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Abstract. Representing airspace users’ preferences in Air Traffic Flow
Management (ATFM) mathematical models is becoming of high rele-
vance. ATFM models aim to reduce congestion (en-route and at both
departure and destination airports) and maximize the Air Traffic Man-
agement (ATM) system efficiency by determining the best trajectory for
each aircraft. In this framework, the a-priori selection of possible alter-
native trajectories for each flight plays a crucial role. In this work, we
analyze initial trajectories queried from Eurocontrol DDR2 data source.
Clustering trajectories yields groups that are homogeneous with respect
to known (geometry of the trajectory, speed) and partially known or un-
known factors (en-route charges, fuel consumption, weather, etc.). Asso-
ciations between grouped trajectories and potential choice-determinants
are successively explored and evaluated, and the predictive value of the
determinants is finally validated. For a given origin-destination pair, this
ultimately leads to determining a set of flight trajectories and informa-
tion on related airspace users’ preferences.

Keywords: Air Traffic Flow Management, Data Analytics, Mathemat-
ical models, Airspace Users’ Preferences

1 Introduction

ATM systems have to face the continuous growth of air transportation demand,
leading to increasing congestion of the airspace. As stated by modern ATM con-
cepts like Trajectory Based Operations (TBO) [6], the definition of daily flight
trajectories, while guaranteeing safety, has to trade-off the need of individual
airspace users to optimize their operations and the objective of reaching opti-
mum performance of the whole ATM network. The problem is known as ATFM.
In this context, mathematical models aiming at supporting its solution should
take airspace users’ preferences into account. The scope of this paper is the
definition of a methodology to capture the information on airspace users’ pref-
erences and to embed it into mathematical models for ATFM, in particular the
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ones based on the selection of one trajectory for each flight chosen from a set
that may be given a-priori, or dynamically determined by the optimization pro-
cess (e.g. [7,8]). In particular, given a flight and related airspace user, we want to
determine a measure of the preference of the flight for each alternative trajectory.

Preferences depend on several factors such as trajectory geometry, speed, fuel
consumption, en-route charges, weather conditions, business model and specific
objectives (e.g., legacy air carriers may prefer short routes, whereas some low-
cost carriers may lean toward longer routes to avoid high en-route charges).
Some determinants are only partially known or unknown, as they are part of
confidential business information. As a consequence we propose a data driven
approach to extract consolidated knowledge on airspace user preferences from
historical information on flight trajectories. Recent literature proposes several
works devoted to the analysis of historical flight trajectories and, among the
ones that are more closely related to our research, we cite the following. In [5],
hidden Markov model, clustering and regression are combined towards trajec-
tory prediction and balanced use of airspace capacity. A statistical analysis of
the relations among trajectory length, duration, fuel cost, en-route charge and
other possible determinants in the European airspace is presented in [1]. In [4],
clustering, linear regression and multinomial logit models are used to identify
nominal trajectories per origin-destination pair and explain en-route inefficiency.

We focus on preference modeling and apply data analytics and machine learn-
ing tools with the objective of identifying the preference parameters that directly
supports mathematical models for ATFM. In section 2, we describe the proposed
methodology, starting from data available from data repositories, and applying
route clustering and classification to learn route choice determinants and related
preference parameters. Section 3 briefly discusses two sample applications in the
European airspace. Section 4 concludes the paper and outlines future research.

2 Data and Methods

We propose a method to learn preferences for flight trajectories from historical
data. In particular, we refer to the European airspace and consider Eurocontrol
DDR2 repository [2]. Among other information, this contains a full description
of the trajectory filed, for each flight, at the pre-tactical stage (Filed Tactical
Flight Model). Trajectory data are longitudinal and include, for each element in
the sequence, latitude, longitude, flight level and the time at which that point
has to be flown (4D trajectories). We consider all flights operated between a fixed
origin-destination pair: to this end, both origin and destination are considered
as a set of one or more airports serving the same area (for example, Rome would
include both Fiumicino and Ciampino airports).

As a first step, we perform a clustering to determine groups of homogeneous
4D trajectories, based on their geometry and operating speed: since trajectories
in the same cluster are similar to each other, we assume that they have the same
preference levels. We apply a methodology similar to the one proposed in [3] and
used in [4]. First, we resample each trajectory by linear interpolation to obtain
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a same-length description of all trajectories: each trajectory is described by a
number of 4D-points equal to 2M , whereM is the number of points in the longest
original trajectory. Each of the 4×2M features is shifted to mean zero and scaled
to unit variance, and 10% of points are trimmed off trajectory head and tail to
exclude take-off and approach. Next, Principal Component Analysis (PCA) is
used to reduce dimensionality by retaining theN first components that explain at
least a pre-specified fraction of the observed variance. The choice of the variance-
thresholds sensibly affects the final results and we perform a calibration analysis
on this parameter. Trajectory groups are obtained by density-based clustering
(DBSCAN) in R4N . This method is appealing because it works well with the
complex geometry of the data and can discriminate outliers.

The second step uses a tree classifier to learn how the features of a specific
flight are related to cluster membership. We train the classifier on the follow-
ing features: day of the week, week number (for seasonal effects), part of the
day (night, early morning, late morning/early afternoon, late afternoon), airline
code, airline type (legacy/low-cost), and aircraft model. We use one-hot encoding
for categorical variables. We recall that a tree classifier (see Figure 2) produces a
binary tree with internal nodes representing a condition on a feature that can be
true (down branch) or false (up branch), and leaves specifying a cluster: running
across the tree from the root, each flight is classified according to the cluster
associated to the reached leaf. The tree is validated by by k-fold cross-validation
and its precision and recall are cross-checked with a different classification ap-
proach based on a Support Vector Machine (SVM), trained on the same features
(and validated by same k-fold cross-validation).

The third step uses the tree to classify all the flights in the dataset, counting,
for each leaf l and each cluster c, the number of flights belonging to c and
reaching l. By normalizing the flights count in each leaf, we obtain the required
measure between 0 and 1 of the preference level of each cluster as a function
of the features above. For example, with reference to Figure 2, a flight reaching
the third leaf (from top) has a preference of 0.69 for all trajectories that can be
included into cluster 1, 0.22 for cluster 0, 0.09 for cluster 3, 0 for others.

In order to obtain some preliminary insights into the tree structure, we ex-
plore univariate associations between flight features using Cramer’s V -index with
the Bergsman’s bias correction. This index is based on the Pearson’s chi-squared
statistic and measures the association between two categorical variables on a
scale between 0 (independence) to 1 (maximum intercorrelation).

3 Results and Analysis

The proposed methodology has been applied to two sample case studies in
the European airspace: the origin-destination pairs Rome-Paris and Istanbul-
Frankfurt. The analysis is based on flights operated in the period from June 15 to
September 15, 2016, with data extracted from Eurocontrol DDR2. Rome includes
Rome Fiumicino (LIRF) and Rome Ciampino (LIRA) airports, Paris includes
Paris Charles de Gaulle (LFPG), Paris Orly (LFPO) and Beauvais–Tillé (LFOB),
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Table 1: Cluster composition.
Outliers Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Rome-Paris 31 1616 223 32 39 16
Istanbul-Frankfurt 22 519 310 37 25 22

Table 2: Cramér’s V for the univariate associations between trajectory represen-
tative and model features in each scenario.

airl. code airl. type aircraft model day part weekday week month

Rome-Paris 0.57 0.62 0.45 0.18 0.07 0.05 0.01
Istanbul-Frankfurt 0.28 0.17 0.22 0.11 0.10 0.20 0.18

Istanbul includes Istanbul Atatürk (LTBA), Frankfurt includes Frankfurt am
Main (EDDF). The first scenario considers 1957 flights (1219 from LIRF to LFPG,
566 from LIRF to LFPO, 171 from LIRA to LFOB and 1 from LIRF to LFOB), the
second scenario has 930 flights. All analysis are performed with Python 3.6.4,
Scikit-learn 0.19.1, and Basemap 1.1.0.

Figures 1A and 1B show the clustering result for Rome-Paris and Istanbul-
Frankfurt, respectively. Trajectory clusters are presented with their projection on
a map and the altimetric profile over time. Clusters generally look well-defined for
Rome-Paris, while they are visually less separated for Istanbul-Frankfurt, which
suggests more variation in the flight altitude/speed. Table 1 shows the count of
flights in each cluster. The clustering result is affected by both the proportion of
variance explained by the PCA and the hyperparameters of DBSCAN. For this
analysis, we tried to achieve a clustering where clusters (i) have a larger size than
the outliers group and (ii) are visually homogeneous in the plane projection. The
idea is that a lower variance-threshold, e.g. 0.85, yields a rougher representation
of trajectories, so that selecting a lower maximum-distance ε in DBSCAN should
give a good trade-off between cluster separation and size of the outliers.

In a 5-fold cross-validation, the performance of the tree classifier are more
than satisfactory in both scenarios: for Rome-Paris, the mean values of preci-
sion and recall are 0.917 (standard deviation 0.006) and 0.941 (s.d. 0.003); for
Istanbul-Paris, the values of precision and recall are 0.666 (s.d. 031) and 0.708
(s.d. 0.017). These results are in line with those obtained with a SVM trained on
the same feature set. Figure 2 shows the decision tree for Rome-Paris (the figure
is also available at ibb.co/hq3mGy). For the sake of space, the decision tree for
Istanbul-Frankfurt is omitted here, and available on line at ibb.co/hUTWid. For
Rome-Paris, the tree is rather simple: 3 internal levels and 8 leaves, with levels
of preference that in each leaf are generally concentrated on a single cluster.
This is expected from the reported levels of precision and recall, and is due to
the presence of a very strong association, revealed by the Cramérs’s V -index
(Table 2), between cluster and airline type (V = 0.62) and code (V = 0.57).
For Istanbul-Frankfurt, the tree is more complex: 5 internal levels and 17 leaves.

https://ibb.co/hq3mGy
https://ibb.co/hUTWid
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Lower precision and recall translates into a less unbalanced preference distribu-
tion at each leaf. The main difference between this tree and the former is the
stronger role of seasonality: many splits are performed based on week number
and month. This can be appreciated also from the values of Cramér’s V , which
are lower than before for airline code and type, and of comparable magnitude
for all features. As a note on Table 2, the association between aircraft model
and cluster might be confounded by the relationship between aircraft model and
airline code (the related index is V = 0.75 for Rome-Paris and V = 0.84 for
Istanbul-Frankfurt).

4 Conclusions

We presented an innovative approach to the definition of airline preferences based
on machine learning. The idea is to learn homogeneous trajectories via clustering
of historical flight data, and to explore the relation between preference and flight
features with a decision tree. We illustrated the methodology in two different
scenarios and cross-checked the results of the tree with a SVM. The appealing
property of the decision tree is that the composition of each leaf can be directly
interpreted in terms of preference for a flight to trajectories in each cluster.

Further developments of the method might include evaluating the use of
ensemble tree classifier like adaBoost to overcome the limitations of the current
approach in case a larger set of features is used. A multivariate generalized linear
model might shed more light into the relationship between trajectory preference
and flight features. This would represent a step towards a deeper analysis of
trajectory determinants and would explain the rationale of flight preferences.

The proposed approach should be envisioned in the final goal of feeding
ATFM models that include information about flight preference and measuring
the impact of airline preferences to the solutions of realistic scenarios. In this
respect, this work is a stepping stone for future research in this direction.
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