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Controlling the electrical conductance and in particular the occurrence of quantum interference 

in single-molecule junctions through gating effects, has potential for the realization of high-

performance functional molecular devices. In this work, we used an electrochemically-gated, 

mechanically-controllable break junction technique to tune the electronic behaviour of 

thiophene-based molecular junctions that show destructive quantum interference (DQI) 

features. By varying the voltage applied to the electrochemical gate at room temperature, we 
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reached a conductance minimum that provides direct evidence of charge transport controlled 

by an anti-resonance arising from DQI. Our molecular system enables conductance tuning close 

to two orders of magnitude within the non-faradaic potential region, which is significantly higher 

than that achieved with molecules not showing DQI. Our experimental results, interpreted using 

quantum transport theory, demonstrate that electrochemical gating is a promising strategy for 

obtaining improved in-situ control over the electrical performance of interference-based 

molecular devices. 

The understanding of charge transport through molecular building blocks is essential for the design of 

functional electric materials and devices from the molecular level. Charge transport at the nanoscale 

is dominated by quantum effects that can be controlled by the electron wave function. Among these 

effects, destructive quantum interference (DQI) in single-molecule junctions describes a quantum 

process in which the electron waves propagate through separated molecular orbitals and combine 

destructively1-4. This effect will lead to a reduction in the electron transmission probability and 

therefore a suppression of molecular conductance by orders of magnitude compared with molecular 

junctions without DQI1,3. Consequently, the control of DQI in single-molecule junctions offers a 

promising strategy for developing high-performance molecular devices such as molecular switches5, 

transistors6 and thermoelectric devices7. In previous works, efforts for controlling DQI utilized 

chemical design to manipulate the molecular architectures, including electronic structure 

modification8, molecular topologies9, heteroatom substitution10, and even chemical reactions to 

change the molecular structures11. However, such indirect methods do not allow flexible and in-situ 

control and the fine tuning of interference still remains a major challenge for the fabrication of 

interference based molecular devices, such as single-molecule transistors. 

  Although electrostatic gating offers an integrative approach for the tuning of the relative positions 

of molecule orbitals at different temperatures12,13, electrochemical gating provides a complementary 
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and effective approach to manipulate charge transport in the electrochemically active or inert 

molecular junctions at room temperature14-17. When the applied electrode potentials vary in a non-

faradaic region, the molecular energy alignment relative to the electrode Fermi energy would be 

tuned18, which offers the in-situ fine tuning of charge transport through single-molecule junctions.  

Since the quantum interference in the charge transport through single-molecule junctions is energy 

dependent, the continuous tuning of the electrode potential offers an ideal strategy for realizing 

interference-based single-molecule electrochemical transistors (ECTs)16-22, and the high gating 

efficiency and relatively large gate voltage windows provide opportunities for gating single-molecule 

junctions between resonances associated with molecular energy levels and anti-resonances associated 

with DQI18,23. 

Herein, we develop a mechanically controllable break junction technique (MCBJ) chip integrated 

with the electrochemical gate for the fabrication of single-molecule ECTs in ionic liquid, and 

investigate the charge transport through single-molecule thiophene junctions with DQI controlled by 

electrochemical gating. We observe the anti-resonance from DQI in a non-faradaic region at around 

−0.4 V versus Ag/AgCl quasi-reference electrode, which offers direct evidence of that charge transport 

is controlled by DQI. It is also found that the single-molecule thiophene junctions with DQI shows 

~100 times conductance enhancement as the potential moves positively, which is significantly larger 

than that without DQI. Density functional theory (DFT) calculations of the electrochemical double 

layers around the molecular backbones, confirm that the gating shifts the DQI anti-resonance feature 

towards the Fermi energy. 

The single-molecule conductance measurements were carried out on an electrochemical tip-bead 

(ECTB) chip integrated with four electrodes for electrochemical gating using MCBJ technique (Fig. 

1a). The two working electrodes (source and drain electrodes) fabricated from a Au tip coated with 

insulating glue and a Au bead, are separated with a gap of ~20 m and fixed on a stainless steel sheet 
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using epoxy resin. A Pt wire and a Ag wire coated with a layer of AgCl are introduced as the counter 

and reference electrodes, respectively. This asymmetric architecture of the source and drain electrodes 

is inherited from STMBJ method, and the integrated electrochemical system on a MCBJ chip can be 

employed as the on-chip single-molecule ECTs. During the conductance measurements, the gap 

between two working electrodes was further decreased until connected through bending the chip 

downwards driven by stepper motor and piezo stacks, and then repeated breaking/connecting process 

(see Supplementary Information S2 for details). 

 

Fig. 1 | Electrochemical gating of 2,4-TP-SAc molecular junctions. a, Schematics of the 

electrochemically-gated, mechanically controllable break junction technique and molecular structures 

of thiophene derivatives with the anchoring groups of thioacetyl (-SAc). b, One-dimensional (1D) 

conductance histograms of 2,4-TP-SAc at different potentials, and the potentials of coated Au tip 

relative to Ag/AgCl were chosen as the applied electrode potentials, while the potential of Au bead 

were set as 100 mV lower to have the bias of 100 mV between the two electrodes. Inset: typical 

individual traces of 2,4-TP-SAc at different potentials: black for pure solvent, red for 2,4-TP-SAc 

junctions at −0.6 V, orange for 0.4 V, yellow for 1.0 V and light yellow for 1.3 V. Two-dimensional 
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(2D) conductance–displacement histograms of 2,4-TP-SAc at −0.6 V (c) and 1.0 V (d), and the relative 

displacement distributions (insets). e, Tendency of the molecular conductance of 2,5-TP-SAc (purple) 

and 2,4-TP-SAc (orange) versus electrode potentials from −0.6 V to 1.3 V. Inset: magnification from 

−0.2 V to 0.5 V. f, Reversible switching of 2,4-TP-SAc under the sweep potentials between −0.4 V 

and 1.0 V. The error bars of the conductance value were determined from the variation of the most 

probable conductance values in three independent conductance measurements, and the error bars of 

the potential were determined from the potential stability test (Supplementary Fig. 2a). 

To reveal the role of DQI in the charge transport through gated single-molecule junction, we 

investigate the charge transport through the thiophene core molecules with (2,4-TP-SAc) and without 

(2,5-TP-SAc) DQI as shown in Fig. 1a. Fig. 1b (inset) shows several typical individual stretching 

traces for 2,4-TP-SAc with the electrode potentials at −0.6 V, 0.4 V, 1.0 V and 1.3 V versus the 

reference potential. The black traces show a tunneling decay after the rupture of Au atomic contact in 

pure solvent, while molecular plateaus corresponding to the single-molecule conductance are found in 

the traces in solution with target molecules. The position of the molecular plateau shifts with the 

electrode potentials, suggesting the feasibility of electrochemical gating of single-molecule junctions 

using MCBJ technique. For further analysis, hundreds to thousands of such conductance traces were 

used to construct the conductance histograms. Fig. 1b shows the 1D conductance histograms of 2,4-

TP-SAc molecule measured at different potentials. A pronounced conductance peak located at 

10−5.0±0.03 G0 (conductance quantum, G0 = 2e2/h) was obtained for 2,4-TP-SAc at −0.6 V, and shifted 

for almost two orders of magnitude to 10−3.2±0.07 G0 at 1.3 V. To exclude the conductance differences 

from configurational change, we constructed the 2D conductance–displacement histograms of 2,4-

TP-SAc at −0.6 V and 1.0 V, as shown in Fig. 1c and 1d. By accounting for the Au-Au snap back 

distance, the molecular length obtained from the relative stretched distance distribution is determined 

to be ~1.5 nm (1.0 nm determined from the relative displacement distribution, and adding a Au-Au 
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snap back distance of ~0.5 nm24). This is quite similar to the calculated molecular length, suggesting 

the conductance enhancement is ascribed to the applied electrode potentials rather than configurational 

change.  

To reveal the variation of the molecular conductance with electrode potentials within whole non-

faradaic region, we measured the molecular conductance while varying the electrode potentials from 

−0.6 V to 1.3 V, which is limited by desorption of the molecules at lower potential and the Au oxidation 

at higher potential25 as shown in Fig. 1e (see Supplementary Fig. 2 for cyclic voltammetry 

measurements). When electrochemical gating was applied, the molecular conductance increases by 

~100 times from 10−5.1±0.02 G0 at −0.4 V to 10−3.2±0.07 G0 at 1.3 V without redox process. To further 

investigate the role of DQI in the electrochemical gated charge transport, we studied the conductance 

of 2,5-TP-SAc without DQI (see Supplementary Fig. 5 for details), which increases by only 8 times 

from 10−3.8±0.07 G0 at −0.6 V to 10−2.9±0.02 G0 at 1.3 V, indicating that 2,4-TP-SAc junctions with DQI 

provides more than one order of magnitude higher conductance tuning than that of the 2,5-TP-SAc 

junctions without DQI.  

More importantly, it is found that the molecular conductance at −0.6 V (10−5.0±0.03 G0) is higher than 

that at −0.4 V (10−5.1±0.02 G0). To verify this tendency, we further carried out the experiments and 

plotted molecular conductance at −0.3 V and −0.5 V (Fig. 1e inset). Both conductance values at −0.3 

V and −0.5 V are slightly higher than that at −0.4 V, but lower than those at −0.2 V and −0.6 V. The 

control experiments revealed that the conductance increase is not from the increase of faraday current 

(see Supplementary Fig. 7). The observation is in accordance with the anti-resonance tendency of DQI 

with the minimum conductance at around −0.4 V. This is direct evidence of the tuning of the anti-

resonance of DQI. Previous work has suggested that the transmission functions of molecular junction 

could be mapped electrochemically23. Herein we further demonstrate that the DQI can be directly 

mapped through electrochemical gating at room temperature. 
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The high gating efficiency of 2,4-TP-SAc lead to the fabrication of the high-performance single-

molecule ECTs. Fig. 1f shows the reversible switching cycles of 2,4-TP-SAc under the sweep 

potentials between −0.4 V and 1.0 V. It is found that the conductance changes with the potential 

accordingly without any attenuation in conductance ratio. The large variation of the conductance 

provides a promising way to construct the molecular switch based on DQI, which tunes the electrode 

Fermi energy between the near resonance state and the anti-resonance state. 

 

Fig. 2 | Conductance-electrode potential and current/conductance-voltage measurements of 2,4-

TP-SAc and 2,5-TP-SAc molecular junctions. a, Typical individual conductance-electrode potential 

traces of 2,4-TP-SAc. b, Typical individual conductance-electrode potential traces of 2,5-TP-SAc. c, 

2D histogram of conductance-electrode potential of 2,4-TP-SAc (503 traces). d, 2D histogram of 

conductance-electrode potential of 2,5-TP-SAc (184 traces). e, 2D histogram and the most probable 

curve of current/conductance-voltage of 2,4-TP-SAc at −0.4 V (1154 traces). f, Most probable traces 

from 2D histogram of current/conductance-voltage of 2,4-TP-SAc at 1.0 V, 0.6 V, −0.4 V and −0.6V. 

g, Conductance distributions of low-bias conductance determined from the slopes from −100 mV to 

100 mV in current/conductance-voltage traces and the count numbers are scaled for better comparison. 

To further confirm the potential dependent conductance variation, we carried out the conductance-
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potential measurement for 2,4-TP-SAc and 2,5-TP-SAc in the same environmental conditions with 

the electrochemically-gated conductance measurement (see Methods for more details). As shown in 

Fig. 2a and 2b, there is a clear drop at around −0.4 V in most of the individual conductance-electrode 

potential traces from the measurement of 2,4-TP-SAc, while most of the traces of 2,5-TP-SAc shows 

the increases with gate voltage from −0.6 V to −0.2 V. It is found that the current determined from the 

conductance-electrode potential measurement is slightly lower than that from the electrochemically-

gated conductance measurement, which may come from the preferred fully-stretched molecular 

configuration24 as well as the contribution from faraday discharging current. Notably, the conductance 

drop in individual traces is found to be around half an order of magnitude, which is even higher than 

that determined from the electrochemically-gated conductance measurement. All data plots shown in 

Fig. 2c demonstrated the presence of a clear “V” shape node with a minimum at around −0.38 V for 

2,4-TP-SAc, which agrees well with the electrochemically gated conductance measurement and offers 

the direct evidence of anti-resonance from DQI. In contrast, the conductance-electrochemical potential 

traces of 2,5-TP-SAc show the slight increase shown in Fig. 2d.  

We further carried out the current/conductance-voltage measurement at different potentials by 

sweeping the bias between −1.0 V and +1.0 V continuously at a sweeping rate of 5 V/s24,26,27. Hundreds 

of current/conductance-voltage traces with molecular junctions are plotted in a two dimensional 

conductance-gate voltage histogram, and the typical conductance-gate voltage traces at −0.4 V are 

shown in Fig. 2e, which exhibited a significant voltage dependence. We further compare the most 

probable current/conductance-voltage traces at different potentials. It is found that the 

current/conductance-voltage curves remained almost constant at 1.0 V for molecules, suggesting that 

the Fermi level are far from resonance or anti-resonance. More interestingly, it is found that the 

current/conductance-gate voltage at −0.6 V is even more tilted than that of at −0.4 V. We further 

analyze the conductance distributions from current/conductance-voltage traces from the slopes from 
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−100 mV to 100 mV. The most probable conductance from the slopes of current/conductance-voltage 

traces are determined to be 10−4.9±0.4 G0 at −0.6 V, 10−5.0±0.5 G0 at −0.4 V, 10−4.4±0.5 G0 at 0.6 V, and 

10−3.5±0.5 G0 at 1.0 V for 2,4-TP-SAc, which agrees well with the conductance measurement at fixed 

bias voltage (See supplementary Fig. 8 for the measurement of 2,5-TP-SAc). 

 

Fig. 3 | Transport characteristics of 2,4-TP-SMe and 2,5-TP-SMe molecular junctions. a, 

Molecular structures of thiophene derivatives with the anchoring group of thiomethyl (-SMe). b, 1D 

conductance histograms of 2,4-TP-SMe at different electrode potentials. c, Tendency of the molecular 

conductance of 2,4-TP-SMe and 2,5-TP-SMe versus electrode potentials from −0.2 to 1.0 V. The error 

bars of the conductance value are determined from the variation of the most probable conductance 

values in three independent conductance measurements, and the error bars of the potential are 

determined from the potential stability test (Supplementary Fig. 2a). 

To further verify the generality of this strategy and to study the role of electrode-molecule coupling, 

we replaced the anchoring group –SAc with –SMe and investigated the single-molecule conductance 

under electrochemical gating as shown in Fig. 3. It is found that the molecular conductance of 2,4-TP-

SMe increased by ~20 times from −0.2 V to 1.0 V, compared with ~4 times increase for 2,5-TP-SMe 

(see Supplementary Fig. 8 for details). This tendency is similar to that of 2,4-TP-SAc, except that the 

–SMe will desorb from Au when the electrode potential is negative than −0.2 V16, 23, which prevents 

the formation of molecular junction at their anti-resonance states. Comparing the conductance 

variation of 2,4-TP-SMe (20 times) and 2,4-TP-SAc (27 times) in the potential range from −0.2 V to 



10 

 

1.0 V, the reduction of electrode-molecule coupling from covalent Au-S bond to coordinating Au-SMe 

bond do not provide more effective conductance tuning of the single-molecule junctions upon varying 

electrode potentials. 

 

Fig. 4 | Transport properties of thiophene core molecular junctions in the absence and presence 

of HMIPF6. a, Structure of 2,4-TP-SAc molecular junctions under negative potential (up) and positive 

potential (down). b, Transmission coefficients of 2,4-TP-SAc in presence of negative and positive 

charges with different positions. c, Transmission coefficients of 2,5-TP-SAc in presence of negative 

and positive charges with different positions. d, Comparison of 2,4-TP-SAc and 2,5-TP-SAc 

conductance versus the position of HMIPF6. The Fermi energy (black dashed line) lies around the 

middle of the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-

LUMO) gap (EF = 0.1 eV) of bare junction for 2,4-TP-SAc and −0.08 eV for 2,5-TP-SAc. e, 

Calculated conductance versus bias voltage of 2,4-TP-SAc for different positions of HMIPF6. 
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In order to understand the effect of the electrochemical gating on the single-molecule junctions, we 

performed quantum transport calculations28,29 of the junctions formed by thiophene cores with 2,4 and 

2,5 connectivities to the Au electrodes via thiol or -SMe as anchoring group, both in the absence and 

presence of HMIPF6 (see Methods and Supplementary Fig. 9). The transmission coefficient of the bare 

junction in the absence of HMIPF6 shows a clear DQI feature for 2,4-TP-Sac, while 2,5-TP-SAc 

shows no DQI features (Fig. 4b, c). When an electric field is applied, depending on the orientation of 

HMIPF6, the transmission coefficient shifts to the left or right. 𝑑𝑥
± in Fig. 4 denotes the positions of 

HMIPF6 from the backbone and the potential orientation (“𝑑𝑥
−” represents the position of HMIPF6 

from the molecular backbone at negative potentials and “𝑑𝑥
+” represents the HMIPF6 position of from 

the molecular backbone at positive potentials. “x” ranges from 1 to 5 correspond to the decreased 

distance of HMIPF6 from the molecular backbone, and the detailed distances were shown in 

Supplementary Fig. 9). When the HMI moiety is closer to the back bone (𝑑𝑥
− in Fig. 4), T(E) shifts to 

the left, whereas it shifts to the right when PF6 gets closer to back bone (𝑑𝑥
+ in Fig. 4). It is found that 

HOMO-LUMO gap also shrinks owing to the electric field. In addition, the anti-resonance dip 

associated with DQI in 2,4-TP-SAc is moved by the position of HMIPF6. Clearly, if the Fermi energy 

lies close to the anti-resonance of T(E) in 2,4-TP-SAc, a large variation of the conductance is predicted 

(red curves in Fig. 4b). Conversely, when HMIPF6 approaches the backbone from the PF6 side, the dip 

of T(E) moves to the right, away from the DFT predicted Fermi energy (black dashed line) and the 

HOMO moves closer, which leads to the near-resonance charge transport (yellow curves in Fig. 4b). 

In 2,5-TP-SAc (Fig. 4c, d), T(E) does not have a dip and therefore a smaller variation is predicted 

unless the Fermi energy happens to be in the tail of resonances. Fig. 4d shows the theoretical variation 

of the conductance versus the position of HMIPF6 from the back bone for both 2,4-TP-SAc and 2,5-

TP-SAc. For 2,4-TP-Sac, the conductance initially decreases with a negative field from 𝑑1
− to 𝑑4

−, 

but then increases from 𝑑4
− to 𝑑5

−, suggesting the presence of an anti-resonance dip from DQI effect 
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at 𝑑4
− states, which originates from the crossing of DQI dip at Fermi energy as shown in Fig. 4b. It is 

also found that the HOMO moves closer at positive potentials, suggesting the presence of near-

resonance charge transport, in agreement with the significant conductance increase of 2,4-TP-SAc at 

positive potentials shown in Fig. 1e. The calculated conductance difference between the anti-resonance 

(𝑑4
− state) and near resonance (𝑑5

+ state) is determined to be around two orders of magnitudes, which 

is quite close to the experimental ratio of ~100. In comparison, the conductance variation of 2,5-TP-

SAc is much smaller, which is ascribed to the absence of a DQI feature in the transmission of 2,5-TP-

SAc. We have also calculated the conductance-voltage traces for 2,4-TP-SAc, which qualitatively 

agree with the experimentally determined conductance-voltage traces, suggesting the gating towards 

an anti-resonance leads to more pronounced voltage dependence of conductance at 𝑑4
− state and 𝑑5

− 

state. We can also conclude that the most tilted shape of the experimental conductance-voltage traces 

for 2,4-TP-SAc at −0.6 V (𝑑5
− state) arises when the Fermi level is located between a resonance and 

anti-resonance, which leads to the sharpest transmission changes24,26,27 (see Supplementary 

Information S5 for details). 

In summary, we employed electrochemical gating for the fine tuning of charge transport properties 

in single-molecule thiophene junctions with and without DQI using a modified electrochemical MCBJ 

technique. Benefiting from the high gating efficiency of electrochemical gating and the large potential 

windows of ionic liquid, this work provides the experimental observation of charge transport at an 

anti-resonance state arising from DQI at room temperature, which is also supported by DFT 

simulations of the electrochemical double layer. It is found that the gating of single-molecule 

thiophene junctions with DQI when the Fermi level is located between a resonance and anti-resonance, 

shows ~100 times conductance variation by tuning the electrode potential from −0.4 V to 1.3 V versus 

the Ag/AgCl quasi-reference electrode in ionic liquid, which is more than one order of magnitude 

higher than that without DQI. The electrochemical tuning of DQI presented in this work provides a 
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promising design strategy for tuning of interference in future molecular materials and devices.  

 

Data availability. The data that support the findings of this study are available from the corresponding 

author upon reasonable request. 
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Methods 

Synthesis 

The target molecules were prepared by the Sonogashira coupling of 4-ethynylthioanisole and 1-

(thioacetyl)-4-ethynylbenzene with 2,5-dibromothiophene and 2,4-dibromothiophene, respectively. 4-

ethynylthioanisole and 1-(thioacetyl)-4-ethynylbenzene were prepared according to published 

procedures (see Supplementary Information S1) 

Chip fabrication 

Materials for chip fabrication are prepared as follow: Ag/AgCl wire was fabricated by 

electrochemically oxidizing Ag wire (0.1 mm diameter, 99.99%, Jiaming, Beijing) at a constant 

potential of 1.5 V in the electrolyte of (37% HCl : H2O = 1:1, v/v). The coated Au tip was prepared by 

etching Au wire (0.15 mm diameter, 99.99%, Jiaming, Beijing) in a solution of (37% HCl : ethanol = 

1:1, v/v) at a potential of 1.2 V and then coated with hot melt adhesive (Ace Hardware Corp., USA). 

In our study, the Au beads of 0.35-0.50 mm in diameter were annealed by butane flame. The electrodes 

were fixed onto a sheet of spring steel (30 mm × 10 mm with 0.2 mm thickness) using two drops of 

epoxy (Stycast 2850 FT with catalyst 9). 

mailto:whong@xmu.edu.cn
mailto:c.lambert@lancaster.ac.uk
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Fabrication process of ECTB chip was as follow: the spring steel sheets (30 mm × 10 mm × 0.2 mm) 

were cleaned by acetone and Milli-Q water, and dried by nitrogen flow. The coated Au tip wire and Pt 

wire (0.1 mm diameter, 99.95%) were fixed on the sheet with one drop of epoxy (mixture of 

STYCAST 2850 FT epoxy resin and 3.5 wt.% Catalyst 9). After complete polymerization at room 

temperature, the Au bead and Ag/AgCl wire were fixed on the other side of the sheet by one drop of 

epoxy. The initial distance between coated Au tip and Au bead was adjusted to be less than 50 m 

under optical microscope (SAIKEDIGITAL, SK2700U). Before the experiment, the as-prepared chip 

was rinsed by isopropanol and dried by natural volatilization.  

Electrochemical measurements 

The CV measurements at ambient conditions were employed through our laboratory-built 

bipotentiostat, while an Autolab electrochemical workstation (Eco Chemie, Netherlands) was used 

when measured in glovebox filled with ultra-pure argon. 

The stability of the Ag/AgCl quasi-reference electrode was tested by open-circuit potential 

measurements using a two-electrode system30. The working electrode and the reference electrode were 

the Ag/AgCl quasi-reference electrode and a commercial saturated calomel electrode (SCE, CH 

Instruments Inc.), respectively. The two electrodes were set separately (Ag/AgCl quasi-reference 

electrode was placed in the HMIPF6 ionic liquid, and SCE was placed in a saturated KCl aqueous 

solution) and connected through an agar-KNO3-HMIPF6 filled salt bridge. The potential signal outputs 

from the two electrodes were recorded through an Autolab electrochemical workstation (Eco Chemie, 

Netherlands).  

Conductance measurements 

Before the experiments, the as-prepared chip was rinsed by isopropanol and dried by natural 

volatilization. Then the chip was installed with the polytetrafluoroethylene (PTFE) liquid cell on the 

top fixed by two Al alloy plates (see Supplementary Information S2 for details). The thiophene 
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derivatives (see Supplementary Information S1 for synthetic method and characterization) were 

prepared to be 0.5 mM in a solvent of HMIPF6 (purchased from lolitec ionic Liquids Technologies, 

Germany). During the single-molecule conductance measurements, 10-15 μL molecular solution was 

added into the PTFE liquid cell.  

The electrochemically MCBJ measurements are based on a laboratory-built bipotentiostat with tunable 

logarithm current-voltage converter31. During experiments, the bias voltage between two working 

electrodes of coated Au tip and Au bead was fixed to be 0.1 V, and the current passing through the 

working electrodes was measured by a logarithmic I-V converter with a sampling rate of 10 kHz using 

microcontroller for data acquisition. During the measurements, the ECTB chip was bent down and up 

with the Al alloy plates, which were driven by a combination of a stepper motor (Zaber NA14B16) 

and a piezo stack (Thorlab AE0505D18F). The evolution of conductance characteristics was recorded 

for further analysis during the repeated connecting/breaking process. A statistical analysis was used 

for the determination of the conductance and stretching displacement distribution of molecular 

junctions. The construction of 1D conductance histograms from typical individual traces provides a 

way to quantify the most probable conductance. In order to reveal the evolution process of single-

molecule junctions, 2D conductance–displacement histograms were constructed. The distance of the 

electrodes on the ECTB chip were determined from the tunneling current as reported in our previous 

paper24, and the relative displacement distributions were calibrated from the stretching rate determined 

from pure solvent measurements (see Supplementary Information S4.2 for details). In this case, the 

tunneling decay constants in pure solvent and molecule containing solution are considered to be the 

same to simplify the calibration although the tunneling decay constant varied after adding molecules 

into the solution. 

Conductance-electrode potential measurements 

The conductance-electrode potential measurements were carried out in the same environmental 
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conditions with the electrochemically-gated conductance measurement. Instead of the fixed potential 

in the electrochemically-gated conductance measurement, the break junction experiment was started 

with a preset potential at −0.2 V. Once the conductance reached the conductance range of molecular 

plateau (setting 4×10−5 A for 2,4-TP-SAc and 8×10−4 A for 2,5-TP-SAc), we employed the 

microcontroller to keep the distance of the two electrodes at a certain value, and started to sweep the 

gate voltage from −0.2 to −0.6 V at 1 V/s with fixed bias voltage between the two electrodes. The 

current were recorded until the junction broke with a sampling rate of 10 kHz. Once the junction broke, 

another break junction process was started to form the single-molecule junction for conductance-

electrode potential measurements. Since the measured current from the forward sweeping represented 

the total contribution from Faraday current from electrochemical charging and tunneling current from 

molecular junctions, only the backward sweeping was used for the plotting in the two-dimensional 

intensity histogram for both molecules. Hundreds of individual curves with mean conductance 

between 10−4 to 10−6 G0
 are selected for further statistics. The 2D histograms of conductance-electrode 

potential were constructed with a bin size of 500 × 500 in 2D space.  

Current/conductance-voltage measurements 

The current/conductance-voltage measurements were carried out in the same environmental 

conditions with the electrochemically-gated conductance measurement. Instead of the fixed bias in the 

electrochemically-gated conductance measurement, the bias between −1.0 V and +1.0 V continuously 

was swept at the sweeping rate of 5 V/s. The conductance at 100 mV as feedback to control the piezo 

movement for repeating opening and closing process, as reported in our previous paper24,32. The 

stretching rate is reduced to be around 0.1 nm/s, and several individual traces were collected from each 

break junction cycles with a sampling rate at 10 kHz. The low-bias conductance of the 

current/conductance-voltage curves are determined from the data within the range from −100 mV to 

100 mV. The 2D histograms of conductance versus voltage were constructed with a bin size of 1000 



19 

 

× 1000 in 2D space and the bin size of conductance distributions of low-bias conductance is 0.03 log 

(G/G0). 

Theoretical calculations 

Theoretical calculations were performed with a combination of ab initio DFT package SIESTA and 

the quantum transport code Gollum. Due to electrochemical gating, the concentration of charge double 

layer formed by positively charged 1-hexyl-3-methylimidazolium (HMI) and negatively charged 

hexafluorophosphate (PF6) varied around the molecular backbone, which also changes the local 

electric field applied to the backbone. Depending on the electrode potentials, either positively or 

negatively charged ends of HMIPF6 are oriented towards the backbone. We accounted for the variation 

in the effective electric field by moving the HMIPF6 with fixed orientation towards the backbone. Fig. 

3a shows two different configurations of 2,4-TP-SAc molecular junctions in the presence of HMIPF6, 

in which negative or positive region of HMIPF6 is closer to the backbone to simulate the 

electrochemical gating at positive and negative potentials. We calculated the material specific mean 

field Hamiltonian33 of each structure (see Supplementary Fig. 9) and then combined it with the 

quantum transport code Gollum29 to calculate transmission coefficient T(E) of electrons with energy 

E passing from one electrode to the other. The electrical conductance G is then calculated from 

transmission coefficient G = G0T(EF) where EF is the Fermi energy of the electrodes. (see 

Supplementary Information S5 for details). The conductance for different bias voltages can also be 

calculated from G = I/V where 𝐼(𝑉) =  ∫ 𝑑𝐸 𝑇(𝐸)(𝑓 (𝐸 −
𝑒𝑉

2
) − 𝑓(𝐸 +

𝑒𝑉

2
))  and f is the Fermi 

Dirac distribution function28. In order to calculate the current/conductance-voltage characteristic of 

junctions in the linear response regime, zero-bias transmission coefficient T(E) combined with 

Landauer formula was employed28. 

Data availability. The data that support the findings of this study are available from the corresponding 
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author upon reasonable request. 
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