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Abstract 

This study conducted the global sensitivity analysis of the APSIM-Oryza rice growth 

model under eight climate conditions and two CO2 levels using the extended Fourier 

Amplitude Sensitivity Test method. Two output variables (i.e. total aboveground dry 

matter WAGT and dry weight of storage organs WSO) and twenty parameters were 

analyzed. T 30% and s of base values were used as the ranges 

of parameter variation, and local fertilization and irrigation managements were 

considered. Results showed that the influential parameters were the same under 

different environmental conditions, but their orders were often different. Climate 

conditions had obvious influence on the sensitivity index of several parameters (e.g. 

RGRLMX, WGRMX and SPGF). In particular, the sensitivity index of RGRLMX 

was larger under cold climate than under warm climate. Differences also exist for 

parameter sensitivity of early and late rice in the same site. The CO2 concentration 

did not have much influence on the results of sensitivity analysis. The range of 

parameter variation affected the stability of sensitivity analysis results, but the main 

s study. Compared with existing 

studies, our study performed the sensitivity analysis of APSIM-Oryza under more 

environmental conditions, thereby providing more comprehensive insights into the 

model and its parameters. 

 

Keywords: Parameter sensitivity; Extended FAST; Range of parameter variation; 

Climate condition; CO2 level  



1. Introduction 

Crop growth models have been widely used in many applications such as crop 

management, climate change assessment, and yield gap analysis (Holzworth et al., 

2015; Lobell et al., 2015; ; Tao et al., 2018). Prior to the application 

of crop growth models, their parameters must be determined properly. As some 

parameters are hard to measure directly, parameter calibration using optimization 

algorithms is usually needed (Archontoulis et al., 2014; Kamali et al., 2018). 

 

Parameter calibration needs to run a crop model many times in order to evaluate the 

simulation performance under different parameter combinations. The number of 

model runs is in proportion to the complexity of the model and the number of 

parameters (Zhao et al., 2014). If many parameters are involved in the calibration, a 

large number of model runs is needed. In this case, parameter calibration will take a 

long computation time. In order to reduce the number of parameters used in 

calibration, sensitivity analysis was introduced to determine those most influential 

parameters (Lamboni et al., 2009; Zadeh et al., 2017). The results of parameter 

sensitivity analysis can also be used to dissect the robustness of simulation methods 

and the balance of different components in the model, which can provide valuable 

information on the application and improvement of models (Cariboni et al., 2007; 

Confalonieri et al., 2010b; Wang et al., 2013). 

 

The methods for parameter sensitivity analysis can be broadly divided into two 

classes: local methods and global methods (Saltelli et al., 2000). The local methods 

(e.g. simple derivative-based method) explore the responses of output variables to 

parameter changes by varying one parameter at each time while holding the other 

parameters fixed (Cariboni et al., 2007). They are easy to implement and have low 

computational cost, but their results heavily depend on  base value and 

cannot capture the interactions among parameters. In contrast, the global sensitivity 

analysis methods overcome the shortcomings of the local methods by simultaneously 

exploring the whole multi-dimensional parameter space, and therefore can the give a 



more comprehensive view of the sensitivity of model output to parameters 

(Confalonieri et al., 2010a; Yang, 2011). The widely used global sensitivity analysis 

methods include screening-based methods such as Morris (Morris, 1991), 

regression-based methods such as Latin hypercube sampling (Helton et al., 2005), and 

variance-  (Sobol, 1993) and extended Fourier 

Amplitude Sensitivity Test (extended FAST) (Saltelli et al., 1999). 

 

Numerous global sensitivity analysis methods have been applied to different crop 

models (DeJonge et al., 2012; Kamali et al., 2018; Lamboni et al., 2009; Saltelli et al., 

1999; Sexton et al., 2017; Zadeh et al., 2017). For example, DeJonge et al. (2012) 

conducted parameter sensitivity analysis for the CERES-Maize model using Morris 

. Wang et al. (2013) applied the 

extended FAST method to the WOrld FOod STudies (WOFOST) crop growth model. 

These studies provided valuable information for the calibration and application of 

crop models. 

 

APSIM-Oryza is a model for rice growth simulation, and it has been increasingly used 

in related studies because of the widely-accepted APSIM (Agricultural Production 

Systems sIMulator) platform (Amarasingha et al., 2015; Gaydon et al., 2012; Gaydon 

et al., 2017; Holzworth et al., 2014; Radanielson et al., 2018; Zhang et al., 2007). The 

crop growth process of APSIM-Oryza was borrowed from the Oryza2000 model 

(https://sites.google.com/a/irri.org/oryza2000/, Bouman et al., 2001; Bouman and Van 

Laar, 2006; Li et al., 2017). Although there existed some studies on the parameter 

sensitivity analysis of Oryza2000 and ORYZA_V3 (Soundharajan and Sudheer, 2013; 

Tan et al., 2016; Tan et al., 2017), these studies were all conducted at a single point. 

Because the sensitivity of model outputs to parameters can be influenced by 

environment conditions (Confalonieri et al., 2010b; DeJonge et al., 2012; Zhao et al., 

2014), it is necessary to conduct sensitivity analysis of the APSIM-Oryza model under 

different environment conditions in order to obtain a comprehensive view of the 

sensitivity of model outputs to parameters, which is the objective of this study. In 



addition, because of the interaction between the APSIM platform and its Oryza 

module, the sensitivity analysis results of APSIM-Oryza may not be exactly the same 

as the original ORYZA model (Bouman et al., 2001; Li et al., 2017). 

 

In this study, six sites in different regions over China and two levels of CO2 

concentrations were used for the sensitivity analysis. This study aims to explore 

whether and to what extent the sensitivity of model outputs to parameters varies under 

different environmental conditions. 

 

2. Methods 

2.1 APSIM-Oryza 

APSIM is a flexible modeling framework for agricultural system, which has many 

modules for different crops (Brown et al., 2014; Holzworth et al., 2014). The key 

concept in the design of APSIM is a focus on cropping systems rather than individual 

crops. The dynamics of soil plays an important role in APSIM as McCown et al. 

(1995 stated Crops come and go, each finding the soil in a particular state and 

leaving it in an altered state  A specific crop module can be incorporated to the 

framework via a plug-in mechanism. 

 

-Oryza) simulates the rice growth under 

potential production, water-limited and N-limited simulations at a daily time-step 

(Gaydon et al., 2012; Gaydon et al., 2017; Zhang et al., 2007). APSIM-Oryza interacts 

with other components of APSIM such as soil water, irrigation, and fertilization. The 

main crop-growth processes include phenology, leaf area development, biomass 

production and allocation. Development in APSIM-Oryza is represented by DVS 

(development stage), which represents  (Bouman and Van 

Laar, 2006). The key development stages of rice are emergence (DVS=0), the end of 

juvenile stage (DVS=0.4), panicle initiation (DVS=0.65), flowering (DVS=1), and 

physiological maturity (DVS=2) (Bouman et al., 2001). The parameters related to the 

development of rice are mainly the changes in DVS per degree day (i.e. DVRJ, DVRI, 



DVRP, and DVRR as shown in Table 1). 

The daily CO2 assimilation rate is calculated by integrating instantaneous assimilation 

rates over time and depth within the canopy. The integration assumes sinusoidal time 

course of radiation in the day and exponential light profile in the canopy. The net 

daily growth rate in kg dry matter per ha per day can be obtained by subtracting 

respiration requirements from the total assimilation rate. The produced dry matter is 

partitioned among various organs (i.e. leaves, stems, panicles and roots). The 

partitioning coefficients are determined experimentally according to the development 

stage (Bouman et al., 2001; Li et al., 2017). The related parameters mainly include 

FLV0.5, FLV0.75, FST1.0, DRLV1.0, DRLV2.1 and FSTR. The parameter names 

such as FLV0.5 were the annexation of the parameter name (e.g. FLV) and the 

development stage (e.g. 0.5). The parameter FLV0.5 means the fraction of shoot dry 

matter partitioned to the leaves at DVS=0.5. The meanings of other parameters can be 

found in Table 1. 

 

The number of spikelets at flowering is proportional to the total biomass accumulated 

from panicle initiation to flowering. The parameter SPGF (no./kg) is used to describe 

the number of spikelets per unit mass of biomass. Some spikelets turn into grains with 

crop growth, while some others become sterile because of too high or too low 

temperature. The parameter WGRMX (kg/grain) is used to control the maximum 

individual grain weight. For leaf area growth, when LAI (leaf area index) is less than 

1, LAI increases exponentially as a function of temperature sum ( d). The parameter 

RGRLMX and RGRLMN are used to calculate the relative leaf area growth rate (R1 

in Eq. 1 and Eq. 2, (  d)-1) in this exponential growth phase. R1 is then used to 

calculate the growth in LAI (gLAI in Eq. 2, ha leaf/ha soil/d). The related formulas are 

described as follows: 

))(1(1 RGRLMNRGRLMXfRGRLMXR N                 (1) 

HULVLAIgLAI 1R                              (2) 

where, fN is the reduction factor for the relative leaf area growth rate caused by 



nitrogen (N) limitation, HULV is the daily increase in temperature sum ( d/d). When 

LAI exceeds 1, LAI increases linearly with the amount of carbohydrates available for 

leaf growth according to specific leaf area (SLA, m2/kg). The parameters involved in 

the calculation of SLA include ASLA, BSLA, CSLA, DSLA and SLAMAX. The 

main outputs involved in the analysis include total aboveground dry matter (WAGT in 

the model) and dry weight of storage organs or total panicle biomass (WSO in the 

model). For cereals like rice, WSO is an indicator of grain yield and it is useful in 

crop performance evaluation



 

Table 1. Description of selected parameters and output variables in the APSIM-Oryza model 

Name Description Unit Lower bound 

(30%)a 

Upper bound 

(30%) 

Lower bound 

(50%) 

Upper bound 

(50%) 

Base valueb 

Parameters 

DVRJ Development rate in juvenile phase ( day)-1 0.0007 0.0013 0.0005 0.0015 0.001 

DVRI Development rate in photoperiod-sensitive phase ( day)-1 0.000525 0.000975 0.000375 0.001125 0.00075 

DVRP Development rate in panicle development ( day)-1 0.000595 0.001105 0.000425 0.001275 0.00085 

DVRR Development rate in reproductive phase ( day)-1 0.0014 0.0026 0.001 0.003 0.002 

RGRLMX Maximum relative growth rate of leaf area ( day)-1 0.00595 0.01105 0.00425 0.01275 0.0085 

RGRLMN Minimum relative growth rate of leaf area ( day)-1 0.0028 0.0052 0.002 0.006 0.004 

ASLA Parameter A of the function to calculate specific leaf area 

(SLA, ha/kg) 

- 0.00168 0.00312 0.0012 0.0036 0.0024 

BSLA Parameter B of SLA - 0.00175 0.00325 0.00125 0.00375 0.0025 

CSLA Parameter C of SLA - -3.15 -5.85 -2.25 -6.75 -4.5 

DSLA Parameter D of SLA - 0.098 0.182 0.07 0.21 0.14 

SLAMAX Maximum value of SLA ha/kg 0.00315 0.00585 0.00225 0.00675 0.0045 

FLV0.5 Fraction of shoot dry matter partitioned to the leaves at 

DVS= 0.5 

- 0.42 0.78 0.3 0.9 0.6 

FLV0.75 Fraction of shoot dry matter partitioned to the leaves at 

DVS = 0.75 

- 0.21 0.39 0.15 0.45 0.3 

FST1.0 Fraction shoot dry matter partitioned to the stems at DVS 

=1.0 

- 0.28 0.52 0.2 0.6 0.4 

DRLV1.0 Leaf death coefficient as a function of development stage at 

DVS = 1.0 

- 0.014 0.026 0.01 0.03 0.02 



DRLV1.6 Leaf death coefficient as a function of development stage at 

DVS = 1.6 

- 0.021 0.039 0.015 0.045 0.03 

DRLV2.1 Leaf death coefficient as a function of development stage at 

DVS = 2.1 

- 0.035 0.065 0.025 0.075 0.05 

FSTR Fraction of carbohydrates allocated to stems stored as 

reserve 

- 0.175 0.325 0.125 0.375 0.25 

SPGF Spikelet growth factor no./kg 45430 84370 32450 97350 64900 

WGRMX Maximum individual grain weight kg/grain 1.75E-05 0.0000325 0.0000125 0.0000375 0.000025 

Outputs 

WAGT Total aboveground dry matter kg/ha      

WSO Dry weight of storage organs kg/ha      
a Lower bound means the base value minus 30% or 50%, upper bound means the base value plus %30 or 50%.b Base values are obtained from Tan et al. 

(2016). 

 



2.2 Global sensitivity analysis method 

The extended FAST method, a variance-based global sensitivity analysis algorithm 

(Saltelli et al., 1999), was used in this study. The core concept of variance-based 

sensitivity analysis method is that the variance of a model output (Y) can be 

decomposed as Eq. (3).  
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where, V(Y) denotes the total variance of model output Y, Vi denotes the variance 

allocated to the i-th parameter Pi, and Vij denotes the variance allocated to the 

interaction between Pi and Pj. The sensitivity of output Y to Pi , called the main or 

first-order index (Si), is measured by the ratio of Pi-caused variance to total variance 

V(Y) (as shown in Eq. (4)). 
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The total sensitivity index (STi) measures all the effects associated with parameter 

Pi, including the main effect and the interactions with other parameters. It is 

defined by Eq. (5): 
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Sij denotes the second-order sensitivity index for the couple of parameter Pi and Pj, 

Sijm denotes the third-order sensitivity index for the combination of Parameter Pi 

and any other two parameters, and so on. V-i denotes the sum of the contributions to 

the variance of output that do not include parameter Pi. 

The ranges of both Si and STi are [0, 1]. The larger the index value is, the more 

influence the parameter has. STi = Si means that Pi does not interact with other 

parameters. If STi = Si for all parameters, the model is additive (linear). Besides the 

normal parameters,  also appears in the results of sensitivity 

analysis, which can be used to judge whether the sensitivity index of a parameter is 

significantly different from zero. When sampling, the dummy parameter is treated 



as normal parameters; when running the simulations, the dummy parameter is 

ignored because it neither appears in the model nor affects the model in any other 

way; when calculating the sensitivity index, dummy parameter is considered again. 

Thus the dummy parameter should ideally have a sensitivity index of zero (Marino 

et al., 2008). However, because of the aliasing and interference effects, the obtained 

index of dummy parameter would be a small but non-zero value. If the sensitivity 

index of a parameter is less than or equal to that of the dummy parameter, the 

sensitivity index of this parameter can be considered to be not significantly 

different from zero (Zadeh et al., 2017).  

 

2.3 Study sites and parameter settings 

There are six main cultivation regions of rice across mainland China; they include 

single rice in Northeast China, single rice in mid-lower Yangtze River Valley, single 

rice in Sichuan Basin, single rice in Yunnan-Guizhou Plateau, double rice in 

mid-lower Yangtze River Valley, and double rice in South China (Sun and Huang, 

2011). Six sites (Fig.1) were selected accordingly to study the effects of climate and 

soil condition on the results of sensitivity analysis. Among these sites, 

double-cropping rice is planted in Yingtan and Nanhai. The climate data, including 

daily minimum and maximum air temperature, rainfall, and solar radiation from 1980 

to 2010 were collected from CMA (China Meteorological Administration, 

http://data.cma.cn/). For Shenyang, Changshu, Yanting, and Yingtan, the soil data and 

management information (i.e. sowing date, transplanting date, fertilization and 

irrigation operations) were obtained from CNERN (National Ecosystem Research 

Network of China). For Yiliang and Nanhai, the soil data were obtained from China 

Soil Database (http://vdb3.soil.csdb.cn/), and the management information was 

obtained from the nearby agricultural meteorological stations of CMA 

(http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html). 

 

The fertilization rules for these six sites are described as follows: all sites were 

fertilized one day after transplanting, and the other fertilization and corresponding 



amounts depended on the management information. Taking the early rice in Yingtan 

site as an example, 86.5 kg/ha urea N was applied after transplanting (30 days after 

sowing). Besides, there were another time of fertilization (75.9 kg/ha urea N) after 40 

days of sowing. In Shenyang, because rice may reach maturity before the predefined 

fertilization date, the fertilization dates were first converted to DVS according to 

observed phenological phases and then DVS was used to control the fertilization dates 

in the simulation of this site. The maximum ponded water depth of the field was 60 

mm and irrigation was applied up to 30 mm of ponded water depth once the water 

depth dropped to zero. If the DVS was between 0.6 and 0.65 (the late tillering stage), 

there would be no irrigation in order to control inefficient tillers. 

 

Fig.1. The spatial distribution of six rice cultivation regions across mainland China 

and selected sites. The six rice cultivation regions are as following: I, single rice in 

Northeast China, II, single rice in mid-lower Yangtze River Valley, III, single rice in 

Sichuan Basin, IV, single rice in Yunnan-Guizhou Plateau, V, double rice in mid-lower 

Yangtze River Valley and VI, double rice in South China. 

 

Table 2 presents the information of location, growing-season climate and topsoil 



texture in the six selected sites. The growing-season climate values were calculated by 

averaging daily values between observed mean sowing dates to harvest dates. The 

climate data was from CMA and phenology data was from CNERN and agricultural 

meteorological stations. For Shenyang, Changshu, Yanting, and Yingtan, soil particle 

size in the top layer were obtained from CNERN. For Yiliang and Nanhai, soil 

particle size in the top layer were obtained from China Soil Database 

(http://vdb3.soil.csdb.cn/). During the growing season, the temperature in Shenyang 

and Yiliang were lower than other sites. The temperature in the growing season of late 

rice was higher than that of early rice and single rice. Shenyang had the highest daily 

solar radiation, and the early rice of Nanhai had the lowest one. Shenyang, Changshu 

and Yanting had less rainfall than other sites. The soil is mainly silt in Shenyang, 

Changshu and Nanhai, sand in Yanting, and clay in Yiliang. 

 

Table 2. Location, growing-season climate and topsoil texture in the six selected sites. 

 Shenyang Changshu Yanting Yiliang Yingtan Nanhai 

Rice type Single rice Single rice Single rice Single rice Double rice Double rice 

Latitude 41.52 31.55 31.27 24.53 28.25 23.13 

Longitude 123.36 120.63 105.46 103.73 116.93 113.03 

Elevation(m) 38 5 489 1699 41 1 

Mean daily temperature 
b 

20.30 25.95 25.04 20.09 Early: 24.81 

Late: 28.12a 

Early: 25.45 

Late: 28.24 

Mean daily solar 

radiation(MJ/m2) 

18.18 17.74 16.73 15.50 Early: 16.74 

Late: 17.17 

Early: 11.68 

Late: 13.29 

Mean rainfall (mm) 580.72 544.34 643.6 716.68 Early: 1068.55 

Late: 372.75 

Early: 855.73 

Late: 452.53 

Sand (0.05-2.0mm) (%)c 18.42 3.77 30.70 15.20 51.25 31.05 

Silt (0.002-0.05mm) (%) 66.70 62.23 39.72 32.00 37.62 54.95 

Clay (<0.002mm) (%) 14.88 34.00 20.14 52.80 11.13 14.00 

 
a

the mean temperature of late rice in Yingtan is 28.12 C, etc.  
b Mean daily temperature, mean daily solar radiation and mean rainfall are the mean value in rice 

growth period (from observed mean sowing date to harvesting date). 
c Soil particle size in the top layer. 

 

The sensitivity analysis in this study involved eight climate conditions, two CO2 



levels and twenty parameters. For single rice, each site corresponds to one type of 

climate condition, and for double rice, each site corresponds to two types of climate 

conditions (i.e. early rice and late rice). The double rice was simulated as two seasons 

of single rice, and each season was configured with its own sowing and transplanting 

dates. The number of search curves for extended FAST was set to five and the number 

of samples per search curve was set to 97 according to existing researches (Marino et 

al., 2008; Saltelli et al., 2000). So for a certain climate condition, CO2 level, and 

simulation period, the number of simulations was 5*(20+1)*97=10185. The number 

20 in the equation means 20 parameters and the number one means the one dummy 

parameter. The parameter sampling strategy is the same as Saltelli et al. (1999). 

Simulations were conducted for 31 years from 1980 to 2010. One result of parameter 

sensitivity was calculated for each year, and the overall parameter sensitivity was 

obtained by averaging . 

 

The base values of parameters followed Tan et al. (2016), and the parameter values 

for each simulation were generated randomly between the 30% and 50%

perturbation of the base values. It should be noted that some parameter combinations 

may lead to simulation failure for some site-years due to cold damage caused by low 

temperature in late growth stage. Simulation failure here means that the simulated 

value of WAGT or WSO is negative. Since negative WAGT or WSO values do not 

make sense, thus we set negative WAGT or WSO to zero before the calculation of 

sensitivity indices. In this study, w

a small number 

of simulation failures mainly for the late rice in Yingtan and Naihai (Table A.1 in the 

Appendix). The default CO2 concentration used in simulation is 350 ppm. Because it 

is widely acknowledged that the CO2 concentration in atmosphere is increasing over 

the past half century, two levels of CO2 concentration (i.e. 350 ppm and 429 ppm) 

were used to explore whether CO2 concentration has effects on the sensitivity index 

of parameters (Nakicenovic et al., 2000). 

 



When the ranking of parameters is needed, STi was used as the criterion. For each 

parameter, the STi values of multiple years in each climate condition were first 

averaged, and then the STi values of different climate conditions were averaged to get 

an overall STi for each parameter. A threshold of 0.05 for STi was used to select 

influential parameters. In order to get the distribution of the simulation results, the 

Kernel Density Estimate (KDE) method (Parzen, 1962) was adopted. KDE is a 

nonparametric density estimator, which can learn the shape of the density from the 

data automatically. In this study, we used the sns Python package to plot the KDE 

curve, and the default settings of sns were used. 

 

3. Results 

3.1 Overall parameter sensitivity under different environmental conditions 

3.1.1 The sensitivity of total aboveground dry matter to parameters 

Fig. 2 shows the sensitivity indices under eight climate conditions for the output 

variable WAGT at maturity for the 50% perturbation of base value, 

and the corresponding figure for the 30% perturbation is shown in Fig. A.1 in the 

Appendix. For both perturbations, the influential parameters (with overall STi larger 

than 0.05) for all the sites were the same; they are the four development rate 

parameters (DVRJ, DVRI, DVRP, DVRR) and three of the leaf relevant parameters: 

parameter A of the function to calculate specific leaf area (ASLA), maximum relative 

growth rate of leaf area (RGRLMX), and the fraction of shoot dry matter partitioned 

to the leaves at DVS=0.5 (FLV0.5). The sensitivity indices of these parameters were 

much larger than those of dummy parameter, indicating that they were significantly 

different from zero. Other parameters showed little impacts on WAGT. The 

interaction indices (the blue bar in Fig.2) were low for all climate conditions except 

for Shenyang, suggesting that the interaction among parameters was weak. This 

means that the parameters affect WAGT independently, only with slight interaction 

with each other. 



 

Fig.2. The main (Si) and total (STi) sensitivity indices under eight climate conditions 

for the output variable WAGT (total aboveground dry matter) at maturity for the 50% 

perturbation of  base value. The title of each subfigure in the top of the 

single rice in the Shenyang s

etc. 

 

The sensitivity index of RGRLMX had obvious variation among different 

environmental conditions. For the 50% perturbation, the STi value of RGRLMX 

for Yiliang was 0.38, while those for Yingtan_Late and Nanhai_Late were less than 

0.1. For double-rice sites, the overall sensitivity index of parameters was similar for 

early and late rices. However, there were also observable differences for the parameter 

DVRJ and RGRLMX. The sensitivity index of DVRJ for early rice was consistently 

smaller than that for late rice, while the sensitivity index of RGRLMX for early rice 

was larger than that of late rice. 

 

3.1.2 The sensitivity of dry weight of storage organs to parameters 

Dry weight of storage organs (WSO) is an indicator of grain yield in the 

APSIM-Oryza model (Bouman et al., 2001; Gaydon et al., 2012). Fig.3 shows the 

sensitivity indices under eight climate conditions for the output variable WSO for the 

50% perturbation of base values, and the corresponding figure for the 30% 



perturbation was shown in Fig. A.2. For both perturbations, WSO were mainly 

sensitive to eight parameters (with overall STi larger than 0.05): the four development 

rates (DVRJ, DVRI, DVRP and DVRR), two leaf relevant parameters RGRLMX and 

ASLA, two grain relevant SPFG and WRGMX. The sensitivity indices of these 

parameters were much larger than those of dummy parameter, indicating they were 

significantly different from zero. The first six were also sensitive parameters for 

WAGT. Four development rates (DVRJ, DVRI, DVRP and DVRR) still dominated, 

although their relative importance was often different. The sensitivity of WSO to 

RGRLMX was weaker than that of WAGT in all sites except the Yiliang site. 

Compared with WAGT, WSO showed greater parameter interaction. The interaction 

part even accounted for over half of the total sensitivity indices for some parameters 

(e.g. development rates of the single rice in Shenyang, Yiliang and the early rice in 

Yingtan). This is because that the accumulation of storage organs was the last growth 

stage of rice and thus determined by the combined influence of many parameters. The 

sensitivity index of RGRLMX, WGRMX, and SPGF showed obvious variation 

among different environmental conditions. In particular, the sensitivity index of 

RGRLMX was much larger in Yiliang than in other sites. 

 

 

Fig.3. The main (Si) and total (STi) sensitivity indices under eight climate conditions 

for the output variable WSO (dry weight of storage organs) at maturity for the 50% 

perturbation of . The title of each subfigure in the top of the 



etc. 

 

3.2 Impacts of CO2 concentration on parameter sensitivity 

Two levels of CO2 concentrations (350ppm and 429ppm) were used to drive the 

simulations under eight climate conditions, and the order of parameters was ranked by 

the total sensitivity index (STi) for each level. The changes of orders in absolute value 

under the two levels were then calculated to indicate the impact of CO2 concentration 

on the parameter sensitivity. Fig.4 and Fig.5 show the results for WAGT and WSO for 

the 50% perturbation , respectively, and the 

corresponding figures for the 30% perturbation were shown in Fig. A.3 and Fig. 

A.4 in the Appendix. For the influential parameters for the output variable WAGT 

identified in Section 3.1 (i.e. DVRJ, DVRI, DVRP, DVRR, RGRLMX, ASLA, and 

FLV0.5), the changes under two CO2 concentration levels were slight. For the 50% 

perturbation, only 2 out of the 56 changes were two, and the others (96%) were less 

than or equal to one. For the influential parameters for the output variable WSO (i.e. 

DVRJ, DVRI, DVRP, DVRR, RGRLMX, ASLA, WGRMX and SPGF), the changes 

of orders were larger than those of WAGT. But there were still 75% of the changes 

that were less than or equal to one. For the relatively insensitive parameters, the 

changes of orders were sometimes large, but these parameters would not be used in 

the model calibration, so these changes were not important. Overall, the CO2 

concentration did not have much influence on the results of sensitivity analysis for the 

two output variables WAGT and WSO. 



 
Fig.4. Impact of CO2 concentration on parameter sensitivity for WAGT (total 

aboveground dry matter) at maturity for the 50% perturbation of 

value. The numbers in Fig. (a) and (b) represent the order of parameters ranked by the 

total sensitivity index (STi) under two CO2 concentrations levels (i.e. 350ppm and 

429ppm), and the numbers in Fig. (c) represent the changes of orders in absolute 

value under these two levels. 



 
Fig.5. Impact of CO2 concentration on the parameter sensitivity for WSO (dry weight 

of storage organs) at maturity for the 50% perturbation of . 

The numbers in Fig. (a) and (b) represent the order of parameters ranked by the total 

sensitivity index (STi) under two CO2 concentrations levels (350ppm and 429ppm), 

and the numbers in Fig. (c) represent the changes of orders in absolute value under 

these two levels. 

 

3.3 Impacts of inter-annual climate variation on parameter sensitivity 

To explore whether inter-annual climate variation affects the sensitivity orders of 

parameters, order of parameters from 1980 to 2010 was 

obtained, and the standard deviations (SD) of orders in these years for influential 

parameters for WAGT and WSO are shown in Fig. 6. A large SD indicates that 



inter-annual climate variation had large impacts on the sensitivity orders of 

parameters. The average SDs of parameter sensitivity orders across all the climate 

conditions and parameters were larger for WSO (1.15 for the 30% perturbation and 

0.97 for 50% perturbation) than for WAGT (0.63 for the 30% perturbation and 

0.53 for 50% perturbation). For each parameter, the SD in each climate condition 

was calculated first, and then SDs in eight climate conditions were averaged. For 

WAGT, the average SD of orders for RGRLMX was the largest, while those for 

DVRJ and FLV0.5 were relatively small. For WSO, there does not exist large 

differences among parameters. For both WAGT and WSO, the SDs for the 50% 

perturbation were generally smaller than those for the 30% perturbation, which 

indicates the sensitivity analysis results using the 50% perturbation were more 

stable. 

 

Fig.6. Average standard deviations (SD) of parameter sensitivity orders from 1980 to 

2010 for influential parameters (with overall STi larger than 0.05) for WAGT (total 

aboveground dry matter, a) and WSO (dry weight of storage organs, b). For each 

parameter, the SD in each climate condition was calculated first, and then SDs in 

eight climate conditions were averaged. 

 

Fig. 7 shows the average SDs of parameter sensitivity orders for each climate 

condition. For each climate condition, the SD of each parameter was calculated first, 

and then average SDs were calculated using the influential parameters (with overall 



STi larger than 0.05). It can be seen the SDs for the 50% perturbation were also 

smaller than those for the 30% perturbation in most climate conditions, especially 

in Yiliang and Shenyang which have low growing-season temperature (Table 2). 

 
Fig. 7 Average standard deviations (SD) of parameter sensitivity orders from 1980 to 

2010 for different climate conditions for WAGT (total aboveground dry matter, a) and 

WSO (dry weight of storage organs, b). For each climate condition, the SD of each 

parameter was calculated first, and then average SDs were calculated using the 

influential parameters (with overall STi larger than 0.05). 

 

3.4 Distribution of the model outputs 

Fig.8 and Fig.9 show the distribution of WAGT and WSO under the eight different 

climate conditions obtained by the KDE method for the 50% perturbation of 

. The measured WAGT and yield were also shown in the 

figures as vertical dotted line. We can see that the measured values were located near 

to the peaks of the distribution of simulated values in all the sites. In addition, these 

figures clearly show that the values of WAGT and WSO under CO2 concentration of 

429ppm were larger than those under CO2 concentration of 350ppm. Taking the WSO 

of Shenyang as an example, there was a peak at 8000 kg/ha under CO2 concentration 

of 350ppm, while this value increased to about 9000 kg/ha under CO2 concentration 

of 429ppm. This can be explained by the fact that in the APSIM-Oryza model, the 



CO2 assimilation rate is positively correlated with ambient CO2 concentration. It 

should be noted that although the peak of the distribution changed, the shape of the 

curve almost remained unchanged under two levels of CO2 concentration. 

 

Fig.8. The distribution of WAGT (total aboveground dry matter) under eight different 

climate conditions obtained by the KDE (Kernel Density Estimation) method for the 

50% perturbation . The title of each subfigure in the top of 

etc. The red and blue colors represent the distributions of WAGT under CO2 

concentration of 350 ppm and 420 ppm, respectively. 



 

Fig.9. The distribution of WSO (dry weight of storage organs) under eight different 

climate conditions obtained by the KDE (Kernel Density Estimation) method for the 

50% perturbation . The title of each subfigure in the top of 

etc. The red and blue colors represent the distributions of WSO under CO2 

concentration of 350 ppm and 420 ppm, respectively. 

 

4. Discussion 

4.1 Differences of parameter sensitivity among different environmental 

conditions 

The sensitivity index of some parameters had obvious differences among the 

investigated eight different climate conditions. For example, the sensitivity index of 

RGRLMX was much larger in Yiliang, the coldest site in this study, than in other sites 

for both output variables WAGT and WSO. For early rice and late rice in the same site, 

the sensitivity index of parameters also varied. The sensitivity of WAGT and WSO to 



RGRLMX for early rice was consistently larger than that of late rice. 

From the viewpoint of model structure, the different sensitivity of model outputs to 

parameters across environmental conditions could be attributed to the interaction of 

environmental conditions and parameters in some simulation methods. For example, 

let us assume that a step in the simulation is to calculate a value V=E P, in which E 

is the environmental term and P is the parameter, and then the value V is compared 

with a threshold to determine the usage of different simulation methods in the 

following step. If the environmental term E is large enough, it is possible that the 

value V is always larger than the threshold for a defined range of parameters. In this 

case, the parameter P is not sensitive. If the environmental term E is moderate, 

whether the value V is larger than the threshold depends on the parameter P. In this 

case, the parameter P is sensitive. If the environmental term E is small enough, it is 

possible that the value V is always smaller than the threshold for a defined range of 

parameters. In this case, the parameter P is not sensitive again. 

In this study, because the simulations were conducted under irrigation and fertilization 

conditions, water and soil conditions should not be the main influencing factor. The 

observed differences could be mainly attributed to the temperature conditions. Taking 

the RGRLMX parameter as an example, it was used only in calculating the relative 

leaf area growth rate (R1 in Eq. 1 and Eq. 2, (  d)-1) in the exponential growth phase 

when LAI is less than 1 (Bouman et al., 2001). R1 was then multiplied by LAI and 

HULV (i.e. daily increase in temperature sum, /d) to calculate the growth in LAI 

(gLAI in Eq. 2, ha leaf/ha soil/d). In cold climate, HULV will be small. If the value of 

R1 is also very small, gLAI will be very small which means slow growth rates of leaf 

area. Thus it will take a long time for LAI to grow to 1 (e.g. the end of the exponential 

growth phase). This will have large negative impacts on carbon assimilation and thus 

greatly affect the value of WAGT and WSO. In contrast, HULV will have larger 

values in the warm climate. Even RGRLMX is small, there is still larger possibility 

for gLAI to maintain a large enough value. So the dependence of WAGT on 

RGRLMX is relatively weak in warm conditions.  

 



 

4.2 The little influence of CO2 concentration setting on parameter sensitivity 

The CO2 concentration is only used in the calculation of gross CO2 assimilation rate 

(kg CO2 ha-1 d-1) in the APSIM-Oryza model. The little influence of CO2 

concentration setting on parameter sensitivity could be because that on the one hand, 

some parameters are only used in the calculations that are not affected by CO2 

concentration. For example, the phenology calculation, where the parameters DVRJ, 

DVRI, DVRP, and DVRR are used, and the calculation of exponential growth phase 

of leaf development, where the parameters RGRLMX and RGRLMN are used, do not 

depend on CO2 concentration. Thus CO2 concentration will not affect the sensitivity 

of model outputs to these parameters. On the other hand, most of the other parameters 

are used in the calculations that are linearly affected by CO2 concentration. For 

example, the gross CO2 assimilation is used to calculate the daily crop growth rate 

(kg day matter ha-1 d-1) through a linear relationship, and the daily crop growth rate is 

then multiplied by the parameter FLV0.5 to get the growth rate of leaves. The relative 

changes of values in these linear relationships will not affect the sensitivity of model 

outputs to parameters. 

 

4.3 The impacts of ranges of parameter variation on sensitivity analysis results 

For the sensitivity analysis of crop models in existing literature, the parameter ranges 

 of the base 

value (Marino et al., 2008; Richter et al., 2010; Tan et al., 2016; Tan et al., 2017; Yang, 

2011; Zhao et al., 2014). Tan et al. (2017) investigated the effects of different ranges 

of parameter variation (i.e. 5%, 10%, 20%, 30%, 50% perturbations of 

the base value) on the sensitivity analyses for ORYZA_V3 model, and recommended 

the 30% perturbation when specific ranges cannot be obtained. It should be noted 

that this research was conducted at a single site, and the base values of some 

parameters (e.g. the partitioning factors, leaf death rates) were determined according 

to experimental observation (Tan et al., 2016). 

The Yingtan site used by Tan et al., (2016, 2017) was also used in this study. Because 



the base values of parameters in other sites of this study were not known in advance, 

we used the base values of Tan et al. (2016) in 

 in order to get more 

robust conclusions. These parameters ranges were considered to be reasonable for the 

following reasons: 1) The parameter ranges using the 50% perturbation can cover the 

parameter values in all the predefined cultivars of APSIM-Oryza except for the DVRP 

parameter of cultivar BR3; 2) The measured WAGT and yield values were compared 

with the simulated WAGT and WSO. The results showed that the measured values 

were located near to the peaks of the distribution of simulated values in all the sites 

(Fig.8 and Fig.9), which demonstrated the ability of the model and the parameter 

ranges to simulate rice growth in these sites; 3) The main conclusions were consistent 

perturbation, which demonstrates the robustness of the conclusions in this study. This 

is consistent with Wang et al. (2013), which showed that for the WOFOST model, the 

perturbations 10% to 50% did not 

change the sensitivity rankings of parameter. 

For Yiliang and Shenyang where growing-season temperature is low, the average SDs 

of parameter sensitivity orders from 1980 to 2010 were much larger for the 30% 

perturbation than for the 50% perturbation. This may be because that  

base values of Yingtan_Late were used in all the sites of this study due to the lack of 

experimental observation, but these base values were not suitable for the sites with 

very different climate conditions. When the perturbation is not large enough, an 

inappropriate base value may lead to parameter sampling ranges that cannot cover the 

range of interest, which makes the results of sensitivity analysis not stable. When the 

perturbation is large enough (e.g. 50% in this study), the parameter sampling range 

can cover the range of interest even an inappropriate base value is given, which makes 

the results of sensitivity analysis stable. This highlights the need for using a larger 

perturbation value when the base value of parameters cannot be specifically obtained. 

 

5. Conclusions 



In this study, the global sensitivity analysis of the APSIM-Oryza model was 

performed under eight different climate conditions and two CO2 levels for a 31-year 

simulation period. The number (eight) of conditions considered in our study is much 

larger than that in existing studies (most focused on only a single condition), and thus 

our findings can provide additional insights into the APSIM-Oryza model and its 

parameters. The sensitivity of two output variables (i.e. total aboveground dry matter 

WAGT and dry weight of storage organs WSO) to twenty parameters was analyzed 

using the extended FAST method. The main findings include (1) for the output 

variables WAGT and WSO, the influential parameters (with overall STi larger than 

0.05) under different climate conditions were the same, but their orders were often 

different; (2) the sensitivity index of some parameters (e.g. RGRLMX, WGRMX and 

SPGF) had obvious differences among different climate conditions. In particular, the 

sensitivity index of RGRLMX is larger under cold climate than under warm climate; 

(3) the CO2 concentration had little influence on the results of sensitivity analysis for 

the two output variables WAGT and WSO; (4) The range of parameter variation 

affected the stability of sensitivity analysis results, but the main conclusions were 

consistent between the results obtained from using 

. 

It should be noted that in existing studies and our current study, the failed simulations 

in which crop does not reach maturity were treated as normal simulations. However, 

these failed simulations could cause great variation of simulation results and then 

might have large impacts on the results of sensitivity analysis. Therefore, we highlight 

a further scientific question about how to handle these failure simulation, which needs 

to be investigated in future studies. 
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The Appendix 

Fig. A.1. The main (Si) and total (STi) sensitivity indices under eight climate 

conditions for the output variable WAGT (total aboveground dry matter) at maturity 

for the 30% perturbation . The title of each subfigure in 

the top of the figure means different environmental conditions. For example, 

in the Yingtan site, etc. 

Fig. A.2. The main (Si) and total (STi) sensitivity indices under eight climate 

conditions for the output variable WSO (dry weight of storage organs) at maturity for 

the 30% perturbation . The title of each subfigure in the 

to

 early rice in the 

Yingtan site.  



Fig. A.3. Impact of CO2 concentration on parameter sensitivity for WAGT (total 

aboveground dry matter) at maturity for the 30% perturbation 

value. The numbers in Fig. (a) and (b) represent the order of parameters ranked by the 

total sensitivity index (STi) under two CO2 concentrations levels (i.e. 350ppm and 

429ppm), and the numbers in Fig. (c) represent the changes of orders in absolute 

value under these two levels. 

  



 
Fig. A.4. Impact of CO2 concentration on the parameter sensitivity for WSO (dry 

weight of storage organs) at maturity for the 30% perturbation 

value. The numbers in Fig. (a) and (b) represent the order of parameters ranked by the 

total sensitivity index (STi) under two CO2 concentrations levels (350ppm and 

429ppm), and the numbers in Fig. (c) represent the changes of orders in absolute 

value under these two levels. 



Table A.1. Summaries of simulation failure. 

Sites  Co2 condition Failure times Failure rate (%) 

Shenyang 350 ppm 2 0.000633  

 429 ppm 2 0.000633  

Changshu 350 ppm 0 0 

 429 ppm 0 0 

Yanting 350 ppm 0 0 

 429 ppm 0 0 

Yiliang 350 ppm 3 0.000950  

 429 ppm 3 0.000950  

Yingtan_Early 350 ppm 0 0 

 429 ppm 0 0 

Yingtan_Late 350 ppm 471 0.149176  

 429 ppm 783 0.247993  

Nanhai_Early 350 ppm 0 0 

 429 ppm 0 0 

Nanhai_Late 350 ppm 61 0.019320  

 429 ppm 87 0.027555  

 



Table 1. Description of selected parameters and output variables in the APSIM-Oryza model 
Name Description Unit Lower bound 

(30%)a 
Upper bound 
(30%) 

Lower bound 
(50%) 

Upper bound 
(50%) 

Base valueb 

Parameters 
DVRJ Development rate in juvenile phase ( day)-1 0.0007 0.0013 0.0005 0.0015 0.001 
DVRI Development rate in photoperiod-sensitive phase ( day)-1 0.000525 0.000975 0.000375 0.001125 0.00075 
DVRP Development rate in panicle development ( day)-1 0.000595 0.001105 0.000425 0.001275 0.00085 
DVRR Development rate in reproductive phase ( day)-1 0.0014 0.0026 0.001 0.003 0.002 
RGRLMX Maximum relative growth rate of leaf area ( day)-1 0.00595 0.01105 0.00425 0.01275 0.0085 
RGRLMN Minimum relative growth rate of leaf area ( day)-1 0.0028 0.0052 0.002 0.006 0.004 
ASLA Parameter A of the function to calculate specific leaf area 

(SLA, ha/kg) 
- 0.00168 0.00312 0.0012 0.0036 0.0024 

BSLA Parameter B of SLA - 0.00175 0.00325 0.00125 0.00375 0.0025 
CSLA Parameter C of SLA - -3.15 -5.85 -2.25 -6.75 -4.5 
DSLA Parameter D of SLA - 0.098 0.182 0.07 0.21 0.14 
SLAMAX Maximum value of SLA ha/kg 0.00315 0.00585 0.00225 0.00675 0.0045 
FLV0.5 Fraction of shoot dry matter partitioned to the leaves at 

DVS= 0.5 
- 0.42 0.78 0.3 0.9 0.6 

FLV0.75 Fraction of shoot dry matter partitioned to the leaves at 
DVS = 0.75 

- 0.21 0.39 0.15 0.45 0.3 

FST1.0 Fraction shoot dry matter partitioned to the stems at DVS 
=1.0 

- 0.28 0.52 0.2 0.6 0.4 

DRLV1.0 Leaf death coefficient as a function of development stage at 
DVS = 1.0 

- 0.014 0.026 0.01 0.03 0.02 

DRLV1.6 Leaf death coefficient as a function of development stage at 
DVS = 1.6 

- 0.021 0.039 0.015 0.045 0.03 

DRLV2.1 Leaf death coefficient as a function of development stage at 
DVS = 2.1 

- 0.035 0.065 0.025 0.075 0.05 

FSTR Fraction of carbohydrates allocated to stems stored as 
reserve 

- 0.175 0.325 0.125 0.375 0.25 

SPGF Spikelet growth factor no./kg 45430 84370 32450 97350 64900 
WGRMX Maximum individual grain weight kg/grain 1.75E-05 0.0000325 0.0000125 0.0000375 0.000025 
Outputs 
WAGT Total aboveground dry matter kg/ha      
WSO Dry weight of storage organs kg/ha      

a Lower bound means the base value minus 30% or 50%, upper bound means the base value plus %30 or 50%.b Base values are obtained from Tan et al. 

(2016).

Table
Click here to download Table: SeparateTabels20180824.docx



Table 2. Location, growing-season climate and topsoil texture in the six selected sites. 
 Shenyang Changshu Yanting Yiliang Yingtan Nanhai 
Rice type Single rice Single rice Single rice Single rice Double rice Double rice 
Latitude 41.52 31.55 31.27 24.53 28.25 23.13 
Longitude 123.36 120.63 105.46 103.73 116.93 113.03 
Elevation(m) 38 5 489 1699 41 1 
Mean daily temperature 

b 
20.30 25.95 25.04 20.09 Early: 24.81 

Late: 28.12a 
Early: 25.45 
Late: 28.24 

Mean daily solar 
radiation(MJ/m2) 

18.18 17.74 16.73 15.50 Early: 16.74 
Late: 17.17 

Early: 11.68 
Late: 13.29 

Mean rainfall (mm) 580.72 544.34 643.6 716.68 Early: 1068.55 
Late: 372.75 

Early: 855.73 
Late: 452.53 

Sand (0.05-2.0mm) (%)c 18.42 3.77 30.70 15.20 51.25 31.05 

Silt (0.002-0.05mm) (%) 66.70 62.23 39.72 32.00 37.62 54.95 

Clay (<0.002mm) (%) 14.88 34.00 20.14 52.80 11.13 14.00 

 
a the mean 
temperature of late rice in Yingtan is 28.12 C, etc.  
b Mean daily temperature, mean daily solar radiation and mean rainfall are the mean value in rice growth 
period (from observed mean sowing date to harvesting date). 
c Soil particle size in the top layer. 



Table A.1. Summaries of simulation failure. 
Sites  Co2 condition Failure times Failure rate (%) 
Shenyang 350 ppm 2 0.000633  
 429 ppm 2 0.000633  
Changshu 350 ppm 0 0 
 429 ppm 0 0 
Yanting 350 ppm 0 0 
 429 ppm 0 0 
Yiliang 350 ppm 3 0.000950  
 429 ppm 3 0.000950  
Yingtan_Early 350 ppm 0 0 
 429 ppm 0 0 
Yingtan_Late 350 ppm 471 0.149176  
 429 ppm 783 0.247993  
Nanhai_Early 350 ppm 0 0 
 429 ppm 0 0 
Nanhai_Late 350 ppm 61 0.019320  
 429 ppm 87 0.027555  

 



 

Fig.1. The spatial distribution of six rice cultivation regions across mainland China and selected 

sites. The six rice cultivation regions are as following: I, single rice in Northeast China, II, single 

rice in mid-lower Yangtze River Valley, III, single rice in Sichuan Basin, IV, single rice in 

Yunnan-Guizhou Plateau, V, double rice in mid-lower Yangtze River Valley and VI, double rice 

in South China. 
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Fig.2. The main (Si) and total (STi) sensitivity indices under eight climate conditions for the 

output variable WAGT (total aboveground dry matter) at maturity for the 50% perturbation of 

. The title of each subfigure in the top of the figure means different 

in the Shenyang site, 

early rice in the Yingtan site. 

 

Fig.3. The main (Si) and total (STi) sensitivity indices under eight climate conditions for the 

output variable WSO (dry weight of storage organs) at maturity for the 50% perturbation of 

. The title of each subfigure in the top of the figure means different 

 



 

Fig.4. Impact of CO2 concentration on parameter sensitivity for WAGT (total aboveground dry 

matter) at maturity for the 50% perturbation . The numbers in Fig. (a) 

and (b) represent the order of parameters ranked by the total sensitivity index (STi) under two 

CO2 concentrations levels (i.e. 350ppm and 429ppm), and the numbers in Fig. (c) represent the 

changes of orders in absolute value under these two levels. 



 

Fig.5. Impact of CO2 concentration on the parameter sensitivity for WSO (dry weight of storage 

organs) at maturity for the 50% perturbation . The numbers in Fig. (a) 

and (b) represent the order of parameters ranked by the total sensitivity index (STi) under two 

CO2 concentrations levels (350ppm and 429ppm), and the numbers in Fig. (c) represent the 

changes of orders in absolute value under these two levels. 



 

Fig.6. Average standard deviations (SD) of parameter sensitivity orders from 1980 to 2010 for 

influential parameters (with overall STi larger than 0.05) for WAGT (total aboveground dry 

matter, a) and WSO (dry weight of storage organs, b). For each parameter, the SD in each 

climate condition was calculated first, and then SDs in eight climate conditions were averaged. 

 

 

Fig. 7 Average standard deviations (SD) of parameter sensitivity orders from 1980 to 2010 for 

different climate conditions for WAGT (total aboveground dry matter, a) and WSO (dry weight 

of storage organs, b). For each climate condition, the SD of each parameter was calculated first, 

and then average SDs were calculated using the influential parameters (with overall STi larger 

than 0.05). 



 

Fig.8. The distribution of WAGT (total aboveground dry matter) under eight different climate 

conditions obtained by the KDE (Kernel Density Estimation) method for the 50% perturbation 

. The title of each subfigure in the top of the figure represents the site 

and cropping system. For example, 

distributions of WAGT under CO2 concentration of 350 ppm and 420 ppm, respectively. 



 

Fig.9. The distribution of WSO (dry weight of storage organs) under eight different climate 

conditions obtained by the KDE (Kernel Density Estimation) method for the 50% perturbation 

. The title of each subfigure in the top of the figure represents the site 

distributions of WSO under CO2 concentration of 350 ppm and 420 ppm, respectively. 



Fig. A.1. The main (Si) and total (STi) sensitivity indices under eight climate conditions for the 

output variable WAGT (total aboveground dry matter) at maturity for the 30% perturbation of 

. The title of each subfigure in the top of the figure means different 

 

Fig. A.2. The main (Si) and total (STi) sensitivity indices under eight climate conditions for the 

output variable WSO (dry weight of storage organs) at maturity for the 30% perturbation of 

. The title of each subfigure in the top of the figure means different 
environmen

 early rice in the Yingtan site.  



Fig. A.3. Impact of CO2 concentration on parameter sensitivity for WAGT (total aboveground 

dry matter) at maturity for the 30% perturbation . The numbers in 

Fig. (a) and (b) represent the order of parameters ranked by the total sensitivity index (STi) under 

two CO2 concentrations levels (i.e. 350ppm and 429ppm), and the numbers in Fig. (c) represent 

the changes of orders in absolute value under these two levels. 



 

Fig. A.4. Impact of CO2 concentration on the parameter sensitivity for WSO (dry weight of 

storage organs) at maturity for the 30% perturbation . The numbers 

in Fig. (a) and (b) represent the order of parameters ranked by the total sensitivity index (STi) 

under two CO2 concentrations levels (350ppm and 429ppm), and the numbers in Fig. (c) 

represent the changes of orders in absolute value under these two levels. 


