influential parameters (with overall ST; larger than 0.05).

3.4 Distribution of the model outputs

Fig.8 and Fig.9 show the distribution of WAGT and WSO under the eight different
climate conditions obtained by the KDE method for the *+50% perturbation of
parameter’s base value. The measured WAGT and yield were also shown in the
figures as vertical dotted line. We can see that the measured values were located near
to the peaks of the distribution of simulated values in all the sites. In addition, these
figures clearly show that the values of WAGT and WSO under CO2 concentration of
429ppm were larger than those under CO2 concentration of 350ppm. Taking the WSO
of Shenyang as an example, there was a peak at 8000 kg/ha under CO, concentration
of 350ppm, while this value increased to about 9000 kg/ha under CO2 concentration

of 429ppm. This can be explained by the fact that in the APSIM-Oryza model, the
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CO2 assimilation rate is positively correlated with ambient CO2 concentration. It
should be noted that although the peak of the distribution changed, the shape of the

curve almost remained unchanged under two levels of CO, concentration.
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Fig.8. The distribution of WAGT (total aboveground dry matter) under eight different
climate conditions obtained by the KDE (Kernel Density Estimation) method for the
+ 50% perturbation of parameter’s base value. The title of each subfigure in the top of
the figure represents the site and cropping system. For example, “Shenyang” means
single rice in the Shenyang site, “Yingtan Farly” means early rice in the Yingtan site,
etc. The red and blue colors represent the distributions of WAGT under CO,

concentration of 350 ppm and 420 ppm, respectively.
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Fig.9. The distribution of WSO (dry weight of storage organs) under eight different
climate conditions obtained by the KDE (Kernel Density Estimation) method for the
+50% perturbation of parameter’s base value. The title of each subfigure in the top of
the figure represents the site and cropping system. For example, “Shenyang” means
single rice in the Shenyang site, “Yingtan Early” means early rice in the Yingtan site,
etc. The red and blue colors represent the distributions of WSO under CO2

concentration of 350 ppm and 420 ppm, respectively.

4. Discussion

4.1 Differences of parameter sensitivity among different environmental
conditions

The sensitivity index of some parameters had obvious differences among the
investigated eight different climate conditions. For example, the sensitivity index of
RGRLMX was much larger in Yiliang, the coldest site in this study, than in other sites
for both output variables WAGT and WSO. For early rice and late rice in the same site,

the sensitivity index of parameters also varied. The sensitivity of WAGT and WSO to
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RGRLMX for early rice was consistently larger than that of late rice.

From the viewpoint of model structure, the different sensitivity of model outputs to
parameters across environmental conditions could be attributed to the interaction of
environmental conditions and parameters in some simulation methods. For example,
let us assume that a step in the simulation is to calculate a value V=FE XP, in which £
is the environmental term and P is the parameter, and then the value V' is compared
with a threshold to determine the usage of different simulation methods in the
following step. If the environmental term E is large enough, it is possible that the
value V' is always larger than the threshold for a defined range of parameters. In this
case, the parameter P is not sensitive. If the environmental term E is moderate,
whether the value V is larger than the threshold depends on the parameter P. In this
case, the parameter P is sensitive. If the environmental term £ is small enough, it is
possible that the value V' is always smaller than the threshold for a defined range of
parameters. In this case, the parameter P is not sensitive again.

In this study, because the simulations were conducted under irrigation and fertilization
conditions, water and soil conditions should not be the main influencing factor. The
observed differences could be mainly attributed to the temperature conditions. Taking
the RGRLMX parameter as an example, it was used only in calculating the relative
leaf area growth rate (R; in Eq. 1 and Eq. 2, (°C d)) in the exponential growth phase
when LAI is less than 1 (Bouman et al., 2001). R; was then multiplied by LAI and
HULV (i.e. daily increase in temperature sum, °C/d) to calculate the growth in LAI
(gLAI in Eq. 2, ha leaf/ha soil/d). In cold climate, HULV will be small. If the value of
R; is also very small, glLAI will be very small which means slow growth rates of leaf
area. Thus it will take a long time for LAI to grow to 1 (e.g. the end of the exponential
growth phase). This will have large negative impacts on carbon assimilation and thus
greatly affect the value of WAGT and WSO. In contrast, HULV will have larger
values in the warm climate. Even RGRLMX is small, there is still larger possibility
for gLAI to maintain a large enough value. So the dependence of WAGT on

RGRLMX is relatively weak in warm conditions.
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4.2 The little influence of CO2 concentration setting on parameter sensitivity

The CO2 concentration is only used in the calculation of gross CO2 assimilation rate
(kg CO, ha' d') in the APSIM-Oryza model. The little influence of CO2
concentration setting on parameter sensitivity could be because that on the one hand,
some parameters are only used in the calculations that are not affected by CO2
concentration. For example, the phenology calculation, where the parameters DVRIJ,
DVRI, DVRP, and DVRR are used, and the calculation of exponential growth phase
of leaf development, where the parameters RGRLMX and RGRLMN are used, do not
depend on CO2 concentration. Thus CO2 concentration will not affect the sensitivity
of model outputs to these parameters. On the other hand, most of the other parameters
are used in the calculations that are linearly affected by CO2 concentration. For
example, the gross CO2 assimilation is used to calculate the daily crop growth rate
(kg day matter ha” d') through a linear relationship, and the daily crop growth rate is
then multiplied by the parameter FLVO0.5 to get the growth rate of leaves. The relative
changes of values in these linear relationships will not affect the sensitivity of model

outputs to parameters.

4.3 The impacts of ranges of parameter variation on sensitivity analysis results
For the sensitivity analysis of crop models in existing literature, the parameter ranges
were usually proportionally amplified from +5% to £50% perturbation of the base
value (Marino et al., 2008; Richter et al., 2010; Tan et al., 2016; Tan et al., 2017; Yang,
2011; Zhao et al., 2014). Tan et al. (2017) investigated the effects of different ranges
of parameter variation (i.e. =5%, £10%, 20%, £30%, 3=50% perturbations of
the base value) on the sensitivity analyses for ORYZA V3 model, and recommended
the +30% perturbation when specific ranges cannot be obtained. It should be noted
that this research was conducted at a single site, and the base values of some
parameters (e.g. the partitioning factors, leaf death rates) were determined according
to experimental observation (Tan et al., 2016).

The Yingtan site used by Tan et al., (2016, 2017) was also used in this study. Because
26




549  the base values of parameters in other sites of this study were not known in advance,
550 we used the base values of Tan et al. (2016) in all the sites, and used the +£50%
551  perturbation of the base values besides the +30% perturbation in order to get more
552  robust conclusions. These parameters ranges were considered to be reasonable for the
553  following reasons: 1) The parameter ranges using the 50% perturbation can cover the
554  parameter values in all the predefined cultivars of APSIM-Oryza except for the DVRP
555  parameter of cultivar BR3; 2) The measured WAGT and yield values were compared
556  with the simulated WAGT and WSO. The results showed that the measured values
557  were located near to the peaks of the distribution of simulated values in all the sites
558 (Fig.8 and Fig.9), which demonstrated the ability of the model and the parameter
559  ranges to simulate rice growth in these sites; 3) The main conclusions were consistent
560  between the results obtained from the +30% perturbation and those obtained the £50%
561  perturbation, which demonstrates the robustness of the conclusions in this study. This
562 is consistent with Wang et al. (2013), which showed that for the WOFOST model, the
563  perturbations of parameter’s base values ranging from +10% to +=50% did not
564  change the sensitivity rankings of parameter.

565  For Yiliang and Shenyang where growing-season temperature is low, the average SDs
566  of parameter sensitivity orders from 1980 to 2010 were much larger for the =30%
567  perturbation than for the +50% perturbation. This may be because that parameter’s
568  base values of Yingtan Late were used in all the sites of this study due to the lack of
569  experimental observation, but these base values were not suitable for the sites with
570 very different climate conditions. When the perturbation is not large enough, an
571  inappropriate base value may lead to parameter sampling ranges that cannot cover the
572  range of interest, which makes the results of sensitivity analysis not stable. When the
573  perturbation is large enough (e.g. +50% in this study), the parameter sampling range
574  can cover the range of interest even an inappropriate base value is given, which makes
575  the results of sensitivity analysis stable. This highlights the need for using a larger
576  perturbation value when the base value of parameters cannot be specifically obtained.
577

578 5. Conclusions
27




579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

In this study, the global sensitivity analysis of the APSIM-Oryza model was
performed under eight different climate conditions and two CO, levels for a 31-year
simulation period. The number (eight) of conditions considered in our study is much
larger than that in existing studies (most focused on only a single condition), and thus
our findings can provide additional insights into the APSIM-Oryza model and its
parameters. The sensitivity of two output variables (i.e. total aboveground dry matter
WAGT and dry weight of storage organs WSO) to twenty parameters was analyzed
using the extended FAST method. The main findings include (1) for the output
variables WAGT and WSO, the influential parameters (with overall S7; larger than
0.05) under different climate conditions were the same, but their orders were often
different; (2) the sensitivity index of some parameters (e.g. RGRLMX, WGRMX and
SPGF) had obvious differences among different climate conditions. In particular, the
sensitivity index of RGRLMX is larger under cold climate than under warm climate;
(3) the CO2 concentration had little influence on the results of sensitivity analysis for
the two output variables WAGT and WSO; (4) The range of parameter variation
affected the stability of sensitivity analysis results, but the main conclusions were
consistent between the results obtained from using the +30% perturbation and those
obtained the +50% perturbation in this study.

It should be noted that in existing studies and our current study, the failed simulations
in which crop does not reach maturity were treated as normal simulations. However,
these failed simulations could cause great variation of simulation results and then
might have large impacts on the results of sensitivity analysis. Therefore, we highlight
a further scientific question about how to handle these failure simulation, which needs

to be investigated in future studies.
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The Appendix
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Fig. A.1. The main (Si) and total (STi) sensitivity indices under eight climate
conditions for the output variable WAGT (total aboveground dry matter) at maturity
for the £30% perturbation of parameter’s base value. The title of each subfigure in
the top of the figure means different environmental conditions. For example,
“Shenyang™ means single rice in the Shenyang site, “Yingtan Early” means early rice

in the Yingtan site, etc.
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Fig. A.2. The main (Si) and total (STi) sensitivity indices under eight climate
conditions for the output variable WSO (dry weight of storage organs) at maturity for
the +30% perturbation of parameter’s base value. The title of each subfigure in the
top of the figure means different environmental conditions. For example, “Shenyang”
means single rice in the Shenyang site, “Yingtan Early” means early rice in the

Yingtan site.
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754
755  Fig. A.3. Impact of CO2 concentration on parameter sensitivity for WAGT (total

756  aboveground dry matter) at maturity for the +30% perturbation of parameter’s base
757  value. The numbers in Fig. (a) and (b) represent the order of parameters ranked by the
758  total sensitivity index (STi) under two CO2 concentrations levels (i.e. 350ppm and
759  429ppm), and the numbers in Fig. (c) represent the changes of orders in absolute

760  value under these two levels.
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Fig. A.4. Impact of CO2 concentration on the parameter sensitivity for WSO (dry
weight of storage organs) at maturity for the +30% perturbation of parameter’s base
value. The numbers in Fig. (a) and (b) represent the order of parameters ranked by the
total sensitivity index (STi) under two CO, concentrations levels (350ppm and
429ppm), and the numbers in Fig. (c) represent the changes of orders in absolute

value under these two levels.
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Table A.1. Summaries of simulation failure.

Sites Co2 condition Failure times Failure rate (%)
Shenyang 350 ppm 2 0.000633
429 ppm 2 0.000633
Changshu 350 ppm 0 0
429 ppm 0 0
Yanting 350 ppm 0 0
429 ppm 0 0
Yiliang 350 ppm 3 0.000950
429 ppm 3 0.000950
Yingtan Early 350 ppm 0 0
429 ppm 0 0
Yingtan Late 350 ppm 471 0.149176
429 ppm 783 0.247993
Nanhai_Early 350 ppm 0 0
429 ppm 0 0
Nanhai_Late 350 ppm 61 0.019320
429 ppm 87 0.027555
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Table 1. Description of selected parameters and output variables in the APSIM-Oryza model

Name Description Unit Lower bound Upper bound Lower bound Upper bound Base value®
(30%)" (30%) (50%) (50%)

Parameters

DVRJ Development rate in juvenile phase (‘Cday)! 0.0007 0.0013 0.0005 0.0015 0.001

DVRI Development rate in photoperiod-sensitive phase (‘Cday)! 0.000525 0.000975 0.000375 0.001125 0.00075

DVRP Development rate in panicle development (‘Cday)! 0.000595 0.001105 0.000425 0.001275 0.00085

DVRR Development rate in reproductive phase (‘Cday)™! 0.0014 0.0026 0.001 0.003 0.002

RGRLMX  Maximum relative growth rate of leaf area ("Cday)" 0.00595 0.01105 0.00425 0.01275 0.0085

RGRLMN  Minimum relative growth rate of leaf area (‘Cday)”! 0.0028 0.0052 0.002 0.006 0.004

ASLA Parameter A of the function to calculate specific leaf area - 0.00168 0.00312 0.0012 0.0036 0.0024
(SLA, ha/kg)

BSLA Parameter B of SLA - 0.00175 0.00325 0.00125 0.00375 0.0025

CSLA Parameter C of SLA - -3.15 -5.85 -2.25 -6.75 -4.5

DSLA Parameter D of SLA - 0.098 0.182 0.07 0.21 0.14

SLAMAX  Maximum value of SLA ha/kg 0.00315 0.00585 0.00225 0.00675 0.0045

FLVO0.5 Fraction of shoot dry matter partitioned to the leaves at - 0.42 0.78 0.3 0.9 0.6
DVS=0.5

FLVO0.75 Fraction of shoot dry matter partitioned to the leaves at - 0.21 0.39 0.15 0.45 0.3
DVS =0.75

FST1.0 Fraction shoot dry matter partitioned to the stems at DVS - 0.28 0.52 0.2 0.6 0.4
=1.0

DRLV1.0  Leaf death coefficient as a function of development stage at - 0.014 0.026 0.01 0.03 0.02
DVS=1.0

DRLV1.6  Leaf death coefficient as a function of development stage at - 0.021 0.039 0.015 0.045 0.03
DVS=1.6

DRLV2.1  Leaf death coefficient as a function of development stage at - 0.035 0.065 0.025 0.075 0.05
DVS=2.1

FSTR Fraction of carbohydrates allocated to stems stored as - 0.175 0.325 0.125 0.375 0.25
reserve

SPGF Spikelet growth factor no./kg 45430 84370 32450 97350 64900

WGRMX  Maximum individual grain weight kg/grain 1.75E-05 0.0000325 0.0000125 0.0000375 0.000025

Outputs

WAGT Total aboveground dry matter kg/ha

WSO Dry weight of storage organs kg/ha

* Lower bound means the base value minus 30% or 50%, upper bound means the base value plus %30 or 50%." Base values are obtained from Tan et al.

(2016).




Table 2. Location, growing-season climate and topsoil texture in the six selected sites.

Shenyang  Changshu  Yanting Yiliang Yingtan Nanhai
Rice type Single rice  Single rice  Single rice Single rice Double rice Double rice
Latitude 41.52 31.55 31.27 24.53 28.25 23.13
Longitude 123.36 120.63 105.46 103.73 116.93 113.03
Elevation(m) 38 5 489 1699 41 1
Mean daily temperature 20.30 25.95 25.04 20.09 Early: 24.81 Early: 25.45
(-C)° Late: 28.12° Late: 28.24
Mean daily solar 18.18 17.74 16.73 15.50 Early: 16.74 Early: 11.68
radiation(MJ/m?) Late: 17.17 Late: 13.29
Mean rainfall (mm) 580.72 544.34 643.6 716.68 Early: 1068.55 Early: 855.73

Late: 372.75 Late: 452.53

Sand (0.05-2.0mm) (%)°  18.42 3.77 30.70 15.20 51.25 31.05
Silt (0.002-0.05mm) (%)  66.70 62.23 39.72 32.00 37.62 54.95
Clay (<0.002mm) (%) 14.88 34.00 20.14 52.80 11.13 14.00

*“Early” represents early rice, “Late” represents late rice. For example, “Late: 28.96” stands for the mean

temperature of late rice in Yingtan is 28.12°C, etc.

® Mean daily temperature, mean daily solar radiation and mean rainfall are the mean value in rice growth

period (from observed mean sowing date to harvesting date).
¢ Soil particle size in the top layer.



Table A.1. Summaries of simulation failure.

Sites Co2 condition Failure times Failure rate (%)
Shenyang 350 ppm 2 0.000633
429 ppm 2 0.000633
Changshu 350 ppm 0 0
429 ppm 0 0
Yanting 350 ppm 0 0
429 ppm 0 0
Yiliang 350 ppm 3 0.000950
429 ppm 3 0.000950
Yingtan Early 350 ppm 0 0
429 ppm 0 0
Yingtan Late 350 ppm 471 0.149176
429 ppm 783 0.247993
Nanhai_Early 350 ppm 0 0
429 ppm 0 0
Nanhai_Late 350 ppm 61 0.019320
429 ppm 87 0.027555




Figure

Click here to download Figure: SeparateFigures20180824.docx

70°0'0"E 80°0'0"E ~ 90°0'0"E  100°0'0"E 110°0'0"E 120°0'0"E  130°0'0"E 150°0'0"E
T T T T
=1 40°0'0"N
40°0'0"N =
=1 30°0'0"N
30°00'N [
(!
0 500 000 k 4
1,000 km 20°0'0"N
20°00'N | I " ‘
/ o &
A Sites
Single rice / !
[T Double rice
v A\
1 1 \i 1
90°0'0"E 100°0'0"E 110°0'0"E 120°0'0"E 130°0'0"E

Fig.1. The spatial distribution of six rice cultivation regions across mainland China and selected
sites. The six rice cultivation regions are as following: I, single rice in Northeast China, II, single
rice in mid-lower Yangtze River Valley, III, single rice in Sichuan Basin, IV, single rice in

Yunnan-Guizhou Plateau, V, double rice in mid-lower Yangtze River Valley and VI, double rice

in South China.
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Fig.2. The main (Si) and total (STi) sensitivity indices under eight climate conditions for the
output variable WAGT (total aboveground dry matter) at maturity for the +50% perturbation of

parameter’s base value. The title of each subfigure in the top of the figure means different
environmental conditions. For example, “Shenyang” means single rice in the Shenyang site,

“Yingtan_Early” means early rice in the Yingtan site.
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Fig.3. The main (Si) and total (STi) sensitivity indices under eight climate conditions for the
output variable WSO (dry weight of storage organs) at maturity for the +50% perturbation of
parameter’s base value. The title of each subfigure in the top of the figure means different
environmental conditions. For example, “Shenyang” means single rice in the Shenyang site,

“Yingtan_Early” means early rice in the Yingtan site.
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Fig.4. Impact of CO2 concentration on parameter sensitivity for WAGT (total aboveground dry
matter) at maturity for the +50% perturbation of parameter’s base value. The numbers in Fig. (a)
and (b) represent the order of parameters ranked by the total sensitivity index (STi) under two
CO2 concentrations levels (i.e. 350ppm and 429ppm), and the numbers in Fig. (c) represent the

changes of orders in absolute value under these two levels.
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Fig.5. Impact of CO2 concentration on the parameter sensitivity for WSO (dry weight of storage
organs) at maturity for the & 50% perturbation of parameter’s base value. The numbers in Fig. (a)
and (b) represent the order of parameters ranked by the total sensitivity index (STi) under two
CO; concentrations levels (350ppm and 429ppm), and the numbers in Fig. (c) represent the

changes of orders in absolute value under these two levels.
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Fig.6. Average standard deviations (SD) of parameter sensitivity orders from 1980 to 2010 for
influential parameters (with overall S7; larger than 0.05) for WAGT (total aboveground dry
matter, a) and WSO (dry weight of storage organs, b). For each parameter, the SD in each

climate condition was calculated first, and then SDs in eight climate conditions were averaged.
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Fig. 7 Average standard deviations (SD) of parameter sensitivity orders from 1980 to 2010 for
different climate conditions for WAGT (total aboveground dry matter, a) and WSO (dry weight
of storage organs, b). For each climate condition, the SD of each parameter was calculated first,

and then average SDs were calculated using the influential parameters (with overall S7; larger
than 0.05).
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Fig.8. The distribution of WAGT (total aboveground dry matter) under eight different climate
conditions obtained by the KDE (Kernel Density Estimation) method for the +50% perturbation
of parameter’s base value. The title of each subfigure in the top of the figure represents the site
and cropping system. For example, “Shenyang” means single rice in the Shenyang site,
“Yingtan_Early” means early rice in the Yingtan site, etc. The red and blue colors represent the

distributions of WAGT under CO; concentration of 350 ppm and 420 ppm, respectively.
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Fig.9. The distribution of WSO (dry weight of storage organs) under eight different climate
conditions obtained by the KDE (Kernel Density Estimation) method for the +50% perturbation
of parameter’s base value. The title of each subfigure in the top of the figure represents the site
and cropping system. For example, “Shenyang” means single rice in the Shenyang site,
“Yingtan_Early” means early rice in the Yingtan site, etc. The red and blue colors represent the

distributions of WSO under CO2 concentration of 350 ppm and 420 ppm, respectively.
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Fig. A.1. The main (Si) and total (STi) sensitivity indices under eight climate conditions for the

output variable WAGT (total aboveground dry matter) at maturity for the +30% perturbation of

parameter’s base value. The title of each subfigure in the top of the figure means different

environmental conditions. For example, “Shenyang” means single rice in the Shenyang site,

“Yingtan_Early” means early rice in the Yingtan site, etc.

Shenyang

Changshu

Yanting

Yiliang

Yingtan Early Yingtan Late Nanhai Early Nanhai Late

DVRJ
DVRI
DVRP
DVRR

RGRLMX -
RGRLN
ASLA
BSLA
CSLA |
DSLA
SLAMAX -
FLVO. 5
FLVO. 75
FST1. 01
DRLV1. 0
DRLV1. 6
DRLV2. 1
FSTR 4
SPGF
WGRMX
Dummy

J

r

;

F

=t

- S
8Ti

0.0

0.2

0.0 0.2

00

0.2

0.0

0.2 0.0 0.2 0.0 0.2

0.0 0.2 0.0 0.2

Fig. A.2. The main (Si) and total (STi) sensitivity indices under eight climate conditions for the

output variable WSO (dry weight of storage organs) at maturity for the +30% perturbation of

parameter’s base value. The title of each subfigure in the top of the figure means different

environmental conditions. For example, “Shenyang” means single rice in the Shenyang site,

“Yingtan_Early” means early rice in the Yingtan site.
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Fig. A.4. Impact of CO2 concentration on the parameter sensitivity for WSO (dry weight of
storage organs) at maturity for the £30% perturbation of parameter’s base value. The numbers
in Fig. (a) and (b) represent the order of parameters ranked by the total sensitivity index (STi)
under two CO, concentrations levels (350ppm and 429ppm), and the numbers in Fig. (c)

represent the changes of orders in absolute value under these two levels.
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