Plasmons in realistic graphene/hexagonal boron nitride moiré patterns
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Van der Waals heterostructures employing graphene and hexagonal boron nitride (hBN) crystals
have emerged as a promising platform for plasmonics thanks to the tunability of their collective
modes with carrier density and record values for plasmonics figures of merit. In this Article we
investigate theoretically the role of moiré-pattern superlattices in nearly aligned graphene on hBN
by using a continuum-model Hamiltonian derived from ab initio calculations. We calculate the
system’s energy loss function for a range of chemical potential values that are accessible in gated
devices. Our calculations reveal that the electron-hole asymmetry of the moiré bands leads to a
remarkable asymmetry of the plasmon dispersion between positive and negative chemical potentials,
showcasing the intricate band structure and rich absorption spectrum across the secondary Dirac

point gap for the hole bands.

I. INTRODUCTION

Research on graphene has been actively pursued dur-
ing the past decade after seminal experiments achiev-
ing its isolation via micromechanical cleavage and sub-
sequent transport measurements.' > Graphene shows
semimetallic behavior with linearly dispersing massless
Dirac-fermion bands near charge neutrality while hexag-
onal boron nitride (hBN) is a wide band-gap insula-
tor. Devices based on graphene on hBN substrates®®
have shown a dramatic enhancement of electronic qual-
ity compared to SiOs substrates, due to the atomi-
cally smooth surface structure of hBN and the relatively
smaller number of charge trap centers due to dangling
bonds. This has allowed the observation of fine Coulomb-
interaction-driven phenomena such as fractional quan-
tum Hall states,” % enhancement of the Fermi velocity,'!
and strong Coulomb drag,'? to mention a few examples.

The use of hBN substrates allows to engineer the elec-
tronic structure of graphene by introducing moiré super-
lattice band features and band gaps at the primary and
secondary Dirac points.!>™19 In the limit where the layers
are nearly aligned, graphene on hBN (G/hBN) displays
moiré superlattice patterns with periodicity as large as
A ~ 14 nm, which allows to access moiré-pattern-induced
electronic structure features at carrier densities accessi-
ble with conventional electrostatic gating. The presence
of a long periodic superlattice structure together with
the high quality of the devices has allowed the obser-
vation of Hofstadter butterfly physics in the presence of
magnetic fields routinely accessible in the laboratory.?%:2!
The moiré periodicity A depends on the relative differ-
ence € = (ag —apn)/apN between graphene’s and hBN’s
lattice constants, ag and apn, respectively, and on the
relative twist angle 6, through \ ~ ag/(6% 4 €2)'/2. Be-
cause of this dependence, the layer orientation is an ad-
ditional knob for modifying the electronic structure. The
band gaps observed at the primary!'®2?23 and secondary
Dirac points?* reflect the effect of moiré strains inducing
an average mass term,'!”2°27 while realistic models for

the moiré pattern potentials can capture the secondary
Dirac point gaps on the hole side.'®!? Fairly accurate
moiré patterns can be modeled already in the first har-
monic approximation for slowly varying potentials in the
basis of the identity and Pauli matrices, whose details
determine the character of the moiré superlattice bands
such as the electron-hole asymmetry'® and the presence
of secondary gaps.'?

A detailed study of the collective behavior induced by
long-range Coulomb interactions in G/hBN systems is
of considerable value for advancing our understanding of
2D-material-based plasmonics. Indeed, it has been recog-
nized early on that graphene and other two-dimensional
materials exhibit very interesting optoelectronic proper-
ties.?® In particular, G/hBN systems have been iden-
tified as a promising platform for plasmonic applica-
tions,?? featuring e.g. electrical tunability of the plas-
mon dispersion, high compression of electromagnetic ra-
diation, and facile coupling to emitters adjacent to the
graphene sheet. Most importantly, it has been shown?®
that graphene encapsulated between hBN crystals sup-
ports plasmon propagation with room-temperature life-
time 7, exceeding 500 fs, which represents a five-fold
enhancement compared to that achieved in the case of
SiO43! or SiC3? substrates. The propagation of plasmons
in graphene/hBN systems has also been used to recon-
struct the local conductivity,?® and thus verify the mod-
ification of the electronic structure due to the moiré pat-
tern. More recently, the plasmonic properties of encap-
sulated graphene have been explored at liquid-nitrogen
temperatures, where plasmon lifetimes on the order of
1.600 fs have been measured.3*

These breakthroughs have fostered a substantial re-
search activity into the optoelectronic properties of the
large family of two-dimensional materials, which includes
semimetals, semiconductors, and insulators.3°3% These
materials feature several light-matter hybrid modes, gen-
erally referred to as “polaritons,” which are supported by
the electric polarization of free carriers, excitonic states,
or lattice ions.



Previous studies of the electron energy loss in G/hBN
moiré patterns,3” which neglected gauge fields, demon-
strated that the dispersion of plasmonic excitations in
graphene sensitively depends on the Hamiltonian details.
In this Article we take a step further by exploring plas-
mons in G/hBN in a wide chemical potential range ac-
cessible in experiments by using a realistic electronic
structure model for G/hBN moiré patterns.!”19:3% The
manuscript is structured as follows. In Sec. II we present
the continuum-model effective Hamiltonian for G/hBN,
summarizing the framework to calculate a set of real-
istic parameters for the moiré potential, and we detail
the expression for the dielectric and loss functions within
the random phase approximation (RPA).3? The results of
our numerical calculations are presented and discussed in
Sec. II1. Finally, in Sec. IV we summarize our work and
draw our main conclusions.

II. THE MODEL

A. Effective Hamiltonian

The effect of interlayer coupling on graphene’s band
structure can be modelled through the following Hamil-
tonian, where we use the notation of Ref. 37, including
scalar, mass, and gauge potentials:

H = vpTo0 - P+ 1000V () + T303[D0 + A(7)]

ces 0; operate on the pseudospin space spanned by the
sublattice sites A, B; 7; acts on the space of graphene’s
principal valleys K, K'; and o = (01, 02) is a vector of
Pauli matrices. We parametrize the spatial distribution
of the moiré pattern as follows'?40

V(r) = 2CoRele!®f(r)] ,
A(r) = 20, Re[e f(r)] ,
A(1) = 2CapxE x V Re[e=v f(r)] . (4)
Here, C, and ¢,, are numerical constants that we discuss

below. The coefficient xy depends on the twist angle 6
and is given by

o 1+ e—cos(0)
* VI +e)2+2(1+€)cos(d)+1 ’

(5)

Finally, the complex function f(r) is given by
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where G,,, are the six reciprocal lattice vectors of the
moiré pattern which are closer to the origin. The Hamil-
tonian (1) can be rewritten in the more explicit form

+T730 - A(’I") . (1) A o G
H = vpTo0 - P + 130300 + e W, (1)
The position vector 7 lies in the two-dimensional (2D) mzz:l "
plane where the graphene sheet lies. The Pauli matri- where
|
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Here, ¢,, is the polar angle of the wave vector G,, and
the order of the basis vectors in the 4-dimensional sub-
lattice/valley space is {|AK), |BK), |BK'), —|AK")}.

The Hamiltonian for G/hBN that we use in this work
is based on ab initio calculations for the interlayer cou-
pling, which capture effects beyond the commonly as-
sumed two-center approximation.®® In Eq. (2), the mag-
nitude and phase pairs C,,, ¢, are moiré pattern param-
eters that capture the effective interlayer coupling in the
first harmonic approximation.'®3® The parameters Cu,
¢,, were obtained by first calculating the distant hopping
terms from carbon to the substrate atoms, for all pos-
sible commensurate stacking configurations. Then, the
real-space hopping terms were Fourier transformed, to
calculate the effective interlayer coupling near the Dirac
point, for every stacking configuration. An additional
Fourier transform in the reciprocal lattice vectors for the

moire patterns led to the W, terms used in Eq. (7) and
defined in Eq. (8). The parameters used in our model
Hamiltonian are:

Cy = 0.01013 eV, ¢y = 26.53° ,
C, =0.00901 eV, ¢, = —51.57°, (9)
Cap =0.01134 eV, ¢y = 130.40° .

The model also needs the following additional parame-
ters:

Ay =0.010 eV, e=—-0.017,

vp = 1.1 nm/fs, ae = 1.0, (10)

where A is the magnitude of the average gap that can be
introduced by moiré strains,'” vp is the Fermi velocity in
G/hBN, and aee = €2/(ehvr) is a dimensionless coupling
constant measuring the strength of electron-electron in-
teractions, with e the electron’s charge and € the average
dielectric constant.



We point out that a different set of Hamiltonian pa-
rameters u;, U;, based on inversion symmetry consider-
ations and a choice of origin, was also analyzed in the
literature.!®4! The relation between the sets u;, @; and
Cu, ¢, is discussed in detail in Ref. 19.

B. Theory of the dielectric and loss functions for
moiré superlattices

The dielectric function eg g/ (g, w) relates the external
potential Veyt (G 4 q,w) applied to the electron system
and the total potential Vi.(G + q,w), which includes the
contribution of the displaced carrier’s charges (i.e. elec-
tronic screening), according to the relation

Y e (@,w)Vee( G+ q,w) =
Gl

‘/ext(G+qaw) . (11)

Here, G are reciprocal lattice vectors of the moiré pattern
superlattice and q is a wave vector in the moiré Brillouin
zone (mBZ). Differently from a homogeneous system, the
dielectric function is a matrix € in the reciprocal lattice
space,?” because the wave vector of the external potential
is conserved only up to a reciprocal lattice vector of the
mBZ.

Within the RPA, the dielectric function is related to
the non-interacting density-density polarization function

(i.e. the Lindhard function) X(C(;)?G,(q,w) by39-42

cc.e(qw) =l —ve@xoe(@w) ,  (12)
where vg(q) = v(q+ G) with v(q) = 2me?/(€q) is the 2D
Fourier transform of the Coulomb potential.
The explicit expression for the Lindhard function is

ng (Ek,’ﬂ,l/) —nr (Ek’,n’,u)
hw + Ekn,y — €k 0w + i77

2
0
Xee(@w) =13
k.n;k’ ,n' ;v
X Mk:,n,u;k:’,n’,u(q + G)Mi,n,u;k’,n’,y(q + G,) ’
(13)

where L? is the 2D electron system area, np(r) =
{exp[(x — u)/kpT] + 1}~ is the Fermi-Dirac occupation
factor at temperature T and chemical potential p, and,
finally,

Mk:,n,u;k’,n’,u(q + G) = <ka n, V|eii(q+G).T|k/a TL/, V> )
(14)
|k,n,v) being the eigenstate of the non-interacting
Hamiltonian for wave vector k in the mBZ, band n, and
principal valley v, and e, the corresponding eigen-
value.

Self-sustained oscillations of the total potential for van-
ishing external potential, which correspond to longitudi-
nal collective electronic modes (i.e. plasmons), are found
by solving det[e(q,w)] = 0. For each wave vector g,
the solution of this equation yields the complex angular

Ekﬂﬂ/ [eV]

FIG. 1.  Graphene-hBN superlattice minibands along the
I-K-M'-K'-T" direction in the mBZ, for the set of parameters
given in Eq. 9, corresponding to vanishing twist angle 8 =
0. On the horizontal axis, the quantity £ indicates the total
length along the path in the reciprocal space. The Fermi
surfaces at the extrema of the shaded area are shown in Fig. 2.

frequency w = wpi(q) of the plasmon mode. In the long-
wavelength limit, where Vi.(G + q) decreases fast with
|G, one can solve the simpler equation €go(gq,w) = 0.
Moreover, assuming that the plasmon modes are long-
lived, one can solve for the roots with real angular fre-
quency only, and then estimate the imaginary part.*3

It is numerically more convenient, however, to calcu-
late the so-called loss function

L(qvw) = —%m{[e_l]o’o(q 7w)} ) (15)

which is proportional to the probability of exciting the
2D electron system by applying a perturbation with wave
vector ¢ and angular frequency w, and is directly mea-
sured e.g. via electron-energy-loss spectroscopy.** More
details on the calculation of the loss function and the
eigenvectors of the moiré Hamiltonian can be found in
Ref. 37. It is important to notice that, although the loss
function depends only the G = G’ = 0 entry of the in-
verse dielectric matrix €1, it is necessary to calculate
the whole matrix € to perform the inversion.

III. RESULTS

In this Section, we present our numerical results for
the loss function and associated plasmon spectrum.

The dispersion of the electronic energies in the mBZ,
dubbed “minibands,” is shown in Fig. 1 along a path
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FIG. 2.  (Color online) Fermi surfaces at the extrema of

the shaded area shown in Fig. 1, for two Fermi energies
er = —180 meV (red) and —215 meV (blue). The gray
shaded area corresponds to the moiré superlattice Brillouin
zone. The Fermi surfaces are periodically repeated in the
reciprocal space for clarity.

in the mBZ around the K valley of the original graphene
Brillouin zone. Two gaps are clearly visible at the energy
of the Dirac point € = 0 around the I" point of the mBZ
and at e ~ —200 meV around the K’ point. (Notice that,
in the K’ valley, the points K and K’ are exchanged.)
The flatness of the second band below the Dirac point
is noteworthy and clearly visible along the path between
the K and K’ points. To better appreciate this band’s
flatness, in Fig. 2 we plot the Fermi surfaces for two dif-
ferent Fermi energies. The bottom of the first band below
the Dirac point consists of one sharp minimum around
the K’ point, parabolic in shape but strongly anisotropic.
The maximum of the second band, instead, is located at
the M point but, in a small energy range < 5 meV, ex-
pands around the K’ point, roughly in the shape of a
three-blade propeller. Eventually, the tips of the blade-
like shapes touch at the K points and merge, yielding a
familiar-looking but distorted hexagonal Fermi surface.

Fig. 3 contains the main results of this Section. It
shows the loss function, at fixed wave vector, in a large
chemical potential range. Above the Dirac point, we
identify a single plasmon branch, almost unperturbed by
the moiré potential with respect to the expression valid
for massless Dirac fermions®

2/mn(p)vpe?
he ’

where n(u) is the carrier density in the first conduction
band, which depends on the chemical potential . We
emphasize that the spectral broadening of the plasmon
branch, i.e. the width of the peak as a function of w,
cannot be readily estimated from this density plot, be-
cause the extent of the monochrome shades has been
truncated to improve the visibility of the less intense
features. Around the Dirac point, the existence of the
gap manifests as a forbidden band for the plasmon prop-
agation, i.e. a region where plasmon branches are not

W123F = (16)
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FIG. 3. (Color online) A 2D density plot of the RPA loss

function L(q,w), as a function of the chemical potential p
and excitation energy hw, for the parameters given in Eq. 9.
The calculation is performed for a fixed wave vector of length
g = 0.02 nm~* along the M-T' direction. Panel (b) shows
a magnification of (a) around the gap at pu ~ —200 meV
(cfr. the minibands in Fig. 1). In (a) the red dotted line
correspond to Eq. (16) and the red dashed line to Eq. (17).
In both panels, and in the following figures as well, the range
of the monochrome shades has been truncated to improve
the visibility of the less intense features. For comparison, the
graph of the loss function at fixed chemical potential is shown
in Fig. 6(a).

supported. Moreover, inter-band transitions across the
gap contribute a continuum of excitations which has the
shape of an inverted, truncated cone.

The profile of the loss function below the Dirac point
is dramatically different. As the chemical potential be-
comes more negative, the graphene’s plasmon branch
first grows in energy, following the expression (16) with
n(u) the hole density in the first valence band, and then
bends abruptly to reach zero energy at the gap located
around p ~ —200 meV. Below the gap, a plasmon branch
rises again. This is an instance of the plasmon morph-
ing phenomenon that was introduced and discussed in
Ref. 37. As the band extrema above and below the gap
are quadratic, the plasmon dispersion morphs following
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FIG. 4. A 2D density plot of the RPA loss function L(q,w),
as a function of the wave vector length ¢ and the excitation
energy hw. The wave vector is taken along the M-I" direction.
Results for positive p = 200 meV and negative p = —205 meV
chemical potentials are shown in (a) and (b), respectively.

the expression valid for a two-dimensional electron gas>’

2 _ 2mn(p)e”
WiDBG = e

q, (17)
where m* ~ 0.01 m, is the carrier’s effective mass, and
me is the electron mass in vacuum. From the good qual-
itative agreement between the expression (17) and the
profile of the loss function, it is clear that the main ef-
fect driving the plasmon morphing is the reduction (in-
crease) of carrier density approaching (leaving) an ex-
tremal point of the band structure, i.e. the dependence
of the Drude weight on the chemical potential, as dis-
cussed in detail in Ref. 37.

Across the gap, inter-band transitions contribute a
thick continuum around 7w < 10 meV. The location
and extent of this continuum can be understood by look-
ing at the Fermi surfaces just below and above the gap,
shown in Fig. 2, which support a large number of elec-
tronic transitions with almost arbitrary wave vector in
a restricted energy range. Most interestingly, below the
gap and as the chemical potential changes, more than one
plasmon branch and an apparent “avoided crossing” ap-
pear, suggesting that these branches correspond to cou-
pled modes.

0.5
0.0

0.10
0.08 i
= 0.06 |
2,
2 004] MM
. K & —215 meV

0.0

1
0.0 05 10 15 20

q [nm_l] ><1072

FIG. 5. As in Fig. 4, but in a smaller wave vector range
around the origin of the reciprocal space. Results for two
negative chemical potentials ;1 = —205 meV and —215 meV,
slightly lower than the gap (cfr. the minibands in Fig. 1), are
shown in (a) and (b), respectively.

To better appreciate the asymmetry of the plasmon
spectrum above and below the Dirac point, in Fig. 4 we
show the loss function as a function of the wave vec-
tor, for two values of the chemical potential. Above the
Dirac point the plasmon’s dispersion is almost unper-
turbed by the moiré potential. On the contrary, close
to the gap at p ~ —200 meV, the low-energy dispersion
(hw < 100 meV) is fractured into several branches with
variable intensity, and recovers its almost unperturbed
profile only at larger energies. Fig. 5 focuses on the low-
energy dispersion for two chemical potentials close to the
gap. The dispersion is very similar, thus showing that
the features discussed here are robust and do not de-
pend on the specific value of the chemical potential. At
very low energies (hw < 30 meV) a well-defined branch
rises with ¢ and then flattens out, giving way to a contin-
uum band of excitations, peaked around the unperturbed
dispersion. The continuum band features a thin abrupt
fracture around Aw ~ 50 meV, above which another con-
tinuum band appears.

To guide the interpretation of these spectral features,
in Fig. 6(a) we juxtapose the loss function and the real
and imaginary parts of the quantity ego(g,w). Two
sharp zeros of the real part are present where the loss
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FIG. 6. (Color online) (a) The RPA loss function L(g,w)
(shaded area), the real (solid line), and the imaginary (dashed
line) part of the quantity €0,0(g,w), as functions of the tran-
sition energy hw, at fixed wave vector length ¢ = 0.01 nm~!.
The values of the loss (dielectric) function are reported on the
left (right) vertical axis. (b) A 2D density plot of the imagi-
nary part of the dielectric function, as a function of the wave
vector length g and the excitation energy hw. In both panels,
the wave vector is taken along the M — I' direction and the
chemical potential is 4 = —215 meV, as in Fig. 4(b).

function has its maxima. This shows that the maxima
are indeed collective modes, and can be interpreted as
branches of the plasmon dispersion. Between the max-
ima, a peak of the imaginary part of €g o(g, w) signals the
existence of a continuum of electronic excitations, which
separates the two branches. A more complete picture is
obtained by looking at Fig. 6(b), which shows the imag-
inary part of €g,0(g,w), i.e. the electron-hole (e-h) con-
tinuum. In unperturbed graphene, at excitation energies
which are small compared to the chemical potential, the
e-h continuum consists of intra-band excitations below
the “light-cone” w = vpq. Here, instead, it consists of a
fractured domain, which includes bands extending hori-
zontally with sharp bottom edges. Again, the origin of
these bands can be qualitatively understood by referring
to the large Fermi surfaces shown in Fig. 2. More pre-
cisely, elongated structures in the Fermi surface grant a
support for e-h transitions with variable wave vector and
constant energy, which coalesce into the horizontal bands

of Fig. 6(b). In other words, inter-band transitions are
possible across the shaded area shown in Fig. 1, in a large
range of wave vectors. The dispersion of the plasmon
modes cannot penetrate the intra-band e-h continuum,
as is the case in unperturbed graphene, where the plas-
mon dispersion is tangent to the light-cone. Thus, the
dispersion bends and follows the bottom edge of the e-h
bands. Different branches effectively avoid each other, as
if they were coupled modes, because they stem from the
same set of electronic excitations.

A similar behavior of a dispersion relation is displayed
by an electromagnetic mode at the interface between a
metal and a dielectric.*> As the electromagnetic mode is
coupled the the continuum of electronic transitions in the
metal, its dispersion becomes sublinear and flattens out
below the threshold for absorbtion due to surface plas-
mons modes. The resulting hybridized mode is known
as surface plasmon-polariton. In the context of graphene
bilayers and double-layers, modifications of the plasmon
dispersion due to band nesting and inter-layer tunneling
have been discussed in Refs. 46 and 47, respectively.

The results that we have presented above hold for
nearly-aligned graphene and hBN layers, where 6 ~ 0,
because they crucially depend on the existence of the
gap in the electronic dispersion at the K’ point of the
Brillouin zone around p ~ —200 meV. However, we have
verified that the plasmon spectrum is asymmetric for a
larger angle § = 2° as well, although in a less dramatic
fashion than displayed in Fig. 3. Since the exact angular
dependence of the parameter Aq is not known analyti-
cally, and experimental reports of the gap magnitude are
not in agreement?? 2%, we have used both Ay = 0 and
Ag = 10 meV in the calculations.

IV. SUMMARY AND CONCLUSIONS

In this work we have analyzed the plasmon spectrum
of a heterostructure composed of two nearly-aligned lay-
ers of graphene and hexagonal boron nitride (hBN). We
have used a continuum-model effective Hamiltonian to
obtain the dispersion relation of graphene’s carriers in
the heterostructure, which is different from that of iso-
lated graphene because the hBN layer generates a peri-
odic moiré potential for the carriers. We have discussed
in detail the symmetry of the moiré potential and the
relation between different formal representations of its
functional form in real and sublattice space. The pa-
rameters of the moiré potential have been derived using
a framework'® which combines symmetry considerations
with input from ab initio calculations. The electronic
dispersion obtained with the continuum model consists
of several minibands in the moiré superlattice Brillouin
zones, centered at the K and K’ points of the Brillouin
zone of pristine graphene, which shift in energy as the
twist angle between the layers is varied. At vanishing
twist angle between the layers, a gap is present about
200 meV below the Dirac point. We have calculated



numerically the dielectric function and the loss function
taking into account electronic transitions between mini-
bands in the moiré Brillouin zones and electron-electron
interactions at the level of the random phase approxima-
tion (RPA).

In conclusion, our calculations demonstrate a dramatic
asymmetry of the plasmon dispersion at positive and
negative chemical potential. This observation is poten-
tially very relevant to establish the ideal working point
of a graphene/hBN heterostructure as a two-dimensional
platform for tunable, low-loss plasmonics. Moreover,
around the gap below the Dirac point, the plasmon spec-
trum features several branches which appear as a result
of a fractured electron-hole continuum due to the inter-
band transitions between closely-spaced minibands with
almost flat dispersion. Given the richness of the available
band dispersion in graphene-based and, in general, in van

der Waals heterostructures, our findings could be useful
to guide further exploration of the non-trivial connection
between the electronic and plasmonic dispersion in these
systems.
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