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Abstract 

Low sulfate, euxinic water-column conditions were a common feature of many 

Precambrian and Phanerozoic periods of ocean anoxia. The cycling of phosphorus in anoxic 

marine environments exerts a fundamental control on primary productivity, organic carbon 

production and burial, and hence ultimately oxygen production, but the dynamics of the 

phosphorus cycle in low sulfate, euxinic settings are largely unknown. Here, we provide a 

detailed geochemical investigation of phosphorus cycling in the low sulfate, euxinic Lake 

Cadagno, Switzerland, which is considered a prime analogue for ancient euxinic oceans. We 

find evidence for extensive recycling of phosphorus from the sediments back to the water 

column, stimulated by the microbial release of phosphorus from organic matter and Fe 

(oxyhydr)oxide minerals. Consistent with previous studies of modern and ancient anoxic 

settings, this regenerated flux maintains high concentrations of phosphorus in the water 

column, thus promoting a positive productivity feedback. However, the low-sulfate condition 

of the overlying water column, combined with the rapid removal of sulfide (as pyrite) from 

porewaters, promotes formation of Fe(II) phosphate minerals (e.g., vivianite) close to the 

sediment-water interface. This, in turn, modulates the extent of phosphorus recycling back to 

the water column, and contrasts with modern fully marine euxinic settings, where the higher 

concentrations of dissolved sulfate promote sulfide formation to greater depths, thus limiting 

Fe(II) phosphate formation close to the sediment-water interface. The prevalence of low-

sulfate conditions during past euxinic episodes suggests that the operation of this near-surface 

sedimentary trap for recycled phosphorus would have limited the positive P-driven 

productivity feedback, promoting only a moderate degree of P recycling. Furthermore, the 

precise magnitude of this recycled P flux would, on a global scale, have been dependent on 

changes in the size of Earth’s marine sulfate reservoir through time. Thus our findings have 

major implications for rates of P-driven productivity and organic carbon burial in ancient 

euxinic settings, which have not previously been factored into reconstructions of Earth’s 

oxygenation history. 

 

1. INTRODUCTION 

  Euxinic (sulfidic) water column conditions were an important feature during periods of 

ocean anoxia throughout much of Earth’s history. Evidence for spatially and temporally 

restricted episodes of ocean euxinia date back to at least ~2.7 billion years ago (Ga), with 

such conditions early in Earth’s history often being linked to an increased oceanic influx of 

sulfate due to oxidative weathering of pyrite as atmospheric oxygen rose (Reinhard et al., 
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2009; Kendall, et al., 2010; Scott et al., 2011). Euxinic conditions are generally considered to 

have become more widespread in the mid-Proterozoic, from ~1.84 to 1.0 Ga, with euxinia 

being particularly prevalent along productive continental margins and in epicontinental seas 

(Canfield, 1998; Poulton et al., 2004a; 2010; Scott et al., 2008; Poulton and Canfield, 2011). 

Euxinic episodes through the Neoproterozoic were more scarce, and instead anoxic 

ferruginous (Fe containing) water column conditions tended to dominate (Canfield et al., 

2008; Johnston et al., 2010; Guilbaud et al., 2015; Sperling et al., 2015), although euxinic 

conditions did occur at certain times in some Neoproterozoic basins (e.g., Canfield et al., 

2008; Li et al., 2010; 2012; Sahoo et al., 2012; Guilbaud et al., 2015; Thomson, et al., 2015; 

Och et al., 2016). Widespread euxinia has also been reported for certain intervals of the 

Paleozoic (e.g., Wignall and Twitchett, 1996; Wignall et al., 2010; Gill et al., 2011; 

Hammarlund et al., 2012), and during the oceanic anoxic events (OAEs) of the Mesozoic 

(e.g., Jenkyns, 2010).  

  A common feature of Precambrian euxinic episodes concerns the prevalence of 

relatively low marine sulfate concentrations compared to the modern ocean (~28 mM), which 

from the early Proterozoic to the terminal Neoproterozoic likely increased from the low 

micromolar range envisaged for much of the earlier Archean (Habicht et al., 2002; Crowe et 

al., 2014), to concentrations in the low millimolar range (Kah et al., 2004; Guilbaud et al., 

2015). Similarly, a growing body of evidence suggests that sulfate concentrations were also 

much lower than at present during many Phanerozoic periods of euxinia (in the low 

millimolar range), at least through to (and including) the anoxic episodes of the Jurassic and 

Cretaceous (e.g., Adams et al., 2010; Newton et al., 2011; Song et al., 2013; Poulton et al., 

2015). 

Despite the significance of low-sulfate euxinic settings through time, relatively little is 

known about controls on P cycling under such conditions. P is commonly invoked as the 

ultimate limiting nutrient on geologic timescales, with the behaviour of bioavailable P 

exerting a major control on primary productivity and hence organic carbon burial (e.g., 

Howarth, 1988; Tyrell, 1999). These factors ultimately exert a primary control on Earth’s 

oxygenation history (e.g., Canfield, 2005), and it has been suggested that prior to Earth’s first 

major rise in atmospheric oxygen (the Great Oxidation Event from ~2.45-2.32 Ga), 

bioavailable P was limited in the ocean due to removal via extensive adsorption to Fe 

(oxyhydr)oxides under anoxic ferruginous water column conditions (Bjerrum and Canfield, 

2002; Jones et al., 2015; Reinhard et al., 2017; but see Konhauser et al., 2007; Planavsky et 

al., 2010). 
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  After the Great Oxidation Event (GOE) at ~2.4-2.2 Ga, atmospheric oxygen levels are 

believed to have remained relatively stable (but with concentrations much lower than at 

present) under the more widespread euxinic conditions envisaged from ~1.84-1.0 Ga 

(Canfield, 2005; Lyons et al., 2014; Planavsky et al., 2014; Zhang et al., 2016; Daines et al., 

2017). However, nutrient controls on productivity (and hence oxygen stability) across this 

mid-Proterozoic interval remain unclear. Limitation of the N cycle due to extensive Mo 

drawdown to the sediment coupled with enhanced loss of fixed N as N2 (Anbar and Knoll, 

2002; Fennel et al., 2005; Canfield et al., 2006; Scott et al., 2008; but also see Zerkle et al., 

2006), or an increased contribution of anoxygenic photosynthesis to total primary production 

(Johnston et al., 2009), have been proposed as mechanisms to limit O2 production in the mid-

Proterozoic euxinic ocean. However, recent isotopic studies of the mid-Proterozoic N cycle 

suggest that bioavailable nitrate was likely abundant in near-shore environments (Godfrey et 

al., 2013; Stüeken, 2013; Koehler et al., 2017), while research on modern ferruginous 

systems implies that large expanses of the mid-Proterozoic ocean were likely P, and not N, 

limited (Michiels et al., 2017). In this regard, based on the total P content of shallow water 

marine shales through time, Reinhard et al. (2017) suggest that bioavailable P was maintained 

at extremely low concentrations throughout the mid-Proterozoic due to extensive stripping of 

water column P in association with Fe (oxyhydr)oxide minerals formed under deeper-water 

ferruginous conditions. Extremely low bioavailable P would have ultimately maintained 

atmospheric oxygen at low levels throughout the mid-Proterozoic (Reinhard et al., 2017). 

However, this assertion assumes that the total P content of shallow marine shales provides a 

direct record of bioavailable P in the water column, with insignificant biogeochemical 

recycling of P from sediments back to the water column (Poulton, 2017).  

The extent to which bioavailable P may be trapped in the sediment, as opposed to being 

recycled back to the water column (where it can fuel further productivity), is highly redox 

dependent. In organic-rich sediments deposited beneath oxic bottom waters, P is typically 

delivered to the sediment in association with organic matter and/or iron (oxyhydr)oxide 

minerals, in addition to detrital phases. During early diagenesis, organic matter and Fe 

(oxyhydr)oxide remineralisation (partially) releases P to pore waters (Krom and Berner, 1981; 

Froelich et al., 1988; Slomp et al., 1996b; Anschutz et al., 1998), with the potential either for 

recycling of some of this P to the overlying water column (Ingall and Jahnke, 1994; 1997; 

Slomp et al., 2002; 2004), or for the fixation of P in the sediment in association with other 

phases (i.e., sink-switching) (Van Cappellen and Ingall, 1994; Slomp et al., 1996a, b). Using 

a sequential P extraction technique, Ruttenberg and Berner (1993) demonstrated that a large 
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proportion of the released P may be fixed as authigenic carbonate fluorapatite (CFA), and this 

is believed to typically account for ~50% of P burial in modern marine sediments deposited 

beneath oxic bottom waters. In addition, some of the recycled porewater P may be trapped in 

the sediment via re-adsorption to Fe (oxyhydr)oxide minerals close to the sediment-water 

interface (Slomp and Van Raaphorst, 1993; Slomp et al., 1996a, b; Dellwig et al., 2010).  

  Although these processes may begin in the oxic water column via the oxic degradation 

of organic matter, water column P recycling and the release of P from sediment porewaters 

tends to be particularly significant under euxinic conditions. In particular, the Fe 

(oxyhydr)oxide sink for P is greatly diminished under such conditions due to the reductive 

dissolution of Fe (oxyhydr)oxide minerals by dissolved sulfide (e.g., Pyzik and Sommer, 

1981; Dos Santos Afonso and Stumm, 1992; Peiffer et al., 1992; Poulton, 2003; Poulton et al., 

2004b) and the ultimate formation of pyrite, to which phosphate does not significantly adsorb 

(Krom and Berner, 1980; Anschutz et al., 1998). The effect of diminishing this sink under 

euxinic conditions is exacerbated by the preferential release of P from organic matter during 

microbial remineralisation (e.g., during the production of sulfide via bacterial sulfate 

reduction), which ultimately results in high organic C/P ratios relative to the Redfield Ratio 

(e.g., Ingall et al., 1993; Steenbergh et al., 2011). 

The formation of ferrous phosphate minerals (e.g., vivianite) has been proposed as an 

additional potential sink for reactive phosphate during early diagenesis. For example, Fe(II) 

phosphate has been implicated as a significant retention mechanism for P in Lake Ørn, 

Denmark (O’Connell et al., 2015) and Lake GroβGlienicke, Germany (Rothe et al., 2014). 

Both lakes are oxic, but the deeper sediment pore waters are characterised by high 

concentrations of dissolved Fe
2+

, and in these deep sediments the phosphate released from 

organic matter remineralization and Fe (oxyhydr)oxide reduction can re-precipitate as 

vivianite. Similarly, Fe(II) phosphate has been suggested as a prominent sink for P in a 

variety of coastal and deep-sea oxic water-column settings. Here, in sulfide-depleted 

sediments beneath the sulfate/methane transition zone (SMT; where porewater sulfate is 

depleted and methane concentrations increase), Fe (oxyhydr)oxide mineral reduction either 

via dissimilatory Fe reduction or via anaerobic oxidation of methane (AOM) using Fe 

(oxyhydr)oxides as the electron acceptor (Konhauser et al., 2005; Thauer and Shima, 2008; 

Riedinger et al., 2014), and the availability of dissolved phosphate appears to promote 

vivianite formation (e.g., März et al., 2008a; Slomp et al., 2013; Hsu et al., 2014; Egger et al., 

2015). 
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In addition, vivianite formation has been proposed to occur in a variety of anoxic water-

column settings, including sediments of the Baltic Sea, in both the deeper euxinic basins 

(Jilbert and Slomp, 2013) and potentially in the intermittently anoxic Landsort Deep basin 

(Dijkstra et al., 2016), as well as in the seasonally anoxic Chesapeake Bay (Berner, 1990; 

Joshi et al., 2015) and in the euxinic Black Sea (Dijkstra et al., 2014). In all of these cases, 

vivianite has been suggested to form in microenvironments within shallow sulfidic sediments. 

However, Kraal et al. (2017) demonstrated that vivianite is rapidly dissolved via reaction 

with sulfide, and at least in the case of the euxinic Black Sea, the remobilised phosphate is 

more likely associated with carbonate minerals, rather than precipitated as vivianite (see also 

Dijkstra et al., 2018). Thus the significance of vivianite formation as a longer-term trap for 

remobilised P in these modern sulfidic porewater environments is unclear. 

Although active formation of vivianite has been demonstrated in a variety of settings, 

these environments are not particularly relevant analogues for the low-sulfate euxinic oceans 

of the Precambrian and Phanerozoic. In particular, while the limited availability of sulfate 

(and hence sulfide) during diagenesis in ancient low-sulfate euxinic settings could 

conceivably promote formation of vivianite, the importance of Fe(II) phosphate formation 

relative to the extent of P recycling back to the water column remains unknown. In addition 

to the potential significance for the history of planetary oxygenation during the Precambrian, 

a detailed understanding of biogeochemical controls on P recycling under low-sulfate euxinic 

conditions is of key importance for evaluating productivity feedbacks during Phanerozoic 

episodes of euxinia (e.g., Mort et al., 2007; M rz et al., 2008b; Poulton et al., 2015). 

Lake Cadagno, Switzerland, has been the focus of considerable research, largely due to 

its significance as a mid-Proterozoic euxinic ocean analogue (Canfield et al., 2010; Dahl et al., 

2010; Wirth et al., 2013). The lake represents an ideal location to study P cycling in relation 

to ancient euxinic settings as it is persistently euxinic at depth, with a relatively low sulfate 

content of 1.2 mM. In addition, the remote location of Lake Cadagno ensures insignificant 

anthropogenic phosphorus pollution, and phosphate concentrations in the water column (0.1-

2 μM) tend to be lower than in other euxinic or seasonally euxinic settings, such as the Black 

Sea (2-7 μM) (Codispoti et al., 1991; Yakushev et al., 2008; Dellwig et al., 2010) and the 

Baltic Sea (3-5 μM) (Dellwig et al., 2010). 

Here, we provide new water column and sediment data for Lake Cadagno, focusing on 

different parts of the basin, including the deeper euxinic waters, shallower oxic waters, and a 

site where the chemocline intersects the deposited sediments. We combine Fe and P 

speciation data with bulk geochemical analyses, to assess controls on P recycling under low-
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sulfate euxinic conditions. We specifically highlight the role of P recycling back to the water 

column, with a focus on the potential modulation of this flux by the early diagenetic 

formation of Fe(II) phosphate minerals. 

 

2. SAMPLING AND METHODS 

2.1. Sample location and geological setting 

Lake Cadagno is a meromictic lake located at approximately 2000 m altitude in the 

central Alps of Swizerland (46
o
33’44’’N, 8

o
42’41’’E; Fig. 1). The bedrock includes felsic 

gneiss, dolomite and gypsum (Dahl et al., 2010). The basin is 0.26 km
2
 with a maximum 

depth of 21 m (Krige, 1917). The water column is stratified, with oxic surface waters above 

the chemocline overlying euxinic deeper waters. This stratification has developed due to 

different densities of water flowing into the lake (Tonolla et al., 1998). Specifically, the oxic 

mixolimnion occurs at depths from 0 to 11 m and is fed by surface runoff. The euxinic 

bottom waters occur from 12 to 21 m depth, and these waters are supplied by deep sub-

surface flow containing a high concentration of ions, including dissolved sulfate 

concentrations in the range of 5 to 8 mM (Del Don et al., 1998; 2001). The oxic surface 

waters and deep sulfidic waters are separated by a chemocline of about 1 meter thickness 

(Tonolla et al., 1998; 1999). Sedimentation in the lake has occasionally been affected by 

landslides (Knoll-Heitz, 1991; Birch et al., 1996), which we consider in more detail below. 

 

2.2. Water column, pore water and sediment sampling 

Samples were collected in summer 2014 over the course of two days. All water column 

samples, as well as sediment samples from beneath the euxinic deeper waters, were taken 

from a permanently moored platform, while sediment samples beneath oxic waters and from 

where the chemocline intersects the sediment towards the edge of the lake were taken from a 

boat. Water column samples from the oxic, chemocline and deeper euxinic waters were 

collected by pumping from depth into expandable plastic containers, which were previously 

purged with N2. Immediately after collection, water samples were filtered in a N2 filled glove 

bag for immediate analysis of dissolved Fe(II) and phosphate, while dissolved sulfide was 

determined after fixing sulfide with 10 mM zinc acetate. 

Short (up to 35 cm) gravity cores were taken from 3 different water depths: one 

representing deposition under euxinic conditions (20-21 m; euxinic core), another where the 

chemocline intersects the lake bottom (11-12 m; chemocline core), and a third in oxic waters 
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(5-6 m; oxic core) (Fig. 1). After sampling, cores were stored upright and refrigerated at 4°C 

prior to processing (which occurred within 6 h). Sediment cores were sliced (generally in 

thicknesses of 1-2 cm) in the glove bag and placed in 50 mL centrifuge tubes. Pore water was 

extracted from each sample while still in the glove bag using rhizon ceramic filters 

(Rhizosphere research products). Pore waters were then fixed in the appropriate reagent for 

Fe
2+

 and phosphate analysis (see below) while still in the glove bag, and were then analysed 

immediately after opening the glove bag. Sulfide samples were fixed in 10 mM Zn acetate 

while still in the glove bag and analysed later. Sediment samples were immediately frozen 

after opening the glove bag, and were subsequently freeze-dried and stored frozen in an 

anoxic chamber prior to analysis. 

 

2.3. Water content 

To determine the water content of the sediments, frozen cores sampled adjacent to the 

cores used for geochemical analysis were sliced with an electric saw (generally in thicknesses 

of 1-2 cm) and each slice was dried at 100°C overnight. The weight loss was then used to 

calculate water content (Birch et al., 1996). This was only performed for the euxinic and 

chemocline cores, to investigate the extent to which these sediments have been affected by 

landslides (see below).  

 

2.4. Geochemical methods  

2.4.1 Water column and pore water analysis 

Immediately after filtration of both lake waters and pore waters, pH was measured with a 

calibrated pH meter (Mettler Toledo AG 8603). Dissolved Fe(II) concentrations were 

measured via the ferrozine method with a RSD of <2% (Stookey, 1970; Viollier et al., 2000). 

Dissolved P was measured via the molybdate blue method with a RSD of <3% (Koroleff, 

1976; Ruttenberg, 1992). Dissolved sulfide was measured using the Cline method, with a 

RSD of <2% (Cline, 1969). For the measurement of dissolved sulfate, 2.5 mL of sample was 

treated with 100 μl of 10 mM zinc acetate to remove the sulfide by filtration, then the filtrates 

were analysed by ion chromatography using a Dionex Ionpac
TM 

AS16 column with a RSD of 

<2%. Dissolved inorganic carbon (DIC) was measured using flow injection analysis (Hall, 

1992) with a RSD of <1%. 

 

2.4.2 Sediment analysis 
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Total carbon (TC), total organic carbon (TOC) and total sulphur (TS) were measured 

with a LECO C/S Analyzer. TOC samples were pre-treated with 10% HCl to remove 

carbonate phases. Replicate analyses of certified standards (Soil 502-309, Soil 502-062, 

Calcium carbonate 501-034 and Coal 502-671) gave RSDs of <2% for TC, <2% for TOC, 

and <4% for TS, with 100% recovery in all cases. Total inorganic carbon (TIC) was 

calculated as TIC = TC – TOC, and replicates of TIC analyses gave a RSD of <2%. Total Fe, 

Al, Ti and P were determined following total digestion of the freeze-dried sediment samples, 

whereby samples were initially ashed at 550°C, and then dissolved in HNO3-HF-HClO4 

followed by evaporation to dryness. Boric acid was then added and evaporated to dryness 

overnight (to solubilise aluminium hexafluoride), and finally the sample was re-dissolved in 

hot HNO3. Total Fe (FeT) was measured by AAS, while Al and Ti were measured by ICP-

OES, and Total P (PT) was measured by spectrophotometer using the molybdate blue method, 

as described above. Replicate analyses of a Lake Cadagno sediment sample gave RSDs of <2% 

for all four elements, and replicate analyses of international sediment standard PACS-2 gave 

recoveries of 98%, 96%, 93% and 100% for Fe, Al, Ti and P, respectively. 

  The Fe extraction methods were developed from Poulton and Canfield (2005) and 

Canfield et al. (1986), as used by Zegeye et al. (2012) and Goldberg et al. (2012). Together, 

the procedure targets six operationally-defined phases, with steps I-III performed sequentially 

(for extraction details see Table 1, which also reports target Fe phases and the precision of 

each extraction based on replicate extractions). Iron extracted from unsulfidized reduced Fe 

phases (Fe(II)unsulf) (Table 1) was measured by spectrophotometer via the ferrozine method 

(Stookey, 1970), while the other unsulfidized Fe phases were measured by AAS. Sulfide 

bound as acid-volatile sulfur (FeAVS) and pyrite (Fepy) was extracted by the two-step acid 

Cr(II) method and trapped as Ag2S, followed by weighing of the precipitate and 

stoichiometric conversion to Fe concentrations (Canfield et al., 1986; Fossing and Jorgensen, 

1989). 

  The pool of easily reducible ferric oxides such as ferrihydrite (Fe(III)ox1) was calculated 

as the difference between the total Fe extracted by the 0.5 N HCl extraction (i.e., Fe(II) plus 

Fe(III)) and the Fe(II) measured in this extract (Goldberg et al., 2012; Zegeye et al., 2012). 

Because FeAVS is also extracted by the 0.5 N HCl extraction and measured as Fe(II) (Poulton 

and Canfield, 2005), the unsulfidized solid phase Fe(II) was calculated from the Fe(II) 

extracted by 0.5 N HCl after subtracting FeAVS. The total pool of Fe that is considered highly 

reactive (FeHR) to biotic and abiotic reduction in the euxinic water column and during early 
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diagenesis (Canfield et al., 1992; Raiswell and Canfield, 1998; Poulton et al., 2004a) was 

calculated as: 

             FeHR = Fe(II)unsulf + Fe(III)ox1 + Fe(III)ox2 + Femag+ FeAVS+ Fepy                (1) 

  The sequential extraction method (SEDEX) for different phosphorus phases was 

modified from Ruttenberg (1992). Five sedimentary P reservoirs were extracted by different 

reagents as detailed in Table 2. Iron-bound P (PFe) was determined via the molybdate blue 

method (Koroleff, 1976), after suitable dilution with matrix-matched standards, on a SEAL 

Analytical AA3 segmented flow analyser. All other P phases were determined via the 

molybdate blue method on a Thermo Genesys 6 spectrophotometer at 880 nm wavelength. 

Reactive P (Preactive) was calculated as: 

Preactive = Psorb + PFe + Pauth + Porg                                                                                               (2) 

  Fe(II) phosphate (e.g., vivianite) was not part of the mineral suite tested during 

development of the SEDEX procedure (Ruttenberg, 1992). To address this we first 

synthesized vivianite by the method of Madsen and Hansen (2014), whereby 100 mL of 0.1 

M NaH2PO4 was titrated into 250 mL of 0.025 M (NH4)2Fe(SO4)2, with the pH maintained at 

7 using 0.5 M NaOH. The whole operation was completed under anoxic conditions and the 

product was subsequently characterised as vivianite by X-ray diffraction (XRD). Then we 

applied the first stages of the Fe and P sequential procedures and found that vivianite was 

completely dissolved by citrate/dithionite/bicarbonate (CDB) in the P extractions (Table 2, 

Step II; see also Dijkstra et al., 2014; Kraal et al., 2017), and by 0.5 M HCl in the Fe 

extractions (Table 1, Step I). 

 

2.5 Geochemical modelling 

  The saturation indexes (SI) of porewater with respect to vivianite, siderite and pyrite 

were calculated using PHREEQC Interactive 3.3.7, utilising the databases of Laliberté (2009) 

and Appelo et al. (2014). The SI calculations were based on porewater data for the euxinic 

core, including pH and the concentrations of Fe
2+

, HPO4
2-

, total sulfide, and DIC. 

Calculations were performed for a temperature of 4°C (Dahl et al., 2010) and redox potential 

(Eh) of -300 mV, which correspond to values measured at the sediment-water interface 

(Gregersen et al., 2009; Dahl et al., 2010). Eh-pH mineral stability fields were calculated for 

a temperature of 4°C using Geochemist’s Workbench 11.0.  The input data were based on the 

euxinic core porewater data for Fe
2+

, SO4
2-

, HPO4
2-

 and HCO3
-
 at 0-5 cm and 29.5-31.5 cm. 
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The concentrations of HPO4
2-

 and HCO3
- 

were 25.74 μM and 3.75 mM in the surface 

sediments, and 24.83 μM and 5.11 mM in the deeper sediments, respectively, which were 

calculated from DIC and total dissolved P using PHREEQC. 

 

3. RESULTS 

3.1. Water column 

  All geochemical data are presented in Appendix A. The water column is supersaturated 

with oxygen to a depth of ~7 m, below which the oxygen starts to decrease rapidly, with 

near-complete removal at ~11 m (Fig. 2a). Dissolved sulfate concentrations increase with 

depth due to the input from subterranean springs (Fig. 1), with concentrations reaching 1.2 

mM below the chemocline (Fig. 2b). Dissolved Fe
2+

 is low in concentration from the surface 

water to the chemocline (Fig. 2c). However, from 11 to 12 m, its concentration increases 

slightly to 1.1 μM just below the chemocline, with relatively constant concentrations below 

this depth. Dissolved sulfide increases in concentration below the chemocline, but remains 

relatively constant at 65 ± 5 μM below ~13 m depth. Dissolved phosphate is low in surface 

waters, but progressively increases to ~2 μM with depth below the chemocline (Fig. 2d). 

 

3.2. Sediment water content 

  The water content of Lake Cadagno sediments was used to constrain the depth interval 

where normal sedimentation has been affected by landslides (Birch et al., 1996). In the 

euxinic sediment core (Fig. 3a), the water content decreases with depth, but with a 

pronounced deviation to lower values between 12-18.5 cm. This corresponds to the position 

of a previously identified landslide layer (Birch et al., 1996) that was deposited in 1951 

(Knoll-Heitz, 1991). Birch et al. (1996) also found evidence for an older landslide of ~12 cm 

thickness starting about 4 cm below the first landslide interval. We see no evidence for this 

earlier landslide based on the water content of the euxinic core between 18.5-23 cm, but 

based on a number of geochemical indicators (see below) we place the upper boundary of this 

earlier landslide interval at ~22.5 cm.  

The chemocline core (Fig. 3b) shows a similar overall decrease in water content with 

depth, with a clear deviation to lower water content between 12-26 cm, although a return to 

slightly higher water content occurs at about 14-16.5 cm. This trend suggests that the interval 

from 12-26 cm captures the landslides outlined above. The oxic core was sampled from 

shallower water at the opposite side of the lake from where the landslides originated. The 
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lack of any discrepancies in geochemical data trends (see below) confirms that this core is 

unlikely to have been affected by any of the landslides. 

 

3.3. Pore waters 

DIC and pH were measured in the porewaters of the euxinic core in order to calculate 

mineral saturation indices. DIC shows an overall increase to a depth of ~15 cm, then remains 

constant at 5.42 ± 0.15 mM (Fig. 4). The pH shows a similar depth profile to DIC with an 

increase to ~14 cm, below which values are relatively constant at 8.42 ± 0.04 (Fig. 4).  

In the euxinic sediment core (Fig. 5a), sulfate is relatively constant at 485 ± 5 μM to a 

depth of 9 cm, which is likely due to some mixing of poorly-consolidated organic-rich ooze 

which comprised the top few cm of the core. Below 9 cm depth, sulfate is depleted to close to 

zero at a depth of 26 cm. Dissolved sulfide (Fig. 5a) is significantly higher than in the 

overlying water column (Fig. 2c) and shows an overall increase, reaching ~900 μM at ~11 cm 

depth. Sulfide then decreases to close to zero at 26 cm as sulfate is depleted. At this depth 

dissolved Fe
2+

 begins to accumulate, reaching 35 μM at 30 cm depth. Dissolved phosphate 

shows an overall increase to ~55 μM over the top 12 cm, followed by a gradual decrease 

through the lower part of the core, although concentrations remain above 40 μM at 30 cm 

depth.  

In the chemocline core, sulfate concentrations decrease from >1 mM near the surface to 

much lower values below 20 cm, although concentrations do not reach zero (Fig. 5c). Sulfide 

steadily decreases with sediment depth from ~500 μM close to the sediment-water interface, 

but in contrast to the euxinic core, sulfide only decreases to ~70 μM at 23 cm depth. As a 

consequence, dissolved Fe
2+

 is present at low levels throughout the core (Fig. 5d). Dissolved 

phosphate shows a similar profile to the euxinic core, with a slight rise to ~21 μM at 8 cm, 

followed by a gradual decrease with depth. 

In the oxic core, sulfate is relatively low throughout (<200 µM) and decreases with depth, 

although as with the chemocline core, values do not reach zero (Fig. 5e). Dissolved sulfide 

remains relatively constant at 230 ± 40 μM, and this buffers dissolved Fe
2+

, which remains 

close to zero throughout the core (Fig. 5f). As with the euxinic and chemocline cores, 

dissolved phosphate initially increases slightly, to ~42 μM at 7.5 cm depth. However, after a 

slight decrease, dissolved phosphate then remains relatively constant at 38 ± 2 μM. 

 

3.4. Sediment geochemistry 

3.4.1 Bulk composition 
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The concentration of TIC generally decreases with depth in each core (Fig. 6), to values 

close to zero at ~19 cm in the euxinic core and ~16 cm in the chemocline core, although TIC 

remains somewhat higher throughout the oxic core. TOC concentration is high in the upper 

samples of all cores (Fig. 6), reaching more than 10 wt% in the euxinic and chemocline cores, 

and almost 20 wt% close to the sediment-water interface in the oxic core. The oxic core 

shows a steady down-core decrease in TOC due to microbial remineralization, whereas the 

more sudden decreases evident at depth in the euxinic and chemocline cores (Fig. 6) likely 

reflect additional dilution by landslide sediment. However, TOC concentrations at depth in 

the euxinic and chemocline cores generally remain above ~2 wt%. 

Total sulfur concentration fluctuates significantly in the euxinic core, with transitions to 

lower values evident in the depth sections affected by landslides (Fig. 6). By contrast, TS 

shows a more stable profile in the chemocline and oxic cores, with an overall slight decrease 

with depth from ~2.5 wt% close to the sediment-water interface. Total Fe increases from ~3.6 

wt% at the surface, to a peak of ~8.0 wt% at 21 cm in the euxinic core, followed by a 

subsequent decrease (Fig. 6). In the chemocline and oxic cores, total Fe concentrations are 

lower and increase slightly with depth, but below ~20 cm in the chemocline core there is a 

slight decrease, similar to the euxinic core.  

The detrital elements Al and Ti show similar profiles (Fig. 6) with a downcore increase 

in all cores, but with pronounced increases associated with landslide-affected sediment in the 

euxinic and chemocline cores. Total P remains relatively constant in the euxinic (0.13 ± 0.03 

wt%) and chemocline (0.12  ± 0.03 wt%) cores (Fig. 6). By contrast, total P concentrations 

are higher in the upper part of the oxic core and clearly decrease with depth.  

To evaluate potential changes in major element compositions due to the landslides, total 

Fe, Al, Ti, S and P profiles are plotted on a TIC (assuming TIC is present as CaCO3) and 

TOC (assuming a formula CH2O) free basis for the euxinic and chemocline cores in Fig. 7. 

The data show relatively limited variability in total Fe, Al and Ti for both cores, but in the 

euxinic core total Fe tends to be slightly lower in landslide-affected sediment, while Al and 

Ti tend to be slightly higher. These trends likely reflect minor differences in the bulk 

geochemistry of landslide sediment relative to the normal sediment input. By contrast, total S 

and P show significant variability on a TOC- and TIC-free basis (Fig. 7). This occurs partly 

due to dilution of the Fe-sulfides and organic-bound P that form in the water column, by the 

sediment deposited during landslides, but also reflects biogeochemical cycling during 

diagenesis, as discussed below. 
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3.4.2 Iron speciation 

In the euxinic core, abundant Fe(II)unsulf is present throughout (reaching almost 2 wt%), 

but the depth profile shows an overall decrease to ~15 cm, and then a subsequent increase 

below ~20 cm (Fig. 8). In the chemocline and oxic cores, Fe(II)unsulf is present at lower 

concentrations, with an overall slight decrease with depth. With the exception of two isolated 

samples in the euxinic core, the most reactive iron oxide pool (Feox1) is low in all cores (Fig. 

8). In contrast, the more crystalline iron (Feox2) are more abundant and remain relatively 

constant with depth (Fig. 8). Femag tends to be a minor constituent (Fig. 8), but concentrations 

are higher from 12.5-20 cm in the euxinic core. Since there is abundant dissolved sulfide at 

this depth in the euxinic core (Fig. 5), it is unlikely that this is magnetite formed by 

magnetotactic bacteria (e.g., Karlin et al., 1987), although we cannot rule out the possibility 

that the magnetite formed in situ before sulfidic conditions were re-established after the 

landslide. Alternatively, the increase in magnetite may be due to increased magnetite 

concentrations in the landslide sediment, although this is not observed in the lower landslide 

interval.  

FeAVS is present at relatively low concentrations in all cores, with a general decrease with 

depth (Fig. 8), presumably due to conversion to pyrite. Fepy is relatively constant at ~1 wt% 

in the chemocline and oxic cores, although concentrations show a slight increase with depth 

over the top 12 cm of the oxic core (Fig. 8). In the euxinic core, Fepy shows an overall 

increase to a depth of ~20 cm, but with a pronounced shift to lower concentrations in 

association with the most recent landslide. After reaching concentrations of almost 3 wt% 

below the most recent landslide, Fepy progressively decreases to ~0.1 wt% through the earlier 

landslide interval (Fig. 8).  

 

3.4.3. Phosphorus speciation 

Loosely-bound P (Psorb) concentrations are very low in all three cores (Fig. 9). In the 

euxinic core, Fe-associated P (PFe) decreases to a depth of ~15 cm, but then progressively 

increases below ~18 cm. In the chemocline and oxic cores, PFe concentration generally 

decreases with depth, with a particularly strong decrease from relatively high surface 

concentrations in the oxic core (Fig. 9). PFe concentration also increases slightly from 15-22 

cm depth in the chemocline core. Authigenic carbonate flourapatite (Pauth) is a minor 

component of all three cores and concentrations remain relatively constant with depth, 

although there is some suggestion of slightly lower values in landslide intervals (Fig. 9). 

Detrital P (Pdetr) varies considerably, particularly across landslide intervals. In the euxinic 
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core, the two landslide intervals are associated with excursions to much higher concentrations 

of Pdetr. Higher concentrations of Pdetr are also a feature of the landslide interval in the 

chemocline core (Fig. 9), which presumably reflects differences in the mineralogy of 

landslide sediment relative to the normal sediment input to the lake. The oxic core displays 

much less variability in Pdetr, but there is a clear gradual increase in concentration with depth. 

Organic-bound P (Porg) concentrations decrease with depth in each core, but with excursions 

to lower values in association with landslide intervals in the euxinic and chemocline cores 

(Fig. 9). 

 

4. DISCUSSION 

4.1. Water column chemistry 

Water column data are broadly consistent with previous studies, demonstrating the 

persistent sulfidic nature of the basin below a depth of ~12 m (Fig. 2). In detail, however, our 

data highlight temporal variability in the concentrations of different dissolved species. In 

particular, the concentration of dissolved sulfide at depth (65 ± 5 µM; Fig. 2) is lower than 

previous reports of 100-300 µM (Halm et al., 2009; Dahl et al., 2010; Canfield et al., 2010). 

This may be a consequence of lower rates of bacterial sulfate reduction driven by a decrease 

in the flux of sulfate into the basin (see Boudreau and Westrich, 1984), since concentrations 

of up to 1.2 mM at depth in the present study (Fig. 2) are significantly lower than previous 

reports of 1.7-2 mM (Tonolla et al., 1998; Dahl et al., 2010; Canfield et al., 2010). 

Alternatively, the lower sulfide and sulfate concentrations in the present study may be due to 

more active mixing between the denser deep lake waters and the upper waters. Similarly, 

relatively low concentrations of dissolved Fe(II) (~1 µM below the chemocline; Fig. 2) 

relative to previous reports of up to 3 µM (Tonolla et al., 1998; Halm et al., 2009) may be 

linked to enhanced water column mixing. Nevertheless, the concentrations of dissolved Fe(II) 

and sulfide at the time of sampling are in very good agreement with concentrations that 

would be expected to co-exist according to the solubility of FeS, suggesting that dissolved 

Fe(II) species are dominated by aqueous FeS clusters (Rickard, 2006).  

A pertinent feature of the water column chemistry is the increase in phosphate with depth 

below the chemocline. Concentrations of up to 2 µM in deeper waters are consistent with 

previous studies (Tonolla et al., 1998), and the gradual increase observed with depth might be 

a consequence of release of phosphate either from sinking organic matter during 

remineralisation via bacterial sulfate reduction, or from the sulfidation of Fe (oxyhydr)oxide 
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minerals. Alternatively, the phosphate profile may also be generated from the release of 

phosphate from porewaters, which we consider in more detail below.  

 

4.2. Fe-S systematics  

The Fe speciation data show several prominent features of importance to the present 

study. Firstly, discounting the landslide-affected sediment, there is an overall increase in Fepy 

to a sediment depth of ~20 cm (Fig. 8). This is consistent with diagenetic pyrite formation 

augmenting the flux of Fe-sulfide minerals from the water column. The reaction of dissolved 

sulfide with Fe (oxyhydr)oxide minerals produces mineral surface-associated Fe(II) (i.e., 

Fe(II)unsulf), which subsequently dissolves slowly at the pH of most porewaters (Dos Santos 

Afonso and Stumm, 1992; Poulton, 2003). The most reactive Feox1 minerals are initially 

reduced via this process, and thus this phase is almost entirely consumed in all three cores, 

whereas the more crystalline Fe (oxyhydr)oxides comprising the Feox2 pool react more slowly 

(Canfield, 1989; Canfield et al., 1992; Poulton et al., 2004b) and persist with depth (Fig. 8). 

After dissolution, Fe(II) can react with dissolved sulfide to form FeAVS and ultimately pyrite. 

Thus, the associated decrease in Fe(II)unsulf over the top 15 cm of the euxinic core (and to a 

lesser extent in the other cores; Fig. 8) is consistent with the progressive formation of pyrite 

via this process.  

By contrast, rapid sedimentation during landslides would dilute the flux of Fe-sulfide 

minerals forming in the water column, resulting in lower initial concentrations in the 

deposited sediment. In addition, rapid burial decreases the exposure time of reactive Fe 

minerals to the highest concentrations of dissolved sulfide, which occurs in the upper portion 

of sediment (Fig. 5). Dissolved sulfide concentration exerts a primary control on the rate of 

reductive dissolution of reactive Fe minerals (Canfield et al., 1992; Dos Santos Afonso and 

Stumm, 1992; Poulton et al., 2003), which would also contribute to the observed decrease in 

pyrite concentrations in landslide-affected sediment (Fig. 8).  

A second prominent feature concerns the persistence of ferric (oxyhydr)oxide mineral 

phases with depth in all the three cores (dominantly Feox2, with minor Feox1 in some cases). 

However, the relatively constant Feox2 depth trends (Fig. 8) are potentially misleading, as the 

profiles are affected by variable sediment dilution factors arising from the water column 

formation of TOC, carbonate minerals and pyrite, as well as the landslides. To evaluate 

whether Feox2 minerals, which are dominantly introduced to the basin in association with 

detrital phases, participate in biogeochemical reactions during diagenesis, we plot this phase 

normalised to Al (as a proxy for the detrital flux) in Fig. 10. These Feox2/Al depth profiles 
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demonstrate that the Feox2 pool is progressively dissolved in both the chemocline and oxic 

cores, but in particular, there is a major decrease below ~15 cm depth in the euxinic core. The 

reductive dissolution of Feox2 minerals at depth in the euxinic core would provide the 

dissolved Fe(II) required to precipitate the high concentrations of pyrite observed at this 

depth (Fig. 8), and would also source the increase in porewater Fe(II) concentrations 

observed lower in the core (Fig. 5). In addition, the reduction of Feox2 minerals would account 

for the progressive increase in Fe(II)unsulf below ~15 cm (Fig. 8). Thus, although a proportion 

of the more crystalline Feox2 minerals persist with depth, these phases are biogeochemically 

reactive in all cores during diagenesis. 

The reduction of crystalline ferric (oxyhydr)oxide minerals deeper in the euxinic core 

may occur via more than one pathway. Although methane was not measured in our study, 

anaerobic oxidation of methane has been demonstrated at depths of 16-20 cm in the euxinic 

sediments of Lake Cadagno (Schubert et al., 2011). Thus AOM using Fe(III) in 

(oxyhydr)oxide minerals may be responsible for the generation of dissolved Fe(II) (Beal et al., 

2009). Alternatively, it is also possible that Fe(II) is sourced from dissimilatory Fe reduction. 

The production of unsulfidized Fe(II) deeper in the euxinic sediment is a direct consequence 

of insufficient sulfate (and hence sulfide) to fully sulfidize the FeHR pool, and we consider the 

nature of this Fe(II)unsulf phase in more detail below. 

 

4.3. Phosphorus cycling 

4.3.1. Diagenetic recycling 

The dissolved (Fig. 5) and solid phase (Fig. 9) P distributions clearly demonstrate active 

P cycling in each of the cores. The initial increase in dissolved phosphate observed over the 

top few cm of each core (Fig. 5), coupled with higher porewater concentrations than in the 

overlying water column (Fig. 2), likely reflects a balance between release of P from organic 

matter degradation and Fe (oxyhydr)oxide dissolution during early diagenesis, coupled with 

diffusive loss of dissolved P to the overlying water column. Although the Porg profiles in the 

euxinic and chemocline cores have clearly been affected by the landslides (Fig. 9), molar 

TOC/Porg ratios (Fig. 11) provide strong evidence for extensive P mobilisation during organic 

matter degradation. In all cores at depths were the sediment has not been affected by 

landslides, molar TOC/Porg ratios are considerably higher (>600:1) than the Redfield Ratio of 

106:1, which is entirely consistent with the preferential recycling of P during bacterial sulfate 

reduction (Ingall et al., 1993; Slomp et al., 2002, 2004; Jilbert et al., 2011). In landslide-

affected intervals, organic matter is more rapidly buried and hence there is less preferential 
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release of P from organic matter degradation, although even in the most rapidly deposited 

sediment, TOC/Porg ratios are significantly higher than the Redfield Ratio. 

 

4.3.2. Controls on P recycling 

The P released from Fe (oxyhydr)oxide reduction and organic matter degradation may 

either be retained in the sediment as secondary phases, or may be recycled back to the water 

column (e.g., Ruttenberg and Berner, 1993; Ingall and Jahnke, 1994, 1997; Van Cappellen 

and Ingall, 1994; Slomp et al., 1996b, 2002, 2004). We evaluate these processes by first 

noting that molar TOC/Preactive ratios are considerably lower than TOC/Porg ratios (Fig. 11). 

These lower TOC/Preactive ratios suggest that some of the recycled organic P is sequestered in 

authigenic phases, although Fe (oxyhydr)oxide minerals may also contribute an additional 

source of P to the sediment, consistent with the higher concentrations of PFe observed in 

surface sediments (Fig. 9). Nevertheless, despite possible additional P drawdown in 

association with Fe (oxyhydr)oxides, TOC/Preactive ratios remain well above the Redfield 

Ratio for sediment intervals not affected by landslides, demonstrating that a significant 

proportion of the P released during organic matter degradation and Fe (oxyhydr)oxide 

reduction is recycled back to the water column. This observation is further supported by the 

relatively low Pauth concentrations in all three cores (Fig. 9).  

Since the actual fluxes of the different primary reactive P fractions to the sediment are 

not known, it is not possible to evaluate the relative extent of recycling of different P phases 

back to the water column. However, close to the sediment water interface, molar TOC/Preactive 

ratios increase from the oxic core (260:1), through the chemocline core (345:1), to the euxinic 

core (452:1), consistent with previous studies highlighting the role of water column anoxia, 

and particularly sulfidic conditions, in enhancing P recycling back to the water column (e.g., 

Ingall and Jahnke, 1994, 1997; Van Cappellen and Ingall, 1994; Slomp et al., 2002, 2004). A 

significant flux of P from the sediments under euxinic conditions is supported by the increase 

in dissolved water column phosphate at depth (Fig. 2). The contrasting behaviour of the P 

cycle across intervals affected by landslides is also entirely as expected. The rapid burial of 

sediment would result in a greatly reduced flux of mobilised P back to the water column. 

Hence, TOC/Preactive ratios are considerably lower across all landslide intervals (Fig. 11). 

In terms of retention of dissolved P in the sediment, the carbonate-fluorapatite (Paut) sink 

is relatively minor (Fig. 9), and much lower than proportions of the total P burial flux 

typically found in marine sediments deposited beneath oxic bottom waters (~50%; 

Ruttenberg and Berner, 1993). The Pdetr profiles in the euxinic and chemocline core have been 
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strongly affected by the deposition of landslide sediment, but in the oxic core there is a minor 

increase in Pdetr with depth. This could potentially be due to slight conversion of carbonate 

fluroapatite to more crystalline apatite, which would be extracted as Pdetr. Alternatively, this 

could be due to a gradual change in the mineralogy of the sediment entering the lake. In 

either case, this pool does not constitute a major sink for reactive P. 

The gradual decrease in dissolved P with depth in the euxinic and chemocline cores does, 

however, imply the formation of a secondary P phase. In this context, the observed increase 

in PFe at depth in the euxinic core (Fig. 9) is particularly significant. The concentration of PFe 

begins to increase at a depth of ~20 cm, which is where sulfide concentrations rapidly 

decrease to low concentrations, and a little below this depth, dissolved Fe(II) increases when 

dissolved sulfide is completely depleted (Fig. 5). There is no evidence for an increase in 

reactive Fe (oxyhydr)oxide minerals at this depth (and no evidence for re-adsorption of P; 

Figs. 8 and 9), and thus this increase in secondary PFe is unlikely to be due to uptake by ferric 

oxides (or carbonate minerals; c.f., Kraal et al., 2017). As discussed above, however, there is 

a clear concomitant increase in Fe(II)unsulf with the increase in PFe. Unlike some of the other 

solid phase parameters (such as Fepy; Fig. 8), the increase in Fe(II)unsulf does not fluctuate in 

relation to the landslide-affected sediment. Instead, there is a gradual increase in Fe(II)unsulf 

below ~15 cm depth, indicating that the formation of this phase was not significantly affected 

by the landslides. 

Taken together, the porewater and solid phase geochemical profiles strongly imply the 

progressive formation of Fe(II) phosphate (vivianite) as porewater sulfate and sulfide become 

depleted. High concentrations of vivianite are unlikely to occur higher in the core where 

significant sulfide is present (although vivianite could form in microenvironments, at least as 

a transient phase; Jilbert and Slomp, 2013), as its formation is suppressed by the formation of 

FeS (Manning et al., 1994; Reed et al., 2016). 

The fine-grained, potentially poorly crystalline nature of vivianite makes direct 

mineralogical identification problematic at low concentrations in sediments (see Egger et al., 

2015). However, geochemical modelling provides support for the formation of vivianite. We 

initially consider the saturation index (SI) of vivianite and other key diagenetic minerals 

(pyrite and siderite). The SI of pyrite is high throughout the euxinic core (Fig. 12), but the 

very low level of sulfide at depth allows dissolved Fe(II) to accumulate in porewaters (Fig. 5). 

The increased availability of dissolved Fe(II) at depth increases the SI for both siderite and 

vivianite (Fig. 12), suggesting that both may potentially form. When additionally considered 

in terms of Eh-pH (Fig. 13), the stability field for pyrite decreases deeper in the sediment, and 
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at the pH of the euxinic porewaters (~8; Fig. 4), the formation of vivianite is promoted over 

the formation of siderite. 

Our geochemical and modelling data thus support a growing body of evidence for the 

importance of vivianite as a significant sink for P during sediment diagenesis in a variety of 

aquatic environments (Rothe et al., 2014; Jilbert and Slomp, 2013; Slomp et al., 2013; Hsu et 

al., 2014; Egger et al., 2015; O’Connell et al., 2015; Dijkstra et al., 2014; 2016; März et al., 

2018). Significantly, however, we provide the first evidence for this process as a major 

control on the permanent sequestration of P below the sulfate/methane transition in a low 

sulfate, persistently euxinic water column setting. Egger et al. (2015) found that vivianite 

formation accounts for 40-50% of total P burial below the sulfate/methane transition zone in 

sediments deposited beneath the oxic water column of the Bothnian Sea. The total burial flux 

of P in our euxinic core has been considerably affected by enhanced detrital P inputs from 

landslide sediment (Fig. 9). However, if we reasonably assume that the majority of PFe 

measured at depth in the euxinic core is present as vivianite, then this accounts for up to ~60% 

of the total reactive P burial flux (i.e., discounting Pdetr) in euxinic Lake Cadagno sediments. 

Thus, in low sulfate, euxinic water column settings, vivianite can be a major permanent sink 

for remobilised phosphorus. 

 

5. SUMMARY AND IMPLICATIONS 

We provide the first detailed study of Fe and P cycling in a low sulfate, persistently 

euxinic setting. Phosphorus recycling to the water column is extensive throughout the basin, 

but is particularly enhanced beneath the deeper euxinic waters. This is entirely consistent 

with previous studies of P cycling in anoxic water column settings (e.g., Ingall and Jahnke, 

1994, 1997; van Cappellen and Ingall, 1994; Slomp et al., 2002, 2004), but specifically 

extends this observation to the low sulfate, euxinic settings that were prevalent during 

Precambrian and Phanerozoic episodes of water column euxinia. Phosphorus recycling 

significantly diminishes the overall P burial efficiency (Ingall and Jahnke, 1994; 1997), thus 

altering the total P content of the sediment, as well as TOC/Porg ratios, providing support for 

the suggestion (Poulton, 2017) that the total P content of ancient euxinic shales is unlikely to 

track water column P concentrations (c.f., Reinhard et al., 2017). 

As previously suggested, the recycling of P back to the water column in ancient euxinic 

settings would promote a positive productivity feedback, significantly enhancing organic 

carbon burial (Ingall and Jahnke, 1994; 1997; Van Cappellen and Ingall, 1994) and hence 

oxygen production. However, our data also suggest that the flux of recycled P to the water 
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column in ancient euxinic settings would have been modulated by the formation of authigenic 

Fe(II) phosphate minerals. This would specifically occur because, as demonstrated in Lake 

Cadagno, the low-sulfate concentrations result in sulfide depletion (through precipitation as 

pyrite), and hence vivianite precipitation, relatively close to the sediment-water interface. 

This scenario is very different to other modern, high sulfate euxinic settings, where in 

shallow sediments vivianite has been found forming in microenvironments within sediments 

that still contain significant dissolved sulfide (Jilbert and Slomp, 2013), but only as a 

transient phase (Kraal et al., 2017) that does not significantly impact P cycling (Reed et al., 

2016). Thus, the recycling flux of P to the water column from high sulfate, euxinic settings is 

unlikely to be significantly modified by the precipitation of vivianite. 

More often, vivianite formation has been observed at significant depth in the sediment 

profile, where internal P recycling below the sulfate-methane transition promotes vivianite 

formation at depths of several metres (e.g., Dijkstra et al., 2016; 2018; März et al., 2018), 

with no net effect on P recycling from the sediment. We additionally note that in addition to 

requiring dissolved P, the formation of Fe(II) phosphate requires that unsulfidized FeHR 

minerals persist beneath the sulfate/methane transition zone. This persistence of unsulfidized 

FeHR minerals would also be enhanced in low sulfate, euxinic settings, compared to high 

sulfate, euxinic settings, due to the decreased average exposure time of Fe (oxyhydr)oxide 

minerals to high concentrations of dissolved sulfide (see Poulton et al., 2004a). In this context, 

we note that studies of ancient marine settings have demonstrated that ~30% of the FeHR pool 

commonly remains unsulfidized under low sulfate, euxinic water column conditions (März et 

al., 2008b). Thus, ancient euxinic settings commonly contained sufficient unsulfidized FeHR 

to promote vivianite formation beneath a shallow sulfate/methane transition zone.  

The relative extent of water column P regeneration under euxinic conditions through 

Earth’s history can be considered to be sulfate-dependent, since on a global scale, sulfate 

concentration will (at least partly) determine the depth in the sediment at which Fe(II) 

phosphate becomes a significant sink for remobilised P. In other words, on a global scale, low 

sulfate promotes vivianite formation closer to the sediment-water interface, due to the more 

rapid consumption of all of the dissolved sulfate and sulfide during early diagenesis. 

Enhanced vivianite formation closer to the sediment-water interface under low sulfate 

conditions would decrease the flux of P back to the water column. Thus, as sulfate 

concentrations increased from the low micromolar range typical of the early Archean 

(Habicht et al., 2002; Crowe et al., 2014), through the low millimolar range of the later 
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Proterozoic (Kah et al., 2004; Guilbaud et al., 2015), to the moderate millimolar range of 

many Phanerozoic euxinic episodes (e.g., Adams et al., 2010; Newton et al., 2011; Song et al., 

2013; Poulton et al., 2015), the significance of the Fe(II) phosphate trap for remobilised P 

under euxinic conditions likely progressively diminished. As such, the formation of vivianite 

would be not be expected to exert such a strong control on P recycling under the higher 

sulfate concentrations typical of modern euxinic marine settings. As a natural extension of 

these observations, our data suggest that P recycling likely maintained mid-Proterozoic, 

shallow marine phosphate concentrations at moderate, rather than very low (c.f., Reinhard et 

al., 2017) levels, under the widespread euxinic conditions envisaged for such settings (e.g., 

Canfield, 1998; Scott et al., 2008; Poulton et al., 2010; Poulton and Canfield, 2011; Kendall 

et al., 2011), with significant implications for organic carbon production and burial, and 

hence the production of atmospheric oxygen. 
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Figure Captions 

Fig. 1. Geographical map and bathymetric map of Lake Cadagno, Switzerland (after Wirth et 

al., 2013; Tonolla et al., 1998). Circles indicate the three sediment core locations, and the 

squares indicates the position of the subaquatic springs.  

 

Fig. 2. Vertical distribution of dissolved O2, SO4
2-

, Fe
2+

, sulfide, and PO4
3-

 in the water 

column of Lake Cadagno. The O2 profile is from Canfield et al. (2010). 

 

Fig. 3. Water content profiles; a) euxinic core; b) chemocline core. Dashed lines indicate 

general depth trends. 

 

Fig. 4. Dissolved inorganic carbon (DIC) and pH in the euxinic core porewaters. 

 

Fig. 5. Porewater profiles for dissolved Fe
2+

, PO4
3-

, sulfide and SO4
2-

; a) sulfide and SO4
2-

 in 

the euxinic core; b) Fe
2+

 and PO4
3-

 in the euxinic core; c) sulfide and SO4
2-

 in the chemocline 

core; d) Fe
2+

 and PO4
3-

 in the chemocline core; e) sulfide and SO4
2-

 in the oxic core; f) Fe
2+

 

and PO4
3-

 in the oxic core. 

 

Fig. 6. Profiles of TIC, TOC, TS, Fe, Al, Ti and P for the three sediment cores. Grey shading 

marks landslide intervals. 

 

Fig. 7. Profiles of total Fe, Al, Ti, S and P on a TOC-free and TIC-free basis for the euxinic 

and chemocline cores. Grey shading marks landslide intervals. 

 

Fig 8. Iron speciation profiles in the three sediment cores. Grey shading marks landslide 

intervals. 

 

Fig 9. P speciation profiles for the three sediment cores. Grey shading marks landslide 

intervals. 

 

Fig. 10. Feox2/Al depth profiles for the three sediment cores; a) euxinic core; b) chemocline 

core; c) oxic core. Grey shading marks landslide intervals. 
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Fig. 11. Molar TOC/Porg and TOC/Preactive for the three sediment cores; a) euxinic core; b) 

chemocline core; c) oxic core. Dashed lines represent the Redfield TOC/P ratio (106:1). Grey 

shading marks landslide intervals. 

 

Fig. 12. Saturation index for vivianite, siderite and pyrite in the euxinic core. 

 

Fig. 13. Eh-pH diagram showing stability fields for different iron minerals at different depths 

in the euxinic core (strengite is ferric phosphate mineral: FePO4·2H2O); a) at 0-5 cm; b) at 

29.5-31.5 cm; c) enlargement of highlighted area. 
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Table 1. Fe extraction protocol. Steps I-III are performed sequentially on a sub-sample, and 

steps IV and V are performed sequentially on a separate sub-sample. 

Step Extraction details Target Fe phases RSD (%) 

I 5 mL 0.5 M HCl (shake for 1h)  

Fe(II)unsulf: Extraction targets 

reduced solid phase Fe, 

including AVS and Fe(II) 

phosphates.  

Subtraction of FeAVS (step IV) 

gives unsulfidized solid phase 

Fe(II) 

 

Feox1: Extraction also gives 

total Fe (i.e., Fe(II) + Fe(III)) 

solubilized by this technique. 

Subtraction of Fe(II) gives 

highly reducible ferric oxides 

such as ferrihydrite 

3 

 

 

 

 

 

11 

 

II 

10 mL sodium citrate/acetic 

acid/sodium dithionite solution (58.82 

g/L sodium citrate,  20 mL/L acetic 

acid, 50 g/L sodium dithionite, shake 

for 2 h) 

Feox2: Reducible ferric oxides 

such as goethite and hematite 
4 

III 

10 mL ammonium oxalate/oxalic acid 

(28.42g/L ammonium oxalate, 21.45 

g/L oxalic acid, shake for 6h) 

Femag: Magnetite 5 

IV 8 mL 50% HCl (boil for 1h) FeAVS: Acid volatile sulfide 5 

V 
5 mL 1M chromous chloride dissolved 

in 50% HCl (boil for 1 h) 
Fepy: Pyrite 5 
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Table 2. Sequential SEDEX steps for different target P phases. 

Step Extractant Target P phase RSD (%) 

I 

5 mL 1 M MgCl2 (pH 8, shake for 2h) × 2 

 

5 mL MilliQ water (shake for 2h) × 2 

Psorb: loosely sorbed P 5 

II 

10 mL sodium citrate/sodium bicarbonate/sodium 

dithionite solution (88.23 g/L sodium citrate, 84.01 g/L 

sodium bicarbonate, 24.38 g/L sodium dithionite, shake 

for 8 h) 

 

5 mL 1 M MgCl2 (pH 8, shake for 2 h) 

 

5 mL MilliQ water (shake for 2 h) 

PFe: Fe-bound P 2 

III 

10 mL, 1 M acetate sodium (pH 4, shake for 6h) 

 

5 mL 1 M MgCl2 (pH 8, shake for 2 h) × 2 

 

5 mL MilliQ water (shake for 2 h) 

Pauth: Carbonate-

associated P, authigenic 

apatite and biogenic 

apatite 

3 

IV 10 mL 10% HCl (shake for 16 h) 
Pdetr: Detrital apatite and 

other inorganic P phases 
2 

V 

Ash at 550 ℃ 

 

10 mL 10% HCl (shake for 16 h) 

Porg: Organic 

phosphorus 
3 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 

 

 

 

 

 

 


