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Enhancing SWAT with remotely sensed LAI for improved modelling
of ecohydrological process in subtropics

Abstract:

Vegetation growth in Soil and Water Assessment Tool (SWAT) is a crucial process for
quantifying ecohydrological modelling, as it influences evapotranspiration, interception,
soil erosion and biomass production. The simplified version of Environmental Policy
Integrated Climate (EPIC) in SWAT was originally designed for temperate regions and
naturally based on temperature to simulate growth cycles of vegetation. However, tropical
or subtropical vegetation growth is mainly controlled by rainfall. Due to this limitation,
current SWAT simulations in tropics and subtropics have been facing a series of problems
on vegetation dormancy, water balance and sediment yield. Therefore, we proposed an
approach to enhance the modelling of SWAT vegetation dynamics with remotely sensed
leaf area index (LAl), to finally increase the applicability of SWAT in tropical or subtropical
areas. Spatially and temporally continuous LAl products (1day, 500m) from Moderate
Resolution Imaging Spectroradiometer (MODIS) observations were integrated into SWAT
to replace the LAl simulated by built-in EPIC module. Two advanced filter algorithms were
employed to derive a downscaled LAI (30m) to keep a consistent spatial scale with the
size of Hydrological Response Units (HRU) and open data (i.e. SRTM, 30m), and the
source code of the plant growth module were correspondingly modified to incorporate the
downscaled LAl into SWAT. To examine the performance of our proposed approach, a
case study was conducted in a representative middle-scale (6384kmz2) subtropical

watershed of Meichuan basin, China, and detailed analysis was performed to investigate
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its ecohydrological effects, such as streamflow, sediment yield and LAl dynamics from

2001 to 2014. Model performances were compared among three scenarios: (1) original

SWAT, (2) SWAT with a corrected plant dormancy function, and (3) modified SWAT after

integration of MODIS LAl (our proposed method). Results showed that the modified

SWAT took advantage of downscaled MODIS LAl and produced more reasonable

seasonal curves of vegetation cover factor (C) of plants than the original model.

Correspondingly, the modified SWAT substantially improved streamflow and sediment

simulations. The findings demonstrated that SWAT model can be a useful tool for

simulating ecohydrological process for subtropical ecosystems when integrated with our

proposed method.

Keywords: Vegetation growth, Subtropics, LAl, MODIS, Integration, Modified SWAT

1 Introduction

Vegetation growth inevitably coincides with an important ecohydrological process

influenced by water availability and feeds back to affect regional water balance (Yang et

al., 2009; Berghuijs et al., 2015). For rainfall, canopy often intercepts precipitation as a

water storage and hinders water drops to reduce splash erosion by the loss of speed

(Hilker et al., 2014). Vegetation may also reduce overland flow speed, increasing

infiltration time and resulting in soil deposit on ground surface. (Liu et al., 2018). For

evaporation, vegetation functions like a bump that transports soil water even shallow
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aquifer into atmosphere. (Stephenson, 1998). These alterations often play a vital role on

the spatial and temporal dynamics of streamflow and sediment production and

transportation (Guzha et al., 2018). Thus, detailed simulation of vegetation growth is

critical for water balance and will be useful for the explanation of many interactions in

hydrological processes such as streamflow and sediment (Li et al., 2013; Mwangi et al.,

2016).

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) is a

process-oriented, semi-distributed and time-continuous river basin model that combines a

plant growth module to simulate streamflow and sediment under a range of climate and

management conditions (Arnold et al., 2012; Bressiani et al., 2015). SWAT has been

widely used in modeling hydrological processes (e.g. streamflow, surface runoff,

evapotranspiration and sediment) and vegetation dynamics such as leaf area index, crop

yield and biomass (Kauffman et al., 2014; Glavan et al., 2015; Mekonnen et al., 2017).

However, only a few studies have considered the limitations of simulating vegetation

dynamics and evaluated the performance of plant growth module (Wagner et al., 2011;

Francesconi et al., 2016).

In SWAT, the plant growth module is a simplified version of Environmental Policy

Integrated Climate (EPIC) crop growth model, which was originally developed to assess

the effect of erosion on soil productivity (Williams et al., 1989; Neitsch et al., 2011). It uses

EPIC concepts to model plant growth which based on heat units to simulate leaf area

development, light interception, and conversion of the intercepted light into biomass

(Lychuk et al., 2015). Therefore, the Leaf Area Index (LAIl), which is defined as the area of
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green leaves per area of land, plays a key role in SWAT for further estimating other

processes, such as evapotranspiration and biomass accumulation (Ren et al., 2010;

Almeida et al., 2011). Due to the shortcomings of EPIC model in subtropical regions, there

are two potential problems that generate uncertain estimates of the LAl values, as already

noted in previous studies (Anderson et al., 2002; Strauch and Volk, 2013).

First, plant growth dynamics are originally controlled only by the temperature in

SWAT model, which is inapplicable to subtropical regions where precipitation is a primary

controlling factor for both leafing and senescence (Jolly and Running 2004; Pfeifer et al.,

2014). Several studies also pointed out that there was a significant mismatch between

SWAT simulated LAI and remote-sensing based estimates in subtropical watersheds, and

they suggested that plant growth module was needed to be critically examined for

appropriate use (Plesca et al., 2012). To solve these problems resulting from unrealistic

presentation of LAI, previous studies mostly considered soil moisture as an indicator to

initiate subtropical plant growth in SWAT (Strauch and Volk, 2013; Alemayehu et al.,

2017). Although an improved simulation of the seasonal dynamics of the LAl was obtained,

the simulated LAl by SWAT still was found to be considerably inconsistent with the

Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day LAI (Alemayehu et al.,

2017). As input to a hydrological model like SWAT, remotely sensed LAl has a great

potential for enhanced presentation of land surface parameters in a broad area and make

vegetation dynamics more realistic (Zhang & Wegehenkel, 2006; Sun et al., 2018).

Compared to field measured LAl and soil moisture-based LAl, remotely sensed LAl

product has its advantages for providing spatially and temporally continuous information
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for improving predictive accuracy of SWAT models.

Second, daylength driven dormancy was applied in SWAT plant growth module to

repeat the annual growth cycle for trees and perennials (Wagner et al., 2011). Dormancy

assumes that plants do not grow as daylength nears the shortest daylength for the year

(Arnold et al., 1998; Trybula et al., 2015). However, plants do not have a dormant period

in the subtropics and tropics. The SWAT plant growth dynamics could not reflect the

physical reality in tropical area by assuming LAl sharply drops to a very low level at the

end of year. A general approach to addressing this issue is shifting the dormancy period

by editing crop database or LAl curve controlling parameters (Wagner et al., 2011;

Strauch and Volk, 2013). This method might avoid dormancy to some degree in

subtropical areas, but the default dormancy could not be authentically removed without

modifying the SWAT source code.

In this study, we take advantages of MODIS LAl which has been proven capable of

monitoring vegetation timely and accurately at a large scale and easy to obtain (Yuan et al,

2011). MODIS LAl values were firstly improved by using time series filter and downscaling.

Afterwards, MODIS LAl were incorporated into SWAT through hydrological response units

(HRUs) to replace the originally simulated LAI, and other parameters such as biomass

and C factor (cover and management factor used in modelling sediment) were

consequently updated based on the observed LAI. Meanwhile, the drawbacks of

dormancy that affecting representation of vegetation change were completely overcome

by modifying the dormancy function of daylength and latitude in SWAT source code.

Performance of SWAT with revised plant growth module was evaluated for simulating
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streamflow and sediment yield in a typical subtropical watershed.

The specific objectives of this study are to: (1) obtain high spatial resolution and
temporally continuous satellite-based LAl that can reasonably represent vegetation
dynamics in HRU level; (2) improve the predictive capability of SWAT by modifying plant
growth module to integrate remotely sensed LAl into SWAT; and (3) explore the variations
of vegetation-related parameters and their rationalities in the changed plant growth

module.

2 Theoretical Background

The plant growth module of SWAT is a simplification of EPIC model, which simulates
the vegetation growth based on daily cumulative heat units (Williams et al., 1989; Neitsch
et al., 2011). It assumes that plant growth only occurs on the days when daily mean
temperature exceeds the base temperature for growth (Kiniry and MacDonald, 2008). This
means that temperature is the main governing factor of plant growth in SWAT.

Derived from temperature requirements (i.e. minimum, maximum and optimum for
growth), heat units (HU) is an index that is applied to measure the heat acquirements of a

plant and calculated as follows (Arnold et al, 1998):
HU = Tav — Thase when 7_wav > Thase €Y)

where HU, T,, (°C) and T, (°C) are the values of heat units accumulated on a given
day, mean daily temperature and base temperature, respectively. Consequently, the

required HU for plant maturity can be computed as the following equation:

m
PHU = Z HU 2
d=1
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where PHU (Potential Heat Units) refers to the total heat units required for plant maturity;
d is the number of day (d = 1 is the day of starting planting); m is the number of days
required for a plant to reach maturity. It is worthwhile noting that PHU is known before
model running and is given in model database. Thus, a fundamental variable for

computing LAI could be produced by:

L HU;

PHU )

freny =
where frpyy is the fraction of potential heat units for a certain period during the growing
season. When plants reach maturity, frpyy will be 1.

Corresponding to a given fraction of the potential heat units, the function of optimal

leaf area development is listed as:

frenu
freay +exp(ly — Ly - frepy)

friaimx = €))

where friam, IS the fraction of the plant’s maximum leaf area index for the plant; [; and

I, are shape coefficients. For plants, the increase of LAl on a day i is calculated as: (5)
ALAL; = (fruannxi = fTiammxi-1) * LAy = (1 — exp(5+ (LAli—y — LAlLy,)))
which is used to derive the LAl for the day:
LAI; = LAL,_, + ALAL (6)

where ALAI; is the change of LAl on day i; 7 aimxi @nd fTiamaxi—1 are the fraction of
the plant’s maximum leaf area index for the day i and i — 1, respectively; Similarly, LAI;
and LAI;_, are the leaf area index for the the day i and i —1; LAl,, is the maximum
leaf area index for the plant.

Depending on the LAI, a series of critical parameters related to streamflow and
sediment are determined. For instance, C factor (cover and management factor) is one of

the important factors of the Modified Universal Soil Loss Equation (MUSLE) in SWAT to
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model sediment yield (Wischmeier and Smith, 1978). C factor used in SWAT is a function

of the amount of residue on the soil surface, which is also obtained from LAI (Song et al.,

2011). In addition, parameters such as biomass and the amount of baseflow and surface

runoff would be changed when LAl values are adjusted (Qiao et al., 2015).

3 Materials and Methods

3.1 Study area

The Meichuan Basin, a representative basin of Poyang Lake, is located between 26°

00'-27°09'N and 116°36'-116°39'E in Jiangxi Province, southeastern China (Fig.1). It has

a drainage area of 6384km2, which is an upstream tributary of Gan River contributing to

Poyang Lake and the Yangtze River. The elevation ranges from 137 to 1425m, with a

mean of 358m. This watershed has a subtropical wet climate characterized by an annual

mean temperature of 17°C and annual mean precipitation of 1628 mm during study period

from 2001 to 2014. The land use of Meichuan Basin is diversified with a dominant forest

(40.63%) and secondary cropland (27.19%). The cropping system is two seasonal crops

per year and the cultivation consists largely of rice. The main soil types are red soil and

paddy soil, covering 64.3% and 28.2% of total area, respectively.
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Fig.1. Locations of climate stations, rain gauge stations and subbasins in Meichuan Basin

3.2 Datasets and SWAT settings

The data sources used in this research are as listed in Table 1. By combining the

knowledge of soil-landscape relationships with geographic information systems under

fuzzy logic, the detailed soil spatial data with a spatial resolution of 30 m were generated

from the original 1: 500 000 soil maps using the Soil Land Inference Model (Zhu et al.,

2001). Observed daily streamflow and sediment for the watershed outlet (gauge Fenkeng)

and daily rainfall of the study area was obtained from the Chinese Hydrological Data

Yearbook from 2001 to 2014. Data of six climate station were obtained from CMDC

(Chinese Meteorological Data Service Center), including daily temperature, solar radiation,

humidity and wind speed.

Table 1 The SWAT model datasets for Meichuan Basin
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Data Type Spatial/Temporal  Source
Resolution

Digital 30m ASTER GDEM

Elevation

Model (DEM)

Land use 30m FROM-GLC (Finer Resolution Observation and
Monitoring of Global Land Cover, Gong et al., 2013,
http://data.ess.tsinghua.edu.cn/fromglc2015_v1.html)

Soll 30m Generated from 1:500000 soil vector maps
(downloaded from Resources and Environment Data
Cloud Platform, http://www.resdc.cn/Default.aspx)

Rainfall Daily (2001-2014) Chinese Hydrological Data Yearbook

Climate Daily (2001-2014) CMDC (Chinese China Meteorological Data Service
Center)

Streamflow Daily (2001-2014) Chinese Hydrological Data Yearbook

Sediment Daily (2001-2014) Chinese Hydrological Data Yearbook

LAI 8 days/500m MCD15A2H

Landsat 16 days/30m Landsat 5,7,8

The MODIS Collection 5 LAl (MCD15A2H) global products were downloaded from

https://e4ftl01.cr.usgs.gov/IMOLT/MCD15A2H.006/ and used in this study for fourteen

years’ vegetation growth simulation during 2001-2014 period. The product is composited
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every 8 days at 500m resolution and its retrieval algorithm is based on a

three-dimensional radiation transfer model (Knyazikhin et al., 1998) using different sets of

canopy realization and view geometry as inputs. Available Landsat-5 TM, Lantsat-7 ETM+

and Landsat-8 scenes (30m) acquired in different years were also downloaded from

Geospatial Data Cloud (http://www.gscloud.cn/), amounting to a total of 181 scenes for

establishing the relationship in downscaling method. To investigate the effect of different

vegetation types with modified SWAT model on hydrological processes, the LAl was

separated into six land use categories: cropland, grassland, shrubland, evergreen forest,

deciduous forest and mixed forest. Management practices of cropland (Supplementary

Material Table S1) used as input in the model were derived from information provided by

Li et al. (2013). Management practices of other plants were scheduled as default in

management database of SWAT.

SWAT2012 (revision 664) was set up for Meichuan Basin to model streamflow and

sediment. Based on DEM, the Meichuan Basin was delineated into 15 sub-basins and 419

HRUs (Fig.1). The first 2 years were used as warm-up period to mitigate the initial

conditions and were excluded from the analysis (2001-2002). The SWAT model was

calibrated at monthly time step from 2003 to 2010 and validated from 2011 to 2014 based

on streamflow observations. In this basin, three hydrological gauges (Shicheng, Ningdu

and Fenkeng) provide measured streamflow data for the investigated period, but only one

hydrological gauge (Fenkeng, outlet of this basin) has continuous measured sediment

data. Therefore, there will be a different number of calibration and validation between

streamflow and sediment to understand the physical behaviors in upstream and
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downstream flow.

3.3 Integration of remotely sensed LAl into SWAT

Several studies demonstrated that methods applied in SWAT plant growth module

are not suitable for subtropical areas because of controlling factor and dormancy (Wagner

et al., 2011; Strauch and Volk, 2013; Alemayehu et al., 2017). Thus, we proposed to

integrate remotely sensed LAI time series into SWAT plant growth module to replace the

LAI simulated by SWAT. With this, actual vegetation dynamics can be reflected and the

occurrence of dormancy during plant growth is also avoided. Consequently, a specific

approach to MODIS LAl process and SWAT revision was developed in this study, details

are described in the following subsections.

3.3.1 Filtering MODIS LAl time series products

MODIS LAl products have been widely used for its long-term record and character of

high temporal resolution (Fang et al., 2008). However, there are significant discontinuity

and noise in MODIS LAI products due to cloud and snow cover, as well as instrument

failure (Weiss et al., 2007; Li et al., 2009). To obtain the continuous and smooth dynamic

that was required by SWAT modelling, time series filter processing thus becomes an

important ingredient of a biophysical algorithm. Among several time-series filter

approaches, modified Temporal Spatial Filter (InTSF) was selected in our study due to its

specific adaption for estimating vegetation indices such as LAl (Yuan et al., 2011).

The mTSF was performed pixel by pixel for all the fourteen years data. The

procedures can be divided into three main steps: (1) Calculating the background value.
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For each pixel of MODIS LAI product, there is quality control (QC) information restored as

8-bit data to reflect the corresponding algorithm and state of cloud. If the QC information

indicate a good quality, e.g. a value is retrieved by main algorithm without clouds, the

value will be chosen to calculate multi-year mean value which was later assigned as the

background value of this pixel. (2) Filling the gaps between the observation values. If the

QC information indicate that value is not retrieved by main algorithm or cloud presents,

the value will be filled with the background value calculated in the first step. Missing data

in time series were filled by linear interpolation independently. (3) Obtaining a final target

value by applying filter. Using the results from above steps, the target value was obtained

by applying Adaptive Savitzky—Golay filter (Chen et al., 2004). All processing steps have

been streamlined for automatic execution based on Python and 644 MODIS images were

processed.

3.3.2 Downscaling MODIS LAI products

SWAT predominantly relies upon discretizing landscapes based on common soil,

land use and slope characteristics, known as hydrologic response units (HRUs; Arnold et

al; 1998). To a large degree, the spatial resolution of HRUs is dependent upon the spatial

resolution of input data sets, herein including the 30m grid data of DEM, landuse and soil

map (Zhou et al, 2015). The 500m MODIS LAl is not appropriate to monitor detailed

variations of vegetation types across space because of its inadequate spatial resolution

(Giambelluca et al., 2009). It is too coarse to match the above HRU scale and raise an

issue of mixing several types of distinct vegetation, that is, a MODIS LAI grid (500m) may

span one more HRUs (Starks & Moriasi, 2009).
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To overcome the aforementioned limitation, MODIS LAl products need to be

downscaled from the medium resolution to the high-resolution scale (30m) by relying on

high spatial resolution satellite imagery data such as Landsat. Spatial and Temporal

Adaptive Fusion Model (STARFM) is a downscaling method that is designed to utilize the

relationship between the surface reflectances of MODIS and Landsat and preserve the

high spatial resolution of Landsat and the high frequency of MODIS (Emelyanova et al.,

2013; Jarihani et al., 2014; Houborg et al., 2016). In this study, we proposed to implement

a revised version of STARFM (Gao et al., 2006) to achieve this goal.

The processing steps of revised STARFM include: (1) Unsupervised classification for

different land cover. Using Landsat image as input, the land cover classification is

conducted automatically based on the unsupervised ISODATA technique. (2) Resampling.

MODIS reflectance (MODO02) and LAI (MCD15) product (500m) are resampled to the fine

resolution of Landsat (30m). (3) Establishment of MODIS-Landsat relationship. For each

8-day MODIS composite, MODIS-Landsat linear relationships between MODIS and

Landsat surface reflectance for different land covers are established at the 30m scale.

Only MODIS pixels with best quality information (QC information indicate that a value is

retrieved by main algorithm without clouds) are used in establishing relationships. (4)

Application of MODIS-Landsat relationship and STARFM algorithm for downscaling LAI.

Based on spatial and spectral similarities between high and medium resolution reflectance

data and a weighting function that exploits information from neighboring pixels, an initial

Landsat scale LAl value can be generated from MODIS LAl product. Then,

MODIS-Landsat relationships are applied to these initial values according to land cover
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types to obtain the final LAI values with high resolution (30m). (5) Execution of STARFM

for re-constructing time continuous LAI. STARFM is implemented to blend co-registered

and scale-consistent datasets of MODIS and Landsat and produce a new LAl dataset with

a higher spatial resolution (30 m in this study).

3.3.3 Modifying SWAT code for loading refined LAl

In SWAT, HRU is the basic simulation unit for most of the physical processes,

including water flow, nutrient and vegetation growth. To make use of high spatiotemporal

resolution LAI, the source code in the growth subroutine (grow.f) related with producing

LAl needs to be modified to introduce the observed LAI to the corresponding HRUs.

However, the LAl derived from satellite images is pixel-based. Therefore, a geo-statistics

analysis called zonal statistics is first adopted by overlaying the enhanced LAl images with

HRU distribution map and the mean LAl value for each HRU is calculated every eight

days. Then, a cubic spline interpolation method is applied on each HRU to interpolate

daily LAl values using its 8-days interval LAl values. Finally, these interpolated daily LAI

datasets are defined as the input of the modified growth subroutine.

Fig.2 shows the flowchart of source code modification in plant growth module of

SWAT. As shown in Fig.2, high spatiotemporal resolution LAl was obtained from

processing steps (blue dotted portion) as described in Section 2.2.1 and 2.2.2. Which was

incorporated into plant growth module for each HRU to replace the LAl simulated by

SWAT. According to original growth subroutine, the LAl values were estimated from

several equations using radiation and the effect of stress. When remote sensing LAl were

integrated, the calculation of plant growth module (grow.f; green dotted portion) would
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become inactive (grey portion). Finally, the plant growth module after incorporating with

new LAl values provided updated biomass and parameters related to streamflow and

sediment. This output would be restored in a new file for model calibration and validation,

and also used for comparing with the results from the origin SWAT model.
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Fig.2. Flowchart of source code modification related with LAl conducted in plant growth

module of SWAT

3.4 Evaluation and calibration of the modified SWAT

To evaluate the influence of SWAT modification on modeling results, three scenarios
were conducted: (1) the original SWAT, (2) SWAT with a corrected dormancy function and
(3) modified SWAT with refined LAI. It is worth noting that the second scenario is a
modification just for dormancy issue existing in subtropical ecosystem. Unlike the original
SWAT plant growth module, the second plant growth module only adopted a new

dormancy function which enables to set the default time of dormancy as 0. The above
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three versions of SWAT were compared through their performances in simulating
streamflow and sediment.

With many empirical equations for simulating physical processes within a basin, the
accuracy of SWAT simulations highly depends on calibration and validation (Li et al.,
2012). In this study, the parameters related to the simulation of streamflow and sediment
were selected based on the one-at-a-time sensitivity analysis in SWAT-CUP (Abbaspour
et al., 2015). Calibration and validation procedure were based on the SUFI-2 algorithm
(Abbaspour et al., 2007) of SWAT-CUP, which is an auto-calibration and uncertainty
analysis module that can deal with a number of input parameters. At first, streamflow was
calibrated and validated because it is the basis of sediment simulation. In the streamflow
calibration, surface runoff and baseflow were calibrated separately according to the
separated components from the observed total streamflow. After streamflow calibration,
sediment yield was calibrated till the evaluation metrics reached a given criteria.

Two coefficients, Nash-Sutcliffe efficiency (Ens; Nash and Sutcliffe, 1970) and the
coefficient of determination (R%) were used for evaluating the fit goodness between

simulated and observed estimates on both streamflow and sediment:

Eve =1 _M @)
NS (0, - 0)?
n Y . — D))2
RZ — (Zi=1(01 0)(P1 P)) (8)

1(0; — 0)2 XL (P, — P)?

where n is the number of observations; 0; and P; are the observed and predicted
value at the time i; 0 and P are the mean of observed and predicted values. Ens
represents the performance of model output in comparison with the mean of observed

data. R? indicates the consistency of trend between the observed and simulated values.
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The closer the two coefficients to 1, the better of model performance. Following existing
studies (Santhi et al., 2001; Moriasi et al., 2007; Ye et al., 2018), the criteria of evaluating
the model performance can be categorized into unsatisfactory performance (Eyg <
0.50 and R? < 0.60), satisfactory performance (0.50 < Eyg < 0.65 and 0.60 < R? < 0.70),
good performance (0.65 < Eyg < 0.75 and 0.70 < R? < 0.80) and very good performance

(0.75 < Eng < 1.00 and 0.80 < R? < 1.00).

4 Results
4.1 High spatiotemporal resolution LAl

Fig.3 present the enhanced LAl after downscaling and shows the agreement between
original MODIS (500m) and downscaled LAI (30m) at the scale of the entire basin and a
typical zoom in view on August 20, 2008. As expected, much detailed spatial LAl patterns
can be found in downscaled LAl but have been averaged out in original MODIS LAI. The
normalized frequency distribution (Fig.3c) also indicates that an equivalent clusters exists

among two downscaled and original LAls.
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368  Fig.3. MCD15A2H (a) and downscaled (b) maps of LAl on August 20, 2008. The right plot
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Fig.4. The daily means and ranges of original MODIS LAI (500m) and improved LAI

in an HRU (30m). The shadings indicate the range of LAls within a HRU

After reconstruction of high spatiotemporal LAl values, the dynamics of improved LAl

(30m) in Meichuan Basin were generated temporally and spatially (Fig.4 and Fig.5). Fig.5

shows the improved LAl and the original MODIS LAI over several land use types at HRU

level temporally. From the visual perspective, improved LAl has a more centralized range

than original MODIS LAl except for deciduous forest, suggesting that improved LAl

produces less abrupt fluctuations. It can be observed that the improved MODIS LAl values

are much smoother than original MODIS LAL In original products, the LAIls of evergreen,

deciduous and mixed forests show unreasonable spikes and peaks in time-series. In

addition, the LAls of shrub, grass and crop with poor quality are observed mainly in

growing seasons such as summer. For crop land, the improved MODIS LAl values display

a slightly weak trend of double crop growth peaks after time filtering, indicating a more

realistic scenario. For the grass and shrub land use types, the improved MODIS LAl

values are quite similar with original ones except for the peak part during growing season.

For three forest land use types, there are several negative offset effects in time series of

LAl caused by the contamination of atmospheric factors.

Misrepresentative seasonal dynamics of LAl has also been corrected by downscaling

to acquire a high spatial resolution. For instance, the trend of crop has been significantly

changed from single-cropping to double-cropping even at a small HRU (Fig.4b). HRU

means of improved LAl values of three trees were also higher than original MODIS LAl,
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whereas HRU means of improved LAl values were lower in other three vegetation types.

This is attributed to mixed plants within a medium resolution pixel (500 m).

To display the detailed spatial characteristics of vegetation dynamics after

downscaling, seasonal and spatial distribution of improved LAI (30m) at HRU level were

presented in Fig.5. For seasonal changes, January and July were the months with lowest

and highest LAI values, respectively. These estimates are also well reflected in the time

variability of the LAI (Fig.4). From the spatial distribution shown in Fig.5, the LAl over crop

regions in the middle part of the study area was persistently low throughout the year, but

regions with other plant types varies largely with the change of season. The results in time

and space clearly demonstrate the capability of our proposed method at providing

high-accuracy LAI data for precisely describing plant growth cycle characteristics and

streamflow in subtropical ecosystems.

Jun

Oct

Fig.5. The spatial distribution of long-term (2001-2014) monthly averaged LAI (30m)

in the Meichuan Basin at HRU level for each month.

22

LAI (m’/m’)

0-

1
.2 -
.-
| _ES
.S -

[ RV U}



410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

4.2 Model performance in streamflow and sediment simulation

4.2.1 Streamflow simulation

Based on the sensitivity analysis, eight sensitive parameters were selected for

streamflow calibration (Supplementary Materials Table S3). Auto-calibration was

performed in three outlets for finding the optimal values of all eight parameters with

different plant growth modules during 2003-2010. It is noted that ALPHA_BF (baseflow

alpha factor) is a recession constant that was generated from baseflow separation

program to account for sub-surface water response simulated by SWAT. The default

values, calibrated values and calibrated values in combination with MODIS LAl for each

parameter in the calibration process are also presented in Supplementary Materials Table

S3.

For accurate analysis of water flow pathways, baseflow and surface runoff separated

from the watershed were summed to predict streamflow at three outlets (Supplementary

Material Fig.S2 and Table S2). The time-series plots of predicted and measured monthly

streamflow at three stations during the calibration (2003-2010) and validation (2011-2014)

periods are shown in Fig.6. Generally, the predicted streamflow with original and modified

model during both the calibration and validation periods matched the measured

streamflow. Furthermore, streamflow corresponded well to precipitation.

For designed three scenarios — the original SWAT, the dormancy corrected SWAT

and the modified SWAT with MODIS LAl, all statistical evaluation criteria in Table 2

indicated three models predicted well. The dormancy occurs during late December and
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lasts about 7~14 days depending on vegetation types. This period belongs to dry season
and has a relatively-lower precipitation. So, as shown in Table 2, the performance of
Scenario-2 is a little bit better than Scenario-1 and much worse than Scenario-3. The
Scenario-2 has almost same streamflow and sediment as the original model except that a
slight difference might exist in December.

By observing the temporal variation of streamflow at three gauge stations, in general
simulated streamflow was higher than the observed during dry season (winter and spring)
except Shicheng station, which has a lowest flow among these stations. From Table 2, it
can be seen that Ey¢ and R? ranges of baseflow for calibration were from 0.71- 0.74 and
0.73-0.8, respectively. For the validation period, the simulated and observed flows
showed a very good agreement as indicated by Eyg (0.76-0.8) and R? (0.80-0.89).
There seems to be smaller difference between simulated surface runoff and the observed
(Supplementary Material Fig. S3 and S4). This is supported by the evaluation statics in
Table 2, where Eyg and R? (ranges are from 0.8-0.83 and 0.86-0.92) are higher than
that of baseflow.

Minor discrepancies between observed and simulated streamflow can be observed
(Fig.6) because of differentiating baseflow and surface runoff simulations. Of course, the
statistical analysis coefficient for streamflow were highest among three hydrological
components, with very high Eyg and R? values beyond 0.84. Both Eys and R? reached
the “very good” criterion as described in Section 2.3.

Table 2 Evaluation statistics of monthly surface runoff, baseflow and streamflow for the

Shicheng, Ningdu and Fenkeng station during calibration and validation period. “Original”
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454 refers to the SWAT original plant growth module. “Dormancy corrected” refers to the

455  SWAT plant growth module with corrected dormancy function. “MODIS modified” refers to

456 the modified SWAT plant growth module with the integration of MODIS LA
Period Outlets Plant growth Surface Baseflow Streamflow
module Runoff

R2 ENS R2 ENS R2 ENS

Calibration Shicheng Original 0.86 0.80 0.73 0.71 0.88 0.84

Dormancy 0.86 0.80 0.74 0.72 0.88 0.85

corrected
MODIS 0.88 0.81 0.76 0.75 0.89 0.88
modified

Ningdu Original 092 0.83 0.8 0.71 0.93 0.86

Dormancy 0.92 0.86 0.8 0.74 0.93 0.88

corrected
MODIS 0.94 092 0.81 0.79 095 0.93
modified

Fenkeng Original 091 0.80 0.78 0.74 0.93 0.93

Dormancy 0.91 080 0.78 0.75 0.93 0.93

corrected

MODIS 0.93 082 0.79 0.77 0.95 0.95

modified
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Fig.6. Temporal variability of observed and estimated monthly streamflow from original
SWAT and modified SWAT with MODIS LAl at (a) Ningdu, (b) Shicheng, and (c) Fenkeng
station graphical comparison of observed and simulated baseflow with original plant
growth module and MODIS LAl are presented in scatter plot. Bar plot represents

corresponding monthly rainfall.

Predicted flows with MODIS LAI during both the calibration and validation periods
basically matched the measured flows better than the result from original SWAT plant
growth module (Fig.6). This observation is supported by an apparent improvement of
coefficients Eygs and R? during both calibration and validation period. For streamflow,
comparison with that simulated by the original SWAT indicated that monthly flows by the

MODIS LAl improved SWAT are much more aggregated and closer to identity line (or
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diagonal line) in all three scatter plots. Among the three hydrological stations, coefficient
of Ningdu had a more obvious improvement than other two stations in the calibration
period (R? and Eys from 0.93 and 0.86 to 0.95 and 0.93, respectively), while the largest
enhancement was observed at Fenkeng in the validation period (R? and Eyg from 0.91

and 0.83 to 0.94 and 0.92, respectively).

4.2.2 Sediment simulation

Based on the above streamflow results, calibration of sediment was further performed
by adjusting related sensitive parameters as listed in Supplementary Material Table S4.
Fig.7 shows the observed sediment and the predicted with modified MODIS LAI model
and original SWAT at Fenkeng station. Overall, predicted sediment and observed
sediment showed a good agreement as indicated by satisfactory values of Eys > 0.65

and R% > 0.8 (Table 3).
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SWAT with MODIS LAI
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Fig.7. Temporal variability of observed and estimated monthly sediment from original

SWAT and modified SWAT with MODIS LAl at Fenkeng station. Bar plot represents

differences between observed sediment and simulated sediment with MODIS LAl and
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original SWAT.

While comparing predicted sediment from original SWAT with that from MODIS LAl a
noticeable difference was observed in Fig.7. The values of Eyg and R? with MODIS LAl
were 0.03 and 0.02 greater than original SWAT for calibration period separately, while
they became 0.09 and 0.04 in validation, respectively (Table 3), suggesting an improved
agreement between predicted values and observed data when integrated with MODIS LAI.
Meanwhile, Scenario-2 has a middle accucracy on sediment yield prediction in
comparison with Scenario-1 and Scenario-3. To further understand the mechanisms
behind the temporal variability, differences between predicted and observed sediments
was also generated using bar plot in Fig.7. As illustrated, there was an obvious
overestimation in sediment with original SWAT. Our proposed module had a better
accuracy for the most of time although it also overestimated sediment in summer and

autumn months.

Table 3 Evaluation statistics of monthly sediment for the Fenkeng station during
calibration and validation period. “Original” refers to the SWAT original plant growth
module. “Dormancy corrected” refers to the SWAT plant growth module with corrected
dormancy function. “MODIS modified” refers to the modified SWAT plant growth module

with the integration of MODIS LAI.

Period Qutlets Plant growth module  Sediment

29



509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

R2 ENS

Calibration Fenkeng Original 0.86 0.81
Dormancy corrected 0.86 0.82
MODIS modified 0.88 0.84
Validation Original 0.80 0.66
Dormancy corrected 0.81 0.70
MODIS modified 0.84 0.75

To highlight the spatial distribution of modified SWAT, simulation for seasonal mean

sediment yield at HRU level was computed and presented in Fig.8. Generally, the level of

soil erosion risk in the Meichuan Basin was high. Dominant area of cropland experienced

a high soil erosion risk with monthly mean sediment yield. A large area of forest

experienced a relatively low risk due to the stronger ability of conserving soil and water.

Other HRUs have moderate level of soil erosion risk, according to the soil erosion risk

classification specification by the Ministry of Water Resources of China (1997). These

estimates were consistent with the spatial distribution of LAI displayed in Fig.7 (details are

in Section 4.1).

Although the distribution of predicted sediment seems to be reasonable, certain

information was needed to better characterize the modified SWAT and to ensure accurate

source area and seasonal variation of sediment. As shown in Fig.8, there is a huge

variation ranging from areas with slight erosion to areas with significant soil losses in

space and time. Clearly, some of the highest sediment yields were predicted during
30
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growing season (from March to June) with high rainfall. The decrease in sediment yield

reflected mature of plants in July, and the developed canopy and root system reduces rill

and sheet erosion (Amare et al., 2014). When LAl started to decline in November, the

sediment yields had subsequently increased, especially in January and February with a

lower LAI. Correspondingly, the sediment hydrographs for areas covered by different

types of plants varied a lot. Indeed, sediment yield of cropland were predicted to be larger

than others. On the contrary, sediment yields were lower at the border of basin where

characterized with mainly forested areas and high elevations. At this point, the improved

vegetation growth module with MODIS LAI could accurately identify such spatial variation

of sediment simulation results.
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Fig.8. The average seasonal and spatial distribution of sediment at HRU level in the

Meichuan Basin, as simulated by modified SWAT with MODIS LAl

4.3 Vegetation parameterizations by MODIS

4.3.1 LAl

31



540

541

542

543

544

545

546
547

548

549

550

551

552

553

554

A comparative analysis of LAl on SWAT simulation was implemented under three
scenarios. The three scenarios are (1) original SWAT, (2) SWAT with corrected dormancy
function, and (3) SWAT integrated with MODIS LAl In this analysis, plants are
categorized into three types according to their differences at going dormant as follows: (1)
Plants which are not affected by dormancy - crop; (2) Perennials - shrub and grass; (3)

Trees - evergreen, deciduous and mixed trees.

(a) Plants which are not affected by dormancy
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Fig.9. The LAl as simulated by original SWAT, SWAT with corrected dormancy function
and modified SWAT with MODIS LAl for (a) plants which are not affected by dormancy, (b)

perennials and (c) trees.

As shown in Fig.9, LAls simulated in scenario 1 and 2 quickly reach to the peak value
and occupy a very long period in its vegetation growth cycle if comparing with the
observed LAl in scenario 3. This indicates that the simulated vegetation in scenario 1 and

2 results in an overestimated transpiration and consequently leads to an underestimated
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streamflow rather than in scenario 3. In scenario 1 and 2, simulated vegetation LAl peaks

always appear earlier than rainfall peaks about one month in time series, while MODIS

LAI peaks lag behind rainfall peaks around 2~4 weeks depending on vegetation types in

scenario 3. Such mismatch of two peaks in original vegetation growth module apparently

causes the system error of SWAT and low predictable accuracy on simulation.

4.3.2 Parameter C

Soil erosion and sediment yield in SWAT are modelled using a Modified Universal

Soil Loss Equation (MUSLE). Plant growth module plays an important role in simulating

the cover and management factor (C factor) in MUSLE. The changes of C factor were

analyzed for six plant types between the improved and original model, and the impact of

plant and ground cover on soil loss was hereby investigated as shown in Fig.10.
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Fig.10. Comparison of C factor simulated by original SWAT and modified SWAT with

MODIS LAl for (a) shrub, (b) cropland, (c) grassland, (d) evergreen forest, (e) deciduous
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forest and (f) mixed forest. The horizontal black dash line marks the minimum C value

defined in SWAT plant database

For crop, the mismatch of C values between SWAT with MODIS LAl and original

SWAT is so obvious. During growing season, there is a drastic change of C values within

a year in the original SWAT and such sudden peaks of C factor may produce extremely

high sediment yield in certain periods. The curve of C values from MODIS LAl fits well with

crop growth patterns, particularly illustrating distinct one-month fallow period between two

cropping seasons. It is much more acceptable than simulated by original SWAT. For

shrub and grass, mean value of C factor simulated with MODIS LAI were lower than

original SWAT. For evergreen, deciduous and mixed forest, there were no significant

differences between the two C factors. From the above comparison, C factor estimated by

SWAT with MODIS LAl captured the vegetation dynamics well, illustrating that the C

factor values estimated by the SWAT with MODIS LAI are temporally consistent and

reasonable.

5 Discussion

5.1 Changes of remotely sensed LAl on different scales

Based on the results of this study, the performance of remotely sensed LAl on SWAT

is related to two main scale issues. Firstly, due to the coarse resolution of original MODIS

LAI products (500m), mixed pixels are often presented in this gridding system that cannot

provide insufficient spatial details of vegetation (Ichiba, 2016; Gires et al., 2017). Another
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major issue is the relationship between SWAT-HRU and MODIS LAl pixel, producing

mismatch on the border of HRU as indicated in Fig.11 (Rafieeinasab et al., 2015;

Salvadore et al., 2015; Ichiba et al., 2018). With these two issues, the time series of

MODIS LAl values aggregated at HRU level had a massive change on different scales. As

shown in Fig.4, the LAI time series of crop (30m) displayed a double-cropping pattern in

subtropics instead of a wrong single-cropping pattern (500m) after our time filtering and

downscaling.

(a) 500m scale (b) 30m scale

|:' HRU border I:I pixels on border

] pixels within HRU

Fig.11 Graphic representation of the (a) 500m-scale and (b) 30m-scale mismatch

between SWAT-HRU and MODIS LAl pixel in the border of HRU.

The average size of HRUs in this work is 15.13 km2. As shown in Fig.11, high
resolution MODIS LAI (30m) produce less mismatched area than the original MODIS LAI
(500m). The larger pixel size of MODIS causes a bigger vegetation mixed area nearby
SWAT-HRU borders and the aggregation of LAl at HRUs absolutely result in LAl
converging between two neighbor HRU areas although these HRUs have different

vegetation types.
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We considered the characteristics of the MODIS LAl variation at different scales and

processed the MODIS LAl product to precisely reflect ground truth of cropping in

subtropics. So MODIS LAl was able to be properly aggregated to SWAT-HRU and

improved the accuracy of SWAT simulation.

5.2 Improved SWAT eco-hydrological processes with satellite-observed MODIS LAl

Spatially distributed watershed models such as SWAT in subtropical areas can

greatly benefit from high resolution LAl estimates provided by our enhanced method.

Compared with SWAT-simulated LAl value, satellite- observed LAl values have a great

improvement in spatial details and recognize cropping pattern in time more clearly (Yuan

et al., 2011). In SWAT, several subroutines such as etact.f (calculating actual

evapotranspiration) and cfactor.f (calculating C factor for sediment simulation) request LAI

data (Neitsch et al., 2011). The enhancements of LAl by MODIS are definitely delivered to

streamflow and sediment yield through by these model chaining (Table 2 and 3). In

general, these enhancements may be catalogued into three eco-hydrological processes

as follows:

(1) Canopy interception loss. Cui et al. (2015) reported that interception loss is an

important component of the regional water balance and even make up 30% of rainfall

during rainy season in tropical or subtropical vegetation covered areas. The peak of

MODIS LAl showed a better agreement with precipitation in comparison with simulated

LAI (Fig.9), correspondingly the interception loss related with rainfall was estimated by

SWAT more accurately after incorporating MODIS LAI.

36



631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

(2) Soil water content. Evapotranspiration occurs from a SWAT-HRU area covered

with growing vegetation that has access to soil water and vary from day to day as a

function of LAl in SWAT (Gao et al., 2008). Therefore, the improvement of LAl would be

reflected to some degree in soil water content due to an increase accuracy of simulated

evapotranspiration.

(3) Sediment yield. In SWAT, C factor is a comprehensive function of above-ground

biomass, residue on the soil surface and the minimum C factor for the plant (Song et al.,

2011). Except for minimum C factor derived from crop database, both biomass and

residue are calculated by the time series of LAI. So estimating sediment yield by MULSE

may also benefit from an improved MULSE C factor too.

5.3 The nature of vegetation growth model in SWAT

As shown in Fig.9, the LAI curves of all plants reached the peak quickly (the

maximum of LAI) at the beginning of growing season by the original SWAT. We could not

obtain an appropriate LAl curve that reasonably describes vegetation dynamics as the

MODIS LAl presented even the SWAT parameters had been adjusted to keep plant

growth at the slowest speed. This could be attributed to the EPIC model used in SWAT

that is only adaptable to a temperate zone (Alemayehu et al., 2017).

Temperature is the most important controlling factor for governing plant growth in

EPIC. In the temperate zones, the temperature when seeding is around 10~15°C and

rises to 30~35°C after 2~3 months before harvesting (Bai et al., 2018). Considering the

plant growth pattern in the temperate zone, the accumulation of heat units is slow,
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especially at the beginning of plant growing (Neitsch et al., 2011). However, there is an

extremely rapid accumulation of heat units in tropics and subtropics due to high

temperature throughout the whole year, resulting an incredible rapid LAl increase at the

beginning of growing season in SWAT-EPIC.

The good match on time between satellite-observed MODIS LAI and rainfall shown in

Fig.9 demonstrated the nature of vegetation growth in subtropics controlled by rainfall, not

temperature. Furthermore, vegetation in temperate zone such as forest have a dormant

period at winter with low temperature by the original SWAT but not in tropics and

subtropics by MODIS improved model (Trybula et al., 2015). All the above reminds using

satellite observed MODIS LAl rather than SWAT-simulated LAl may lead to a better

performance of SWAT in subtropical area.

6 Conclusions

Modelling vegetation growth is of great importance for simulating streamflow and

sediment in hydrological model. SWAT-EPIC plant growth model using a

heat-accumulation function is just applicable to plants in temperate zones, where

temperature dominates plant growth. However, vegetation growth in subtropics is mainly

controlled by precipitation. SWAT fails to simulate an accurate vegetation growth and

inevitably caused the errors on vegetation-derived succeeding factors. Assuming that

satellite-observed MODIS LAl values represent the real scenario of land cover, we

integrated our downscaled high-quality MODIS LAI time series data into modified SWAT

plant growth module. As shown in the demonstration area, the SWAT reached a great
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accuracy on the validation of streamflow (Eys= 0.92 and R? =0.94) and sediment yield
(Eys= 0.75 and R? =0.84) and achieved a remarkable improvement on its applicability in
subtropics as follows:

(1) High spatiotemporal resolution LAls that substantially match SWAT-HRUs were
generated with MODIS. It reflects the correct relation between the LAI curves of plant
growth and precipitation in subtropical regions. Meanwhile, cropping pattern and spatial
details of crops were appropriately represented, namely, two-season cropping in
subtropics instead of sing-season cropping. Inappropriate dormancy was also avoided.

(2) The applicability of SWAT in subtropics was significantly improved by integrating
an improved MODIS LAI into modified SWAT plant growth model. The high quality of
refined LAls on SWAT-HRUs were broadcasted into subsequent SWAT modules. More
accurate LAl-related factors like canopy, interception loss, evapotranspiration and C
factor are derived in SWAT and lead to a definitely higher accuracy on the prediction of
streamflow and sediment yields.

(3) The drawbacks or limitation of SWAT-EPIC plant growth model in tropics or
subtropics were figured out through by analyzing the time series of LAl data simulated by
the original SWAT and derived by MODIS LAI. The growth model by the accumulation of
heat units in growing season is not effective in tropical or subtropical zones as in
temperate zones.

Modified SWAT we proposed using MODIS LAl presents an attractive applicability in
subtropics and meanwhile shows a high universality. It does not request additional field

measurement and no more specific satellite data processing as the MODIS MCD15A2H is
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a long-term and stale product that observes globe every 8 days at 500-meters resolution.
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