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Abstract

Edge computing has emerged as a promising infrastructure for providing elastic resources in the proximity
of mobile users. Owing to resource limitations in mobile devices, offloading several computational tasks from
mobile devices to mobile edge servers is the main means of improving the quality of experience of mobile users.
In fact, because of the high speeds of moving vehicles on expressways, there would be numerous candidate
mobile edge servers available for them to offload their computational workload. However, the selection of the
mobile edge server to be utilized and how much computation should be offloaded to meet the corresponding
task deadlines without large computing bills are topics that have not been discussed much. Furthermore,
with the increasing deployment of mobile edge servers, their centralized management would cause certain
performance issues. In order to address these challenges, we firstly apply peer-to-peer networks to manage
geo-distributed mobile edge servers. Secondly, we propose a new deadline-aware and cost-effective offloading
approach, which aims to improve the offloading efficiency for vehicles and allows additional tasks to meet
their deadlines. The proposed approach was validated for its feasibility and efficiency by means of extensive
experiments, which are presented in this paper.
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1. Introduction

Owing to the limitations of computation resources and storage capacity in mobile smart devices, a new
computing paradigm known as mobile cloud computing (MCC) has been introduced, enabling mobile devices
to offload their tasks to a more powerful and resourceful cloud [1]. The fact that MCC is not suitable for
scenarios involving near real-time applications and guaranteeing high quality of service (QoS) has led to the5

birth of the edge computing paradigm.
According to [2], edge computing is an umbrella concept covering a range of practical schemes for its

implementation; for example, cloudlets, fog computing, and mobile edge computing (MEC). While these
approaches implement the same principles, they differ in terms of various aspects.

Cloudlets were introduced in [3], with the aim of providing a means for resource-poor mobile devices in10

particular to offload their computationally intensive tasks to the strongest computational machine encountered
in the physical proximity. A cloudlet is a self-maintained, relatively limited-resource cloud located within the
close vicinity of mobile users [4]. Mobile devices can access the cloudlet node through a wireless network,
while the cloudlet itself is strongly connected to the Internet. Cloudlets can be deployed effortlessly and are
supposed to be self-maintained. In brief, a cloudlet resembles a “data center in a box”, which makes it trivial15

to deploy on business premises, such as a coffee shop or doctor’s office [3].
Fog computing, also known as “cloud at the edge” [5], is one of the famous implementations of the edge

computing paradigm. The term “fog computing” was first introduced by Cisco in 2012 [6, 7]. Fog computing
is an emerging paradigm for extending the cloud service to the “ground” [8]. The term “fog” is, at times,
used interchangeably with the term “fog computing”. Fog computing deploys a lightweight computing facility20

usually known as mobile edge servers (also referred to as fog computing nodes) in the proximity of mobile
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users. Consequently, mobile users can access these mobile edge servers with only one-hop wireless connection
and a higher transmission speed than the speed from the remote cloud platform to end users [8].

MEC is a “hardware + software” system that provides user services and cloud computing functions, cre-
ating high performance, low latency, and high bandwidth in the telecom service environment. It accelerates25

the downloading of contents, services, and applications in the network, and allows consumers to enjoy unin-
terrupted, high-quality web experiences. Its technical features mainly include proximity, low time delay, high
broadband, and location awareness, which have broad application prospects for the future. MEC is the first
step towards a flatter network for 5G, as it provides an application programming interface and opens up the
underlying network capabilities to third parties, enabling networks to be customized and interactive accord-30

ing to the business needs of third parties [9]. In order to broaden the MEC applicability into heterogeneous
networks, including WiFi and fixed access technologies, ETSI ISG has dropped the “mobile” from MEC and
renamed it multi-access edge computing since September 2016 [10].

Accordingly, in the edge computing paradigm, mobile edge servers could be considered as fog computing
nodes, MEC nodes, and cloudlet nodes in different edge computing implementations. Despite the varying35

technical features of these edge computing implementations, these mobile edge servers are heterogeneous in
nature and can therefore be based on different types of hard devices, including, but not limited to, access
points as well as Internet of things (IoT) gateways [11, 12]. In summary, edge computing aims to provide
context-aware distributed computing and storage at the edges of networks.

According to [13], the computational tasks of smart devices in the real world are generally not required40

to be processed immediately, but rather by a certain deadline. Consequently, mobile devices could offload
certain computational tasks to mobile edge servers in their proximity to release their computation workloads.
Therefore, the quality of experience (QoE) of mobile services could be improved by leveraging edge computing.

Consider a tourist bus with passengers on board that stops in an expressway service area, and numerous
passengers may be using their mobile devices for their leisure time in the area. Certain computation-intensive45

applications, such as augmented reality, virtual reality, and video transcoding, may place great pressure on
the edge network. Therefore, the time delay for these applications may be extremely high, which induces
unacceptable user experiences. Furthermore, with the increase in the number of smart mobile devices and
data-heavy mobile applications, global mobile data traffic has been increasing dramatically in recent years.
The QoE of mobile services cannot be guaranteed without high-speed and stable network connections. Fig.50

1 illustrates a toy example for this type of scenario. As mentioned previously, edge computing can address
this problem by allowing mobile devices to offload their computation-intensive tasks to mobile edge servers,
thereby reducing the time delay and improving the QoE for users.

Mobile Edge 

ServerMobile Edge 

Server

Figure 1: Example of expressway service area with numerous people using mobile devices

As mobile edge servers are geo-distributed and deployed in very common places such as roads, bus terminals,
and shopping centers, mobile smart devices can offload part or all of their computation-intensive tasks to mobile55

edge servers in order to release their computation workloads almost anywhere. However, when a tourist bus
is moving on the expressway, the situation becomes more complicated. Suppose that a tourist bus is moving

2



Which Mobile Edge Server to 

utilize and how much computation 

should be offloaded?

Mobile Edge 

Server1

Mobile Edge 

Server2

Mobile Edge 

ServerM

Mobile Edge 

Server3

Cloud

Figure 2: Selecting mobile edge server to offload computation

on an expressway, which is almost covered throughout by mobile edge server services. As the moving speed
of the tourist bus is generally fast on the expressway, several candidate mobile edge servers would have to be
utilized. Because each mobile edge server workload differs, the manner in which to select a mobile edge server60

to offload computation should to be addressed properly. Moreover, the amount of computation that should be
offloaded from the vehicle remains to be determined for a specific mobile edge server. In fact, the current task
deadline and each available mobile edge server current workload should be jointly considered for the offloading
scheme. These questions could be illustrated in Fig. 2.

In this paper, we provide three contributions, as follows.65

• Firstly, we proposed a peer-to-peer (P2P)-enabled decentralized mobile edge server management scheme
for the edge computing environment. This scheme can enable all mobile edge servers to participate
in updating information in a decentralized manner. Accordingly, mobile devices can easily obtain the
available information of interested mobile edge servers from the nearest network-connected mobile edge
server, and therefore make improved offloading decisions for selecting the target mobile edge server.70

• Secondly, we introduce a sophisticated computation offloading model for mobile smart devices (partic-
ularly for high-speed movement of devices, such as smart vehicles), which involves the task upload and
retrieval procedure in terms of when to offload computation to a mobile edge server in the edge comput-
ing environment. In particular, the workload transmission under wireless networks, actual computing
capabilities, and geo-distribution features of mobile edge servers are explicitly and jointly considered.75

• Thirdly, an offloading-efficient optimization problem is formulated, which involves maximizing the of-
floading efficiency by selecting the optimal mobile edge server, subject to meeting the task deadline
constraint. We propose a deadline-aware and cost-effective offloading approach, which aims to improve
the offloading efficiency among mobile edge servers and allows more tasks to meet their deadlines. Ex-
periments on emulated data sets confirm the feasibility and efficiency of our approach by means of80

comparison with other offloading schemes.

The remainder of this paper is organized as follows. Section 2 introduces the background of edge computing
and reviews the existing offloading approaches. In section 3, practical decentralized management of mobile
edge servers in the edge computing environment is proposed. In section 4, we present the modeling and
analysis of computation offloading in a decentralized P2P-enabled edge computing environment. In section85

5, experiments and a performance analysis of our approach are presented, followed by a summary and future
work in section 6.
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2. Preliminary Knowledge and Related Work

2.1. Edge Computing

Edge computing extends cloud computing by introducing an intermediate edge layer between mobile devices90

and the cloud. Rather than a substitute, edge computing often serves as a complement to cloud computing
[14]. Accordingly, this leads to a three-layer mobile-edge-cloud hierarchy [15]. The intermediate edge layer
consists of geo-distributed mobile edge servers, located sufficiently near to mobile users. These mobile edge
servers are virtualized devices with embedded data storage, computing, and network communication facilities,
and therefore provide computing, storage, and communication resources in the close proximity of mobile users95

[16]. Furthermore, these mobile edge servers can guarantee high QoS to mobile users, owing to local one-hop
distances with high-rate wireless network connections.
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Figure 3: Three-layer mobile-edge-cloud hierarchy

As illustrated in Fig. 3, the edge layer is located between the cloud and mobile device layers. Mobile devices
can offload not only data traffic to the edge layer to enlarge their network transmission bandwidths, but also
computation tasks to the edge layer to release their workloads. Any existing network components, such as100

WiFi access points and Femtocell routers, can easily change to edge servers by upgrading their computing and
storage resources and reusing the wireless interface. In this paper, we mainly focus on the computation aspect
of edge computing.

Edge computing not only reduces the backbone traffic to be sent to the cloud, but also improves the latency
for delay-sensitive IoT applications, by reducing the relatively lengthy delay of remote cloud computing [17].105

The concept of using edge computing not only provides network resources, but also allows for computational
resources closer to users, thereby improving scalability from a computation perspective and QoE in terms of
mobile users.

2.2. Computation Offloading in Edge Computing

At present, application offloading is a hot topic, owing to the appearance of cloud computing and MEC.110

Each mobile application can be offloaded at the coarse-grained application level [18] and fine-grained task level
[19]. Application-level offloading means that all of the application functions are executed on the edge node side
(for example, by virtual machines (VMs)), and each piece of user equipment (UE) runs as a thin client. In fact,
application-level offloading involves simpler operation and lower programming difficulty, but induces a higher
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computation workload on the edge node, including the time consumed by application initialization in the115

VMs. For the task-level offloading method, this could provide the opportunity to release intensive workloads
on single edge nodes by distributing tasks to run in parallel on different edge nodes, and therefore improve
the performance, although this would require a more sophisticated task scheduler in the system. An ideal
offloading scheme could make the necessary task-scheduling decisions so that the overall offloading leads to
reduced completion time. Also, the deployment of offloading technology in the real world usually accompanies120

with many related challenges, e.g., privacy preservation [20, 21, 22, 23, 24] for the offloaded tasks, message/task
scheduling [25, 26] in distributed embedded systems, data indexing technique [27], data aggreation protocols
[28], and machine learning technique [29].

Most of the available papers on edge computing focus on designing different and effective offloading schemes
for resource-limited mobile devices in order to offload computation. Zhou et al. [30] proposed an online125

auction-based stochastic offloading scheme, which uses Lyapunov optimization techniques to achieve a near-
optimal, long-term, system-wide utility with several economic properties, including truthfulness, individual
rationality, and budget balance. Moreover, Chang et al. [31] considered the energy consumption and delay
constraint for when to offload certain computation-intensive tasks from mobile users. Considering that mobile
devices are usually battery-powered, and energy harvesting is viewed as a promising and green technology130

for extending the battery time of mobile devices, Liu et al. [32] took into account the social relationships
of energy-harvesting mobile devices in the design of a computational offloading scheme in MEC, and aimed
to minimize the social group execution cost. Accordingly, they proposed a dynamic computation offloading
scheme, designing the offloading process in the fog computing system with energy-harvesting mobile devices.
Du et al. [33] tackled the computation offloading problem in a mixed fog/cloud system by jointly optimizing135

the offloading decisions and allocation of computational resources, transmitting power, and radio bandwidth,
while guaranteeing user fairness and maximum tolerable delay. The cost of UE is defined as the weighted sum
of energy consumption and latency: Costn = λenEn + λtnTn, where λen, λ

t
n ∈ [0, 1], n ∈ N denotes the weights

of the energy consumption and delay for UEn, respectively. In order to ensure the fairness of all UEs, they
minimized the maximum cost among all of the UEs, while meeting the maximum delay constraints. Sundar et140

al. [34] studied the scheduling decision for an offloading application consisting of dependent tasks, in a generic
cloud computing system comprising a network of heterogeneous local processors and a remote cloud server.
They developed a heuristic algorithm known as individual time allocation with greedy scheduling (ITAGS) to
overcome the obstacles of task dependency and deadline constraints.

To the best of our knowledge, although the performance evaluations in the above work were demonstrated145

to be effective, they ignored the result-retrieval procedure during the offloading process. Moreover, for moving
vehicles with high speeds, limited time is available for offloading their tasks. Moreover, after the mobile edge
server computing for the offloaded computation, the vehicles may already have moved beyond the prior mobile
edge server service coverage, and should obtain the computational results from other mobile edge servers,
according to their new geographical locations.150

Unlike smart phones and tablets, smart vehicles generally use petrol as fuel or even solely use large capacity
batteries, which means that energy consumption is not a critical issue for vehicles. Furthermore, wireless power
transfer technology [35, 36] can be utilized for deployment on expressways to charge the vehicles continually
during driving. Therefore, in this paper, we only consider the manner in which to make efficient offloading
decisions for vehicles, and ignore the energy consumption during the offloading process.155

3. Towards Practical Management of Mobile Edge Servers in Edge Computing Environment

Actual computation offloading in the edge computing environment generally involves two roles, namely
the mobile edge server side and mobile device side. It is essential to manage mobile edge servers efficiently in
the edge computing environment before providing computation offloading services for mobile devices. In this
paper, we focus on smart vehicles as the mobile devices in the edge computing environment, without loss of160

generality. Suppose that each mobile edge server processes offloaded tasks from vehicles in a first-in, first-out
(FIFO) order. Accordingly, a mobile edge server with a shorter waiting time could be considered as a more
suitable offloading target.

3.1. Naive Centralized Management Scheme for Mobile Edge Servers

Intuitively, it is not difficult to consider that there could be one computing server located in the cloud165

layer, which connects to all mobile edge servers with strong network connectivity by means of a wired network.
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Mobile users could establish a network communication to a computing server through a cellular network. The
computing server acts as proxy to aid mobile users to query mobile edge server computation workloads.

Mobile users could query their interested mobile edge server computation workloads by requesting infor-
mation from the computing server (namely, the proxy). When the computing server receives a request from a170

mobile user, it will establish parallel network connections to all requested mobile edge servers, and aggregate
their responses. In order alleviate the network bandwidth pressure, all mobile users only query the information
from the centralized proxy to obtain available candidate mobile edge servers in their moving direction.

Theoretically, for each task j arriving at vehicle i in time slot t, suppose that the vehicle wishes to know
several mobile edge servers which constitute Rij(t), and twk denotes the waiting time for the mobile edge server175

k availability, for definiteness and without loss of generality, in this paper.

Check the available 

Mobile Edge Servers

Computing Server

Mobile Edge

 Serveri

Base Station

4. Aggregate 

Mobile Edge
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Figure 4: Collecting available mobile edge servers by querying information from computing server

As illustrated in Fig. 4, when a moving vehicle wishes to obtain information regarding the waiting time
list for the forthcoming mobile edge servers, it should follow these five steps:

1) The vehicle sends the query request to the computing server regarding the Rij(t) mobile edge servers via
the cellular network.180

2) The computing server broadcasts the requests to all Rij(t) mobile edge servers and waits for all responses
via the wired network.

3) Each mobile edge server k associated with Rij(t) reports its twk to the computing server via the wired
network.

4) The computing server aggregates all of the responses and updates the mobile edge server status in its185

database.

5) The computing server sends the aggregated response, which contains all of the query results, to the vehicle
via the cellular network.

However, with an increasing number of mobile devices in the mobile layer (as depicted in Fig. 3), this type
of method may not be feasible for practical deployment. The problem with this centralized design method190

is that the proxy may not be able to respond to all query requests from mobile edge servers sufficiently
quickly. The details of this problem are illustrated in Fig. 5, where the computing server responds to the
query requests from all of the vehicles, and broadcasts the query requests to pull the updated workloads in
the mobile edge servers. At times, the queried mobile edge server cannot respond to the requests immediately,
owing to the fact that it should answer near-simultaneous requests from different vehicles one after the other.195

Moreover, if the response packet from mobile edge server is lost in the network, the computing server will
not receive the response in time. The computing server should adjust the maximum waiting period for each
broadcast frequently, according to the current network condition. Furthermore, certain attackers may establish
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Figure 5: Query for updated workloads of candidate mobile edge servers

distributed denial of service attacks to place additional network pressure on the centralized proxy, which can
easily induce a breakdown of the entire offloading system.200

To this end, all of the questions above motivated us to design a decentralized management scheme for
mobile edge servers and an offloading approach in the edge computing environment.

3.2. P2P-Enabled Decentralized Management Scheme for Mobile Edge Servers

As mentioned in the previous sections, with the rapid development of edge computing, numerous geo-
distributed mobile edge servers would exist in the entire city areas.205

P2P networking is a decentralized application architecture that partitions workloads among peers. Peers in
such networks have equal privileges. The decentralized nature of P2P networks increases robustness, because
it removes the single point of failure that may be inherent in a client-server-based system [37]. Furthermore,
because the roles of all peers in the network are the same, unstructured P2P networks are highly robust in the
face of high “churn” rates; that is, when large numbers of peers frequently join and leave the network [38].210

To this end, we explore the manner in which P2P networking can be used in the MEC environment. In
our opinion, P2P networks enables distributed nodes to cooperate with one another and maintain a reliable
network; therefore, it is nearly impossible for the entire system to crash. Accordingly, P2P networking is a
promising solution for the decentralized management of mobile edge servers for offloading services in the MEC
environment.215

As the computation offloading service is a virtual service, paying for the service via electronic coins has
become a direct measure. Suppose that vehicles pay for the service using Edgecoin as a virtual currency,
which can be exchanged in local currency. Mobile edge servers and vehicles can store the entire history of the
Edgecoin transactions (every transaction by every vehicle, ever), and every workload update transaction by
every online mobile edge server.220

All of the public keys of authorized mobile edge servers and mobile devices are permanently stored in the
database of the edge computing service provider. This would be helpful for performing service liquidation,
verifying the authority of every mobile edge server in the edge computing environment, and charging mobile
users for offloading services. Moreover, if one mobile edge server leaves the network owing to occurrences such
as a power failure or earthquake, its private key would be regenerated when it reboots and rejoins the network.225

Mobile edge servers use their private keys to signature the actual updated workloads and their geographical
positions, and the updated information will be propagated as the workload transaction to the entire P2P
network. The propagation delay on the network could be enhanced by leveraging BCBPT protocol [39], which
is a proximity-aware extension of Bitcoin protocol. Bitcoin is also based on a P2P network, with the peers
mining Bitcoins. It is well known that Bitcoin follows a distributed trust mechanism, which relies on distributed230

validation and tracking of transactions. BCBPT aims to increase the proximity of connectivity among nodes
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Figure 6: P2P-enabled decentralized management of mobile edge servers

in the Bitcoin network, based on round-trip ping latencies. Likewise, the workload fluctuation of each mobile
edge server in the edge computing environment could be also be considered as transactions that should be
broadcasted to the peers in the network proximity. By leveraging BCBPT protocol, the propagation delay in
the P2P-enabled decentralized management of mobile edge servers could be improved.235

Similarly, vehicles use their private keys to signature the offloading transactions, which involves the actual
payment for the offloading service. As each vehicle stores the entire history of the offloading and workload
transactions, it could easily determine which mobile edge server should be selected for utilization to offload its
specific computation by using certain offloading strategies.

On this basis, we argue that each vehicle could easily know every mobile edge server actual workload at240

any time by leveraging BCBPT protocol. Suppose that all mobile edge servers constitute the full set R, and
each vehicle can at most offload its current task to one mobile edge server. Obviously, in a specific time slot
t, the number of candidate mobile edge servers Ri(t) for vehicle i is quite small. Moreover, it could easily be
found that a shorter network distance between the mobile edge server and mobile device would promote higher
offloading performance. In common with [39], we argue that two nodes Ni and Nj are considered close to one245

another if Di,j ≤ Dthd, where Di,j is the distance between Ni and Nj , measured by the round-trip latency in
the network, and Dthd is the latency threshold.

4. Modeling and Analysis of Computation Offloading in P2P-Enabled Edge Computing Envi-
ronment

In this paper, we consider an edge computing environment as illustrated in Fig. 6. In our model, each
vehicle i mostly has only one computational task, which can be described in three terms Tj = {dij , cij , t

i,M
j }

at any time, and i, j ∈ N = {1, 2, ..., N}. Here, dij denotes the size of the input data for computation, cij
is the amount of computation resources measured in million instructions per second (MIPS) that should be

satisfied to finish complete j in vehicle i, and ti,Mj is the deadline for the corresponding task j. Although every
passenger or vehicle itself may create tasks simultaneously, tasks could be considered as one larger task in
every time slot. Moreover, we use ti,Lj to denote the time cost while executing task j locally in vehicle i itself,

with its computational capability denoted by qi, and this can be expressed by the following equation:

ti,Lj =
cij
qi
, (1)
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which would be considered as the local execution time. It should be easy to note that, if we wish to allow the250

execution time of a specific task j to be acceptable, ti,Lj ≤ ti,Mj should be satisfied. Furthermore, it should
be mentioned that the number of smart vehicles is increasing sharply, and their resource-hungry tasks pose
significant challenges in providing convenient and reliable vehicular services. Although a vehicle can perform
computations locally at any time, the computational workload cannot always be zero when several new tasks
arrive simultaneously, and the computation time may be significantly lengthy, which means that ti,Lj > ti,Mj255

usually holds. Fortunately, with the aid of mobile computation offloading techniques, vehicles can offload part
or all of their task computation to mobile edge servers to release their workload, in order to meet the task
deadlines if necessary, thereby saving energy for vehicles and improving the QoE for passengers.

We consider numerous existing mobile edge servers located alongside roads, with their IDs numbered from
{1, 2, ..., N}, and all the mobile edge servers constitute the aforementioned full set R. In fact, a vehicle that260

runs through the road may associate with its nearest mobile edge server in terms of its geographical location.
Whenever it continues to move, its geographical location may move away from the previous connected mobile
edge server and closer to the next mobile server that has a stronger wireless signal, following which the
vehicle would hand off the wireless connection to the new mobile server. Normally, the computing and mobile
edge servers are operated by certain profit-making organizations. Thus, these operators would like to charge265

for the actual resource consumption by users [1]. Each smart vehicle can establish the service coverage,
computational capability, and computation unit price of each mobile edge server in advance along the vehicle
mobility trajectories with the aid of the transportation department, which possesses all of the information
along the expressway.

In this paper, the computational capability of each mobile server is denoted by f1, f2, ..., fM , which can be270

considered as the service infrastructure of edge computing, while the computation unit price is represented by
p1, p2, ..., pM .

In our assumption, each vehicle can at most offload its current task to one mobile edge server when it runs
through the road. Let xij,k = 1 indicate that vehicle i selects to offload part or all of its task j to mobile edge

server k, and xij,k = 0 otherwise. Thus, we can obtain
∑R
k=1 x

i
j,k ≤ 1, i, j ∈ N .275

4.1. Offloading Time Cost

We argue that, if a moving vehicle wishes to offload its computation to a forthcoming mobile edge server
in its vicinity, the time cost should consist of three parts. Firstly, the vehicle should spend time to move
sufficiently close to the specific mobile edge server to hand off its wireless connection thereto, and then spend
time to upload the required data of the task to be processed. Secondly, the vehicle should wait a certain time280

for the result data from the mobile edge server. Lastly, the corresponding result data should be obtained from
the mobile edge server, which will also cost time.

In general, the offloading time cost for a specific task j offloaded from vehicle i to mobile edge server k is
expressed as:

tsij,k =
lik
v

+
dij
rk
, (2)

and the computing time for a specific task j of vehicle i to be executed on mobile edge server k is

tcij,k =
αij,kc

i
j

fk
, (3)

where the parameter αij,k (0 ≤ αij,k ≤ 1) denotes the offloading ratio of task j, lik is the distance from the mobile285

edge server k to the location of the current vehicle i, and v and fk are the vehicle speed and computational
capability of mobile edge server k, respectively. In this paper, we assume that the data transmission rate of
the wireless channel in the service coverage of a specific mobile edge server is a statistically average value, and
let rk denote the statistically average data transmission rate of mobile edge server k.

Following remote computation, owing to the limited contact opportunity with mobile edge servers (tens of
seconds), the vehicle may have moved far from the service coverage area of mobile edge server k, and near to
another mobile edge server z. Certainly, z could also be k when the vehicle does not leave the wireless area of
mobile edge server k. Then, the result data for the task should be transmitted from the mobile edge server to
the vehicle. We use

trij,z =
di

′

j

rz
(4)
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to denote the backward transmission time for the specific result data and ignore the transmission time between
mobile edge servers k and z (k 6= z), in that the communication between mobile edge servers occurs through
a high bandwidth wired connection, and the time delay of the wired communication is sufficiently negligible
compared to contemporary wireless technologies. Then, we obtain the total time for the offloading part of the
execution time of task j as follows:

ti,offload
j,k∼z = tsij,k + tcij,k + trij,z. (5)

As the αij part of the task is executed remotely, the other part of the computation of task j should be executed
locally to constitute the entire task completion, which would cost

ti,local
j =

(1− αij,k)cij
qi

. (6)

The completion time of task j should be290

ti,actual
j = max{ti,offload

j,k∼z , ti,local
j }, (7)

in that only both complete parts (local and remote) can enable the entire task to be considered as completed,
and the slower part work would cause the bottleneck of the overall process. However, the completion time of
task i can be considered as acceptable if and only if ti,actual

j ≤ ti,Mj . The difference between ti,Mj − ti,actual
j can

shed light for offloading under our approach to improve the offloading efficiency and user QoE.

4.2. Generation for Candidate Mobile Edge Servers in Every Computation Offloading295

Wireless signal' s ideal 

coverage radius 

din

dout

V m/s

Actual coverage

Fitting polygons

P1

P2

P3

P4

P5

P6

P7

P8

P9

P11
P10

Figure 7: Toy example of moving through service coverage of mobile edge server

Consider the scenario in which a vehicle is moving towards service coverage of a mobile edge server, and
it can know the coverage range of the mobile edge server with the aid of contributions of other vehicles in
advance. Suppose that the ideal service coverage of the mobile edge server is denoted by the dotted circle
in Fig. 7, and the mobile edge server resides in the circle center. In fact, there are always trees, buildings,
and houses in downtown areas, which have a significant impact on the wireless coverage range. The actual300

coverage can be the irregular area, and the near-actual coverage can be fitted by the polygons denoted by the
blue dotted line in Fig. 7. The polygons are composed of 11 vertexes, denoted by {P1, P2, P3, ..., P11} in this
figure, and more accurate coverage can be fitted when using additional vertexes.

In fact, assume that vehicle i moves on the road with a speed of vi, which is a constant value. Moreover,
suppose that task j arrives in time slot t, and should be scheduled immediately. As the deadline of task j is305

ti,Mj , the distance between the locations at which task j arrives and expires should be vit
i,M
j . Considering the

high speeds of moving vehicles and limited service coverage of mobile edge servers, it is difficult not to notice
that vit

i,M
j may cross the service coverage of several mobile edge servers. Assume that all of these mobile

edge servers compose the mobile edge server set Rij(t), and Rij(t) ⊆ R should clearly be satisfied. In order

to obtain Rij(t) from R, a brute force method involves checking each mobile edge server in R to determine310
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whether its service coverage would be crossed by the moving vehicle. However, the search space of this method
is excessively large and time consuming, in that the size of R is significantly large.

To improve the query performance for Rij(t), we construct an R-tree from the service coverage of all of
the mobile edge servers. The R-tree organizes data in a tree-shaped structure known as an R-tree index. The
index uses a bounding box, which is a rectilinear shape that completely contains the bounded object or objects.315

Each bounding box can enclose a data object or another bounding box. The key concept of the R-tree data
structure is to group adjacent objects and represent them with their minimum bounding rectangle (MBR) in
the tree parent node [40]. In general, the MBR for a two-dimensional (2D) circle is a square with a side equal
to the circle diameter. The minimum bounding box for a three-dimensional sphere is a cube with an edge
equal to the sphere diameter.320

Intuitively, the service coverage of every mobile edge server can be covered by a rectangle in the 2D (x,
y) coordinate system, and the MBR is a 2D case of the minimum bounding box. Fig. 8 presents a simple
example of the service coverage distribution of the mobile edge servers, and each service coverage is covered
by an MBR, denoted by R3, R4, R6, R7, and R8 in the figure. Moreover, the moving vehicle trajectory is
denoted by the red shaded area, which overlaps with R3, R4, and R7, and we can use the shaded area as325

the query input for the R-tree. As all service coverages lie within this bounding rectangle, a query that does
not intersect the bounding rectangle also cannot intersect any of the contained objects. An R-tree example is
illustrated in Fig. 9, according to Fig. 8. At the leaf level of the tree, each rectangle describes a single service
coverage. As indicated in Fig. 8, bounding boxes can enclose a single data object or one or more bounding
boxes. For example, bounding box R4, which is at the leaf level, contains a service coverage; bounding box330

R5, which is at the branch level of the tree, contains bounding boxes R4 and R6; and bounding box R1, which
is at the root level, contains bounding boxes R3 and R5.

R1 R2

R3

R4

R5

R6

R7

R8

Figure 8: Simple example of mobile edge server service coverage distribution with minimum bounding rectangles

R1 R2

R3 R5 R7 R8

R4 R6

Figure 9: R-tree for example mobile edge server service coverage

We assume that the vehicle moves across service coverages along the horizontal right arrow, with a speed
V m/s, and the current time is 0. The distances from the current location of the vehicle to the coverage area
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entrance and exit are denoted by din and dout, respectively. Thus, the vehicle will require a time of335

tinternal = (dout − din)/V (8)

to move across the coverage. Obviously, tkinternal ≥ dij/rk and tzinternal ≥ di
′

j /rz should be satisfied for the
upload and download stages when offloading to a specific mobile edge server k.

In order to obtain din and dout, the main problem is the manner in which to obtain the coverage entrance
and exit. By converting the longitude/latitude into the 2D (x, y) coordinate system for all locations in Fig.
7, it is easy to observe that the vehicle mobility trajectory can be described as a straight line with the general340

form ax+ by+ c = 0 during a tiny time slot in the converted 2D (x, y) coordinate system. To calculate tinternal

in Fig. 7, the coordinates of the two intersection points of the line and polygons should be determined, and
the coordinates divide the entire polygons into two parts. One part contains the {P3, P4, P5, P6, P7} vertex set,
while the other part contains the {P8, P9, P10, P11, P1, P2} vertex set. It is obvious that the two intersection
points of the line and polygons are on segments of two pairs of points from the two sets.345

The cross-product technique is an easy method for obtaining the two segments, and when using this method,
neither division nor trigonometric functions are required, both of which are prone to problems with round-

off errors [41]. In the research area of space analytic geometry, considering the vectors
−−→
OP1 = (x1, y1) and

−−→
OP2 = (x2, y2), their cross-product can be formed as

−−→
OP1 ×

−−→
OP2 = x1y2 − x2y1. (9)

The absolute value of
−−→
OP1 ×

−−→
OP2 denotes the area of the parallelogram formed by points (0, 0), P1, P2,350

and OP1 + OP2 = (x1 + x2, y1 + y2). Moreover, if
−−→
OP1 ×

−−→
OP2 is positive,

−−→
OP1 is clockwise from

−−→
OP2; if this

cross-product is negative,
−−→
OP1 is counterclockwise from

−−→
OP2.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P11
P10

counterclockwise

clockwise

S E

Figure 10: Determining intersection segments of line and polygons

Suppose that ~z is a direction vector for the straight line, which is illustrated as the directed segment
−→
SE

in Fig. 10. We can enumerate all vertexes of the polygons to verify whether each directed segment (such as
−−→
SP3 and

−−→
SP2) is clockwise or counterclockwise relative to

−→
SE. For example,

−→
SE ×

−−→
SP3 > 0 means that

−−→
SP3355

is counterclockwise with respect to
−→
SE, while

−→
SE ×

−−→
SP2 < 0 means that

−−→
SP2 is clockwise with respect to

−→
SE.

Thus, every vertex can be classified into two parts: the clockwise side part and counterclockwise side part.
If we enumerate all vertexes (edges) of the polygons in clockwise order, there would be two edges composed
of two vertexes from different vertex parts. In Fig. 10, the two edges are denoted by a red dotted line, and
the two intersection points (denoted by red points on the two edges) are indeed the corresponding points of360

the coverage entrance and exit for the vehicle in Fig. 7. As we can easily obtain the intersection points of
the vehicle mobility trajectory and mobile edge server service coverage, each din and dout of the mobile edge
servers can also be measured.

Algorithm 1 illustrates the generation of all candidate mobile edge server(s) in the vehicle moving direc-
tion. By running Algorithm 1 on the moving vehicle, all of the candidate mobile edge server(s) to be utilized365
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Algorithm 1 Candidate mobile edge server(s) generation

Input: Current time slot t, vehicle moving speed vi, task Tj , and latency threshold Dthd.
Output: Rij(t).

1: Clustering candidate mobile edge servers with network distances less than Dthd as Rij,network(t).

2: Aggregate all results Rij,geography(t) from R-tree when approximate trajectory area is provided as R-tree
input.

3: Rij(t)← Rij,network(t) ∩Rij,geography(t).

4: for each φ in Rij(t) do

5: if tφinternal < di
′

j /rφ then

6: Rij(t)← Rij(t) \ {φ}.
7: end if
8: end for
9: return Rij(t).

in its moving direction can be obtained. Firstly, it clusters the candidate mobile edge servers with network
distances less than Dthd by leveraging the BCBPT protocol: Rij,network(t), and then it aggregates all of the
mobile edge servers that are geographically near to the vehicle in the moving direction. Finally, it filters out
the mobile edge servers from Rij(t) that cannot be utilized owing to limited service coverage.

This is the first stage of our proposed offloading approach. Thereafter, we progress to the next stage,370

namely optimal selection of the mobile edge server.

4.3. Optimal Selection of Mobile Edge Server

Once the candidate mobile edge server(s) in the moving direction have been obtained, the following stage
involves determining which mobile edge server should be selected in an appropriate metric. We can obtain the
utility function for vehicle i to offload its task j to mobile edge server k when the task arrives in time slot t:

uij(t) =

Ri
j(t)∑
k

xij,k[µi(t
i,M
j − ti,actual

j )− pkαij,kcij ], (10)

where µi is a vehicle-specific parameter that illustrates the sensitivity of vehicle i to the reduction of the task
completion time, and µi > 0 for all cases.

In fact, the vehicles are rational, and all of them wish to maximize their utilities by selecting the offloading
target mobile edge servers with a corresponding specific offloading share. In the case where the price set
{pk, k ∈ Rij(t)} is known, the optimization problem for vehicle i to offload its j-th task on the mobile edge
server is

max
{xi

j,k,i,j∈N ,k,z∈R
i
j(t)}

uij(t)

s.t.



xij,k = {0, 1}, i, j ∈ N , k ∈ Rij(t),∑Ri
j(t)

k xij,k ≤ 1, i, j ∈ N ,
αij,k ∈ [0, 1], i, j ∈ N , k ∈ Rij(t),
lz ≥ lk, z, k ∈ Rij(t),
tkinternal ≥ dij/rk, i, j ∈ N , k ∈ Rij(t),
tzinternal ≥ di

′

j /rz, i, j ∈ N , z ∈ Rij(t).

(11)

In particular, lk will be equal to lz when k = z, and this case will have the constraint tkinternal ≥ t
i,actual
j .375

It should be noted that this utility is only for a specific task j. In reality, numerous tasks with different
deadlines may arrive at each mobile vehicle during each time slot t. We assume that the tasks arriving at
different time slots are independent and identically distributed (i.i.d.). Let Arri(t) be the computation of
the corresponding task that arrives at mobile vehicle i ∈ N . In the real world, the value of Arri(t) would
have a jitter, and we assume that it has a certain peak, which is denoted by Arri,max. Thus, we have
Arri(t) ≤ Arri,max,∀i ∈ N , and

Arri(t) =

{
(1− αij)cij , j-th task arrives at time slot t,

0, no task arrives,
(12)
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where αij means the actual offloading share of the computation from task j, for whichever mobile edge server
is selected.

Each vehicle maintains a task queue for the computation of arrived tasks, and the computation of tasks in
the queue is processed in a FIFO order. If task j local part computation has not been fully processed prior to
task j + 1, a computation backlog may occur, which should be taken seriously.380

We use Qi(t) to denote the queue backlog for the waiting computation generated by the previous tasks in
vehicle i during time slot t. Therefore, we can obtain:

Qi(t) =

{
0, t = 0,

max{Qi(t− 1) +Arri(t)− qi, 0}, t > 0.
(13)

Thereafter, equation (10) can be derived as follows:

uij(t) =

Ri
j(t)∑
k

xij,k[µi(t
i,M
j −ti,actual

j )−pkαij,kcij ]

=

Ri
j(t)∑
k

xij,k[µi(t
i,M
j −max{ti,offload

j,k∼z ,ti,local
j })−pkαij,kcij ]

=

Ri
j(t)∑
k

xij,k[µi(t
i,M
j −max{max{tsij,k,twk}+

αij,kc
i
j

fk

+trij,z,
(1− αij,k)cij +Qi(t− 1)

qi
})− pkαij,kcij ], (14)

Lemma 1. For each task j arriving in vehicle i in time slot t, the utility function uij(t) should have a specific
maximum value.

Proof. Let

f(αij,k) = max{tsij,k, twk}+
αij,kc

i
j

fk
+ trij,z

and

g(αij,k) =
(1− αij,k)cij +Qi(t− 1)

qi
.

If vehicle i wishes to offload the αij,k part of the computation of task j to a specific mobile edge server k in

Rij(t), and its utility is denoted by uij(t, k),385

uij(t, k) = µi(t
i,M
j −max{f(αij,k), g(αij,k)})− pkαij,kcij

=

{
µi(t

i,M
j −f(αij,k))−pkαij,kcij , f(αij,k)≥g(αij,k),

µi(t
i,M
j −g(αij,k))−pkαij,kcij , f(αij,k)<g(αij,k)

and
uij(t) = maximize uij(t, k).

The optimal mobile edge server is arg maxk u
i
j(t, k). As all parameters in f(αij,k) and g(αij,k) are positive

constants for a specific mobile edge server k, except for αij,k with the domain [0, 1], f(αij,k) and g(αij,k) are

linear functions. Obviously, f(αij,k) and g(αij,k) may be an increasing and a decreasing function in terms of

αij,k, respectively. In general, we suppose that f(αij,k) would be equal to g(αij,k) at a specific value of α̂ij,k, and

the domain [0, 1] would be divided into two parts: ([0, α̂ij,k) and [α̂ij,k, 1]). Thus, we can obtain the absolute390

maximum value of uij(k, t) by comparing the two local maximum values from these two domain parts. At times,

f(αij,k) may also always be greater than g(αij,k) in [0, 1], and vise versa; therefore, the absolute maximum value

of uij(t, k) may occur at αij,k = 0 or 1 owing to uij(k, t) being a strictly monotonically decreasing/increasing

function in [0, 1]. Clearly, for each mobile edge server k, we can easily obtain the maximum value of uij(t, k).

Thus, uij(t) can also obtain the maximum value from all candidate mobile edge servers in Rij(t).395
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Algorithm 2 Optimal mobile edge server selection and offloading ratio determination

Input: Current time slot t, µi, vi, and Tj .

Output: Optimal mobile edge server k̂ and corresponding parameter αij .

1: Calculate candidate mobile edge server set Rij(t) based on vi and ti,Mj by running Algorithm 1.

2: For each mobile edge server in Rij(t), query its waiting available time twθ, θ ∈ Rij(t) from computing
server.

3: Maximize uij(t, k) for each mobile edge server k in Rij(t) with corresponding optimal αij,k.

4: k̂ ← arg maxk u
i
j(t, k) and αij ← αi

j,k̂
.

5: return k̂, αij .

Therefore, we obtain the algorithm for the selection of the optimal mobile edge server with the optimal
offloading computation ratio for the j-th task of vehicle i in time slot t, and its pseudocode can be observed
in Algorithm 2. The worst-case running time of this algorithm depends on the size of Rij(t), and the upper

bound is O(Rij(t)). Each vehicle should notify the corresponding mobile edge server of the actual computation
by using the computing server as communication proxy; therefore, each mobile edge server can maintain its400

computation backlog updated.

5. Numerical Results

In this section, we firstly evaluate the effectiveness and feasibility of the proposed decentralized P2P-based
management of mobile edge servers in the edge computing environment, and then investigate the optimal
mobile edge server selection strategy.405

5.1. Environment Setup for Query Time Comparison

We consider a scenario in which 10 mobile edge servers are randomly located on a 1000 m road, and each
mobile edge server service coverage on the road randomly moves from [1, 100] m. We use ns-3 as a discrete event
simulator to evaluate the performance of our approach. In such a simulator, each event is associated with its
execution time, and the simulation proceeds by executing events in the temporal order of the simulation time.410

In our simulation, the average network transmission speed is 10 Mb/s. Each mobile edge server constitutes
one unstructured P2P network via wired cables. The simulation environment setting details are presented in
Table 1.

Table 1: Environment settings
Description

Hardware Intel Core i5-7300M CPU @2.60 GHz and 8.00 GB memory
Software Windows 10 Home 1803

Fig. 11 presents an example network topology of the mobile edge servers and vehicle. The moving vehicle
wishes to collect certain mobile edge server workloads so as to draw comparisons and make an improved415

offloading decision.

Table 2: Comparison results between centralized and decentralized methods in terms of average query time
Number of mobile
edge servers

Average query time
(ms) in centralization

Average query time
(ms) in decentraliza-
tion

Performance im-
provement ratio

1 21.02 4.2 400.5%
2 23.14 4.8 382.18%
3 24.35 5.2 368.43%
4 25.20 5.6 350.17%
5 25.85 6 330.87%
6 26.42 6.4 312.85%
7 26.81 6.79 294.91%
8 27.21 7 288.85%
9 27.49 7.2 281.86%
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Moving Vehicle

Mobile Edge Server

Stable Network Connectivity

Ad-hoc Network ConnectivityComputing Server

Query Request/Response

Figure 11: Network topology of simulation environment

Table 2 displays the comparison results between these two approaches in the simulation environment. For
every number of available candidate mobile edge servers, we ran 10000 trials to calculate the average query
time performance of both approaches under the aforementioned network topology. It can easily be observed
that the decentralized style approach has a shorter average query time delay under a different number of420

candidate mobile edge servers. Moreover, with the increasing number of candidate mobile edge servers during
the offloading decision time slot t, both approaches would spend more query time for collecting the workloads
of all mobile edge servers. However, in contrast to the centralized style approach, the increasing trend of the
query time delay for the decentralized style approach is not obvious.

5.2. Environment Setup for Offloading Utilization425

Based on the aforementioned mobile edge server distribution settings, we suppose that there are at most
15 moving vehicles on the road, and their speed is 120 km/h. For wireless transmission settings, we consider
that the average wireless transmission speed is 10 Mb/s. We developed an expressway traffic simulator to
evaluate the performance of our approach, and the runtime environment settings are the same as those of the
environment setup for the query time comparison (Table 2).430

Table 3: Simulation parameters
Parameter Value
Length of road (m) 1000
Number of mobile edge servers 10
Service coverage of each mobile edge server (m) [1, 100]
Number of moving vehicles [1, 15]
Moving speed of vehicles (km/h) 120
Wireless transmission speed (Mb/s) 10
Task data size (MB) [2, 5]
Task result size (MB) [0.5, 1]
Task computational instructions (millions) [5, 20]
Computational capability of mobile edge servers (MIPS) [3, 10]
Computational capability of vehicles (MIPS) [1, 3]
Computation unit price of mobile edge servers (Edgecoin) [10, 40]
Sensitivity (µ) of task completion time 500

Task setup: The computation instructions of each task from all vehicles are randomly distributed in [5,

20]. For each task j in vehicle i, its deadline constraint ti,Mj is set to be 1.5×ti,Lj , where ti,Lj is the local execution
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time of task j in vehicle i, as discussed in section 4. Moreover, the tasks in each vehicle are assumed to arrive
in a Poisson process, and we set the parameter λ in the Poisson process as MeanOfMobileEdgeServerCapability

MeanOfTaskComputation
by default to avoid computation overloading or underloading, where λ can also be adjusted to simulate the435

computational workload of the vehicles. For the sake of convenience, Table 3 summarizes the parameter
settings in our experiments.

Metrics: In order to evaluate our proposed offloading approach, we should firstly determine the suitable
µ for vehicles in our simulation environment. Different values of parameter µ may have varying selections of
the mobile edge server. As the vehicles should pay for the mobile edge server computation services, the value440

µ with the highest cost-effectiveness should be selected according to the mobile edge server distributions and
vehicle speeds. In our simulation environment settings, we set the parameter µ as 500 for each vehicle.

We evaluate the effectiveness of our proposed offloading approach by means of comparison with the following
schemes in our simulations.

1) Fully local : Execute the entire computation locally in the vehicle itself for each arriving task.445

2) Fixed ratio remote: Offload a fixed ratio of computation for each task to the nearest available mobile edge
server.

Because the average computation capability of the mobile edge server is three times that of vehicles in our
simulation environment, different offloading ratios of task computations may exhibit different performances.
We evaluate four fixed ratios: 25%, 50%, 75%, and 100%. In fact, the fully local scheme can be considered450

as the 0% offloading ratio scheme. In order to simulate the heavy traffic congestion scenario, we let 1 to
15 vehicles randomly move on the road in parallel. We simulate each traffic congestion scenario 1000 times
under different mobile edge server distributions, generated by the parameters in Table 3, to obtain the average
performance.
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Figure 12: Statistics for average task completion time
Deadline

under different vehicle traffic congestion scenarios comparing to fixed schemes

Results: It can be observed from Fig. 12 that our approach can outperform all of the offloading schemes455

under different traffic congestion scenarios. With the increasing number of vehicles moving on the same road,
all of the available mobile edge servers have a higher computation workload, thereby inducing certain tasks to
missing their deadlines inevitably. In contrast with other schemes, our approach can provide the best to allow
additional tasks to be completed before their deadlines. This is because our approach aims to offload each
task computation to the optimal nearby mobile edge server with a lighter computation workload. Only by460

offloading computation to the mobile edge server with a lighter computation workload can the corresponding
offloaded computation be completed as soon as possible.

Compared to other schemes, the second-best scheme should be the 100% fixed ratio remote scheme in terms
of Task completion time

Deadline . However, according to Table 4, our approach provides a lower average expense per task
among all of the vehicles compared to this scheme, in that our approach utilizes the optimal mobile edge server465

for offloading the optimal computation ratio to improve the cost-efficiency.
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Table 4: Different average expenses per task under different traffic congestion scenarios compared to fixed scheme
Average expense per task (Edgecoin)

Number of Vehicles Ours Fixed 100% Improvement ratio
1 147.3800 194.6607 24.29%
2 196.3063 243.3467 19.33%
3 189.9887 215.4687 11.83%
4 171.0208 193.8082 11.76%
5 190.1935 211.7705 10.19%
6 189.3634 209.8057 9.74%
7 172.8491 190.5770 9.30%
8 158.7493 174.9143 9.24%
9 180.5503 197.8293 8.73%
10 175.5615 191.4335 8.29%
11 156.0627 170.1980 8.31%
12 179.9744 196.0651 8.21%
13 156.4169 171.5644 8.83%
14 143.5924 156.5101 8.25%
15 154.0668 167.0073 7.75%

6. Summary and Future Work

In this paper, we firstly proposed a P2P-enabled decentralized mobile edge server management scheme in
order to provide efficient offloading services in the edge computing environment. Thereafter, we proposed a
deadline-aware and cost-effective offloading approach in the MEC environment, which aims to improve the470

offloading efficiency among mobile edge servers. The simulation results confirm the efficiency and effectiveness
of the proposed approach. In our future work, we plan to determine improved means of estimating execution
time of a task, whether it runs on the remote mobile edge server or local vehicle, and thereby improve the
performance of our approach.
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