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A central challenge for public space design is to evaluate whether a given space promotes different types
of activities. In this paper, as our first contribution, we develop crowd replication as a novel sensor-assisted
method for quantifying human behaviour within public spaces. In crowd replication, a researcher is tasked with
recording the behaviour of people using a space while being instrumented with a mobile device that captures
a sensor trace of the replicated movements and activities. Through mathematical modelling, behavioural
indicators extracted from the replicated trajectories can be extrapolated to represent a larger target population.
As our second contribution, we develop a novel highly accurate pedestrian sensing solution for reconstructing
movement trajectories from sensor traces captured during the replication process. Our key insight is to tailor
sensing to characteristics of the researcher performing replication, which allows reconstruction to operate
robustly against variations in pace and other walking characteristics. We validate crowd replication through
a case study carried out within a representative example of a metropolitan-scale public space. Our results
show that crowd-replicated data closely mirrors human dynamics in public spaces, and reduces overall data
collection effort while producing high quality indicators about behaviours and activities of people within the
space. We also validate our pedestrian modelling approach through extensive benchmarks, demonstrating our
approach can reconstruct movement trajectories with high accuracy and robustness (median error below 1%).
Finally, we demonstrate that our contributions enable capturing detailed indicators of liveliness, extent of
social interaction, and other factors indicative of public space quality.
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1 INTRODUCTION

Public spaces serve an important role in contemporary cities. Among others, they provide a medium
for passive and active engagement, and a place for discovery and reflection [11]. Public spaces have
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also been linked with quality of life indicators [12]. Indeed, well-designed public spaces can promote
individual well-being, and contribute to social and environmental values of neighbourhoods. With
ever increasing motorization and urbanization, the role of public spaces has been transforming
and their role as hubs for human activities has diminished. To counter this trend, urban planners,
activists and architects have been advocating for new ways of enriching human experiences in
public spaces by designing the environments so that positive qualities and liveliness of public
spaces are increased [58].

Public space quality is intrinsically linked with the way it is used. According to Gehl [17], uses
of public space can be categorized into necessary, optional, and social activities, with a successful
space being one that actively promotes optional and social activities. Currently, however, urban
planners struggle with quantifying whether a particular space promotes these activities. This is
because current techniques for public space assessment are either too labour-intensive and provide
insufficiently detailed information about usage of space, or require costly investment and high
level of technical expertise. Indeed, despite technological advancements, direct observation remains
the dominant approach for quantifying public space usage [26, 37, 57]. In direct observation, the
researcher manually observes and logs activities of people within the space. From these observations,
indicators related, e.g., to the amount of mobility and activities within the space can be derived [37].
The main limitations of this approach are the limited granularity of the collected information, and
labour-intensiveness of the data collection process, usually resulting in a small sample size. While
a range of pervasive sensing technologies, e.g., visual surveillance [14, 40], aerial photography [18],
location tracking [41, 52], crowd sensing [46, 53, 56, 59], and analysis of cellular records [8], can
support data collection, they have not been widely adopted due to high resource cost, need for
expertise in interpreting the data, and privacy concerns. Additionally, pervasive sensing techniques
are vulnerable to biases that limit generalizability of the conclusions that can be drawn. For example,
visual surveillance is prone to losing data due to occlusions or illumination conditions whereas
crowd sensing captures only users carrying devices with an active WiFi or Bluetooth interface.
Accordingly, data collected through pervasive sensing is prone to contain temporal or spatial
gaps, and may be biased to a specific sub-population of the people using a space. To address the
limitations of existing approaches, an approach that captures unbiased and detailed information of
human behaviour with minimal resource cost is required.

In this paper, as our first contribution, we develop crowd replication as a novel sensor-assisted
method for quantifying human behaviours within a public space. The idea in crowd replication is to
augment direct observation through mobile sensing, enabling capture of detailed information about
human behaviour. In crowd replication, the researcher carrying out an investigation is engaged into
replicating the behaviours of target subjects while carrying a mobile device that collects a sensor
trace of the movements and activities of the subjects; see Figure 2b for an illustration.

From the sensor trace, we extract detailed movement trajectories and motions of people. These
are then combined with manual annotations to derive indicators that relate motion characteristics
(e.g., walking pace, motion intensity, and heading) with public space use on fine-grained spatial and
temporal resolution. To relate these characteristics with the entire target population, the derived
indicators can be extrapolated to capture the aggregate behaviour of the entire target population.
Compared to pervasive sensing, crowd replication provides better control over sample selection
and requires little additional investments or technical expertise. Indeed, a key design goal for crowd
replication has been to make it easily adoptable by researchers and practitioners versed in direct
observation. Another benefit of crowd replication is that it can be carried out using off-the-shelf
smartphones without installing any sensors or other hardware within the public space being
evaluated. This contrasts with mobile crowdsourcing where users need to download and install
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an application on their smartphones. As crowd replication collects measurements only from the
researcher(s) conducting the evaluation, privacy of people using the space can be protected. At the
same time, this helps to improve quality of sensor data as placement of mobile device collecting
sensor data can be better controlled. The main alternative to crowd replication, visual surveillance,
provides a higher amount of measurements but requires either expensive visual analytics software
or large amounts of manual effort in annotating video data, making it costly and labour-intensive.
Visual surveillance also suffers from high deployment cost due to privacy considerations, the
need to obtain necessary permits, and the need to find unobstructed locations for placing the
cameras. We stress, however, that crowd replication does not aim at removing the need for visual
surveillance, pervasive sensing, or other techniques. Rather, crowd replication has been designed as
a cost-effective and easy-to-adopt technique that researchers can use to capture high-quality data to
quantify behaviour within public spaces. Crowd replication can also be used to complement other
techniques as it provides detailed and unbiased information on the behaviour of people within
the target site. Such samples could then be leveraged to interpret, validate and correct data and
observations made through other data collection.

A fundamental challenge for crowd replication is to ensure that the collected data is sufficiently
accurate and representative of the behaviour of people using the space. To ensure crowd replication
captures high quality information of people using public space, as our second contribution, we
develop a novel highly accurate pedestrian sensing solution for reconstructing movement trajec-
tories from sensor traces captured during the replication process. What makes this particularly
challenging is the high variability of motion, with walking pace, heading changes, step intensity and
other walking characteristics differing depending on the activities of the people being monitored.
Capturing these subtle variations in walking characteristics is essential for understanding uses
of public space as these changes are highly correlated with different types of activities taking
place within the space [35]. Further complications are caused by stationary periods which can
be frequently interleaved with periods of motion. To address accuracy requirements of crowd
replication, our pedestrian modelling approach learns a personalized model of the stride patterns of
a user. In crowd replication, only a small set of users are responsible for collecting data, i.e., the
researchers carrying out the replication. Furthermore, the devices collecting sensor measurements
are primarily used for sensor data collection instead of serving as personal communications devices.
This provides better control over device placement and orientation, and reduces the impact of
spontaneous user interactions and noise on the sensor measurements. Our sensing solution takes
advantage of these factors, mining the collected sensor measurements for step cycles which then
can be associated with indicators related to motion intensity, stride length, and walking pace. This
contrasts with existing research on pedestrian behaviour sensing which has predominantly targeted
scenarios where the focus is on generalization over various users and unknown device use and
placement at the expense of sensing accuracy [7, 22].

We validate and demonstrate the benefits of crowd replication through a case study carried out
within a representative example of a metropolitan scale public space. We first demonstrate that
crowd replication captures data that is representative of the target population and their behaviours.
We show this by assessing the convergence of the distributions of demographic variables and
motion trajectories captured through crowd replication. Our results show that for most variables
of interest (demographics and trajectories) the distributions can be learned with a reasonably small
sample (50 — 100 replicated users). As can be expected, the slowest convergence is witnessed with
infrequently occurring activities (social activities in our experiments), which can require up to
200 replicated users. This amount of data can be reasonably gathered in a matter of hours. For
example, in our case each researcher collected 25 — 30 participants per hour, which means that
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two researchers could collect sufficient amount of data in around 4 hours. In contrast, manually
annotating 30 minutes of video surveillance data required over 50 hours of work, and only produced
aggregate level information on the behaviour of people using the space. As the second step of our
evaluation, we evaluate the accuracy of the collected data by comparing dwell indexes extracted
from crowd replicated data against those extracted from manually annotated video data [21]. Our
results show a high level of correspondence between the two sets of indicators (0.914 correlation).
We also separately assess the accuracy of our pedestrian modelling solution, demonstrating that it
provides better accuracy than current state-of-the-art techniques. The results demonstrate that our
approach is particularly effective against variations in walking pace, providing highly accurate and
robust performance while the performance of state-of-the-art solutions degrades. As variations in
pace often relate to different activities, e.g., people walking in groups tend to have slower walking
pace, our approach is thus better capable of capturing subtle nuances in the walking patterns of
people using the space — a critical requirement for assessing optional and social activities. As the
third part of our evaluation, we compare data quality and overall effort of crowd replication against
video tracking and pervasive sensing techniques. Our results demonstrate that crowd replication
can significantly increase sample sizes compared to direct observation, while at the same time
being more cost effective than current urban monitoring solutions. As the final step of evaluation,
we demonstrate that our sensing approach enables crowd replication to capture spatiotemporally
fine-grained indicators about human behaviour within public spaces. Specifically, we demonstrate
that reliable and detailed indicators of liveliness and extent of social interaction can be obtained
with the proposed method. The resulting data from our experiments, together with details about
the spatial area and model parameters has been made freely available for research purposes at
http://akiyatoolbox.org/crowd_replication/.

Summary of Contributions

The contributions of the paper are summarized as follows:

e We develop crowd replication as a novel and resource-efficient method for quantifying
human behaviour within public spaces.

e We develop a novel, highly accurate pedestrian modelling solution, and demonstrate that it
operates robustly against variations in walking pace.

e We validate crowd replication through a case study carried out in a representative urban
space, demonstrating that it results in data that is representative of the target population
and their behaviours.

e We critically compare work effort, data granularity, sample size, potential biases, and other
factors between crowd replication and other data collection mechanisms. Our comparison
shows that crowd replication provides a good trade-off between data collection effort and
accuracy of collected data. The deployment and analysis costs of crowd replication are
also moderate, making it a cost-effective alternative that can replace or supplement other
techniques within up to moderately sized public spaces.

e We demonstrate that crowd replication enables capturing indicators that provide fine
grained information about the movements, activities, and human experience within an
urban space. Examples of such indicators include liveliness, extent of social interaction,
and temporal variations in motion patterns.

e We make the data used in our experiments freely available for research purposes at http:
//akiyatoolbox.org/crowd_replication/.
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2 RELATED WORK

Our research draws inspiration from three threads of previous research: (i) methods for evaluating
public space quality; (ii) sensing assisted modeling of human behaviour; and (iii) modeling of
pedestrian behaviour. In the following we describe related work in these topics.

2.1 Public Space Evaluation

To increase positive qualities of public spaces, urban planners, activists and architects have assessed
key qualities of public spaces through careful direct observations [26, 37, 57]. Of particular impor-
tance in these investigations have been the different types and varieties of activities taking place,
together with their distributions in terms of spatial, temporal and demographic variables. There are
three widely acknowledged categories for activities of interest in public spaces: necessary, optional
and social [17]. While necessary activities, such as walking to a post office, take place regardless of
the quality of a public space, optional activities, such as strolling to appreciate fresh air or liveliness
of streets, depend on actual and perceived qualities of the space. Social activities such as seeing
and talking or playing with other people may spontaneously occur when necessary and optional
activities are sustained over a period of time. Indeed, the amount and extent of activities in a public
space has been shown to correlate positively with the amount of social interactions [16]. Urban
planning experts have argued that successful public spaces are characterized by diverse activities by
people from various age groups with the size and gender distribution of the groups also having an
effect [58]. These factors help, for example, to distinguish between lively and crowded public spaces.
Despite theoretical developments and several established rules of thumb, little work has proposed
practical methods for uncovering spatiotemporal distributions, compositions, and dynamics of
activities in public spaces. Our work addresses sensor-assisted capture of these aspects.

Traditional approaches to assessing public space quality heavily rely on direct observation
and surveys. For example, researchers in architecture and urban planning have recorded pedes-
trian movements using surveys and direct observation to analyse movement patterns [23, 39, 49].
Mehta [36] conducted direct and walk-by observations in three neighbourhoods in Boston, manu-
ally measuring stationary an sustained activities, including social activities, at 78 block segments,
each of which is approximately 15 — 18 meters in length. The collected data was analysed by
deriving a liveliness index which reflects the aggregated duration of stay for all visitors in each
block segment. This data collection method can quickly cause fatigue, leading into inaccuracy and
missed measurements (e.g., when it is crowded) and provides limited scalability. Video cameras
provide an alternative for detecting and tracking crowd activities. However, analysis of video
tracking data tends to be very labour intensive and requires special expertise. Computer vision
algorithms can be used to detect and track pedestrians, bicycles, and vehicles automatically [14, 40].
Nevertheless despite the expanding arsenal of video processing techniques, including recent devel-
opments on deep learning based visual analytics [55, 62], video surveillance is challenging as video
resolution needs to be sufficiently high and cameras need to be placed in non-occluded locations.
Additional considerations include field of view of the cameras, light conditions, high deployment
costs, and privacy problems with ubiquitous video surveillance [9, 25]. Finally, installing video
cameras requires permits which can be difficult to obtain due to legislation and privacy concerns.
Alternatively, laser range scanners can be used to detect and track pedestrians without significant
privacy invasion although it can be difficult to quantify a large public space. For example, Shao et
al. [48] required eight scanners to measure a 60m X 15m public space.
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2.2 Pervasive Sensing for Crowd Observation

In indoor environments, crowd monitoring can be performed using high precision indoor local-
ization or infrastructure-based tracking. As an example, Larson [32] used RF-ID measurements to
track movements of people within a retail environment. Instead of tracking people, Weppner et.
al. [56] estimate overall density of people using a space from Bluetooth scans. A related approach
is proposed by Schauer et. al. [46] who combine Bluetooth and WiFi scanning for crowd density
estimation. These solutions only provide an estimate of the overall number of people using the
space and cannot be used to characterize the spatiotemporal distribution of activities, movements,
and other behaviours of the people using the space. Related commercial tracking solutions in-
clude Ubisense [52] and Quuppa HAIP [41], which provide high resolution indoor tracking, and
Walkbase [53] which utilizes beacon request messages send by WiFi-enabled mobile devices to
estimate crowd movements. While these technologies could be adopted for urban public spaces,
they suffer from high deployment costs and require the user to carry specific hardware, or have
specific settings on their mobile devices (e.g., Bluetooth/WiFi continually on). Additional concern
with these technologies is that the resulting samples often contain significant and uncontrollable
biases, making it difficult to draw generalized inferences from the measurements.

Mobile sensing has been shown to be useful in application domains such as transportation,
environmental monitoring, and health and well-being [31]. Location tracking using GPS or cellular
(GSM or CDR) data can be used for evaluating public space quality [43]. Such data can be used to
analyse, e.g., macroscopic patterns of cities to estimate aggregated mobility modes, or regional
events [8]. While mobile phone-based location tracking techniques are capable of capturing dy-
namics of people within the space, the granularity at which they can track activities is very coarse
and does not adequately address the concerns of designers and planners of human-scale spaces.
For example, capturing dwelling patterns or differences in activity patterns between weekdays
and weekends is not feasible with these methods. Another alternative is to enhance traditional
direct observation methods by using wearables, such as video cameras. As an example, architecture
researchers have used portable digital cameras to track pedestrians while filming the movements
of their feet [45]. The main issue with these techniques is that the analysis of the video images is
extremely labour intensive and requires multiple annotators for ensuring quality of the analysis.

2.3 Pedestrian Modeling

Our approach for trajectory modeling draws inspiration from techniques for pedestrian movement
modeling, and particularly microscopic agent-based modeling [3, 28, 50]. Instead of tracking
participants directly, these solutions create synthetic trajectories by simulating movements of
individual pedestrians. First approaches to agent-based modeling relied on cellular automata based
models where agents move in a grid according to certain decision rules. In the simplest case the
movements can correspond to a random walk, whereas in more realistic cases additional constraints,
such as accessibility and road infrastructure information are incorporated into the model [20, 47].
Asano et al. [2] propose a variant that incorporates two types of movement rules: tactical and
operational. The tactical module affects user’s speed and direction of movement, whereas the
operational module is responsible for micro-motions responsible for avoiding obstacles or other
pedestrians. Other examples of factors that can be incorporated into the pedestrian decision model
include walking speed, direction of movement, utility of different areas, and target destination of
the agent; see, e.g., Hoogendoorn and Bovy [24] for an overview.

More recently, approaches that rely on generative probabilistic models have been proposed.
Instead of attempting to simulate movements of individuals in a piece-meal fashion, these solutions
attempt to provide a model that can be used to sample representative examples of actual trajectories.
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Kitani et al. [29] and Ziebart et al. [64] use Markov decision processes (MDPs) to model pedestrian
movements, which allows different actions to be given different utilities. For example, the model
allows assigning higher weight to sidewalks than other areas. Other related approaches have been
extensively proposed in computer vision [10, 30, 44]. A challenge with these approaches is to
capture the reward structure of the participants, which requires either highly detailed trajectories
or detailed information about the space where the model is applied. Also, these solutions are
predominantly applicable only to visual surveillance data which, as we discuss later in the paper,
has higher burden on data collection. Jitta and Klami [27] propose a model based on partial Hidden
Markov Models. Instead of requiring a reward structure, their approach fits the model based on
spatial features (such as dwell time or average pace length) at different parts of the space. Also
the use of deep learning has been explored. As an example, Alahi et al. [1] propose a social LSTM
model that integrates a so-called social layer which allows trajectory predictions to adapt to social
interactions whenever multiple persons are within each other’s proximity. The main limitation of
both of these techniques is that they require extensive amounts of training data to produce high
quality models, and that the performance of the models is sensitive to the features that are available.
Also, while the models can typically capture average behaviour well, they are unable to capture
deviations from this behaviour, e.g., when special events are taking place within a public space.

2.4 Summary

To summarize, while there have been advances in sensing techniques for assessing public space
quality, these techniques have not been adopted by practitioners. Indeed, practitioners often have the
perception that limiting data collection to sensed data leads to poorer sets of collected attributes [60]
and results in inherent biases due to digital differences [63]. Our work addresses this discrepancy,
providing a mechanism where researchers have control over sample selection, but at the same time
can benefit from finer granularity data provided by sensing technologies.

3 SENSOR-ASSISTED QUANTIFICATION OF HUMAN BEHAVIOUR

The focus of our research is on developing a resource-efficient method for collecting high-quality
and unbiased data about human behaviour within public spaces. To accomplish this, we have
developed crowd replication as a novel approach for public space evaluation. In crowd replication,
the researcher responsible for evaluating the public space is tasked with replicating the movements
and activities of people using the space while being equipped with a smartphone that captures
a sensor trace of those movements and activities. The sensor data is then combined with visual
observations, e.g., about user demographics and labels describing activities performed by users.
This combination of direct observation and automated sensing helps crowd replication to capture
the nature and characteristics of optional and social activities [17], two of the key dimensions
for assessing public space quality. In the following we first introduce the overall idea of crowd
replication, after which we describe each main phase of the overall process. Finally, we detail
technical aspects of the proposed pedestrian sensing technique that we have developed to support
crowd replication.

3.1 Overview of Crowd Replication

Crowd replication combines mobile sensing and direct observation to provide detailed spatiotempo-
ral information about human behaviour within a public space. The central idea in crowd replication
is to task the researcher to replicate the movements and behaviour of people, while simultaneously
using a commodity smartphone to create a sensor trace of the movements and behaviours of people
using the space. Indicators derived from the replicated sub-population can then be extrapolated to
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Fig. 1. Overview of the different phases of the crowd replication process.

reflect the behaviour of the overall population. The crowd replication process is summarized in
Figure 1 and consists of four main stages. In the following we describe these stages in detail.

Study Preparation: During the first phase of crowd replication, the main tasks are to determine
the sampling strategy, i.e., deciding the strategy on selecting participants for replication, and to
identify necessary annotation labels to support visual observation. The sampling strategy should
capture a representative subset of the target population, while also ensuring representative sample
of population behaviours. Representativeness of the target population can be ensured using a
population-based sampling strategy, i.e., replicated users are chosen based on the relevant population
characteristics within the target area (e.g., gender, age group or other characteristics). However, this
requires prior effort in surveying the population characteristics, which is not always readily available
or feasible to conduct. Additionally, this approach does not guarantee the sample to be representative
of the behaviour of the people within the space. To simultaneously achieve representativeness
of both target users and their behaviours, we rely on cluster sampling where the physical entry
points of the space are interpreted as clusters and random sampling is applied within each entry
point [54]. Our strategy is motivated by the observation that public spaces typically have natural
entry points which guide the movements of people in and out of the space, and which thus influence
the activities and behaviour of people within the space. Utilizing entry points to select replicated
participants causes minimal bias to the distribution of user demographics, while simultaneously
allowing to capture complete motion trajectories. In our experiments we demonstrate that this
strategy produces data that is representative of the overall target population and their behaviours;
see Section 5.1 for details. Note that crowd replication is not restricted to these sampling strategies.
Indeed, one of the key strengths of crowd replication is that it enables fine-grained control of
the sampling strategy. This control enables studies targeting specific sub-populations, and also
mitigates possible biases in the sample population. Such biases are often difficult to avoid and
understand with pervasive sensing and opportunistic data collection methods [33].

Besides determining the appropriate sampling strategy, in the study preparation phase the re-
searcher(s) identify labels of relevant activities and demographics that are needed to assess the
quality of the target area. These labels are captured through visual observation and complement
sensor traces captured through replicated movements. While many physical activities are feasible
for direct replication, more complex activities may be easier to capture through direct observa-
tion and manual annotation. For example, social activities are easier to capture through visual
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observation than through direct replication. However, even for these activities, crowd replication
helps to produce more detailed information as the sensor traces captured during replication help
to characterize these activities, e.g., how walking characteristics or dwell times are affected by
social activities. In contrast to social activities, discerning between optional and necessary activi-
ties is more challenging as we do not know the actual motives of the people moving within the
area. Certain activities and movement trajectories are more likely to indicate optional activities,
e.g., sitting on a bench, or a trajectory between different parts of a shopping center. Similarly,
other activities and trajectories are more often associated with necessary activities, e.g., remaining
stationary besides a bus stop, or direct path from an entry point to a post office or bank. When
choosing annotation labels, requirements for capturing relevant optional and necessary activities
should thus be considered. Typically the annotations should include basic demographics about the
users, e.g., age and gender of the participant. More detailed annotations can be relevant for certain
spaces, e.g., if the participant seems to be shopping, transiting or working. In some cases, such
cases can be automatically extracted from the sensor traces. As an example, there are several works
on categorizing museum visitors based on their movement patterns [61] and similar techniques
could be used to uncover motivations of people using the space. If such information is vital for
the study, requesting a brief interview from the participant after the replication process is finished
might be a viable approach. In our experiment, only information that can be captured without
interrupting the users are considered. Specifically, we consider annotations about participant’s
age discretised to four categories, participant’s gender, three types of common social activity, and
group size discretised to four categories.

After the sampling strategy and annotation labels are selected, a mobile application is configured
for the area of investigation. The application is responsible for recording sensor measurements
and helps with adding manual annotations about direct observations. While both operations can
be run on a single device, in practice the best option is to use two devices, one for sensor capture
and one for annotation. This helps to ensure the annotation process does not interfere with the
sensor traces captured during replication. The device used to collect sensor measurements should
be placed and oriented to ensure optimal sensor trace for motion analysis, i.e., in our case we
placed the device in upper thigh pocket to ensure we can accurately capture details about each
step. As our experiments focus on outdoor spaces, we rely on GPS, magnetometer, accelerometer
and gyroscope measurements for recreating the movements and activities of the replicated user.
Note that while our experiments do not cover indoor environments, crowd replication could also
reasonably be adopted for indoor environments by replacing GPS with a relevant indoor localization
technique; see Section 8 for discussion. The interface for adding annotations allows quick insertion
of demographics about the participants, as well as labels about activities and behaviours which
were not physically replicated by the researcher. This latter option is necessary as replicating some
activities can be impractical or cause concern to the replicated person by revealing the replication
process and altering their normal behaviour. The exact type and detail of activities to replicate
or manually label depend on the objectives of the study, and can be tailored to the mobile app
during the study preparation phase. The annotator interface is also used to randomize the next
entry point from which to initiate the next replication process. Screenshot of our application is
shown in Figure 2a.

Data Collection: In the second stage, data collection, researchers carrying out the investigation are
tasked with observing people moving in the space and replicating their movements and activities
on a general level. Each replication is started from one of the entry points randomly selected by the
mobile application. The goal is to produce a sensor trace that mirrors the motion of the target user,
i.e., the trace captures the motion information the target person would have produced if she had
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been wearing the sensing device; see Figure 2b for an illustration. Note that the overall goal of the
replication is to capture parameters describing motion on a general level, not to capture the exact
sensor representation of walking characteristics. Indeed, we aim at capturing parameters such as
approximate position, pace, and step count, which generally can be replicated with relative ease and
reasonable accuracy, contrary to exactly mimicking the gait patterns of a user [38]. to collecting a
sensor trace with one device, the research uses a second device to insert annotations about visual
observations. The application supports quick insertion of user demographics, activities of interest,
and other factors of interest. The application automatically links the annotations with the location
where they were taken, thus researchers can capture the spatial distribution of activities by making
the annotations approximately at the location where they were performed. The overall effort to
collect data in crowd replication is moderate and comparable to direct observation, while providing
information at finer granularity. For example, in the case study considered in our evaluation (see
Section 4), six different researchers collected data for 2 — 3 hours, resulting in a combined data set
consisting of roughly 16 hours of measurements.

To avoid interfering with normal behaviour within the space, the data collection should be
carried out in a subtle manner that avoids making the replication process obvious [23]. In case of
a busy area, this typically only requires maintaining sufficient distance to the target person and
avoiding such activities which could cause confusion. For example, in our evaluation none of the
614 replicated users showed visible concern or signs of noticing the process. In case of a quiet area,
or where following a person is not suitable, the main option is to record user demographics first,
and repeat the trajectory only after the user has exited the area. Note that shadowing (or trailing)
is widely established as a tool to assess uses of a space. For example, museums often adopt related
techniques [6, 13]. Crowd replication can also be combined with other data collection techniques.
For example, trajectories can be replicated from a video recording in case such media is available.
Note that compared to visual surveillance, requirements for the recording are substantially more
relaxed in terms of video resolution, occlusion and lightning conditions. Crowd replication can
also be used to supplement video analytics, e.g., by recreating trajectories where visual analytics
are unable to capture the measurements sufficiently accurately.

Context Inference: In the context inference stage, the collected sensor data and the recorded
annotations are passed to an offline analysis framework. The analysis framework is responsible for
reconstructing enriched trajectories containing information about participants location, details
about pace, intensity and heading of motion, replicated activities, and recorded annotations. As the
first step within the analysis framework, we constructs pedestrian models from the motion sensors,
i.e., accelerometer and gyroscope, that provide high quality information about step frequency and
overall intensity of motion. The pedestrian models are next combined with a heading estimate
obtained through a sensor fusion of accelerometer, gyroscope and magnetometer measurements to
produce a pedestrian dead reckoning (PDR) system. The PDR system is then fused with available
location information from positioning system, i.e., in our experiments GPS, and the coordinates of
the initial entry point. The fusion between the PDR and available location information is used to
simultaneously manage accumulation of PDR error, and to enhance location accuracy provided by
the underlying positioning system, in particular when the location accuracy is low.

Motion sensor measurements are then interpreted by an activity recognition module to identify
physically replicated activities. In our experiment we consider identifying between stationary, walk-
ing and running. Note that given the freedom to instrument the researcher with any configuration
of sensors, more complex set of activities could also be replicated and identified from the sensor
measurements; see Section 8 for further Discussion. Finally, annotations about direct observations
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Fig. 2. User interface of the app we have developed for supporting crowd replication (Fig. 2a) and an example
of a researcher replicating the movements of a person (Fig. 2b).

containing details about user demographics and activities not physically replicated are attached to
produce final enriched trajectories.

Extract Indicators: The enriched trajectories alone are sufficient for answering many questions
regarding the use of public spaces that can be quantified through relative differences between
usage. As examples, consider evaluation goals such as inspecting fraction of people stopping at an
information post or exhibition stand, relative motion flows within the area, or ratio between young
and elderly age groups. However, there are also many characteristics that reflect the total number of
individuals. For assessing these characteristics, it is necessary to generalize the indicators derived
from replication to the entire population of the target area. We achieve this by deriving scaling
factors that enable adjusting values from replicated data into the overall population. To formalize
the extrapolation process, let P denote the total number of people in the target population, E; the
fraction of all users that arrive at cluster i, and R; the number of users replicated at cluster i. As
an example, in our case P corresponds to the total visitor count for a public space, the clusters
correspond to different entry points, and E; corresponds to the apriori frequency of people entering
the space through the entry point corresponding to cluster i. The value of P can be estimated from
publicly available data sources, such as pedestrian count records, residence counts, or travel survey
data, whereas the values of E; can be estimated from small-scale people counting surveys, e.g., we
estimated the values of E; from two 30 minute video feeds.
Formally, for each cluster i, we derive a scaling coefficient S; for extrapolation using:

S;=(P-E;)/R; (1)
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Let f(R;) denote an indicator calculated from the replicated measurements R;, the adjusted estimator
f(Dp) for the entire population P can then be calculated using

fDp) = " Sif (Ry). (2)
i=1

Note that the scaling factors only take into consideration active users for which replicated data
is available. In some cases we may be interested in estimators for sub-populations which cannot
be reliably replicated (e.g., stationary users, people with baby carriages, and so forth). Estimators
for these sub-populations can be calculated using a similar process. Accordingly, we first need an
estimate of the apriori frequency of the sub-population, after which manual labels can be used to
estimate the number of users in the sub-population, i.e., R;. The final estimator is then calculated
analogously, using Equations 1 and 2.

The length of trajectories could potentially bias crowd replication as long trajectories contain
more measurements than shorter ones, and hence are likely to have a larger impact on the scaling
coefficients. To mitigate this bias, we normalize the scaling factors with respect to the length of the
trajectories, i.e., we derive a normalized estimator f (D;‘,‘”m) using

FOE™ =13 frp/ly. 3)
j=1

Here f(r;) is the indicator calculated from replicated trajectory r; and [; is the length of the
trajectory.

3.2 Pedestrian modelling for Crowd Replication

The quality of the information captured through crowd replication depends on the accuracy of the
underlying sensing solution that is used to recreate the activities and movements of the replicated
subjects. We have developed a novel high-accuracy sensing solution which, instead of performing
online recognition during replication, learns a personalized model of the movement characteristics of
an individual from all data collected during replication. By tailoring the sensing to the characteristics
of the researcher, higher accuracy can be obtained than using off-the-shelf tracking techniques.
In particular, off-the-shelf techniques are vulnerable to changes in pace [7], which are essential
for understanding behavioural patterns and capturing social activities. Additionally, as shown
by Muaaz and Mayrhofer [38], mimicking another person’s walking patterns easily results in
asymmetry, which further complicates the pedestrian modelling. In our case we seek to capture the
movement trajectory of the subject, and details about his/her walking pace (in steps per second)
and pattern in terms of intermediate stops and atypical steps.

Figure 3 shows an overview of our sensing solution. We operate on three dimensional acceleration
and angular velocity measurements where acceleration is measured in m/s? and angular velocity
as radians per second. Following best practices in activity recognition research [5, 22], we divide
the measurements into frames of one second. To ensure step cycles are captured as accurately
as possible, we use an overlap of k — 1 samples where k is the length of the window in samples.
To reduce effects of jitter and noise, we pre-process the measurements using a low-pass filter.
We then distinguish between periods of activity and inactivity using a threshold on the standard
deviation of the overall acceleration [4]. The overall acceleration a is defined as the L?-norm of the

component-wise accelerations, i.e., a = /afC + ag + a2. We consider a frame as active whenever

the standard deviation exceeds a threshold o,¢;i0e = 0.30. This corresponds to a lenient threshold
that labels frames with any notable motion as active. We segment the data into periods of activity
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Fig. 3. Overview of mobile sensing approach.

and inactivity by combining successive frames exceeding the activity threshold o4¢i0. together.
To further improve accuracy, we identify exact start and end times by analysing the first and
last frames of each period and considering the first sample to violate the threshold c4¢tive as the
boundary point of the corresponding segment.

From the frames labelled as active, we next estimate the walking pace of the user. We consider only
gyroscope measurements as we found them to better capture the cyclical patterns associated with
walking than accelerometer measurements. Indeed, accelerations caused by heel strike and external
activities can mask the dominant pace in accelerometer measurements, while the underlying cycling
pattern remains visible in gyroscope measurements. To capture the dominant pace, we find the
dominant dimension of the gyroscope measurements by projecting the measurements along their
first principal component. From the projected gyroscope measurements, we mine for cyclical
patterns to produce (walking) step candidates. To find these patterns, we adaptively divide the data
into frames using a grid-search that identifies the optimal frame length and overlap parameters.
Specifically, we vary frame length f; between 1 — 5 seconds, and frame overlap f, between 0 — 95%
to find measurements frames that are optimal in terms of their autocorrelation score. The advantage
of our approach is that it can guarantee an optimal framing for the underlying pattern, whereas
fixed frame parameters used by most step detection approaches [7] would make the detection
susceptible to parameters values that are incompatible with the user’s actual walking pattern. Fixed
frame parameters would also struggle to identify walking patterns when the underlying walking
pace varies.

From each frame we identify autocorrelation peaks p, that exceed a minimum threshold ppin =
0.30 as initial candidate step frequencies. Frames where the minimum threshold is exceeded are
then split into sub-frames, referred to as step frames, corresponding to sensor measurements for
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candidate steps. Autocorrelation lag only provides an estimate of the pace over the entire frame,
while duration of each individual steps within the frame can vary. To capture this variation, we find
exact step frame boundaries by using minima in overall acceleration as cut-off points. Specifically,
we define step frame boundaries by finding local minima from the overall acceleration. To avoid
situations where the step duration varies significantly from one step to another, and to account
for normal variation in human walking pace, we require these minima to be within 20% of the
point corresponding to the initial candidate step frequency. For every detected candidate step,
we then store the duration of the step, value of the autocorrelation, minimum, maximum and
standard deviation. We note that the proposed approach to instrument the researchers with sensing
devices(s) allows controlling many of the most challenging variables in motion sensing systems,
e.g., device model, device placement and user characteristics. This is a key benefit allowing robust
selection of threshold values when compared to systems that are designed to work in the wild and
have to generalize over such variables.

From the mined dataset we learn a regression model between pace and motion intensity, i.e.,
between duration of candidate steps and standard deviation of overall acceleration during the
candidate step. The relation between walking pace and motion intensity is roughly linear for normal
walking paces. In case of very slow or fast walk, the relation roughly follows an exponential decay
function curve. Typically there are one to three such relationally dependent subsets within the data,
each corresponding to a pattern generated by multiple of steps. We learn models for the first two
orders as we found these to be the most relevant, while third and consecutive order multiples are
redundant to the first two. Indeed, depending on walking pace and device placement, the strongest
pattern is produced by either a repetition of a single step or repetition of two steps, often referred
to as stride. The pattern for a single step is typically stronger when the device is equally affected
by steps taken by both legs, e.g., while held in hand. Stride, on the other hand, produces stronger
pattern when the device is asymmetrically affected by steps, e.g., when the device is placed within
the user’s trouser pocket.

To reduce computational complexity of learning the regression models, we cluster frames based
on similarity in pace p, motion intensity m and autocorrelation p. This is particularly effective
during continuous unobstructed walk, which typically exhibits a stable pace and overall motion,
producing multiple steps with high similarity. The clusters are formed by processing through the
frames in order of descending autocorrelation score. Each sample is tested against existing clusters
and added to the model it best fits. In case none of the models provide a good fit (currently we use
d > 0.05 as threshold) for the sample, we initiate a new cluster with the sample. Formally, distance
between sample A and cluster C is calculated as:

d = abs(pa — pc)/pc + abs(pa — pc)/pc + abs(ma —mc)/me (4)

After reducing number of candidate steps through clustering, we learn the two regression models
that best characterise the candidate steps. This process follows a two-stage approach. First, we
initialise two models with seed samples corresponding to the clusters formed around the frame
with strongest autocorrelation. We then find feasible candidates that exhibit downward sloping
linear relation between walking pace and motion intensity. As there are naturally noise in both
step length and the motion intensity values, we allow a degree of slack (currently 5% of the models
initial sample) to fulfil the requirement for negative linear relation. We note that at this stage
clusters can be valid for more than one regression model.

In the second stage, we produce the final regression models between walking pace and motion
intensity. We initialise the two models with all valid clusters for the given model and then follow
an iterative process to find clusters which produce most cohesive regression models. During each
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Fig. 5. lllustration of detected walking pace (scaled by 10) aligned with raw data about overall acceleration.

iteration we learn a regression model, and in case the fit is below minimum requirement, remove
the cluster with highest residual from the model. To account for the varying number of samples
forming the clusters, we use the cluster size as a weight when learning the model. The process is
continued until a sufficiently good fit of the data is obtained, or number of remaining data points
falls below a threshold. If some clusters remain in both models after the filtering process, we assign
each of these conflicting clusters to the model where it produces the smaller residual. The regression
models learned from the data are illustrated in Figure 4.

Once the regression models have been learned, candidate steps are validated against the regression
model to identify those that exhibit a good fit. We note that there is also an inherited autocorrelation
threshold p > .30 as the candidates are generated only for frames above the threshold. The final
outcome in terms of pace aligned over raw motion intensity data is shown in Figure 5.
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Fig. 6. Target public space and its nine entry points. Fig. 7. Center area and its main entry points (left),
and the area split into 15x15m grids (right).

3.3 Location Sensing

We recreate movement trajectories of the subjects by combining location information and pedestrian
dead reckoning (PDR), augmented with the pedestrian modelling module detailed above. As we
initialise each replication from one of the entry points automatically provided and stored by
the application, we utilize coordinates of the respective entry point as the initial location. Our
experiments focus on an outdoor space, and hence we rely on GPS as our underlying positioning
system. For experiments focusing indoor spaces, leveraging an existing indoor positioning technique
could reasonably replace GPS; see Section 8. We sample GPS at 1Hz, which ensures high tracking
accuracy. Note that, while GPS suffers from heavy battery drain, the sensing application can run
continuously for several hours on a contemporary smartphone, which is sufficient for typical data
collection in crowd replication. For extended data collection tasks, replacement phones might need
to be considered to avoid draining the phone’s battery.

To yield final spatiotemporal movement trajectories, we follow a standard fusion of GPS mea-
surements with PDR. Specifically, GPS measurements are used to manage accumulation of error
from PDR, whereas PDR is used to improve location accuracy between the GPS measurements, in
particular when the GPS reception is low. Our PDR approach is based on detecting steps and pace
using the pedestrian modelling module as described above, and a sensor fusion based orientation
filtering method proposed by Madgwick [34]. We balance between GPS measurements and PDR
estimates by weighting GPS location estimates with horizontal accuracy reported by GPS. Specifi-
cally, we allocate the location measurement a weight & = [0.0, 0.5] using a decay function f(x)
so that f(x > 15.0m) = 0.0 and f(x < 5.0m) = 0.5. Exponential decay is used to determine the
appropriate weight for the intermediate values between x = [5, 15] meters.

4 EXPERIMENTAL SETUP

We assess the potential of using crowd replication to gather meaningful data about human be-
haviour within public spaces through a case study carried out within a representative example of a
metropolitan urban space. We carried out three separate crowd replication trials; (T1) a 30-minute
trial during weekday with simultaneous video camera recording; (T2) a three hour trial during
weekend; and (T3) a three hour trial during weekday. Each trial was carried out by four researchers,
each carrying two devices. One device was placed inside trouser pocket and was used to collect
sensor traces for replication, whereas the other device was held in the hand of the researcher and
used for ground truth annotations about user demographics. The device held in the hand was also
used to randomize the next entry point to sample from. T1 took place within the area depicted in
Figure 6, while T2 and T3 took place within a sub-area of the overall space shown in Figure 7. In
total, the behaviour of 614 individuals was replicated (T1: 86, T2: 228, T3: 300).
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4.1 Description of Target Area

We have conducted our field study at the outdoor areas of Kashiwano-ha, which is located within the
larger metropolitan area of Tokyo. Kashiwano-ha is at the intersection of a popular shopping centre
and a transportation hub encompassing train, bus and taxi stations. We selected this area since it
includes various artifacts and spaces that have been designed to improve human experiences. The
planners and designers are keen to evaluate the area quantitatively, and recently direct observation
and manual pedestrian counting were conducted at several locations within the area. The area is
mainly aimed for pedestrians, with cycling prohibited within the area. The area features services
such as several sets of tables, total of 95 chairs and benches, information stand, guide map and an
interactive touch display. The centre of the area, as portrayed in Figure 7, contains six possible
entry points, and the full area, portrayed in Figure 6, contains nine entry points. All data collected
through our experiments, as well as the layout of the target environment, have been made available
online at http://akiyatoolbox.org/crowd_replication/.

4.2 Crowd Replication

In our experiment, we focus on the outdoor areas at the centre of the Kashiwano-ha. The target
area is used for stationary activities including socializing, eating, or spending time, and to move
between various locations surrounding the central area, i.e., the two sides of the shopping centre,
train and bus stations, hotel, post and bank. We have used crowd replication within our target area
to assess the quality of the space and to extract indicators of the quality of the human experience.
Below we detail how crowd replication was carried out within the target environment.

Data Collection Design

As our location sampling method, we have opted to use GPS due to clear view of the sky
within majority of the target area. The tall buildings near the entry points can cause decrease in
localization accuracy, which we compensate by using the coordinates of the entry points to initiate
each trajectory. The PDR component of our trajectory tracking approach is valid for the entire area
considered, i.e., there are no escalators or moving sidewalks within the considered area. Within the
data collection application, we have included manual annotations about:

e Group size of the replicated participant/group,

e gender of the participant,

e age category of the participant, and

e common social activities within the area, i.e., "Talking’, ’Eating/Drinking’, and ’Playing’.

Sampling Design

To collect a representative subset of population, we utilized the entry points (six for T1 and nine
for T2 and T3) of the area to select the targets for user behaviour replication. Specifically, each new
target was selected as the first person arriving from a randomized entry point. Querying for the
next entry point was implemented as part of the mobile app we used for sensor data collection.
The mobile app was also responsible for recording ground truth about user demographics and
social activities. The probability distribution for randomizing the entry points was derived from
an earlier survey where we counted the number of people arriving from each entry point. The
survey was carried out separately for weekdays and weekends and we used different crowd density
distributions for them.

User Behaviour Replication The primary characteristics we focus on replicating include move-
ment and activity related characteristics. In particular, we record the movement trajectory of a
subject, his/her physical activities, and any intermittent stationary periods. We also replicate the
step length and walking pace of the subject as accurately as possible. In the following section
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we demonstrate that these characteristics can be accurately replicated. We focus on periods with
movement or physical activities for two main reasons. First, moving users are the most challenging
subgroup to survey, while stationary individuals sitting or standing can be efficiently recorded
using a combination of pen and paper and mobile tools. Second, we focus our investigation on
indicators and user groups that most benefit from the use of mobile sensing.

Model Construction For obtaining aggregate level statistics, we require the scaling factor P for
the total number of people visiting the space. We estimated P by aggregating values from three
sources; statistics publicly available from the local railway company?, population count survey
recently carried out within our target environment by urban planners and researchers, and our own
a video-based population count. Additionally, to obtain sub-population estimates, we performed a
small-scale video-based crowd counting to estimate the fraction of stationary and mobile users
within the space. The sub-population estimates were derived from a 30 minute video feed that was
collected simultaneously with the crowd replication process. Scaling factors for estimators based on
active and stationary populations, i.e., f(D) and f(Ds), were then derived using Equations 1-3. Final
estimators were obtained by normalizing replicated trajectories by their length and multiplying the
estimators with the corresponding scale factors. Note that while visual monitoring was used, we
only performed low-effort crowd counting instead of tracking movements of individuals. Crowd
counting is low-effort compared to visual tracking and can be carried out also with alternative
means, e.g., through direct observation.

5 VALIDITY AND ACCURACY OF CROWD REPLICATION

We begin our evaluation by validating crowd replication as a data collection mechanism. We
demonstrate that crowd replication captures a sample that is representative of the key characteristics
of people using the target space. Specifically, we demonstrate that both the trajectories collected
with crowd replication and the demographics of the sample converge to the underlying distributions
of people using the space. Next, we consider the accuracy of the data collected through crowd
replication, demonstrating that indicators extracted from replicated measurements closely mirror
those captured from manually labelled visual surveillance data. We also demonstrate the benefits of
our pedestrian modelling approach by evaluating it using an existing benchmark dataset [7]. Finally,
we critically compare crowd replication to other data collection methods, demonstrating that it
can significantly increasing sample size compared to direct observation while at the same time
requiring significantly smaller resources than visual tracking or other pervasive sensing solutions.

5.1 Sample Validity

The representativeness of the measurements collected using crowd replication depend on how well
the overall sample and the replicated trajectories capture key characteristics of the behaviour and
demographics of the target population. With the exception of small-scale spaces in homogeneous
neighbourhoods, both the behaviours of people and demographics are likely to contain significant
variability, making it difficult and non-trivial to accurately capture the underlying distribution of the
target population. To illustrate this point, Figure 8 shows the distribution of four key demographics
and two key movement characteristics across the different entry points for the larger target area
considered in our study (see Figure 6). From the figure we can observe that each entry point differs
significantly from every other along at least two characteristics. We can also observe that the entry
point distributions differ from the aggregated distribution of the overall population.

We first demonstrate that the trajectories collected with crowd replication converge to the
trajectories of the target population. We carry out this evaluation by calculating the minimum

!Metropolitan Intercity Railway Company http://www.mir.co.jp/company/number.html [Retrieved 29-06-2016]
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Fig. 8. Distributions of the key demographics and movement characteristics across different entry points.
The variables E1-E9 correspond to the nine entry points for the full target area shown in Figure 6.

pair-wise trajectory distance between replicated trajectories and estimate the speed at which the
distances converge. Specifically, we iteratively progress through the replicated trajectories and
add them to a set of seen trajectories Ts. During each iteration the next unprocessed trajectory is
compared to those already in Ts and the minimum distance to a trajectory in Ts is returned. As the
distance measure we use the Fréchet distance, which is a widely used measure for assessing the
similarity of movement trajectories [19, 51]. In this evaluation, we examine data collected during a
three hour data collection session conducted over a regular weekday.

The results in Figure 9(iv) demonstrate that after approximately 50 user replications distance has
dropped significantly, indicating that majority of the common trajectories have been mapped. The
distance metric continues to decrease through 50 — 300 user replications as increasingly similar
trajectories become available for comparison. After 300 replications distance decreases more slowly,
indicating a point where majority of movement trajectories and their variations have been observed.
We also used a similar methodology to assess the convergence of sample demographics. The
results of these evaluations are shown in Figure 9(i)-(iii). From the results we can observe that
the probabilities of the different characteristics converge to reflect the actual densities of people
using the space after around 50 — 250 replications. In our target space, age category was the most
varied taking approximately 250 rounds to converge to underlying population. The fastest category
to converge was group size which converged in less than 100 replications. Overall, the results
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thus indicate that crowd replication captures a sample that is representative of the behaviours of
the people within the space. To put our results into context, the sample size required by crowd
replication is comparable to the use of video surveillance which has the highest overall resolution
for capturing behaviour. However, the cost of deploying crowd replication is significantly lower than
deploying visual surveillance and the data collected through crowd replication can be analysed with
significantly lower effort. We also note that the distribution of user demographics were similar for
all researchers performing crowd replication, indicating that crowd replication is easy to implement
in practice and capable of effectively capturing the actual distribution of users.

5.2 Accuracy of Crowd Replicated Data

As the next step of evaluation we assess the overall accuracy of crowd replicated data. We perform an
end-to-end evaluation by comparing indicators extracted from crowd replicated data and manually
annotated visual surveillance data. As indicator we consider the aggregated dwell time, which
corresponds to the aggregate duration of all people passing through an area [36]. According to its
definition, people lingering within an area have higher impact on the dwell time than those merely
passing through, and hence areas with higher dwell time are livelier than other areas. We carry out
the evaluation considering all measurements collected during T1, i.e., a 30 minute weekday trial
where both visual surveillance and crowd replication were used to collect data.

We first assess the correspondence of crowd replication and visual surveillance across all users
and the entire target space. During the trial crowd replication was carried out by four researchers
resulting in approximately 2 hours of data. To compare against visual surveillance, we use the
population model described in Section 3 to extrapolate crowd replicated data to cover the entire
population. After scaling, crowd replication results in 38 hours 5 minutes and 50.7 seconds of data,
while visual surveillance results in 38 hours, 3 minutes and 57 seconds, i.e., a difference of under
two minutes or a deviation of 0.08%. Note that scaling is performed separately for each entry point,
and hence the result suggest that both our sampling strategy and population model are accurate.

The above result suggests that crowd replication is capable of capturing indicators that represent
the behaviour of people within the space as a whole. To better understand how crowd replication
performs at finer granularity, we next consider dwell time estimates derived for smaller subsections
of the space. For this evaluation, we uniformly partition the target space into 15 X 15 meter grid
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Fig. 10. Comparison of normalized aggregated dwell time between manually annotated video and crowd
replicated data, and comparison of spatial distribution of aggregated dwell time.

cells and calculate dwell time separately for each cell. The grid structure we consider is shown in
Figure 7. Note that our partitioning is intended as a proof-of-concept for assessing performance of
crowd replication, and in practice another kind of partitioning may be more relevant - for example,
dividing the space into areas with different functionality. Besides considering dwell time estimates
calculated directly from crowd replicated data, we also consider smoothed estimates derived by
averaging the values of all cells within one cell’s neighbourhood. Formally, smoothed aggregated
dwell time D® for cell i is calculated using

Ds—lND 5
P ©
1

where N contains the (3x3) neighbourhood of i, including cell i, and D; is the original aggregated
dwell time of i. The rationale for considering also smoothed dwell time estimates is that this enables
accounting for localization errors in cases where location estimates fall into neighbouring cells,
e.g., due to presence of tall buildings.

Figure 10 compares dwell times between crowd replication and visual surveillance. Left-hand
side of the figure shows original crowd replicated values, whereas right-hand side shows smoothed
estimates. From the figure we can see that both estimates generally align well with visual surveil-
lance. However, we can also observe the original estimates to contain considerably higher errors in
some regions. Indeed, highest errors result for the areas located around tall buildings where GPS
errors result in dwell times being underestimated. In these cases, the values of the neighbouring
cells tend to be overestimated, further exacerbating the dwell time errors. For smoothed estimators
we do not observe these errors. Both estimates also correlate well with estimators derived from
visual surveillance data, with the original estimates having correlation p = 0.93 and the smoothed
estimates having p = 0.98. Smoothing also reduces errors across the space as the median absolute
deviation of grid cells drops from 1562 seconds to 822 seconds.

To obtain further insights into the errors, Figure 11 shows the difference in dwell time estimates
across the space for the two estimators. The estimator derived from original data (left-hand side)
suffers significantly around the lower boundary of the area which contains buildings. Also in
other areas we can see evidence of location measurements fluctuating across neighbouring cells as
regions with underestimated values are next to areas with overestimated values. For the smoothed
estimates results are more balanced. The area with the highest error remains the main source of
error. However, in other areas the error is almost eliminated. Most errors are within one grid cell,
i.e., within 15 meters, which is within the error range of GPS receivers, particularly in the presence
of (tall) buildings. Finally, we note that the ground truth we have applied is manually derived and
as such can contain minor inaccuracies as perfectly aligning the visual surveillance data with grid
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Fig. 11. Comparison of difference between aggregated dwell time derived using visual surveillance and by
crowd replication. The left figure contains difference before smoothing, and right figure contains difference
after smoothing.

03 Our approach Baseline WPD
. : - T r T T T T T
: T
03 |
0.25 + | !
025 + + !
0.2 1 + |
02 * - T + } 4
0.15 % | +
0.15 - f 1
0.1 4 |
L |
- T T i T
—_ | !
0.05 l [::] T - — 0.05 | ‘
= B H = B |
o1 T B 5 83 T T ] o5 T i —
-+ -+ i T ]
-0.05 1 005 L 4
01 . . . . . . . 01 \\ . N . . . ‘\ .\
Ny o > o> >
Ao'& Qo‘* &\b ga"’g & odg’ @o\@ oc‘}g' Ac»,*'z> é&'b(* " N \;‘;\“Q oc‘#z’ & oc‘}g'
9 < > N <Q < O >/ & <9 <
o ¥ & & LG < S
& 9 f «§ & < f «§
s 57 A7 Q\’b &7 &>
* & & & &
& & S S
B S << <

Fig. 12. Boxplots for accuracy of step evaluation in first case, where we only evaluate over known walking
periods. The left figure provides results per device placement with our approach, and right figure provides
results for baseline with windowed peak detection.

cells is difficult and susceptible to human errors, especially when the user is located close to the
border of two cells.

To summarize, crowd replication as a whole is capable of producing accurate and high quality
data about human behaviour. However, when finer spatial granularity is required, crowd replication
can suffer from some localization error. In our experiments, most errors were within one grid cell,
i.e.,, 15 meters and thus reasonable for practical purposes.
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Fig. 13. Box plots for accuracy of step evaluation in second case, where we evaluate entire trace and rely on
walking detection to identify walking periods. The left figure provides results per device placement with our
approach, and right figure provides results for baseline with windowed peak detection.

5.3 Accuracy of Pedestrian Modelling

We next assess the accuracy of our solution for pedestrian modelling and demonstrate that it
outperforms current state-of-the-art techniques. As the trajectories collected from our experiments
do not contain ground truth step counts, we carry out the evaluation using a benchmark dataset
collected by Brajdic and Harle [7]. The dataset contains accelerometer measurements from walking
behaviour which have been collected from 117 trials with 21 users. Ground truth is provided for
102 of these traces. The dataset covers 7 typical device placements and each trial features a period
of fast, normal and slow walk. As the data only contains accelerometer measurements, we modify
our pedestrian modelling by substituting gyroscope with accelerometer measurements smoothed
with a centered moving average filter with a 10ms window length. For other parts our pedestrian
modelling remains unchanged and follows the steps described in Sec. 3.2. We separately consider
step recognition accuracy with and without walk detection. In the former case we consider traces
that have been labelled as walking, and in the latter case we consider the full benchmark dataset.
To provide a baseline for evaluation, we implemented the best performing techniques from the
paper of Brajdic and Harle [7]. For step counting we implemented a windowed step detection
algorithm, and for walk detection we used a threshold on overall acceleration (L2-norm). The best
performance for the windowed step detection was obtained with parameter values MovAvr,,;, =
0.28s and PeakWin,, ;, = 0.4s.

Results for the walk segments are shown in Figure 12. Median error rate of our technique is 1.7%
across all walking periods, with the highest errors resulting when phone is placed on the upper
body or a backpack. When the device is held in hand or placed in trouser pocket, which would be
the most typical placements for collecting data in crowd replication, the errors are consistently
below 1%. In contrast, median error of the baseline is 2.3%. The baseline performs slightly better
for handbag and backpack placements where the signals are generally symmetric, but has high
error rate for trouser pocket where the signal is likely to be asymmetric. As shown by Muaaz
and Mayrhofer [38], mimicked walking behaviour often contain asymmetry, implying that our
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Fig. 14. Comparison of data collection methods.

technique is likely to perform even better for replicated data than the baseline. Current state-of-
the-art step recognition approaches remain highly effective for online detection. However, in crowd
replication all measurements can be analysed offline, which enables our approach to improve on
step recognition performance.

The results across all segments, i.e., when step recognition needs to be combined with walking
detection, are shown in Fig. 13. The error rate of our technique remains low, with handbag placement
being the sole exception. Baseline performance, however, is significantly impacted by a high number
of false positives. In particular, the baseline walk detection achieves only 21.5% accuracy, which
would affect the total step count. Our approach is only slightly impacted by additional data, obtaining
median overall accuracy of 4.1%, demonstrating the benefits and need for our pedestrian modelling
approach. Indeed, the error rate of the state-of-the-art algorithms would significantly overestimate
the amount of walking, and thus result in inaccurate indicators and activity estimates.

5.4 Comparison of Data Collection Effort

Crowd replication has been designed as a cost-efficient data collection mechanism that combines
direct observation, mobile sensing and mathematical modelling in a way that aims at overcoming the
primary limitations of the individual techniques while preserving their main primary advantages.
To demonstrate that crowd replication indeed achieves this, we next critically compare different
data collection mechanisms.
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Figure 14 compares different approaches for data collection in terms of their work rate, effective
sample size used for analysis, resolution of collected data, potential biases in the data collection,
richness of the collected measurements, and severity of privacy risks. For work rate we further
consider the level of effort in different phases of the study. The work effort for study preparation
is generally larger for approaches requiring installation of appropriate equipment, recruiting
volunteers, and obtaining necessary permissions. Compared to direct observation, our approach
requires some additional steps in study preparation phase, as detailed in Sec 3. While the work effort
is slightly larger compared to direct observation, it remains small compared to visual surveillance,
voluntary location tracking or setting up a crowd sensing approach. The data collection phase
in crowd replication requires moderate effort as data is collected by replicating each participant.
Compared to visual observation, the work effort is still smaller since researcher’s location is
automatically tracked and the mobile application interface facilitates inserting labels. Once correctly
set, voluntary location tracking and location surveillance require small effort as data is mostly
collected automatically. The data collection effort of visual surveillance is comparable to direct
observation, requiring monitoring of the equipment and labelling any obstructions, e.g., camera
becoming occluded due to traffic or severe weather. Work effort for analysis of the collected data is
generally small across all considered approaches, with the exception of direct observations and
manually decoded visual surveillance. In particular manually decoding the recorded video(s) can
entail an almost overwhelming work effort. For example, detailed annotation of the 30 minute
feed from our experiment required over 50 hours of manual labour and only produced aggregate
level information of people using the space. Crowd sensing entails similar overall work effort
with crowd replication, but suffers from potentially severe biases as only the subset of users with
compatible technology (e.g., have a smartphone with WiFi or Bluetooth turned on) is captured,
and no controlled sampling design can be applied. Additionally, crowd sensing entails high privacy
risks and granularity of collected data is often coarse, making it difficult to obtain a detailed
understanding of the urban space. Finally, location surveillance through cellular records has overall
the smallest work effort, but can only capture information at coarse granularity.

The sample size for crowd replication depends on the number of researchers employed for the
replication task, and the overall number of people using the target space. Generally the replication
process yields an small-to-medium sized core sample, which can then be generalized to total pop-
ulation using the scaling coeflicients detailed in Sec 3. Automated visual surveillance seemingly
provides the best performance, being capable of capturing large sample size with fine-grained
information. The main limitations of automated visual surveillance are its privacy intrusive na-
ture, challenges in setting up visual surveillance, and cost and expertise required to operate it.
Specifically, cameras have to be installed at locations that provide a clear view of the entire target
space. Static objects such as trees, walls, and other physical structures can block the view from
cameras, often requiring compromises between quality of recording and practical constraints about
viable installation locations. Additionally, partial occlusion due to dynamic objects such as large
vehicles (e.g., buses) is hard to avoid or predict. For voluntary tracking the resulting sample is
necessarily biased to users willing to participate in the data collection. As such, the method is best
suited for studying specific sub-populations with similar behavioural characteristics. For example,
voluntary tracking is well-suited for analysing behavioural patterns of tourists. A traditional visual
observation relying on pen-and-paper can arguably record activities more precisely compared to
crowd replication. The researcher equipped with pen and paper is less constrained compared to the
fixed labels provided by the annotations application. The use of fixed labels however is a matter of
research design, and free-form text, drawings or similar input methods can also be supported on
mobile devices. Finally, direct observation can produce sample bias as participants are selected by
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Fig. 15. Spatial distribution of aggregate dwell time during weekdays for non-social activities (left), talking
(middle), and dining (left).

the researcher, whereas crowd replication relies on the cluster sampling method to minimise the
selection bias.

A central challenge with automated surveillance is that, while performance is generally good,
it is not perfect. Indeed, automated surveillance can lead to errors which are particularly hard to
observe or avoid due to the automated nature of the process. Manual annotation could be used
to support the automated analysis, but this can lead to overwhelming work effort. In contrast,
collecting the samples for crowd replication took 2 — 3 hours for four researchers (combined effort
of 16 hours). As a hybrid option, existing techniques could well be used to complement crowd
replication by automatically estimating total population P or for obtaining scaling coefficients. As
an example, in our test-case we combined direct observation about inactive (stationary) population
with crowd replication data about active population, effectively capturing both subgroups with
most time and resource efficient manner. Crowd replication can also be used to complement other
techniques by providing finer detailed samples of the overall population flows, which could then
be used as core data points for interpreting rest of the data.

To summarize, crowd replication is able to combine benefits from more resource and labour
intensive methods, while requiring only commodity devices and a few active volunteers. Moreover,
crowd replication lends itself for combined designs, thus providing a cost effective and easy-to-
implement technique that can be used as standalone evaluation method or combined with other
methods when even larger sample size or finer data granularity is required.

6 QUANTIFYING HUMAN BEHAVIOURS

The results of our evaluation thus far have validated the use of crowd replication as a data collection
mechanism and demonstrated that it captures data that is representative of the key demographic
characteristics and the considered activities of the target population. Next, we demonstrate how
crowd replication can be used to extract indicators for assessing public space quality. Specifically,
following Gehl’s categorization of activities within public spaces into necessary, optional, and
social [17], we demonstrate that crowd replication captures spatiotemporally fine-grained indicators
of all of these categories. To achieve this, we consider data from our three-hour trials T2 and T3
that took place within the central part of the overall area; see Section 4 for description of the area
and Figure 6 for an illustration.

6.1 Fine-Grained Quantification of Activities

We first demonstrate that crowd replication captures spatiotemporally fine-grained information
about activities taking place within a public space. By relating these details with specific activity
categories, it is possible to characterize and understand how well the space supports the activities.
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Fig. 16. Quantified fine-grained activities.

Indeed, presence of specific activities can suggests particular usage patterns and hence is essential for
quantifying the human experience of public spaces. Also, diversity of activities is often considered
important for a public space to be successful.

In our empirical evaluation, researchers used the mobile application to annotate observed
activities such as talking, eating and playing, and subsequently recorded trajectories of the selected
activities by following the crowd replication process. The data we collected thus allows us to map
the spatial distribution and characteristics of social and other activities.

Figure 15 compares the spatial distributions of different activities during weekdays. Through
correlation analysis, we found that the ratio of social activity in grid cells is correlated with group
size very strongly during both weekdays and weekends, with r = .830, p < .001 and r = .809,
p < .001, respectively. On weekdays, they are also moderately correlated with stride duration with
r = .450,p < .001 and weakly correlated with the variance of heading with r = —0.263,p < .005.
Social activities can occur more frequently in a space where people walk more slowly with larger
stride duration, and their direction of movements are more predictable. These results reinforce
the common understanding that people walk slowly and linger about in socially vibrant spaces.
However, thus far such observations have been based on qualitative measurements. The integration
of sensing as part of crowd replication allows us to gather also quantitative evidence to support
these kinds of observations.

We next examine the potential of predicting the presence of social activities for each trajectory.
We first used logistic regression to assess the effect of group size and duration of a trajectory on
the likelihood that the trajectory involves social activities during weekdays. The model explained
50.3% (McFadden R?) of the variance in social activities and a 10-fold cross validation showed that
the model correctly predicted 91.3% of cases. Secondly, we performed similar logistic regression to
ascertain the effect of group size and motion intensity on the likelihood of social activities during
weekends. The resulting model explained 81.8% (McFadden R?) of the variance in social activities
and a 10-fold cross validation showed model correctly predicted 97.8% of cases. The larger the
group size and the longer the time length of a trajectory, the more likely social activities such as
talking, eating/drinking, and playing take place. However, larger motion intensities were associated
with reduced likelihood for the occurrence of social activities; see Figure 16b. Thus, the details
captured by crowd replication not only help to understand space usage better, but can be used to
predict different activities within the space.
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Fig. 17. Spatial distribution of the amount of mobile (upper left), stationary (upper right) and social activities
(lower left), and a liveliness index (lower right) during weekdays.

6.2 Liveliness of Public Spaces

Liveliness, defined as a product of the number of people and the duration of their stay [17], is
often used as an overall measure of the activity taking place within a space. We next demonstrate
how crowd replication can be used to characterize overall liveliness, and to provide fine-grained
details about spatial and temporal variations in it. We derive an index of liveliness by computing the
total amount of stationary and mobile social activity within a space [36]. Figure 17 shows spatial
distribution of the amount of mobile, stationary and social activities and the resulting liveliness
index during weekdays. The figures show the total amount for the 3-hour trial. Alternatively, we
can aggregate data for shorter time windows to examine the spatiotemporal dynamics of the public
space. As expected, the target area is livelier during weekends than weekdays with liveliness indices
of 308,132 and 554,865, respectively.

6.3 Quantifying Fine-Grained Motions

The use of mobile sensing in crowd replication enables collecting detailed motion information as
a part of the recorded trajectories. This makes it possible to analyse patterns that are difficult to
quantify using direct observation. As a simple example, we compared the mean motion intensity
and walking pace between weekdays and weekends. Both the intensity (mean 2.75 and 2.57) and
walking pace (mean 1.03 and 1.01 steps per second) were lower during weekends than weekdays.
While such findings are intuitive and perhaps not surprising, making this kind of observations
is labour-intensive and non-trivial using direct observation or visual surveillance, whereas they
can be easily identified with the help of crowd replication. Note that capturing these differences
does not require exactly mimicking stride patterns of the target users, but results naturally from
trajectories of similar length having different duration.

Finally, we compute the spatial distributions of normalized aggregated dwell time for different
motion intensities. Figure 16a shows the spatial distributions of aggregated dwell time during
weekdays and weekends. The correlations show that normal walk during weekdays and slow walk
during weekdays are the most similar with r = .94, p < .01, and that slow walk during weekdays
and normal walk during weekends are least similar with r = .63, p < .01; As another example,
Figure 18 shows the spatial distribution of stride duration for weekdays and weekends. From the
figure we can see more variation in the stride patterns during weekdays with the shortest strides
taking place around building exits. During weekends, stride duration are more uniform across the
space, but overall slightly longer than during weekdays.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 1.



Crowd Replication: Sensing-Assisted Quantification of Human Behaviour in Public Spaces 1:29

Fig. 18. Comparison of the stride duration during weekdays (left) and weekends (right).

7 DISCUSSION AND FUTURE WORK

Challenges with Replication Process Crowd replication is best suited for capturing people
moving in the space as prolonged shadowing could result in the replicated people becoming aware
of the process. Stationary people within the area might also become aware of the process by noticing
the same people going repeatedly back-and-forth in the area. Potential ways to mitigate these
issues are to limit the number of users that are replicated at a given time and to carry out the data
collection over a longer period of time (e.g., 30 minutes across several days), or to periodically swap
the researchers responsible for replicating users. In some cases, tracking a participant might need
to be aborted to avoid revealing the replication process. Generally, when only few people are using
the space and/or they are mostly stationary, it is better to use an alternative technique, such as
paper annotations or video recording combined with post-hoc replication, to capture the data.

Quality of Crowd Replicated Data The results of our evaluation (see Sec. 5 and Sec. 6) demon-
strated that crowd replication captures representative and fine-grained information about the
movements and activities of people within a public space. The main source of errors in crowd repli-
cation is inaccurate positioning, which can result in errors in the spatial mapping of movements and
activities. For example, in our evaluation, areas close to tall buildings resulted in increased location
error (see Section 5.2). Indeed, quality of the spatial mapping is highly dependent on the accuracy
of the underlying positioning system. When localization accuracy suffers, crowd replication can
still be used to assess behaviour of people using the space as a whole, but fine-grained spatial
information may be impossible to obtain.

Positioning techniques While our trials have focused outdoor environment where GPS provides
readily available location information, many interesting application areas reside indoors, prohibiting
the use of GPS. In such environments an indoor positioning system can provide means for inserting
location information to the crowd replication system. State-of-art indoor positioning systems
commonly rely on particle filters and back-propagation to resolve complete trajectories, making
them particularly well suited for offline analysis of sensor traces, i.e., they can effectively leverage
information from complete traces that crowd replication provides. Furthermore, the design of crowd
replication can help alleviate some of the main challenges for indoor localization by providing exact
start and end locations, and by allowing optimized sensor placement to accurately perform step
detection and heading estimation. State-of-the-art indoor pedestrian dead reckoning solutions are
capable of achieving location accuracy comparable to outdoor environments [15, 42]. Hence, it is
reasonable to assume that when leveraging additional benefits from the crowd replication design, the
localization accuracy is able to provide fine-grained spatial information also in indoor environments.
However, we recognise that such cases need to be validated through future experiments.

Other Application Areas Crowd replication has been primarily designed as a data collection
method for urban designers, architects and other stakeholders that are interested in assessing
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whether a given space meets its design goals. However, crowd replication is not limited to public
spaces, and can be adopted to other spaces. For example, the crowd replication process could
be used in museums, malls, supermarkets, airports, or train stations — either as standalone data
collection technique or in combination with other techniques.

Supporting Qualitative Studies The focus of this paper has primarily been on capturing quan-
titative data about public space usage. However, crowd replication can also support qualitative
studies. While carrying out the replication process, the researcher experiences the public space
and becomes aware of subtle things affecting users behaviours and obtaining a more thorough
understanding of the user experience provided by the space. As another example, ethnography
researchers could use crowd replication to create a digital trace of their experience, which can then
later be used as a memory cue and to reflect on the researcher’s experience of the space.

Privacy and Ethical Concerns Recording only sensor measurements instead of other mediums,
e.g., video or audio information [40], has the added of benefit of increasing privacy of the tracked
users. The most immediate advantage is that this information cannot be used to identify users.
Another privacy-related advantage of crowd replication is that we are ultimately recording mea-
surements about the researcher instead of the target user. However, we acknowledge that the
process of user behaviour replication should be carried out in a way that avoids any privacy or
ethical concerns, as well as avoids any socially awkward situations to either target user or the
researcher performing the replication. The necessary constraints depend on the characteristics of
the target space, but should be planned so that the user behaviour replication can be conducted
without the target user becoming aware or disturbed by the replication. This is also crucial for
reducing possible observer biases in the collected sample. As an example, we kept approximately
10-15 meters distance between the researcher and the target user and aborted the process in case
the target user seemed to become aware of the researcher. In areas where direct replication is
unsuitable, replication can be carried out with the help of a video recording from the area. In such
case targets users are selected and replicated based on observing their trajectories and activities
in the recording. We note that, while this is not the ideal in terms of sampling, it still carries
two advantages compared to automated or manual video decoding. First, the requirements for
video are much lower compared to those in automated video surveillance. Second, the movement
trajectory contains richer information in both granularity and detail than what manual annotation
can provide. Also, some details may be difficult for video surveillance, such as determining stride
length or intensity. Finally, physically replicating the target users trajectory and activities in the
actual environment allows better insight into the human experience of the space.

Scalability Our experiments were carried out in a moderately-sized metropolitan urban public
space (the central area is approximately 40 X 80 meters and contains six entry points). Replicating
users within this space was reasonable in terms of work effort, and overall feasible to carry out. In
particular, the flow of people within the space was sufficiently high to ensure target users were not
aware of the replication process, and the motion trajectories were of reasonable length to limit
physical and cognitive efforts of the researchers. For very large spaces, e.g., ones spanning several
hundred meters, crowd replication may be unsuitable. Firstly, shadowing another person for a
prolonged period of time is prone to making the user aware of the replication process. Additionally,
the researcher carrying out the replication may start to lose concentration, which could result
in inaccurate data (e.g., decrease quality of mimicking or result in erroneous or missing labels).
Secondly, while errors in our location and pedestrian tracking are very small, they accumulate
over time and hence data quality would decrease. A potential solution for such spaces would be
to divide the area into sub-regions and to perform crowd replication within these sub-regions.
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Alternatively, larger spaces could benefit from a combination of different techniques, including
crowd replication. Note that the also other data collection techniques face difficulties in very large
spaces. For example, visual surveillance would require sufficient unobstructed camera coverage of
the space, which in most cases is highly difficult to arrange.

Future Work As one of the main future directions, we plan to investigate combining crowd
replication with other techniques for evaluating public spaces. In particular, we look forward to
testing a hypothesis that crowd replication can provide validation and correction data to enhance
quality of passively collected (e.g., using crowd sensing) measurements about user behaviour within
target area. We also plan to investigate performance of crowd replication in a commercial indoor
environment with existing indoor positioning system available, and performing crowd replication
from a prerecorded video. In the former scenario our main interest is in validating the ability to
provide fine-grained spatiotemporal data within indoor environments, while in the latter case we
plan to replicate more complex user activities and investigate automatically identifying these from
the sensor measurements.

8 SUMMARY AND CONCLUSION

We have contributed by developing crowd replication as a novel and cost-effective mechanisms for
collecting spatiotemporally fine-grained data about human behaviours within public spaces. Crowd
replication builds on a novel high accuracy motion tracking approach that learns a personalized
model of the movement characteristics of the researcher performing replication. Experiments carried
out within a metropolitan urban space demonstrated that the data collected with crowd replication
closely mirrors the actual behaviour of crowds within public spaces and enables spatiotemporally
fine-grained quantification of the considered activities within the target space. As one of the original
design goals, crowd replication is easily adoptable and requires no installation of specific hardware,
recruitment of outside volunteers, or acquiring specific permissions. Indeed, high-quality data
about the use of target space can be acquired using off-the-shelf contemporary smartphones and
few hours of ground work from a small group of active researchers.

Crowd replication is advantageous as a data collection mechanism as it enables generalizing to a
large population without suffering from privacy and sample bias — two main issues hampering
current opportunistic pervasive and mobile sensing techniques. As crowd replication allows col-
lecting samples from all people in a public space regardless of whether or not they own mobile
phones (or have specific technology, such as WiFi or Bluetooth switched on), its sampling bias is
minimal. Compared to traditional direct observation, crowd replication provides two key benefits:
(i) mitigation of selection bias by leveraging a sampling strategy to select participants for the
study, and (ii) enhancing direct observations with passively collected sensor traces, providing
automatically collected spatiotemporal and motion related context to the observations. Compared
to opportunistic sensing which focuses on the scales of cities and greater regions, crowd replication
can collect more finer-grained data in terms of spatial resolution, and more detailed data in terms of
recorded activities and motion information. Compared to visual surveillance, crowd replication can
cover a relatively large and complex area that encompasses streets, neighbourhoods, and occluded
areas which would be impractical to sufficiently cover with cameras. Moreover, crowd replication
can produce richer data as it can capture subtle patterns of human motions and activities together
with location information. Finally, crow replication can also be easily integrated with background
information, such as demographic and subjective questionnaires, making it a versatile and attractive
data collection method for understanding and evaluating public spaces.

Our trials took place in an outdoor public space located near a local transportation hub. However,
crowd replication is a generic method that can be adopted for other public spaces, including malls,
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airports and parks. We encourage that crowd replication can also be adopted for different purposes,
including comparisons across different demographic attributes and evaluations, e.g., focusing on
baby carriages or tourists, and for different cultural contexts and social norms. Doing so can involve
uses of different sampling rates and strategies, as well as different positioning techniques and
activity monitoring solutions. This would enable evaluation of the impact of crowd replication
on different urban planning practices. Researchers may incrementally form and update the list of
activities to annotate and capture in their crowd replication environments by employing iterative
research processes. The resulting data from our experiments has been made freely available for
research and academic purposes at http://akiyatoolbox.org/crowd_replication/.

REFERENCES

[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. 2016.
Social Istm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 961-971.

[2] Miho Asano, Takamasa Iryo, and Masao Kuwahara. 2010. Microscopic pedestrian simulation model combined with a
tactical model for route choice behaviour. Transportation Research Part C: Emerging Technologies 18, 6 (2010), 842-855.

[3] Michael Batty. 2001. Agent-based pedestrian modeling. (2001).

[4] Sourav Bhattacharya, Henrik Blunck, Mikkel Kjeergaard, and Petteri Nurmi. 2015. Robust and Energy-Efficient
Trajectory Tracking for Mobile Devices. IEEE Transactions on Mobile Computing 14 (2015), 2.

[5] Sourav Bhattacharya, Petteri Nurmi, Nils Hammerla, and Thomas Plotz. 2014. Using unlabeled data in a sparse-coding
framework for human activity recognition. Pervasive and Mobile Computing 15 (2014), 242-262.

[6] Sophie Boonen, Martijn van der Heijden, and Elisa Giaccardi. 2018. Design Is Not for Us: Engaging a New Audience
for the Design Museum by Changing Their Expectations. In Museum Experience Design. Springer, 45-74.

[7] AgataBrajdic and Robert Harle. 2013. Walk Detection and Step Counting on Unconstrained Smartphones. In Proceedings
of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 225-234.

[8] Francesco Calabrese, Laura Ferrari, and Vincent D. Blondel. 2015. Urban sensing using mobile phone network data: a
survey of research. ACM Computing Surveys (CSUR) 47, 2 (2015), 25.

[9] Joshua Candamo, Matthew Shreve, Dmitry B Goldgof, Deborah B Sapper, and Rangachar Kasturi. 2010. Understanding
transit scenes: A survey on human behavior-recognition algorithms. IEEE transactions on intelligent transportation
systems 11, 1 (2010), 206-224.

[10] Yu Cao, Daniel Barrett, Andrei Barbu, Siddharth Narayanaswamy, Haonan Yu, Aaron Michaux, Yuewei Lin, Sven
Dickinson, Jeffrey Mark Siskind, and Song Wang. 2013. Recognize human activities from partially observed videos. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2658—2665.

[11] Stephen Carr, Mark Francis, Leanne Rivlin, and Andrew Stone. 1992. Public Space, Environment and Behavior Series.
Cambridge University Press.

[12] Nicola Dempsey. 2008. Quality of the built environment in urban neighbourhoods. Planning, Practice & Research 23
(2008), 249 — 264.

[13] Judy Diamond, Michael Horn, and David H Uttal. 2016. Practical evaluation guide: Tools for museums and other informal
educational settings. Rowman & Littlefield.

[14] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. 2012. Pedestrian detection: An evaluation of the state
of the art. IEEE transactions on pattern analysis and machine intelligence 34, 4 (2012), 743-761.

[15] Moustafa Elhamshary, Moustafa Youssef, Akira Uchiyama, Hirozumi Yamaguchi, and Teruo Higashino. 2016. Transit-
Label: A crowd-sensing system for automatic labeling of transit stations semantics. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services. ACM, 193-206.

[16] Jan Gehl. 1977. The interface between public and private territories in residential areas: a study by students of Architecture at
Melbourne University. Technical Report. Department of Architecture and Building. Melbourne: Melbourne University.

[17] Jan Gehl. 2011. Life between buildings: using public space. Island Press.

[18] Ensiyeh Ghavampour, Mark Del Aguila, and Branda Vale. 2017. GIS mapping and analysis of behaviour in small urban
public spaces. Area (2017).

[19] Joachim Gudmundsson, Patrick Laube, and Thomas Wolle. 2011. Computational movement analysis. In Springer
handbook of geographic information. Springer, 423-438.

[20] Mordechai Haklay, David O’Sullivan, Mark Thurstain-Goodwin, and Thorsten Schelhorn. 2001. So go downtown:
Simulating pedestrian movement in town centres. Environment and planning B: Planning and design 28, 3 (2001),
343-359.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 1.


http://akiyatoolbox.org/crowd_replication/

Crowd Replication: Sensing-Assisted Quantification of Human Behaviour in Public Spaces 1:33

[21]

[22]

[23]
[24]
[25]

[26]
[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]

[37]
[38]

[39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]

Samuli Hemminki, Keisuke Kuribayashi, Shin’ichi Konomi, Petteri Nurmi, and Sasu Tarkoma. 2016. Quantitative
Evaluation of Public Spaces using Crowd Replication. In Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems.

Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. 2013. Accelerometer-Based Transportation Mode Detection
on Smartphones. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems (SenSys). ACM,
13:1-13:14.

MR. Hill. 1984. Stalking the Urban Pedestrian: A Comparison of Questionnaire and Tracking Methodologies for
Behavioral Mapping in Large-Scale Environmnets. Environment and Behavior 16, 5 (1984), 539.

Serge P Hoogendoorn and Piet HL Bovy. 2004. Pedestrian route-choice and activity scheduling theory and models.
Transportation Research Part B: Methodological 38, 2 (2004), 169-190.

Weiming Hu, Tieniu Tan, Liang Wang, and Steve Maybank. 2004. A survey on visual surveillance of object motion and
behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 34, 3 (2004), 334-352.
Jane Jacobs. 1961. The death and life of great American cities. Vintage.

Aditya Jitta and Arto Klami. 2017. Partially hidden Markov models for privacy-preserving modeling of indoor
trajectories. Neurocomputing 266, Supplement C (2017), 196 — 205.

Jon Kerridge, Julian Hine, and Marcus Wigan. 2001. Agent-based modelling of pedestrian movements: the questions
that need to be asked and answered. Environment and planning B: Planning and design 28, 3 (2001), 327-341.

Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and Martial Hebert. 2012. Activity forecasting. In European
Conference on Computer Vision. Springer, 201-214.

Tian Lan, Tsung-Chuan Chen, and Silvio Savarese. 2014. A hierarchical representation for future action prediction. In
European Conference on Computer Vision. Springer, 689-704.

Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew T. Campbell. 2010. A
Survey of Mobile Phone Sensing. IEEE Communications Magazine 48, 9 (2010), 140 —150.

Jeffrey S. Larson, Eric. T. Bradlow, and Peter S. Fader. 2005. An exploratory look at supermarket shopping paths.
International Journal of Research in Marketing 22 (2005), 395-414.

David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014. The Parable of Google Flu: Traps in Big
Data Analysis. Science 343, 14 March (2014), 1203-1205.

Sebastian O. H. Madgwick, Andrew J. L. Harrison, and Ravi Vaidyanathan. 2011. Estimation of IMU and MARG
orientation using a gradient descent algorithm. In Proceedings of the IEEE International Conference on Rehabilitation
Robotics. IEEE, 1-7.

FILIPA Matos Wunderlich. 2008. Walking and rhythmicity: Sensing urban space. Journal of Urban Design 13, 1 (2008),
125-139.

Vikas Mehta. 2007. Lively streets determining environmental characteristics to support social behavior. Journal of
planning education and research 27, 2 (2007), 165-187.

Vikas Mehta. 2014. Evaluating Public Space. Journal of Urban Design 19, 1 (2014), 53 — 88.

M. Muaaz and R. Mayrhofer. 2017. Smartphone-based Gait Recognition: From Authentication to Imitation. IEEE
Transactions on Mobile Computing (2017).

Heeyun Park and Shigeru Satoh. 2006. Analysis on the Pedestrian Rambling Activities and Spatial Structure in
Downtown. Journal of Architecture and Planning (Transactions of AIf) 605 (2006), 143-150.

Placemeter. 2019 (accessed January 9, 2019). https://www.placemeter.com/. (2019 (accessed January 9, 2019)).
Quuppa. 2019 (accessed January 9, 2019). http://quuppa.com/. (2019 (accessed January 9, 2019)).

Anshul Rai, Krishna Kant, Venkata N. Padmanabhan, and Rijurekha Sen. 2012. Zee: zero-effort crowdsourcing for
indoor localization. In Proceedings of the 18th annual international conference on Mobile computing and networking.
ACM, 293-304.

Jonathan Reades, Francesco Calabrese, Andres Sevtsuk, and Carlo Ratti. 2007. Cellular census: Explorations in urban
data collection. IEEE Pervasive Computing 6, 3 (2007), 30-38.

Michael S Ryoo. 2011. Human activity prediction: Early recognition of ongoing activities from streaming videos. In
Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 1036-1043.

Mitsuru Sakamoto, Asuka Yamada, and Jun Ueno. 2005. 5423 Influence Factors and Swing Motion of Pedestrians
Traffic Line at an Urban Pedestrian Space. Summaries of technical papers of Annual Meeting Architectural Institute of
Japan. E-1, Architectural planning and design I, Building types and community facilities, planning and design method
building construction system human factor studies planning and design theory 2005 (July 2005), 879-880. https://ci.nii.
ac.jp/naid/110007078361/en/

Lorenz Schauer, Martin Werner, and Philipp Marcus. 2014. Estimating crowd densities and pedestrian flows using
wi-fi and bluetooth. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services (MobiQuitous).

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 1.


https://www.placemeter.com/
http://quuppa.com/
https://ci.nii.ac.jp/naid/110007078361/en/
https://ci.nii.ac.jp/naid/110007078361/en/

1:34Samuli Hemminki, Keisuke Kuribayashi, Shin’ichi Konomi, Petteri Nurmi, and Sasu Tarkoma

[47]

[48]

[49]

[50]

[63]
[64]

Thorsten Schelhorn, David O’Sullivan, Mordechay Haklay, and Mark Thurstain-Goodwin. 1999. STREETS: An
agent-based pedestrian model. (1999).

Xiaowei Shao, Huijing Zhao, Katsuyuki Nakamura, Kyoichiro Katabira, Ryosuke Shibasaki, and Yuri Nakagawa. 2007.
Detection and tracking of multiple pedestrians by using laser range scanners. In IEEE/RS] International Conference on
Intelligent Robots and Systems.

Virginia P. Sisiopiku and D. Akin. 2003. Pedestrian behaviors at and perceptions towards various pedestrian facilities:
An examination based on observation and survey data. Transportation Research Part F: Traffic Psychology and Behaviour
6 (2003), 249-274.

Kardi Teknomo, Yasushi Takeyama, and Hajime Inamura. 2000. Review on microscopic pedestrian simulation model.
In Proceedings Japan Society of Civil Engineering Conference. 15-27.

Kevin Toohey and Matt Duckham. 2015. Trajectory similarity measures. Sigspatial Special 7, 1 (2015), 43-50.
Ubisense. 2019 (accessed January 9, 2019). http://ubisense.net/en. (2019 (accessed January 9, 2019)).

Walkbase. 2019 (accessed January 9, 2019). http://www.walkbase.com/. (2019 (accessed January 9, 2019)).

Jin-Feng Wang, A Stein, Bin-Bo Gao, and Yong Ge. 2012. A review of spatial sampling. Spatial Statistics 2 (2012), 1-14.
Limin Wang, Yu Qiao, and Xiaoou Tang. 2015. Action recognition with trajectory-pooled deep-convolutional descriptors.
In Proceedings of the IEEE conference on computer vision and pattern recognition. 4305-4314.

Jens Weppner and Paul Lukowicz. 2013. Bluetooth based collaborative crowd density estimation with mobile phones.
In Proceedings of the IEEE international conference on Pervasive computing and communications (PerCom),.

William Hollingsworth Whyte. 1980. The social life of small urban spaces. Project for Public Spaces.

William Hollingsworth Whyte. 2000. How to turn a place around. Project for Public Spaces. 225 — 232 pages.
Fang-Jing Wu and Gurkan Solmaz. 2018. CrowdEstimator: Approximating Crowd Sizes with Multi-modal Data for
Internet-of-Things Services. In Proceedings of the 16th ACM International Conference on Mobile Systems, Applications
and Services.

Yoshihisa Yamashita, Kinya Yokawa, and Hisao Uchiyama. 2006. A Survey Based on Watching and Tracing Pedestrians
at a Railway Terminal Station. Transport Policy Studies Review 9, 34 (2006).

Massimo Zancanaro, Tsvi Kuflik, Zvi Boger, Dina Goren-Bar, and Dan Goldwasser. 2007. Analyzing museum visitorsaAZ
behavior patterns. In International Conference on User Modeling. Springer, 238-246.

Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang. 2015. Cross-scene crowd counting via deep
convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
833-841.

Kathryn Zickuhr and Aaron Smith. 2012. Digital differences. Pew Internet & American Life Project 13 (2012).

Brian D Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Peterson, ] Andrew Bagnell, Martial Hebert,
Anind K Dey, and Siddhartha Srinivasa. 2009. Planning-based prediction for pedestrians. In Intelligent Robots and
Systems, 2009. IROS 2009. IEEE/RST International Conference on. IEEE, 3931-3936.

Received xxx; revised xxx; accepted xxx

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 1.


http://ubisense.net/en
http://www.walkbase.com/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Public Space Evaluation
	2.2 Pervasive Sensing for Crowd Observation
	2.3 Pedestrian Modeling
	2.4 Summary

	3 Sensor-Assisted Quantification of Human Behaviour
	3.1 Overview of Crowd Replication
	3.2 Pedestrian modelling for Crowd Replication
	3.3 Location Sensing

	4 Experimental Setup
	4.1 Description of Target Area
	4.2 Crowd Replication

	5 Validity and Accuracy of Crowd Replication
	5.1 Sample Validity
	5.2 Accuracy of Crowd Replicated Data
	5.3 Accuracy of Pedestrian Modelling
	5.4 Comparison of Data Collection Effort

	6 Quantifying Human Behaviours
	6.1 Fine-Grained Quantification of Activities
	6.2 Liveliness of Public Spaces
	6.3 Quantifying Fine-Grained Motions

	7 Discussion and Future Work
	8 Summary and Conclusion
	References

