
Spatially explicit large-scale environmental risk assessment of pharmaceuticals 1 

in surface water in China  2 

Ying Zhu1,2, Jason Snape3,4, Kevin Jones1, Andrew Sweetman1* 3 

1 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom 4 

2 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for 5 
Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 6 
 7 
3 AstraZeneca, Global Safety, Health and Environment, Alderley Park, Macclesfield, SK10 8 

4TG, United Kingdom 9 

4 School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 10 

7AL, United Kingdom 11 

 12 

*Corresponding author: Andrew Sweetman, a.sweetman@lancaster.ac.uk  13 

 14 

 15 

 16 

  17 

mailto:a.sweetman@lancaster.ac.uk


Abstract 18 

With improving health care and an aging population, the consumption of human 19 

pharmaceuticals in China has been increasing dramatically. Environmental risks posed by many 20 

active pharmaceutical ingredients (APIs) are still unknown. This study used a spatially-explicit 21 

dilution-factor methodology to model predicted environmental concentrations (PECs) of 11 22 

human-use APIs in surface water for a preliminary environmental risk assessment (ERA). 23 

Median PECs in surface water across China range between 0.01-8.0×103 ng/L for the different 24 

APIs, under a moderate patient use scenario. Higher environmental risks of APIs in surface 25 

water are in regions with high water stress, e.g. northern China. Levonorgestrel, estradiol, 26 

ethinyl estradiol and abiraterone acetate were predicted to potentially pose a high or moderate 27 

environmental risk in China if consumption levels reach those in Europe.  Relative risks of these 28 

four APIs have the potential to be amongst those chemicals with the highest impact on surface 29 

water in China when compared to the risks associated with other regulated chemicals, including 30 

triclosan and some standard water quality parameters including BOD5 (5-day biological oxygen 31 

demand), COD (chemical oxygen demand), Cu, Zn and Hg and linear alkylbenzene sulphonate. 32 

This method could support the regulation of this category of chemicals and risk mitigation 33 

strategies in China. 34 

Introduction 35 

Pharmaceuticals are a class of chemicals used in prevention or treatment of human and animal 36 

diseases. As a middle-income country with a very large population, China represents a market 37 

with a large potential in human-use pharmaceutical consumption due to improving health care 38 

and an aging population.1 China has already become the second largest pharmaceutical market 39 

in the world with a forecasted market growth of ca. 55% from US $108 billion in 2015 to $167 40 

billion by 2020.2 After drug administration, many active pharmaceutical ingredients (APIs) are 41 

excreted in an unaltered form in urine or faeces of treated patients with relatively high rates ≥ 42 

40%.3 Pharmaceutical residues then enter the environment directly without treatment, or in 43 

effluents from wastewater treatment plants (WWTPs) after partial removal.4, 5 The population 44 

weighted national average wastewater treatment rate is estimated to be only ca. 57% in 2016 in 45 

China based on the reported urban and rural data.6 Therefore, the release of human-use APIs to 46 

aquatic environment could be high in China, especially as patient access to healthcare grows in 47 

future years. Some APIs have been ubiquitously detected in the environment and wastewater 48 

treatment effluents across China.1, 7, 8  49 

Given that many drug targets are conserved across taxa,9-11 it is reasonable to expect that some 50 

APIs could exhibit unintended post-therapeutic effects to non-target organisms in the 51 

environment, if the exposure concentration is high enough. Adverse effects of APIs on non-52 



target organisms have already been observed at environmentally relevant concentrations. For 53 

example, natural or synthetic hormones can act as endocrine disruptors in the environment and 54 

impact wild animals, plants and humans.12, 13 Environmental exposure to β-blockers could 55 

possibly cause morphological abnormalities or growth inhibition in fish.14, 15 And concerns have 56 

been raised on cytotoxicity and genotoxicity of some anti-cancer APIs in the environment.16 57 

However, despite such concerns about their ecotoxicity, the environmental occurrence, 58 

distribution and risks of many APIs are rarely investigated and assessed in China, especially on 59 

a national scale. There are nearly 1600 new molecular entities that are currently approved by 60 

US FDA (Food and Drug Administration in the United States) for therapeutic use, of which 61 

most are being used in China.17 More therapies are expected to emerge in the future, and an 62 

assessment of environmental risk is needed to protect the natural environment. It is very 63 

resource intensive to conduct nationwide monitoring programmes for each API in China. 64 

Current national studies are limited and are mostly conducted at a catchment scale, and with a 65 

limited range of APIs under investigation.18-23 So, the environmental risk of some APIs has 66 

largely been neglected, and developing appropriate environmental regulation on such APIs 67 

takes time. It is imperative, therefore, to seek efficient solutions to perform a nationwide 68 

assessment and prioritisation of the potential environmental risk of APIs across China, to 69 

identify the geographic variation and the relative risk that this class of compounds poses 70 

compared to other chemicals and ultimately to identify the APIs and locations with the highest 71 

risks. Such an approach is a key priority to provide a rapid assessment of environmental risk 72 

from pharmaceuticals which can be used to develop future environmental management plans.24   73 

This study provides a modelling approach, using a gridded dilution-factor methodology, to 74 

conduct a nationwide ERA of 11 representative human medicines in surface water across China 75 

to provide a rank of relative risk. The selection of APIs selected for study covers a range of 76 

pharmaceutical classes that have concerned scientists and policy makers for their ecotoxicity, 77 

such as hormone drugs, β-blockers, antiarrhythmic medication, opioid antagonists, diabetes 78 

medicines, anti-cancer drugs and nonsteroidal anti-inflammatories. It also covers APIs with a 79 

wide range of consumption rates and ecotoxicological effects with predicted no effect 80 

concentrations (PNECs) in the range 10-5-102 µg/L. Most of the selected APIs have not been 81 

extensively studied in China. European per capita usage levels have been applied in this study 82 

for a conservative risk assessment, but mainly due to the lack of usage data for China and the 83 

expected increasing per capita usage. It is highly likely that usage in China will reach levels in 84 

Europe for some therapies. Spatially explicitly deterministic ERAs were used to predict the 85 

spatial variation in different exposure scenarios to provide a comprehensive evaluation of risk; 86 

including best and worst case exposure scenarios with respect to waste water treatment removal. 87 

The ultimate objective is to raise the attention to those APIs and modes of action that may pose 88 



the highest risk to surface waters in China, especially those with a higher ranking than chemicals 89 

already subject to environmental regulation and surveillance.    90 

Methods and materials 91 

Target chemicals  To consider a wide range of pharmaceutical categories, usage and toxic 92 

potency (defined as PNECs in Table 1), the following 11 human-use-only APIs were selected 93 

for study with abbreviations in brackets, estradiol (E2), ethinyl estradiol (EE2), levonorgestrel 94 

(LNG), atenolol (ATE), naloxegol (NAL), abiraterone acetate (ABI), amiodarone (AMI), 95 

metformin (MET), everolimus (EVE), diclofenac (DCF) and ibuprofen (IBPF). E2 and EE2 are 96 

estrogens. LNG is a pharmaceutical progestin used for hormonal contraception and in ovarian 97 

cancer therapy. ATE is a β-blocker for cardiovascular diseases. AMI is an antiarrhythmic 98 

medication for treatments or prevention irregular heartbeats. DCF and IBPF are nonsteroidal 99 

anti-inflammatory drugs (NSAIDs). NAL is a commonly used opioid antagonist drug. ABI is 100 

an androgen synthesis inhibitor (enzyme CYP17A1 inhibitor). EVE is an anti-cancer drug and 101 

currently used to prevent rejection of organ transplants. Few studies have been published that 102 

describe the ecotoxicity and environmental risks of NAL, ABI and EVE. E2, EE2, LNG and 103 

ABI are all hormonal drugs. They are generally widely used and their human excretion rates 104 

are high (>60%, Table 1) compared with many other APIs,3 which may potentially lead to high 105 

emissions to the aquatic environment. More information on ecotoxicity and environmental risks 106 

of each of the above APIs are described in SI.   107 

Emission and modelling approach  Release via domestic sewage discharge after patient use 108 

and excretion, to surface water was considered in the modelling, which generally is the major 109 

emission and exposure pathways of human-use APIs in environment. Emission data related to 110 

manufacturing operations and associated process effluents were not available and thus not 111 

considered within this assessment, which may result in underestimation of risk and a failure to 112 

identify certain hotspots, i.e. production sites. A crude method for Predicted Environmental 113 

Concentration (PEC) determination in surface water was applied in a previous study on “Down-114 

the-drain” chemicals25 and in reports for preliminary ERA of APIs,26 which assumed that 100% 115 

patient use of the API with no return to pharmacy, and 100% of the population was connected 116 

to WWTPs. In this study, spatially varied wastewater treatment connection rates (the percentage 117 

of population connected to WWTPs) have been considered for calculating PECs with a spatial 118 

resolution of 0.5º in China for a more realistic situation using Eq. 1. 119 

𝑃𝐸𝐶 (𝑢𝑔/𝐿)  = (𝐴 × 109/𝑃) × 𝐸 × (1 − 𝑊𝑊𝑇𝑃𝐶𝑅 × 𝑅)/(365 × 𝑉)/𝐷                 ⑴ 120 

Where A (kg/year) is the total patient consumption of APIs and P indicates the population 121 

treated by APIs. A/P (kg/cap/year) is the per capita use of specific APIs. Due to the lack of 122 



publicly available consumption data for the selected APIs in China, per capita usage from 15-123 

22 different European countries were adopted as a proxy data for individual APIs (shown in 124 

Table 1). This acts as a reasonable proxy as the usage of APIs and access to medicines in China 125 

is expected to increase and could reach or surpass European levels. However, this is an 126 

approximation as for some APIs there may be differences in disease prevalence,  susceptibility 127 

and cultural that will affect drug usage between Europe and China. E refers to excretion rates 128 

of APIs by humans. The values were collected from literature data, and 100% was assumed for 129 

AMI (Table 1), as no excretion rate was reported. WWTP_CR refers to average wastewater 130 

treatment connection rate for rural area and urban areas (calculated by Eq. 2).  R is the removal 131 

efficiency of APIs in the WWTPs. Attempts were made to collect measured R values from the 132 

literature where they existed. The SimpleTreat 3.2 model27 was used to predict R values with 133 

different degradation rates to supplement data for APIs without any measurements available 134 

and to consider the possible range and variation of R in different scenarios for each API (from 135 

worst case to rapidly degraded). The physicochemical properties of APIs (molecular weight, 136 

logKow, vapour pressure, water solubility, Henry’s law constant and pKa) as model inputs are 137 

given in Table S2. More details are explained below. V (L/day/cap) refers to  the daily volume 138 

of wastewater released per capita which was estimated by the total wastewater released divided 139 

by population (resolution, ~1 km) for each city in China in 2013.6 The gridded V (resolution, 140 

0.5°) was calculated with ArcGIS 10.4 by taking the average V in areas covered by each grid 141 

cell. D is the dilution factor calculated using Eq. 3.  142 

WWTP_CR = 𝑊𝑊𝑇𝑃_𝐶𝑅𝑢 × 𝑈𝑟𝑏𝑎𝑛_𝑅 + 𝑊𝑊𝑇𝑃_𝐶𝑅𝑟 × (1 − 𝑈𝑟𝑏𝑎𝑛_𝑅)   ⑵ 143 

D = (Q+q)/q          ⑶ 144 

Where in Eq. 2 𝑊𝑊𝑇𝑃_𝐶𝑅𝑢 and 𝑊𝑊𝑇𝑃_𝐶𝑅𝑟 refer to wastewater treatment connection rates 145 

in urban and rural areas, respectively, which were estimated by the volume of wastewater 146 

treated by WWTPs divided by the total volume of wastewater released in urban and rural areas, 147 

respectively, in China.6 𝑈𝑟𝑏𝑎𝑛_𝑅 indicates urbanization rates. These data were taken from a 148 

projection in a previous study for 2010.28 Briefly, the Chinese population projected by Landscan 149 

for 2010 was utilized (spatial resolution, 1km),29 and a population density > 1000 capita/km2 150 

was used as the threshold to identify urban population across China. This population dataset is 151 

the most reliable high spatial resolution available. In Eq. 3, Q is the discharge flow of the 152 

receiving water body (m3/s) and q is the discharge flow of the wastewater (m3/s). Q for China 153 

was extracted from a globally modelled surface water discharge dataset with a resolution of 154 

0.5°;30 and q was aggregated to 0.5° by city level wastewater discharge flow per capita 155 

(projected to ~1 km) multiplied by population.6, 29  156 



Existing PNEC values of the selected APIs have been compiled in SI Table S1. To maintain 157 

consistency, the values for most APIs were chosen from the Vestel et al. study,31 as many are 158 

derived from OECD studies used as part of a regulatory marketing application and are lower 159 

than those reported in other studies. For the APIs not included in the Vestel et al. study, the 160 

lowest value from other literature sources or databases were used in this study (Table 1). The 161 

risk quotient (RQ) PEC/PNEC was subsequently calculated to assess environmental risks of 162 

APIs in China. A nominal classification of RQ values < 0.1, between 0.1–1, 1–10 and > 10 163 

predicts insignificant environmental risk, low environmental risk, moderate environmental risk 164 

and high environmental risk, respectively.32, 33 165 

Deterministic study of environmental risks and scenario description  Both deterministic 166 

and probabilistic assessments were used to provide information on different aspects of 167 

environmental concentrations and risks.34, 35 Deterministic approaches are widely used in 168 

environmental modelling with prescribed values for each parameter. The approach was used to 169 

predict the geographic distribution of environmental concentrations and risks in surface waters 170 

across China for different scenarios. In contrast, Monte Carlo simulation was conducted in the 171 

probabilistic method, which shows the probabilistic environmental occurrence and risks in 172 

China considering the range, frequency and all possible combinations of parameters, including 173 

per capita usage, excretion rates and removal efficiencies in WWTPs of individual APIs. The 174 

probabilistic assessment does not reflect spatial information but reveals the probability of risk 175 

across China.  176 

Table 1 Statistical data of APIs’ daily usage per capita, human excretion rates and PNEC of 177 

individual APIs 178 

Chemicals 
PNEC 

(µg/L) 

per capita use of APIs (ug/cap/day)d Excretion 

rates Mean  STD  Median  Max  Min  

Abiraterone 

Acetate 
0.0013a 38.1 23.6 38.4 80.1 0.76 93%e 

Amiodarone 0.12b 454.7 271.1 416.2 1038 26.3 100% 

Estradiol 0.0003b 9.6 8.5 7.1 32.6 0.76 60%f 

Ethinylestradiol 0.000031a 1.5 0.94 1.5 4.4 0.25 100%f 

Levonorgestrel 0.00001b 2.2 2.1 1.6 8.9 0.27 77%g 

Atenolol 148a, c 392.8 261.8 369.3 999.5 47.4 90%h 

Naloxegol 200c 0.066 - 0.066 0.066 0.066 84% g 

Metformin 100a 53117 11761 53935 75872 33370 90% g 

Everolimus 0.0014a 0.31 0.12 0.32 0.53 0.072 85% g 

Diclofenac 32a 1579.3 679.6 1411 3134 411 100%i 

Ibuprofen 68b 21673 13994 17896 53907 4335 95%g 

Notes: a, Vestel et al. (2016),31  179 
b, the Swedish Environmental Classification System, fass.se (access date: 30 November 2017); 180 
c, Pharmaceuticals in the Environment, AstraZeneca.37  181 
d, the per capita use of APIs was from IMS Health;38 182 



e, Sternberg et al. 2014;39  183 
f, Stanczyk et al. 2013 ;40 184 
g, DrugBank;41 185 
h, Haro et al. 2017;42 186 
i, Williams and Buvanendran;43 187 
 188 
Four scenarios were defined for the deterministic study to consider the full range of input 189 

parameters (summarized in Table 2). Scenario 1 (Sc1) was the worst case, in which the APIs 190 

taken by humans were assumed to be completely excreted (E = 100%) and no API was removed 191 

by WWTPs (R = 0). Maximum per capita usage was applied in Sc1. Scenarios 2-4 (Sc2-4) 192 

considered reduced excretion rates by humans, different per capita usage for each API and 193 

different R values for WWTPs. Three first-order biodegradation rate constants (k) were 194 

considered to predict R for each API by using SimpleTreat 3.2. The k of 0.1, 0.3 and 1 hr-1 195 

represents the chemical being “inherently biodegradable but fulfilling specific criteria”, 196 

“readily biodegradable but failing 10-day window” and “readily biodegradable” respectively, 197 

which indicate low, moderate and high R values in WWTPs and were adopted by scenarios 2, 198 

3 and 4 (Table S3).44 More details on model input data for SimpleTreat and biodegradation 199 

rates are provided in SI. When available, an average measured R value from the literature would 200 

be used instead of the predicted value if it was beyond the range of prediction or closer to the 201 

moderate predicted R for individual chemicals (as shown in bold in Table S4). The maximum 202 

and minimum European per capita use levels of individual APIs (Table 1) were applied in Sc1 203 

and Sc4 respectively. The median per capita use was applied in Sc 2 and 3. Identical excretion 204 

rates were used in Sc 2, 3 and 4 as shown in Table 1.  205 

Table 2 The summary of the assumptions for the four scenarios 206 

Scenarios Usage Removal efficiency Excretion rate 

Sc1 Maximum 0 100% for all APIs 

Sc2 Median Low (predictions when k = 0.1) as shown in Table 1 

Sc3 Median Moderate (Predictions when k = 0.3) as shown in Table 1 

Sc4 Minimum High (predictions when k = 1) as shown in Table 1 
Notes: k is the first-order biodegradation rate (Details are in the SI and Table S4.) 207 

       208 
Probabilistic study of environmental risks.  The uncertainty associated with the parameters 209 

described above, were considered in the probabilistic approach. Monte Carlo simulation was 210 

applied to Eq. 1 and run 10,000 times to generate probabilistic PECs for each API. These PECs 211 

were then divided by the PNEC for individual APIs to obtain RQs. Values of 𝑊𝑊𝑇𝑃_𝐶𝑅, V 212 

and D were randomly taken from the original datasets of these parameters projected for China 213 

by Eq. 2-3 and the methods stated above. Lognormal distribution for R and API per capita use 214 

per day and normal distribution for E were used to generate random values for the three 215 

parameters for use the Monte Carlo simulation.34, 45 The mean and standard derivation (STD) 216 

for generating random values that align to the corresponding statistical distributions are 217 

contained in Tables 1 and S4. For R, measurements were used as the mean in the probabilistic 218 



study and if not available, the predicted value based on the moderate removal efficiency (Table 219 

2) was applied. An STD of 30% and 20% was assumed for R when one R value (either measured 220 

or predicted) and two measured R values were available, respectively.46, 47 STD of human 221 

excretion rates was assumed to be 30% for all chemicals, as only a single value was found in 222 

the literature (Table 1).  223 

Comparing API risks with other regulated chemicals  To determine the relative 224 

environmental risk of pharmaceutical exposure to that of other chemicals of concern, the 225 

median RQs derived from Sc3 in the deterministic study were compared with those of some 226 

regulated chemicals. The regulated chemicals include triclosan (TCS)48 and standard water 227 

quality parameters, such as BOD5 (5-day biochemical oxygen demand), COD (chemical 228 

oxygen demand), linear alkylbenzene sulphonate (LAS) and heavy metals including Cu, Zn and 229 

Hg. PECs of TCS estimated using  the present method with the usage from a previous study for 230 

201249 were used in the comparison. Measured environmental concentrations (MECs) of the 231 

standard water quality parameters collected from over 5000 gauging stations across China for 232 

2013 were acquired from Ministry of Environmental Protection China. The median RQ of these 233 

chemicals was estimated by dividing median MECs (or PECs) by their PNECs (or guideline 234 

values for COD and BOD5) in China. The lowest value of available PNECs was taken if more 235 

than one PNEC values was found from literature for these chemicals (Table S5). 236 

Results and discussion 237 

Dilution factors, wastewater discharge flows and wastewater treatment connection rates  238 

The distribution of dilution factors can be indicative of the spatial pattern of water abundance. 239 

The default dilution factor is set at 10 by EMA (European Medicines Agency) for carrying out 240 

ERAs in Europe.36 Keller et al. calculated dilution factors for each catchment in China, which 241 

range from <10 to over 104.50 In this study, a spatially explicit dilution factor was calculated 242 

(Eq. 3) which ranged from 1 to 5.7×107 with a median of 96 across China. The range is broader 243 

than that estimated by Keller et al., as dilution factors were averaged across each catchment in 244 

the Keller et al. study but the 0.5˚-grid resolution ensured a spatially refined dilution factor in 245 

this study. There are higher dilution factors in the south and northeast of China and the Yellow 246 

River catchment, where there are more abundant water resources and higher discharge flow 247 

rates than in other regions (Fig. 1A). The regions with a dilution factor of 1 are displayed in 248 

red, as it potentially indicates a high exposure level with zero dilution. However, western China 249 

and regions in western Inner Mongolia displayed in red are sparsely populated compared to 250 

many other regions in China, therefore, the release of APIs might be low. For the volume of 251 

wastewater released, a default value is set to be 200 L/cap/day by the EMA for Europe. In this 252 

study, the volume of waste water per person per day was estimated to range from 0.01 to 439 253 



L with a median of 38 L. In ca. 0.6% grid cells, the estimated wastewater released is below 0.8 254 

L/cap/day, which is the lowest estimated 24-hour urine volume if taking 2 L of fluid daily.51 255 

These regions are around Gansu, west Xinjiang, west Sichuan and Tibet, which are all dry and 256 

economically deprived areas. Pit toilets are usually used in these rural or dry areas, so excreta 257 

of many people may neither enter the aquatic environment directly in these areas nor be 258 

accounted for in the yearbooks. From Fig. 1B, most regions in China have a daily volume of 259 

wastewater per capita below the European default level. Figure S1 shows the average 260 

wastewater treatment connection rate for each 0.5° grid cell across China, which ranges 261 

0.001%-99% with a median of ca. 20%. 262 

 263 
Fig. 1 Distribution of the dilution factor (A) and daily wastewater released per capita (B) in 264 

China (0.5°); the white area indicates no wastewater released. 265 

PECs of APIs in deterministic study  The spatial distribution patterns of PECs are similar 266 

under the four scenarios, as they are all determined by the combination of the spatial distribution 267 

patterns of dilution factors, wastewater treatment connection rates and population density. 268 

These parameters are identical for the four scenarios. The focus here will be on Sc3 as it is a 269 

moderate scenario and might be more reasonable than other extreme scenarios. The spatial 270 

variation of PECs across China is high as shown by the STDs and ranges in Table S6. Northern 271 

China, apart from the northeast, has higher PECs than other areas (Fig. 2 and Fig. S2), such as 272 

river basins in North China Plain (NCP), Shanxi, northern Shaanxi, Gansu, middle of Inner 273 

Mongolia and northwest Xinjiang. This generally aligns with the spatial distribution of dilution 274 

factors across China (Fig. 1A). These regions are mostly dry regions with water stress and 275 

limited water resources. Nationally, an estimated 80% of the 11 APIs in the aquatic 276 

environment in China will be derived from freshly discharged untreated wastewater. This 277 

proportion will decrease with the urbanization and construction of WWTPs in China. Urban 278 

populations may contribute ca. 34% of the 11 APIs in aquatic environment. However, this was 279 

estimated by assuming a constant per capita usage across China, and per capita consumption of 280 

APIs is probably lower in rural areas than in urban areas. Substantial differences in PECs exist 281 

between Sc1 (worst case) and Sc4 (best case) with up to two orders of magnitude for some APIs 282 
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such as ABI and E2. The difference between low (Sc2) and high (Sc4) removal efficiency 283 

scenarios is small. The difference between scenarios varies among chemicals and spatial areas, 284 

as detailed in SI and Fig. S2 and S4 and Table S7.    285 

Many of the selected APIs are rarely included in measurement campaigns, especially as part of 286 

large-scale monitoring programmes in China, and limited existing studies exist that can be 287 

compared to validate the predictions within this study. Yao et al. (2018) detected high 288 

concentrations of pharmaceuticals in regions with extreme water stress, such as northern and 289 

eastern coastal areas.8, 52 The spatial distribution pattern is similar with that described in this 290 

study. They measured four of the APIs modelled in this study, which exhibited 0-3 orders of 291 

magnitude lower median concentrations compared to Sc3 in this study, i.e. E2 (median, 0.26 292 

ng/L), MET (170 ng/L), DCF (3.1 ng/L) and IBPF (7.9 ng/L).8, 52 The most likely reason for 293 

this would be that expected higher future consumption levels were applied in this study. 294 

Additionally, field campaigns providing measurement data do not have widespread coverage 295 

and may not have included more areas with extremely high water stressed in the north but those 296 

areas with higher dilution factors or high wastewater treatment connectivity in developed areas. 297 

The PEC distribution of MET in Sc3 (Fig. S3) illustrates this clearly with similar spatial 298 

distribution to that measured by Yao et al. but a wider coverage.8 Meanwhile, Yao et al. 299 

estimated that 54% of two groups of pharmaceuticals in surface waters originated from 300 

untreated sewage. They may have overestimated the percentage by using principal component 301 

analysis with multiple linear regression. Based on a future projection of urbanization rates and 302 

WWTP construction,28 the average proportion might reach about 54% for these APIs around 303 

the year 2025, although it may moderately vary for different APIs. Zhang et al. reported a PEC 304 

range of 4.8×10-3 - 0.96 ng/L for E2 across China at river-basin scale,22 which is within the 305 

range of Sc3 in this study (Table S6). More comparisons with other studies are in the SI. These 306 

comparisons prove that the predictive performance of this modelling approach appears to be 307 

adequate for a preliminary assessment and the availability of further monitoring data will enable 308 

model refinements to be made to improve the predictive power further.                309 

 310 
Fig. 2 PEC spatial distribution of estradiol in Sc1 (A) and Sc3 (B)  311 

 

PECs (ug/L) PECs (ug/L)



Environmental risks of APIs from deterministic study The level of environmental risk is 312 

distinct to individual APIs, however, the spatial distribution patterns are identical which aligns 313 

to the PECs. Higher RQs are found in north China (except the Northeast) than in other areas, 314 

which is the same with the distribution pattern of PECs. Fig. S5 shows that most regions in 315 

north China (except the Northeast) have extremely high environmental risk with RQs > 10 for 316 

ABI, AMI, E2, EE2 and LNG in Sc1-3 and even in Sc4 for LNG, EE2 and E2. According to 317 

the median RQs of APIs across China, the sequence of environmental risks of chemicals in the 318 

four scenarios is generally the same albeit with slight differences. LNG, EE2, E2 and ABI are 319 

the top four APIs with the highest environmental risks under all four scenarios (Table S8-S9). 320 

Median RQs of the four APIs are greater than 10 in Sc1, greater than 1 in scenarios 1-3 and 321 

greater than 0.1 in all four scenarios across China. They will probably lead to high 322 

environmental risks (RQ > 1) in > 50% of areas in China under all four exposure scenarios (Fig. 323 

4 and Table S10).  324 

LNG is ranked at the top with median RQs > 10 in scenarios 1-3. There are 98% of areas with 325 

RQs > 0.1 for LNG across China, of which ca. 78% have high environmental risk, 13% have 326 

moderate environmental risk and 6.6% have low environmental risks (Fig. 4). Only some 327 

regions along the Yangtze River and Yellow River may have insignificant environmental risk 328 

caused by LNG. These findings suggest that LNG should be a priority for further investigation. 329 

The median RQ of AMI is greater than 0.1 in scenarios 1-3. With the exception of ATE and 330 

NAL, a high environmental risk might be presented by the other APIs to a varying extent in 331 

China under the four scenarios, as shown in SI Table S10. More details on differences among 332 

scenarios are contained in SI and Tables S7-S8. The difference among scenarios illustrates the 333 

significance of value selection for parameters in assessment of environmental exposure levels 334 

and risks for chemicals. Scenario studies can provide useful perspectives for a range of 335 

situations that will be of interest to decision makers.   336 

 337 



 338 
Fig. 3 Spatial distribution of RQ of APIs in Sc3 339 

 340 

Fig 4. Cumulative frequency of RQ for each API under different scenarios with varied per 341 

capita use; the threshold values of RQ were shown as vertical dash line in different colours, 342 

i.e. 0.1, 1 and 10 in blue, green and red 343 
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 345 

 346 
Fig. 5 Boxplot of predicted RQ for APIs from the probabilistic study for China; the horizontal 347 

solid line in the box is the median RQ (MRQ as shown in the figure); the top and bottom of 348 

the box are the 75th (Q3) and 25th (Q1) percentiles respectively; the top and bottom of the 349 

whisker are the highest and lowest values within 1.5 times of the interquartile range (IQ, i.e. 350 

[Q1-1.5IQ, Q3+1.5IQ]). The circles are outliers with RQs out of the range of the whiskers. 351 

Environmental risks of APIs from probabilistic study  The probabilistic study has estimated 352 

the RQ probability range and frequency for each API as shown in Fig. 5. The median RQ is 353 

compared with threshold values, which can provide a rank order of chemicals with the 354 

environmental risk from high to low. Fig. 5 shows the sequence of RQ, which is almost the 355 

same as that obtained from the deterministic study. For each of the APIs 50% of the distribution 356 

of ranges over three orders of magnitude (i.e. 25th to 75th percentile). The outliers represent RQ 357 

values that would have a low probability of occurrence in the Chinese environment. As no high-358 

end outliers were identified (Fig. 5), the top of the whisker shows the maximum RQ. Some are 359 

extremely high but will only likely occur with low probability when the excreted APIs are 360 

discharged with untreated wastewater to remarkably dry regions without surface water (DF = 361 

1). The distribution is slightly positively skewed. LNG probably represents the highest risk to 362 

the environment. EE2, ABI and E2 have a higher probability to cause moderate environmental 363 

risk and limited potential to cause high environmental risk for China.  AMI likely represents a 364 

low environmental risk for China. MET, IBPF, EVE, DCF and ATE would not likely cause a 365 

significant environmental risk. NAL is the least likely to lead to any significant environmental 366 

risk in China.  367 

 



Comparison with other studies and regulated chemicals There are limited studies on surface 368 

water concentrations and relevant environmental risks of LNG and ABI, which have been 369 

identified in this study as representing potentially high environmental risks in China. Chen et 370 

al. found that the RQ of IBPF ranged between 0.31-3.64 and DCF had a RQ < 0.1 in China.21 371 

However, they used different methods to produce PECs and different PNEC values, and the 372 

studied scale and resolution was different to this study. If adopting PECs by Chen et al. and 373 

using PNECs by this study, estimated RQ is less than 0.1 for both IBPF and DCF. IBPF and 374 

DCF were not found to have significant environmental risk in the urban rivers in Shanghai in a 375 

previous study.20 Our study focussing on the same region suggests that DCF does not represent 376 

a significant environmental risk under all four scenarios and IBPF is only identified to have low 377 

environmental risk in Sc1, the worst-case scenario, but not in other scenarios. Zhao et al.19 has 378 

found that DCF has low to moderate environmental risk and IBPF has low environmental risk 379 

in the Pearl River with the measured values sampled during 2007-2008. Our study suggested 380 

that IBPF represents a low environmental risk under Sc1 with insignificant environmental risk 381 

attributed to DCF in the same region. Donnachie et al. have ranked the environmental risk of a 382 

number of pharmaceuticals in the UK using both measured and predicted river concentrations.53 383 

They used a precautionary approach and found the same relative risk ranking of EE2, IBPF, 384 

ATE and DCF as in this study for China. Helwig et al. found a completely different sequence 385 

of chemical risk to the environment in Scotland, which was MET > EE2 > IBPF > ATE > 386 

DCF.54 AMI, DCF and IBPF were ranked top among a number of APIs (over 42 compounds) 387 

in Switzerland in two previous studies.46, 55   388 

As already mentioned, environmental risks of the selected APIs were compared with those of 389 

some regulated chemicals. More mature regulation has been performed on these chemicals in 390 

China and worldwide. Fig. 6 shows the ranking of the environmental risk of the APIs alongside 391 

the regulated chemicals. It was found that LNG, EE2, ABI and E2 are still the top four 392 

chemicals with higher environmental risk than the other chemicals in China. They are followed 393 

by TCS and AMI with the median RQ > 0.1. All other chemicals have a median RQ < 0.1, 394 

which probably indicates that these substances are of less concern in most regions in China. 395 

NAL is still the chemical with the lowest environmental risk from those examined. In 396 

accordance with this study, Donnachie et al. (2016) also found a high rank for TCS following 397 

EE2 in the UK.53 TCS has been restricted in several countries due to the concern on its 398 

potentially adverse effect to environment or human health.48, 56 There have not been any 399 

regulations in China to restrict triclosan (TCS) use in the Chinese market; however TCS might 400 

be phased out in the future. In contrast to this study, Donnachie et al. found that Cu and Zn are 401 

of greater concern than EE2, IBPF, DCF and some other pharmaceuticals in surface water in 402 

the UK.53 The regularly monitored water quality indexes such as COD and BOD5 and several 403 



heavy metals with high production, generally have relatively lower ranking among these 404 

chemicals, except Cu. Thus, although the concentrations of these regulated indices suggest they 405 

are at a safe level, some other emerging chemicals such as the APIs ranked top in this study 406 

might represent a potential environmental risk.  407 

Adverse effects of EE2 and E2 in the environment are relatively well studied compared to LNG 408 

and ABI. EE2 and E2 mainly affect the reproductive physiology of exposed wild fish 409 

populations. As a synthetic progestin, LNG is commonly used in conjunction with EE2 in 410 

contraceptive medications, which suggests it has similar negative effects on wildlife, such as 411 

acting as a potent fish androgen.57 Current research on such effects of LNG are mostly 412 

undertaken on fish, but rarely on other aquatic wildlife or mammals. Studies on environmental 413 

exposure levels are also scarce especially in China. Studies on ecotoxicological effects and 414 

environmental monitoring for ABI and AMI (RQ > 0.1) are currently lacking.   415 

 416 
Fig. 6 ranking of median RQ for APIs selected in this study (Sc3) and Cu, Zn, Hg, LAS and 417 

TCS 418 

Uncertainties and limitations  The inherent uncertainty in this study derives in part from the 419 

possible error of projected parameters used as input to the model and the intrinsic uncertainty 420 

of the modelling method itself. For example, the approach did not consider photo- and 421 

biodegradation of APIs in the environment, which may result in and overestimation of 422 

concentrations. The choice of the selected PNEC value or guideline value also influences the 423 

estimation of the risk or the relative risk. However, this is considered to be an effective and 424 

efficient method to provide a preliminary environmental assessment and prioritization.  425 

The adoption of European per capita usage across China may have led to overestimation of 426 

environmental risk. The average usage level adopted is probably higher than that currently in 427 

China as explained above. Additionally, spatial variation of usage is likely to exist due to 428 

 

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

R
is

k
 Q

u
o

ti
e
n
t



uneven economic development across China, but constant usage was applied across China for 429 

the deterministic study. However, as the per capita usage data was collected for a range of 430 

different European countries, the range of values may overlap those currently being consumed 431 

in China. There are no currently available usage data for China as mentioned above, so the 432 

uncertainty is difficult to quantify. However, a comparison of predictions with measured 433 

concentrations from field studies reveals that although uncertainty might be varied between 434 

APIs but is within an acceptable range for a preliminary assessment.  435 

It is important to note that this study has only considered domestic release as mentioned above. 436 

The lack of information on the release within manufacturing effluents may produce 437 

uncertainties regionally. Hotspots may occur due to such effluents, especially for those released 438 

untreated, but are not easily captured and can be mitigated by site specific interventions.  439 

However, as domestic release to surface water is the most important release nationally, as stated 440 

above, the uncertainty should be low at the national scale. 441 

Implications and perspectives 442 

This study provides an effective and efficient methodology for initial risk screening of APIs in 443 

Chinese surface waters. The findings suggest that there is a high potential environmental risk 444 

for LNG, EE2, ABI and E2 in surface waters compared to other APIs. These substances can all 445 

act as endocrine disruptors. The study also suggested that the potential risk is higher than those 446 

of currently regulated chemicals in China and as such warrant further attention from scientists 447 

and policy makers, especially for LNG. Given the broad range of chemical risks identified in 448 

this study, prioritisation of risks of chemicals in China should cover a broader scope and 449 

requires further investment.  An important caveat to these calculations is that European usage 450 

data was used for the calculations in the absence of Chinese data. Whilst there is potential for 451 

usage to increase to European levels, it is important that regional data are obtained. 452 

More attention is needed covering a wide range of hormonal APIs, including those not being 453 

covered in this study. Most importantly a spatially resolved usage and emission map for China 454 

will significantly contribute to a refined prediction and ERA and reduce uncertainty. These 455 

estimates could be based on marketing data and supported by the epidemiology of particular 456 

diseases. Beyond this it would be useful to survey manufacturing effluents, to provide data on 457 

mass loadings and location, to complete the release map for China, although this may require 458 

substantial effort. The overlap of the range of PECs provided by this study and the range of 459 

PECs/MECs from previous studies suggests that consumption levels in some regions of China 460 

have already reached the European levels for some APIs. It is also important that extensive 461 

targeted monitoring work is undertaken to evaluate the environmental exposure level of these 462 

APIs, especially in northern China in areas of higher water stress. Additionally, more research 463 



is required on ecotoxicity of hormonal APIs, especially those rarely studied such as ABI. 464 

Mixture toxicity should also be considered in future studies, which may result in higher risks 465 

than predicted for a single API as some substance may act on similar receptors/organs. 466 

Assessment and prioritization can be also conducted using this methodology for a wider range 467 

of APIs within or beyond the selected categories. For example, it is likely that ATE has an 468 

insignificant environmental risk across China, however, other β-blockers, such as metoprolol, 469 

oxprenolol and propranolol, have been identified with varied toxicological profiles in 470 

mammalian studies and may have a different risk profile.15 AMI also has a relatively high 471 

median RQ > 0.1 but the research on its ecotoxicity and environmental exposure is limited. It 472 

is also important to consider the presence of potential metabolites in environment as many of 473 

them are also biologically active. This is suggested as the future scientific research strategy to 474 

support policy makings on environmental regulations relevant to APIs. Meanwhile, when 475 

considering policy implications of this study it appears that some APIs identified may represent 476 

a potential higher environmental risk than some regulated chemicals. As a result, it might be 477 

worth investing more effort to identify important marker APIs or those with high environmental 478 

risks or potential human health risks. Based on this, it would be essential to formulate standard 479 

guidelines to regulate drug release and disposal and to provide environmental thresholds for 480 

identified specific APIs.  481 
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